1
|
Carretero VJ, Álvarez-Merz I, Hernández-Campano J, Kirov SA, Hernández-Guijo JM. Targeting harmful effects of non-excitatory amino acids as an alternative therapeutic strategy to reduce ischemic damage. Neural Regen Res 2025; 20:2454-2463. [PMID: 39314160 PMCID: PMC11801293 DOI: 10.4103/nrr.nrr-d-24-00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
The involvement of the excitatory amino acids glutamate and aspartate in cerebral ischemia and excitotoxicity is well-documented. Nevertheless, the role of non-excitatory amino acids in brain damage following a stroke or brain trauma remains largely understudied. The release of amino acids by necrotic cells in the ischemic core may contribute to the expansion of the penumbra. Our findings indicated that the reversible loss of field excitatory postsynaptic potentials caused by transient hypoxia became irreversible when exposed to a mixture of just four non-excitatory amino acids (L-alanine, glycine, L-glutamine, and L-serine) at their plasma concentrations. These amino acids induce swelling in the somas of neurons and astrocytes during hypoxia, along with permanent dendritic damage mediated by N-methyl-D-aspartate receptors. Blocking N-methyl-D-aspartate receptors prevented neuronal damage in the presence of these amino acids during hypoxia. It is likely that astroglial swelling caused by the accumulation of these amino acids via the alanine-serine-cysteine transporter 2 exchanger and system N transporters activates volume-regulated anion channels, leading to the release of excitotoxins and subsequent neuronal damage through N-methyl-D-aspartate receptor activation. Thus, previously unrecognized mechanisms involving non-excitatory amino acids may contribute to the progression and expansion of brain injury in neurological emergencies such as stroke and traumatic brain injury. Understanding these pathways could highlight new therapeutic targets to mitigate brain injury.
Collapse
Affiliation(s)
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, School of Medicine, Univ. Autónoma de Madrid, Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Neurobiology-Research Service, Hospital Ramón y Cajal, Madrid, Spain
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jorge Hernández-Campano
- Department of Pharmacology and Therapeutic, School of Medicine, Univ. Autónoma de Madrid, Madrid, Spain
| | - Sergei A. Kirov
- Department of Neuroscience and Regenerative Medicine & Department of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jesús M. Hernández-Guijo
- Department of Pharmacology and Therapeutic, School of Medicine, Univ. Autónoma de Madrid, Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Neurobiology-Research Service, Hospital Ramón y Cajal, Madrid, Spain
| |
Collapse
|
2
|
Sonkodi B. Delayed-Onset Muscle Soreness Begins with a Transient Neural Switch. Int J Mol Sci 2025; 26:2319. [PMID: 40076941 PMCID: PMC11901069 DOI: 10.3390/ijms26052319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Unaccustomed and/or strenuous eccentric contractions are known to cause delayed-onset muscle soreness. In spite of this fact, their exact cause and mechanism have been unknown for more than 120 years. The exploration of the diverse functionality of the Piezo2 ion channel, as the principal proprioceptive component, and its autonomously acquired channelopathy may bring light to this apparently simple but mysterious pain condition. Correspondingly, the neurocentric non-contact acute compression axonopathy theory of delayed-onset muscle soreness suggests two damage phases affecting two muscle compartments, including the intrafusal (within the muscle spindle) and the extrafusal (outside the muscle spindle) ones. The secondary damage phase in the extrafusal muscle space is relatively well explored. However, the suggested primary damage phase within the muscle spindle is far from being entirely known. The current manuscript describes how the proposed autonomously acquired Piezo2 channelopathy-induced primary damage could be the initiating transient neural switch in the unfolding of delayed-onset muscle soreness. This primary damage results in a transient proprioceptive neural switch and in a switch from quantum mechanical free energy-stimulated ultrafast proton-coupled signaling to rapid glutamate-based signaling along the muscle-brain axis. In addition, it induces a transient metabolic switch or, even more importantly, an energy generation switch in Type Ia proprioceptive terminals that eventually leads to a transient glutaminolysis deficit and mitochondrial deficiency, not to mention a force generation switch. In summary, the primary damage or switch is likely an inward unidirectional proton pathway reversal between Piezo2 and its auxiliary ligands, leading to acquired Piezo2 channelopathy.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary;
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
| |
Collapse
|
3
|
Andersen JV. The Glutamate/GABA-Glutamine Cycle: Insights, Updates, and Advances. J Neurochem 2025; 169:e70029. [PMID: 40066661 PMCID: PMC11894596 DOI: 10.1111/jnc.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
Synaptic homeostasis of the principal neurotransmitters glutamate and GABA is tightly regulated by an intricate metabolic coupling between neurons and astrocytes known as the glutamate/GABA-glutamine cycle. In this cycle, astrocytes take up glutamate and GABA from the synapse and convert these neurotransmitters into glutamine. Astrocytic glutamine is subsequently transferred to neurons, serving as the principal precursor for neuronal glutamate and GABA synthesis. The glutamate/GABA-glutamine cycle integrates multiple cellular processes, including neurotransmitter release, uptake, synthesis, and metabolism. All of these processes are deeply interdependent and closely coupled to cellular energy metabolism. Astrocytes display highly active mitochondrial oxidative metabolism and several unique metabolic features, including glycogen storage and pyruvate carboxylation, which are essential to sustain continuous glutamine release. However, new roles of oligodendrocytes and microglia in neurotransmitter recycling are emerging. Malfunction of the glutamate/GABA-glutamine cycle can lead to severe synaptic disruptions and may be implicated in several brain diseases. Here, I review central aspects and recent advances of the glutamate/GABA-glutamine cycle to highlight how the cycle is functionally connected to critical brain functions and metabolism. First, an overview of glutamate, GABA, and glutamine transport is provided in relation to neurotransmitter recycling. Then, central metabolic aspects of the glutamate/GABA-glutamine cycle are reviewed, with a special emphasis on the critical metabolic roles of glial cells. Finally, I discuss how aberrant neurotransmitter recycling is linked to neurodegeneration and disease, focusing on astrocyte metabolic dysfunction and brain lipid homeostasis as emerging pathological mechanisms. Instead of viewing the glutamate/GABA-glutamine cycle as individual biochemical processes, a more holistic and integrative approach is needed to advance our understanding of how neurotransmitter recycling modulates brain function in both health and disease.
Collapse
Affiliation(s)
- Jens V. Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
4
|
Yan Y, Antolin N, Zhou L, Xu L, Vargas IL, Gomez CD, Kong G, Palmisano I, Yang Y, Chadwick J, Müller F, Bull AMJ, Lo Celso C, Primiano G, Servidei S, Perrier JF, Bellardita C, Di Giovanni S. Macrophages excite muscle spindles with glutamate to bolster locomotion. Nature 2025; 637:698-707. [PMID: 39633045 PMCID: PMC11735391 DOI: 10.1038/s41586-024-08272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/23/2024] [Indexed: 12/07/2024]
Abstract
The stretch reflex is a fundamental component of the motor system that orchestrates the coordinated muscle contractions underlying movement. At the heart of this process lie the muscle spindles (MS), specialized receptors finely attuned to fluctuations in tension within intrafusal muscle fibres. The tension variation in the MS triggers a series of neuronal events including an initial depolarization of sensory type Ia afferents that subsequently causes the activation of motoneurons within the spinal cord1,2. This neuronal cascade culminates in the execution of muscle contraction, underscoring a presumed closed-loop mechanism between the musculoskeletal and nervous systems. By contrast, here we report the discovery of a new population of macrophages with exclusive molecular and functional signatures within the MS that express the machinery for synthesizing and releasing glutamate. Using mouse intersectional genetics with optogenetics and electrophysiology, we show that activation of MS macrophages (MSMP) drives proprioceptive sensory neuron firing on a millisecond timescale. MSMP activate spinal circuits, motor neurons and muscles by means of a glutamate-dependent mechanism that excites the MS. Furthermore, MSMP respond to neural and muscle activation by increasing the expression of glutaminase, enabling them to convert the uptaken glutamine released by myocytes during muscle contraction into glutamate. Selective silencing or depletion of MSMP in hindlimb muscles disrupted the modulation of the stretch reflex for force generation and sensory feedback correction, impairing locomotor strategies in mice. Our results have identified a new cellular component, the MSMP, that directly regulates neural activity and muscle contraction. The glutamate-mediated signalling of MSMP and their dynamic response to sensory cues introduce a new dimension to our understanding of sensation and motor action, potentially offering innovative therapeutic approaches in conditions that affect sensorimotor function.
Collapse
Affiliation(s)
- Yuyang Yan
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, London, UK
| | - Nuria Antolin
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Luming Zhou
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Luyang Xu
- Faculty of Engineering, Department of Bioengineering, Imperial College London, London, UK
| | - Irene Lisa Vargas
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | | | - Guiping Kong
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Ilaria Palmisano
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Yi Yang
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Jessica Chadwick
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Franziska Müller
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Anthony M J Bull
- Faculty of Engineering, Department of Bioengineering, Imperial College London, London, UK
| | - Cristina Lo Celso
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, London, UK
| | - Guido Primiano
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Serenella Servidei
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Carmelo Bellardita
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| | - Simone Di Giovanni
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
5
|
Zhang K, Yang Z, Yang Z, Du L, Zhou Y, Fu S, Wang X, Li X, Liu D, He X. The m6A reader YTHDC2 promotes the pathophysiology of temporal lobe epilepsy by modulating SLC7A11-dependent glutamate dysregulation in astrocytes. Theranostics 2024; 14:5551-5570. [PMID: 39310099 PMCID: PMC11413790 DOI: 10.7150/thno.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Rationale: Epilepsy affects over 70 million people globally, with temporal lobe epilepsy with hippocampal sclerosis (TLE-HS) often progressing to a drug-resistant state. Recent research has highlighted the role of reactive astrocytes and glutamate dysregulation in epilepsy pathophysiology. This study aims to investigate the involvement of astrocytic xCT, a glutamate-cystine antiporter, and its regulation by the m6A reader protein YTHDC2 in TLE-HS. Methods: A pilocarpine-induced epilepsy model in mice was used to study the role of xCT in reactive astrocytes. The expression of xCT and its regulation by YTHDC2 were assessed through various molecular and cellular techniques. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to measure mRNA and protein levels of xCT and YTHDC2, respectively; immunofluorescence was utilized to visualize their localization and expression in astrocytes. In vivo glutamate measurements were conducted using microdialysis to monitor extracellular glutamate levels in the hippocampus. RNA immunoprecipitation-qPCR (RIP-qPCR) was performed to investigate the binding of YTHDC2 to SLC7A11 mRNA, while methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) was performed to quantify m6A modifications on SLC7A11 mRNA. A dual-luciferase reporter assay was conducted to assess the effect of m6A modifications on SLC7A11 mRNA translation, and polysome profiling was employed to evaluate the translational efficiency of SLC7A11 mRNA. Inhibition experiments involved shRNA-mediated knockdown of SLC7A11 (commonly known as xCT) and YTHDC2 expression in astrocytes. Video-electroencephalogram (EEG) recordings were used to monitor seizure activity in mice. Results: The xCT transporter in reactive astrocytes significantly contributes to elevated extracellular glutamate levels, enhancing neuronal excitability and seizure activity. Increased xCT expression is influenced by the m6A reader protein YTHDC2, which regulates its expression through m6A methylation. Inhibition of xCT or YTHDC2 in astrocytes reduces glutamate levels and effectively controls seizures in a mouse model. Specifically, mice with SLC7A11- or YTHDC2-knockdown astrocytes showed decreased glutamate concentration in the hippocampus and reduced frequency and duration of epileptic seizures. Conclusions: This study highlights the therapeutic potential of targeting YTHDC2 and xCT in reactive astrocytes to mitigate epilepsy. The findings provide a novel perspective on the mechanisms of glutamate dysregulation and their implications in seizure pathophysiology, suggesting that modulation of YTHDC2 and xCT could be a promising strategy for treating TLE.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuanyi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liangchao Du
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shiyu Fu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyue Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xing Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410078, Hunan Province, China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinghui He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Liang SL, Chen RS. The Glutamine-Glutamate Cycle Contributes to Behavioral Feminization in Female Rats. Neuroendocrinology 2024; 114:1045-1065. [PMID: 39182491 PMCID: PMC11548894 DOI: 10.1159/000541102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION In perinatal female rats, the glutamine (Gln)-glutamate cycle (GGC) constitutively supplies Gln to neurons of the ventral lateral ventromedial nucleus of the hypothalamus (vlVMH) to sustain glutamatergic synaptic transmission (GST). In contrast, male pups may use Gln only during periods of elevated neuronal activity. Perinatal disruption of the GGC has sex-specific effects on the GST and morphology of vlVMH neurons during adulthood. Since (vl)VMH neuronal activities regulate mating behavior expression, we hypothesize that maintaining a perinatal intact GGC may be essential for the sexual differentiation of reproductive behaviors. METHODS Using perinatal rats of both sexes, we pharmacologically killed astrocytes or blocked the GGC and supplemented them with exogenous Gln. Mating behavior, an open-field test and protein levels of GGC enzymes were examined during adulthood. RESULTS Killing astrocytes reduced mating behavior expression by 38-48% and 71-72% in male and female rats, respectively. Any blocker targeting the GGC consistently reduced female lordosis behavior by 52-73% and increased glutaminase protein levels in the hypothalamus, but blockers had no effect on the expression of or motivation for copulatory behavior in males. Exogenous Gln supplementation partly rescued the decline in Gln synthetase inhibitor-mediated sex behavior in females. Perinatal interruption of the GGC did not increase induced expression of female sexual behavior in hormone-primed castrated male rats or affect locomotion or anxiety-like behavior in either sex. CONCLUSION The intact GGC is necessary for behavioral feminization in female rats and may play little or no role in behavioral masculinization or defeminization in males.
Collapse
Affiliation(s)
- Shu-Ling Liang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Rou-Shayn Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
7
|
Lu CW, Lin TY, Chiu KM, Lee MY, Wang SJ. Gypenoside XVII Reduces Synaptic Glutamate Release and Protects against Excitotoxic Injury in Rats. Biomolecules 2024; 14:589. [PMID: 38785996 PMCID: PMC11118014 DOI: 10.3390/biom14050589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Excitotoxicity is a common pathological process in neurological diseases caused by excess glutamate. The purpose of this study was to evaluate the effect of gypenoside XVII (GP-17), a gypenoside monomer, on the glutamatergic system. In vitro, in rat cortical nerve terminals (synaptosomes), GP-17 dose-dependently decreased glutamate release with an IC50 value of 16 μM. The removal of extracellular Ca2+ or blockade of N-and P/Q-type Ca2+ channels and protein kinase A (PKA) abolished the inhibitory effect of GP-17 on glutamate release from cortical synaptosomes. GP-17 also significantly reduced the phosphorylation of PKA, SNAP-25, and synapsin I in cortical synaptosomes. In an in vivo rat model of glutamate excitotoxicity induced by kainic acid (KA), GP-17 pretreatment significantly prevented seizures and rescued neuronal cell injury and glutamate elevation in the cortex. GP-17 pretreatment decreased the expression levels of sodium-coupled neutral amino acid transporter 1, glutamate synthesis enzyme glutaminase and vesicular glutamate transporter 1 but increased the expression level of glutamate metabolism enzyme glutamate dehydrogenase in the cortex of KA-treated rats. In addition, the KA-induced alterations in the N-methyl-D-aspartate receptor subunits GluN2A and GluN2B in the cortex were prevented by GP-17 pretreatment. GP-17 also prevented the KA-induced decrease in cerebral blood flow and arginase II expression. These results suggest that (i) GP-17, through the suppression of N- and P/Q-type Ca2+ channels and consequent PKA-mediated SNAP-25 and synapsin I phosphorylation, reduces glutamate exocytosis from cortical synaptosomes; and (ii) GP-17 has a neuroprotective effect on KA-induced glutamate excitotoxicity in rats through regulating synaptic glutamate release and cerebral blood flow.
Collapse
Affiliation(s)
- Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (C.-W.L.); (T.-Y.L.)
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (C.-W.L.); (T.-Y.L.)
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan;
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Yi Lee
- Department of Medical Research, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan;
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
8
|
Thirion A, Loots DT, Williams ME, Solomons R, Mason S. 1H-NMR metabolomics investigation of CSF from children with HIV reveals altered neuroenergetics due to persistent immune activation. Front Neurosci 2024; 18:1270041. [PMID: 38745940 PMCID: PMC11091326 DOI: 10.3389/fnins.2024.1270041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Background HIV can invade the central nervous system (CNS) early during infection, invading perivascular macrophages and microglia, which, in turn, release viral particles and immune mediators that dysregulate all brain cell types. Consequently, children living with HIV often present with neurodevelopmental delays. Methods In this study, we used proton nuclear magnetic resonance (1H-NMR) spectroscopy to analyze the neurometabolic profile of HIV infection using cerebrospinal fluid samples obtained from 17 HIV+ and 50 HIV- South African children. Results Nine metabolites, including glucose, lactate, glutamine, 1,2-propanediol, acetone, 3-hydroxybutyrate, acetoacetate, 2-hydroxybutyrate, and myo-inositol, showed significant differences when comparing children infected with HIV and those uninfected. These metabolites may be associated with activation of the innate immune response and disruption of neuroenergetics pathways. Conclusion These results elucidate the neurometabolic state of children infected with HIV, including upregulation of glycolysis, dysregulation of ketone body metabolism, and elevated reactive oxygen species production. Furthermore, we hypothesize that neuroinflammation alters astrocyte-neuron communication, lowering neuronal activity in children infected with HIV, which may contribute to the neurodevelopmental delay often observed in this population.
Collapse
Affiliation(s)
- Anicia Thirion
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Monray E. Williams
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Regan Solomons
- Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Shayne Mason
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
9
|
Galluccio M, Tripicchio M, Console L, Indiveri C. Bacterial over-production of the functionally active human SLC38A2 (SNAT2) exploiting the mistic tag: a cheap and fast tool for testing ligands. Mol Biol Rep 2024; 51:336. [PMID: 38393484 PMCID: PMC10891243 DOI: 10.1007/s11033-023-08976-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/30/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND SLC38A2 is a ubiquitously expressed Na+-dependent transporter specific for small and medium neutral amino acids. It is involved in human pathologies, such as type II diabetes and cancer. Despite its relevance in human physio-pathology, structure/function relationship studies and identification of ligands with regulatory roles are still in infancy. METHODS AND RESULTS The cDNA coding for SLC38A2 was cloned in the pET-28-Mistic vector, and the BL21 codon plus RIL strain was transformed with the recombinant construct. 0.5% glucose and oxygen availability were crucial for protein expression. The over-expressed hSNAT2-Mistic chimera was cleaved on column and purified by nickel-chelating affinity chromatography, with a yield of about 60 mg/Liter cell culture. The purified hSNAT2 was reconstituted in proteoliposomes in an active form with a right-side-out orientation with respect to the native membrane. CONCLUSIONS The addition of a Mistic tag at the N-terminus of the SNAT2 protein was crucial for its over-expression and purification. The purified protein was functionally active, representing a powerful tool for performing structure/function studies and testing ligands as inhibitors and/or activators.
Collapse
Affiliation(s)
- Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, University of Calabria, Via P. Bucci 4C-6C, 87036, Arcavacata di Rende, Italy
| | - Martina Tripicchio
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, University of Calabria, Via P. Bucci 4C-6C, 87036, Arcavacata di Rende, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, University of Calabria, Via P. Bucci 4C-6C, 87036, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, University of Calabria, Via P. Bucci 4C-6C, 87036, Arcavacata di Rende, Italy.
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), Via Amendola 122/O, 70126, Bari, Italy.
| |
Collapse
|
10
|
Sapkota D, Wang D, Schreurs O, Vallenari EM, Pandey Dhakal S, Küntziger T, Toközlü BS, Utheim TP, Chaudhry FA. Investigation of Roles of SLC38A1 in Proliferation and Differentiation of Mouse Tongue Epithelium and Expression in Human Oral Tongue Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:405. [PMID: 38254895 PMCID: PMC10814082 DOI: 10.3390/cancers16020405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The aerobic glycolytic pathway, boosting lactate formation, and glutamine addiction are two hallmarks of cancer pathophysiology. Consistent with this, several cell membrane glutamine transporters, belonging to different solute carrier (SLC) families, have been shown to be upregulated in a cell-specific manner to furnish the cells with glutamine and glutamine-derived metabolic intermediates. Among them, the system A transporter Slc38a1 has a higher affinity for glutamine compared to other SLC transporters, and it undergoes highly multifaceted regulation at gene and protein levels. The current study aimed to investigate the functional role of Slc38a1 in the proliferation and maturation of the mouse tongue epithelium. Secondly, we aimed to examine the expression of SLC38A1 and its regulation in human tongue oral squamous cell carcinoma (OTSCC). Employing Slc38a1 wild-type and knockout mice, we showed that Slc38a1 was not directly linked to the regulation of the proliferation and differentiation of the mouse tongue epithelium. External transcriptomic datasets and Western blot analyses showed upregulation of SLC38A1 mRNA/protein in human OTSCC and oral cancer cell lines as compared to the corresponding controls. Further, an investigation of external datasets indicated that mechanisms other than the amplification of the SLC38A1 chromosomal locus or hypomethylation of the SLC38A1 promoter region might be important for the upregulation of SLC38A1 in OTSCC.
Collapse
Affiliation(s)
- Dipak Sapkota
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Daxin Wang
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Olaf Schreurs
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Evan M. Vallenari
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Sushma Pandey Dhakal
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Thomas Küntziger
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Burcu Sengüven Toközlü
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
- Department of Oral Pathology, Faculty of Dentistry, Gazi University, Ankara 06510, Turkey
| | - Tor Paaske Utheim
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0372 Oslo, Norway
| | - Farrukh Abbas Chaudhry
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
11
|
Erickson JD, Kyllo T, Wulff H. Ca 2+-regulated expression of high affinity methylaminoisobutryic acid transport in hippocampal neurons inhibited by riluzole and novel neuroprotective aminothiazoles. Curr Res Physiol 2023; 6:100109. [PMID: 38107787 PMCID: PMC10724208 DOI: 10.1016/j.crphys.2023.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 12/19/2023] Open
Abstract
High affinity methylaminoisobutyric acid(MeAIB)/glutamine(Gln) transport activity regulated by neuronal firing occurs at the plasma membrane in mature rat hippocampal neuron-enriched cultures. Spontaneous Ca2+-regulated transport activity was similarly inhibited by riluzole, a benzothiazole anticonvulsant agent, and by novel naphthalenyl substituted aminothiazole derivatives such as SKA-378. Here, we report that spontaneous transport activity is stimulated by 4-aminopyridine (4-AP) and that phorbol-myristate acetate (PMA) increases high K+ stimulated transport activity that is inhibited by staurosporine. 4-AP-stimulated spontaneous and PMA-stimulated high K+-induced transport is not present at 7 days in vitro (DIV) and is maximal by DIV∼21. The relative affinity for MeAIB is similar for spontaneous and high K+-stimulated transport (Km ∼ 50 μM) suggesting that a single transporter is involved. While riluzole and SKA-378 inhibit spontaneous transport with equal potency (IC50 ∼ 1 μM), they exhibit decreased (∼3-5 X) potency for 4-AP-stimulated spontaneous transport. Interestingly, high K+-stimulated MeAIB transport displays lower and differential sensitivity to the two compounds. SKA-378-related halogenated derivatives of SKA-75 (SKA-219, SKA-377 and SKA-375) preferentially inhibit high K+-induced expression of MeAIB transport activity at the plasma membrane (IC50 < 25 μM), compared to SKA-75 and riluzole (IC50 > 100 μM). Ca2+-dependent spontaneous and high K+-stimulated MeAIB transport activity is blocked by ω-conotoxin MVIIC, ω-agatoxin IVA, ω-agatoxin TK (IC50 ∼ 500 nM) or cadmium ion (IC50 ∼ 20 μM) demonstrating that P/Q-type CaV channels that are required for activity-regulated presynaptic vesicular glutamate (Glu) release are also required for high-affinity MeAIB transport expression at the plasma membrane. We suggest that neural activity driven and Ca2+ dependent trafficking of the high affinity MeAIB transporter to the plasma membrane is a unique target to understand mechanisms of Glu/Gln recycling in synapses and acute neuroprotection against excitotoxic presynaptic Glu induced neural injury.
Collapse
Affiliation(s)
- Jeffrey D. Erickson
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, USA
| | - Thomas Kyllo
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California-Davis, Davis, CA, USA
| |
Collapse
|
12
|
Gao Y, Liu N, Chen J, Zheng P, Niu J, Tang S, Peng X, Wu J, Yu J, Ma L. Neuropharmacological insight into preventive intervention in posttraumatic epilepsy based on regulating glutamate homeostasis. CNS Neurosci Ther 2023; 29:2430-2444. [PMID: 37309302 PMCID: PMC10401093 DOI: 10.1111/cns.14294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Posttraumatic epilepsy (PTE) is one of the most critical complications of traumatic brain injury (TBI), significantly increasing TBI patients' neuropsychiatric symptoms and mortality. The abnormal accumulation of glutamate caused by TBI and its secondary excitotoxicity are essential reasons for neural network reorganization and functional neural plasticity changes, contributing to the occurrence and development of PTE. Restoring glutamate balance in the early stage of TBI is expected to play a neuroprotective role and reduce the risk of PTE. AIMS To provide a neuropharmacological insight for drug development to prevent PTE based on regulating glutamate homeostasis. METHODS We discussed how TBI affects glutamate homeostasis and its relationship with PTE. Furthermore, we also summarized the research progress of molecular pathways for regulating glutamate homeostasis after TBI and pharmacological studies aim to prevent PTE by restoring glutamate balance. RESULTS TBI can lead to the accumulation of glutamate in the brain, which increases the risk of PTE. Targeting the molecular pathways affecting glutamate homeostasis helps restore normal glutamate levels and is neuroprotective. DISCUSSION Taking glutamate homeostasis regulation as a means for new drug development can avoid the side effects caused by direct inhibition of glutamate receptors, expecting to alleviate the diseases related to abnormal glutamate levels in the brain, such as PTE, Parkinson's disease, depression, and cognitive impairment. CONCLUSION It is a promising strategy to regulate glutamate homeostasis through pharmacological methods after TBI, thereby decreasing nerve injury and preventing PTE.
Collapse
Affiliation(s)
- Yuan Gao
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
- Hunan Province Key Laboratory for Antibody‐Based Drug and Intelligent Delivery System, School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Ning Liu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Juan Chen
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Ping Zheng
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jianguo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous RegionNingxia Medical UniversityYinchuanChina
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody‐Based Drug and Intelligent Delivery System, School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Xiaodong Peng
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jing Wu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jianqiang Yu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Lin Ma
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous RegionNingxia Medical UniversityYinchuanChina
| |
Collapse
|
13
|
Le NT. Metabolic regulation of endothelial senescence. Front Cardiovasc Med 2023; 10:1232681. [PMID: 37649668 PMCID: PMC10464912 DOI: 10.3389/fcvm.2023.1232681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/18/2023] [Indexed: 09/01/2023] Open
Abstract
Endothelial cell (EC) senescence is increasingly recognized as a significant contributor to the development of vascular dysfunction and age-related disorders and diseases, including cancer and cardiovascular diseases (CVD). The regulation of cellular senescence is known to be influenced by cellular metabolism. While extensive research has been conducted on the metabolic regulation of senescence in other cells such as cancer cells and fibroblasts, our understanding of the metabolic regulation of EC senescence remains limited. The specific metabolic changes that drive EC senescence are yet to be fully elucidated. The objective of this review is to provide an overview of the intricate interplay between cellular metabolism and senescence, with a particular emphasis on recent advancements in understanding the metabolic changes preceding cellular senescence. I will summarize the current knowledge on the metabolic regulation of EC senescence, aiming to offer insights into the underlying mechanisms and future research directions.
Collapse
Affiliation(s)
- Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
14
|
Sidoryk-Węgrzynowicz M, Dąbrowska-Bouta B, Sulkowski G, Strużyńska L. Mutant Tau protein-induced abnormalities in the Na +-dependent glutamine translocation and recycling and their impact on astrocyte-neuron integrity in vitro. Neurochem Int 2023; 168:105551. [PMID: 37295680 DOI: 10.1016/j.neuint.2023.105551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Tau-dependent neurodegeneration is accompanied by astrocytosis in a mouse trans-genic model, which replicates the neuropathological characteristic of tauopathy and other human neurodegenerative disorders where astrocyte activation precedes neuronal loss and is associated with disease progression. This indicates an important role of astrocytes in the development of the disease. Astrocytes derived from a transgenic mouse model expressing human Tau, exhibit changes in cellular markers of astrocyte neuroprotective function related to the glutamate-glutamine cycle (GGC), representing a key part of astrocyte-neuron integrity. Here, we focused on investigating the functional properties of key GGC components involved in the astrocyte-neuron network associated with Tau pathology in vitro. Mutant recombinant Tau (rTau) carrying the P301L mutation was added to the neuronal cultures, with or without control astrocyte-conditioned medium (ACM), to study glutamine translocation through the GGC. We demonstrated that mutant Tau in vitro induces neuronal degeneration, while control astrocytes response in neuroprotective way by preventing neurodegeneration. In parallel with this observation, we noticed the Tau-dependent decline of neuronal microtubule associated protein 2 (MAP2), followed by changes in glutamine (Gln) transport. Exposure to rTau decreases sodium-dependent Gln uptake in neurons and that effect was reversed when cells were co-incubated with control ACM after induction of rTau dependent pathology. Further, we found that neuronal Na+-dependent system A is the most specific system that is affected under rTau exposure. In addition, in rTau-treated astrocytes total Na+-dependent uptake of Gln, which is mediated by the N system, increases. Altogether, our study suggest mechanisms operating in Tau pathology may be related to the alterations in glutamine transport and recycling that affect neuronal-astrocytic integrity.
Collapse
Affiliation(s)
- Marta Sidoryk-Węgrzynowicz
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego str, 02-106, Warsaw, Poland.
| | - Beata Dąbrowska-Bouta
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego str, 02-106, Warsaw, Poland
| | - Grzegorz Sulkowski
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego str, 02-106, Warsaw, Poland
| | - Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego str, 02-106, Warsaw, Poland
| |
Collapse
|
15
|
Krishnan KS, Billups B. ASC Transporters Mediate D-Serine Transport into Astrocytes Adjacent to Synapses in the Mouse Brain. Biomolecules 2023; 13:biom13050819. [PMID: 37238689 DOI: 10.3390/biom13050819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
D-serine is an important signalling molecule, which activates N-methyl D-aspartate receptors (NMDARs) in conjunction with its fellow co-agonist, the neurotransmitter glutamate. Despite its involvement in plasticity and memory related to excitatory synapses, its cellular source and sink remain a question. We hypothesise that astrocytes, a type of glial cell that surrounds synapses, are likely candidates to control the extracellular concentration of D-Serine by removing it from the synaptic space. Using in situ patch clamp recordings and pharmacological manipulation of astrocytes in the CA1 region of the mouse hippocampal brain slices, we investigated the transport of D-serine across the plasma membrane. We observed the D-serine-induced transport-associated currents upon puff-application of 10 mM D-serine on astrocytes. Further, O-benzyl-L-serine and trans-4-hydroxy-proline, known substrate inhibitors of the alanine serine cysteine transporters (ASCT), reduced D-serine uptake. These results indicate that ASCT is a central mediator of astrocytic D-serine transport and plays a role in regulating its synaptic concentration by sequestration into astrocytes. Similar results were observed in astrocytes of the somatosensory cortex and Bergmann glia in the cerebellum, indicative of a general mechanism expressed across a range of brain areas. This removal of synaptic D-serine and its subsequent metabolic degradation are expected to reduce its extracellular availability, influencing NMDAR activation and NMDAR-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Karthik Subramanian Krishnan
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra, ACT 2601, Australia
| | - Brian Billups
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra, ACT 2601, Australia
| |
Collapse
|
16
|
Andersen JV, Schousboe A. Glial Glutamine Homeostasis in Health and Disease. Neurochem Res 2023; 48:1100-1128. [PMID: 36322369 DOI: 10.1007/s11064-022-03771-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Glutamine is an essential cerebral metabolite. Several critical brain processes are directly linked to glutamine, including ammonia homeostasis, energy metabolism and neurotransmitter recycling. Astrocytes synthesize and release large quantities of glutamine, which is taken up by neurons to replenish the glutamate and GABA neurotransmitter pools. Astrocyte glutamine hereby sustains the glutamate/GABA-glutamine cycle, synaptic transmission and general brain function. Cerebral glutamine homeostasis is linked to the metabolic coupling of neurons and astrocytes, and relies on multiple cellular processes, including TCA cycle function, synaptic transmission and neurotransmitter uptake. Dysregulations of processes related to glutamine homeostasis are associated with several neurological diseases and may mediate excitotoxicity and neurodegeneration. In particular, diminished astrocyte glutamine synthesis is a common neuropathological component, depriving neurons of an essential metabolic substrate and precursor for neurotransmitter synthesis, hereby leading to synaptic dysfunction. While astrocyte glutamine synthesis is quantitatively dominant in the brain, oligodendrocyte-derived glutamine may serve important functions in white matter structures. In this review, the crucial roles of glial glutamine homeostasis in the healthy and diseased brain are discussed. First, we provide an overview of cellular recycling, transport, synthesis and metabolism of glutamine in the brain. These cellular aspects are subsequently discussed in relation to pathological glutamine homeostasis of hepatic encephalopathy, epilepsy, Alzheimer's disease, Huntington's disease and amyotrophic lateral sclerosis. Further studies on the multifaceted roles of cerebral glutamine will not only increase our understanding of the metabolic collaboration between brain cells, but may also aid to reveal much needed therapeutic targets of several neurological pathologies.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Liang SL, Liao WL, Chen RS. Perinatal blockade of neuronal glutamine transport sex-differentially alters glutamatergic synaptic transmission and organization of neurons in the ventrolateral ventral media hypothalamus of adult rats. J Neuroendocrinol 2023; 35:e13253. [PMID: 36949648 DOI: 10.1111/jne.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Compared to male pups, perinatal female rats rely heavily on neuronal glutamine (Gln) transport for sustaining glutamatergic synaptic release in neurons of the ventrolateral ventral media nucleus of the hypothalamus (vlVMH). VMH mainly regulates female sexual behavior and increases glutamate release of perinatal hypothalamic neurons, permanently enhances dendrite spine numbers and is associated with brain and behavioral defeminization. We hypothesized that perinatal interruption of neuronal Gln transport may alter the glutamatergic synaptic transmission during adulthood. Perinatal rats of both sexes received an intracerebroventricular injection of a neuronal Gln uptake blocker, alpha-(methylamino) isobutyric acid (MeAIB, 5 mM), and were raised until adulthood. Whole-cell voltage-clamp recordings of miniature excitatory postsynaptic currents (mEPSCs) and evoked EPSCs (eEPSCs) of vlVMH neurons in adult rats with the perinatal pretreatment were conducted and neuron morphology was subjected to post hoc examination. Perinatal MeAIB treatment sex-differentially increased mEPSC frequency in males, but decreased mEPSC amplitude and synaptic Glu release in females. The pretreatment sex-differentially decreased eEPSC amplitude in males but increased AMPA/NMDA current ratio in females, and changed the morphology of vlVMH neurons of adult rats to that of the opposite sex. Most alterations in the glutamatergic synaptic transmission resembled the changes occurring during MeAIB acute exposure in perinatal rats of both sexes. We conclude that perinatal blockade of neuronal Gln transport mediates changes via different presynaptic and postsynaptic mechanisms to induce sex-differential alterations of the glutamatergic synaptic transmission and organization of vlVMH neurons in adult rats. These changes may be permanent and associated with brain and behavior feminization and/or defeminization in rats.
Collapse
Affiliation(s)
- Shu-Ling Liang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Wen-Lin Liao
- Institute of Neuroscience, National Chengchi University, Taipei, Taiwan
| | - Rou-Shayn Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
18
|
Sun Y, Zhang H, Zhang X, Wang W, Chen Y, Cai Z, Wang Q, Wang J, Shi Y. Promotion of astrocyte-neuron glutamate-glutamine shuttle by SCFA contributes to the alleviation of Alzheimer's disease. Redox Biol 2023; 62:102690. [PMID: 37018970 PMCID: PMC10122027 DOI: 10.1016/j.redox.2023.102690] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023] Open
Abstract
The brain is particularly susceptible to oxidative damage which is a key feature of several neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease. The shuttling of glutathione (GSH) precursors from astrocytes to neurons has been shown to be instrumental for the neuroprotective activity. Here, we revealed that short chain fatty acids (SCFA), which have been related to AD and PD, could promote glutamate-glutamine shuttle to potentially resist oxidative damage in neurons at cellular level. Furthermore, we performed nine-month-long dietary SCFA supplementations in APPswe/PS1dE9 (APP/PS1) mice, and showed that it reshaped the homeostasis of microbiota and alleviated the cognitive impairment by reducing Aβ deposition and tau hyperphosphorylation. Single-cell RNA sequencing analysis of the hippocampus revealed SCFA can enhance astrocyte-neuron communication including glutamate-glutamine shuttle, mainly by acting on astrocyte in vivo. Collectively, our findings indicate that long-term dietary SCFA supplementations at early aging stage can regulate the neuroenergetics to alleviate AD, providing a promising direction for the development of new AD drug.
Collapse
|
19
|
Riluzole and novel naphthalenyl substituted aminothiazole derivatives prevent acute neural excitotoxic injury in a rat model of temporal lobe epilepsy. Neuropharmacology 2023; 224:109349. [PMID: 36436594 PMCID: PMC9843824 DOI: 10.1016/j.neuropharm.2022.109349] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Epileptogenic seizures, or status epilepticus (SE), leads to excitotoxic injury in hippocampal and limbic neurons in the kainic acid (KA) animal model of temporal lobe epilepsy (TLE). Here, we have further characterized neural activity regulated methylaminoisobutryic acid (MeAIB)/glutamine transport activity in mature rat hippocampal neurons in vitro that is inhibited by riluzole (IC50 = 1 μM), an anti-convulsant benzothiazole agent. We screened a library of riluzole derivatives and identified SKA-41 followed by a second screen and synthesized several novel chlorinated aminothiazoles (SKA-377, SKA-378, SKA-379) that are also potent MeAIB transport inhibitors in vitro, and brain penetrant following systemic administration. When administered before KA, SKA-378 did not prevent seizures but still protected the hippocampus and several other limbic areas against SE-induced neurodegeneration at 3d. When SKA-377 - 379, (30 mg/kg) were administered after KA-induced SE, acute neural injury in the CA3, CA1 and CA4/hilus was also largely attenuated. Riluzole (10 mg/kg) blocks acute neural injury. Kinetic analysis of SKA-378 and riluzoles' blockade of Ca2+-regulated MeAIB transport in neurons in vitro indicates that inhibition occurs via a non-competitive, indirect mechanism. Sodium channel NaV1.6 antagonism blocks neural activity regulated MeAIB/Gln transport in vitro (IC50 = 60 nM) and SKA-378 is the most potent inhibitor of NaV1.6 (IC50 = 28 μM) compared to NaV1.2 (IC50 = 118 μM) in heterologous cells. However, pharmacokinetic analysis suggests that sodium channel blockade may not be the predominant mechanism of neuroprotection here. Riluzole and our novel aminothiazoles are agents that attenuate acute neural hippocampal injury following KA-induced SE and may help to understand mechanisms involved in the progression of epileptic disease.
Collapse
|
20
|
Joshi SN, Joshi AN, Joshi ND. Interplay between biochemical processes and network properties generates neuronal up and down states at the tripartite synapse. Phys Rev E 2023; 107:024415. [PMID: 36932559 DOI: 10.1103/physreve.107.024415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Neuronal up and down states have long been known to exist both in vitro and in vivo. A variety of functions and mechanisms have been proposed for their generation, but there has not been a clear connection between the functions and mechanisms. We explore the potential contribution of cellular-level biochemistry to the network-level mechanisms thought to underlie the generation of up and down states. We develop a neurochemical model of a single tripartite synapse, assumed to be within a network of similar tripartite synapses, to investigate possible function-mechanism links for the appearance of up and down states. We characterize the behavior of our model in different regions of parameter space and show that resource limitation at the tripartite synapse affects its ability to faithfully transmit input signals, leading to extinction-down states. Recovery of resources allows for "reignition" into up states. The tripartite synapse exhibits distinctive "regimes" of operation depending on whether ATP, neurotransmitter (glutamate), both, or neither, is limiting. Our model qualitatively matches the behavior of six disparate experimental systems, including both in vitro and in vivo models, without changing any model parameters except those related to the experimental conditions. We also explore the effects of varying different critical parameters within the model. Here we show that availability of energy, represented by ATP, and glutamate for neurotransmission at the cellular level are intimately related, and are capable of promoting state transitions at the network level as ignition and extinction phenomena. Our model is complementary to existing models of neuronal up and down states in that it focuses on cellular-level dynamics while still retaining essential network-level processes. Our model predicts the existence of a "final common pathway" of behavior at the tripartite synapse arising from scarcity of resources and may explain use dependence in the phenomenon of "local sleep." Ultimately, sleeplike behavior may be a fundamental property of networks of tripartite synapses.
Collapse
Affiliation(s)
- Shubhada N Joshi
- National Center for Adaptive Neurotechnologies (NCAN), David Axelrod Institute, Wadsworth Center, New York State Department of Health, 120 New Scotland Ave., Albany, New York 12208, USA
| | - Aditya N Joshi
- Stanford University School of Medicine, 300 Pasteur Dr., Stanford, California 94305, USA
| | - Narendra D Joshi
- General Electric Global Research, 1 Research Circle, Niskayuna, New York 12309, USA
| |
Collapse
|
21
|
Huttunen J, Kronenberger T, Montaser AB, Králová A, Terasaki T, Poso A, Huttunen KM. Sodium-Dependent Neutral Amino Acid Transporter 2 Can Serve as a Tertiary Carrier for l-Type Amino Acid Transporter 1-Utilizing Prodrugs. Mol Pharm 2023; 20:1331-1346. [PMID: 36688491 PMCID: PMC9906736 DOI: 10.1021/acs.molpharmaceut.2c00948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Membrane transporters are the key determinants of the homeostasis of endogenous compounds in the cells and their exposure to drugs. However, the substrate specificities of distinct transporters can overlap. In the present study, the interactions of l-type amino acid transporter 1 (LAT1)-utilizing prodrugs with sodium-coupled neutral amino acid transporter 2 (SNAT2) were explored. The results showed that the cellular uptake of LAT1-utilizing prodrugs into a human breast cancer cell line, MCF-7 cells, was mediated via SNATs as the uptake was increased at higher pH (8.5), decreased in the absence of sodium, and inhibited in the presence of unselective SNAT-inhibitor, (α-(methylamino)isobutyric acid, MeAIB). Moreover, docking the compounds to a SNAT2 homology model (inward-open conformation) and further molecular dynamics simulations and the subsequent trajectory and principal component analyses confirmed the chemical features supporting the interactions of the studied compounds with SNAT2, which was found to be the main SNAT expressed in MCF-7 cells.
Collapse
Affiliation(s)
- Johanna Huttunen
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland
| | - Thales Kronenberger
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland,Department
of Internal Medicine VIII, University Hospital
Tübingen, Otfried-Müller-Strasse
14, DE 72076 Tübingen, Germany,Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, Eberhard-Karls-Universität,
Tübingen, Auf
der Morgenstelle 8, 72076 Tübingen, Germany,Cluster
of Excellence iFIT (EXC 2180) “Image-Guided and Functionally
Instructed Tumor Therapies”, University
of Tübingen, 72076 Tübingen, Germany,Tübingen
Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Ahmed B. Montaser
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland
| | - Adéla Králová
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland
| | - Tetsuya Terasaki
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland
| | - Antti Poso
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland,Department
of Internal Medicine VIII, University Hospital
Tübingen, Otfried-Müller-Strasse
14, DE 72076 Tübingen, Germany,Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, Eberhard-Karls-Universität,
Tübingen, Auf
der Morgenstelle 8, 72076 Tübingen, Germany,Cluster
of Excellence iFIT (EXC 2180) “Image-Guided and Functionally
Instructed Tumor Therapies”, University
of Tübingen, 72076 Tübingen, Germany,Tübingen
Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Kristiina M. Huttunen
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland,
| |
Collapse
|
22
|
Impact of Inhibition of Glutamine and Alanine Transport on Cerebellar Glial and Neuronal Metabolism. Biomolecules 2022; 12:biom12091189. [PMID: 36139028 PMCID: PMC9496060 DOI: 10.3390/biom12091189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The cerebellum, or “little brain”, is often overlooked in studies of brain metabolism in favour of the cortex. Despite this, anomalies in cerebellar amino acid homeostasis in a range of disorders have been reported. Amino acid homeostasis is central to metabolism, providing recycling of carbon backbones and ammonia between cell types. Here, we examined the role of cerebellar amino acid transporters in the cycling of glutamine and alanine in guinea pig cerebellar slices by inhibiting amino acid transporters and examining the resultant metabolism of [1-13C]d-glucose and [1,2-13C]acetate by NMR spectroscopy and LCMS. While the lack of specific inhibitors of each transporter makes interpretation difficult, by viewing results from experiments with multiple inhibitors we can draw inferences about the major cell types and transporters involved. In cerebellum, glutamine and alanine transfer is dominated by system A, blockade of which has maximum effect on metabolism, with contributions from System N. Inhibition of neural system A isoform SNAT1 by MeAIB resulted in greatly decreased metabolite pools and reduced net fluxes but showed little effect on fluxes from [1,2-13C]acetate unlike inhibition of SNAT3 and other glutamine transporters by histidine where net fluxes from [1,2-13C]acetate are reduced by ~50%. We interpret the data as further evidence of not one but several glutamate/glutamine exchange pools. The impact of amino acid transport inhibition demonstrates that the cerebellum has tightly coupled cells and that glutamate/glutamine, as well as alanine cycling, play a major role in that part of the brain.
Collapse
|
23
|
Andersen JV, Schousboe A, Verkhratsky A. Astrocyte energy and neurotransmitter metabolism in Alzheimer's disease: integration of the glutamate/GABA-glutamine cycle. Prog Neurobiol 2022; 217:102331. [PMID: 35872221 DOI: 10.1016/j.pneurobio.2022.102331] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
Astrocytes contribute to the complex cellular pathology of Alzheimer's disease (AD). Neurons and astrocytes function in close collaboration through neurotransmitter recycling, collectively known as the glutamate/GABA-glutamine cycle, which is essential to sustain neurotransmission. Neurotransmitter recycling is intimately linked to astrocyte energy metabolism. In the course of AD, astrocytes undergo extensive metabolic remodeling, which may profoundly affect the glutamate/GABA-glutamine cycle. The consequences of altered astrocyte function and metabolism in relation to neurotransmitter recycling are yet to be comprehended. Metabolic alterations of astrocytes in AD deprive neurons of metabolic support, thereby contributing to synaptic dysfunction and neurodegeneration. In addition, several astrocyte-specific components of the glutamate/GABA-glutamine cycle, including glutamine synthesis and synaptic neurotransmitter uptake, are perturbed in AD. Integration of the complex astrocyte biology within the context of AD is essential for understanding the fundamental mechanisms of the disease, while restoring astrocyte metabolism may serve as an approach to arrest or even revert clinical progression of AD.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania.
| |
Collapse
|
24
|
Metabolic Features of Brain Function with Relevance to Clinical Features of Alzheimer and Parkinson Diseases. Molecules 2022; 27:molecules27030951. [PMID: 35164216 PMCID: PMC8839962 DOI: 10.3390/molecules27030951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Brain metabolism is comprised in Alzheimer’s disease (AD) and Parkinson’s disease (PD). Since the brain primarily relies on metabolism of glucose, ketone bodies, and amino acids, aspects of these metabolic processes in these disorders—and particularly how these altered metabolic processes are related to oxidative and/or nitrosative stress and the resulting damaged targets—are reviewed in this paper. Greater understanding of the decreased functions in brain metabolism in AD and PD is posited to lead to potentially important therapeutic strategies to address both of these disorders, which cause relatively long-lasting decreased quality of life in patients.
Collapse
|
25
|
Ruan W, Wu J, Su J, Jiang Y, Pang T, Li J. Altered lncRNAs Transcriptomic Profiles in Atherosclerosis-Induced Ischemic Stroke. Cell Mol Neurobiol 2022; 42:265-278. [PMID: 32653974 PMCID: PMC11441192 DOI: 10.1007/s10571-020-00918-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/05/2020] [Indexed: 12/22/2022]
Abstract
Long non-coding RNAs (lncRNAs) can not only regulate gene transcription and translation, but also participate in the development of central nervous system diseases as epigenetic modification factors. However, their functional significance in atherosclerosis-induced ischemic stroke (AIIS) is unclear. The study aimed to screen out differentially expressed lncRNAs (delncRNAs), and to elucidate their potential regulatory mechanisms in the pathophysiology of AIIS. Based on the clinicopathological features and clinical images, we screened out 10 patients with AIIS and recruited 10 healthy volunteers. Then we used microarray to detect the whole blood RNA of subjects, and explored the biological functions of delncRNAs by GO and KEGG analysis. After further analyzing the delncRNAs of THP-1 stimulated with ox-LDL, selective lncRNAs were screened and a corresponding lncRNA-mRNA interaction network was constructed through co-expression analysis. We yielded 180 delncRNAs (44 up-regulated and 136 down-regulated) and 218 demRNAs (45 up-regulated and 173 down-regulated). Lnc-SCARNA8 and lnc-SNRPN-2 are the most significant elevated and decreased lncRNA in AIIS, respectively. The delncRNAs may play a significant role in ubiquitination-mediated protein degradation signaling pathways. According to lncRNA-mRNA network, the expression of vacuolar protein sorting 13 homolog B (VPS13B) and biliverdin reductase B (BLVRB) were significantly regulated. Our findings suggest that the ubiquitinated proteasome pathway, VPS13B and BLVRB may play a fundamental role in the pathological process of AIIS.
Collapse
Affiliation(s)
- Wenchen Ruan
- Department of Neurology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Jiayang Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Jingjing Su
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, People's Republic of China
| | - Yongcheng Jiang
- Department of Neurology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
| | - Jingwei Li
- Department of Neurology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
26
|
Inhibition of Glutamate Release, but Not of Glutamine Recycling to Glutamate, Is Involved in Delaying the Onset of Initial Lithium-Pilocarpine-Induced Seizures in Young Rats by a Non-Convulsive MSO Dose. Int J Mol Sci 2021; 22:ijms222011127. [PMID: 34681786 PMCID: PMC8536987 DOI: 10.3390/ijms222011127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Initial seizures observed in young rats during the 60 min after administration of pilocarpine (Pilo) were delayed and attenuated by pretreatment with a non-convulsive dose of methionine sulfoximine (MSO). We hypothesized that the effect of MSO results from a) glutamine synthetase block-mediated inhibition of conversion of Glu/Gln precursors to neurotransmitter Glu, and/or from b) altered synaptic Glu release. Pilo was administered 60 min prior to sacrifice, MSO at 75 mg/kg, i.p., 2.5 h earlier. [1,2-13C]acetate and [U-13C]glucose were i.p.-injected either together with Pilo (short period) or 15 min before sacrifice (long period). Their conversion to Glu and Gln in the hippocampus and entorhinal cortex was followed using [13C] gas chromatography-mass spectrometry. Release of in vitro loaded Glu surrogate, [3H]d-Asp from ex vivo brain slices was monitored in continuously collected superfusates. [3H]d-Asp uptake was tested in freshly isolated brain slices. At no time point nor brain region did MSO modify incorporation of [13C] to Glu or Gln in Pilo-treated rats. MSO pretreatment decreased by ~37% high potassium-induced [3H]d-Asp release, but did not affect [3H]d-Asp uptake. The results indicate that MSO at a non-convulsive dose delays the initial Pilo-induced seizures by interfering with synaptic Glu-release but not with neurotransmitter Glu recycling.
Collapse
|
27
|
Nielsen JE, Maltesen RG, Havelund JF, Færgeman NJ, Gotfredsen CH, Vestergård K, Kristensen SR, Pedersen S. Characterising Alzheimer's disease through integrative NMR- and LC-MS-based metabolomics. Metabol Open 2021; 12:100125. [PMID: 34622190 PMCID: PMC8479251 DOI: 10.1016/j.metop.2021.100125] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background Alzheimer's Disease (AD) is a complex and multifactorial disease and novel approaches are needed to illuminate the underlying pathology. Metabolites comprise the end-product of genes, transcripts, and protein regulations and might reflect disease pathogenesis. Blood is a common biofluid used in metabolomics; however, since extracellular vesicles (EVs) hold cell-specific biological material and can cross the blood-brain barrier, their utilization as biological material warrants further investigation. We aimed to investigate blood- and EV-derived metabolites to add insigts to the pathological mechanisms of AD. Methods Blood samples were collected from 10 AD and 10 Mild Cognitive Impairment (MCI) patients, and 10 healthy controls. EVs were enriched from plasma using 100,000×g, 1 h, 4 °C with a wash. Metabolites from serum and EVs were measured using liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. Multivariate and univariate analyses were employed to identify altered metabolites in cognitively impaired individuals. Results While no significant EV-derived metabolites were found differentiating patients from healthy individuals, six serum metabolites were found important; valine (p = 0.001, fold change, FC = 0.8), histidine (p = 0.001, FC = 0.9), allopurinol riboside (p = 0.002, FC = 0.2), inosine (p = 0.002, FC = 0.3), 4-pyridoxic acid (p = 0.006, FC = 1.6), and guanosine (p = 0.004, FC = 0.3). Pathway analysis revealed branched-chain amino acids, purine and histidine metabolisms to be downregulated, and vitamin B6 metabolism upregulated in patients compared to controls. Conclusion Using a combination of LC-MS and NMR methodologies we identified several altered mechanisms possibly related to AD pathology. EVs require additional optimization prior to their possible utilization as a biological material for AD-related metabolomics studies.
Collapse
Key Words
- ACE, Addenbrooke's cognitive examination
- AD, Alzheimer's Disease
- AUC, Area under the curve
- Alzheimer
- Aβ, Amyloid-β
- BBB, Blood-brain barrier
- BCAA, Branched-chain amino acid
- Blood
- CNS, Central nervous system
- CSF, Cerebrospinal fluid
- CV, Cross-validation
- EVs, Extracellular vesicles
- Extracellular vesicles
- FAQ, Functional activities questionnaire
- FDR, False discovery rate
- MCI, Mild cognitive impairment
- MMSE, Mini-mental state examination
- Mass spectrometry
- Metabolites
- Nuclear magnetic resonance
- PCA, Principal component analysis
- ROC, Receiver operating characteristics
- p-tau, Phospho-tau
- sPLS-DA, Sparse partial least squared discriminant analysis
- t-tau, Total-tau
Collapse
Affiliation(s)
- Jonas Ellegaard Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Raluca Georgiana Maltesen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute of Medical Research, Westmead, Australia.,Department of Anaesthesia and Intensive Care, Aalborg University Hospital, Aalborg, Denmark
| | - Jesper F Havelund
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | | | | | - Søren Risom Kristensen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Shona Pedersen
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Qatar Health, Doha, Qatar
| |
Collapse
|
28
|
Hamdani EH, Popek M, Frontczak-Baniewicz M, Utheim TP, Albrecht J, Zielińska M, Chaudhry FA. Perturbation of astroglial Slc38 glutamine transporters by NH 4 + contributes to neurophysiologic manifestations in acute liver failure. FASEB J 2021; 35:e21588. [PMID: 34169573 DOI: 10.1096/fj.202001712rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Ammonia is considered the main pathogenic toxin in hepatic encephalopathy (HE). However, the molecular mechanisms involved have been disputed. As altered glutamatergic and GABAergic neurotransmission has been reported in HE, we investigated whether four members of the solute carrier 38 (Slc38) family of amino acid transporters-involved in the replenishment of glutamate and GABA-contribute to ammonia neurotoxicity in HE. We show that ammonium ion exerts multiple actions on the Slc38 transporters: It competes with glutamine for the binding to the system N transporters Slc38a3 and Slc38a5, consequently inhibiting bidirectional astroglial glutamine transport. It also competes with H+ , Na+ , and K+ for uncoupled permeation through the same transporters, which may perturb astroglial intracellular pH, membrane potential, and K+ -buffering. Knockdown of Slc38a3 in mice results in cerebral cortical edema and disrupted neurotransmitter synthesis mimicking events contributing to HE development. Finally, in a mouse model of acute liver failure (ALF), we demonstrate the downregulation of Slc38a3 protein, impeded astroglial glutamine release, and cytotoxic edema. Altogether, we demonstrate contribution of Slc38 transporters to the ammonia-induced impairment of glutamine recycling between astrocytes and neurons, a phenomenon underlying acute ammonia neurotoxicity in the setting of ALF.
Collapse
Affiliation(s)
- El Hassan Hamdani
- Department of Molecular Medicine, University of Oslo (UiO), Oslo, Norway.,Institute of Behavioural Science, Oslo Metropolitan University, Oslo, Norway
| | - Mariusz Popek
- Neurotoxicology Department, Mossakowski Medical Research Institute PAS, Warsaw, Poland
| | | | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Jan Albrecht
- Neurotoxicology Department, Mossakowski Medical Research Institute PAS, Warsaw, Poland
| | - Magdalena Zielińska
- Neurotoxicology Department, Mossakowski Medical Research Institute PAS, Warsaw, Poland
| | - Farrukh Abbas Chaudhry
- Department of Molecular Medicine, University of Oslo (UiO), Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
29
|
Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen HS, Rosenberg PA, Aldana BI. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 2021; 196:108719. [PMID: 34273389 DOI: 10.1016/j.neuropharm.2021.108719] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023]
Abstract
Glutamate is the primary excitatory neurotransmitter of the brain. Cellular homeostasis of glutamate is of paramount importance for normal brain function and relies on an intricate metabolic collaboration between neurons and astrocytes. Glutamate is extensively recycled between neurons and astrocytes in a process known as the glutamate-glutamine cycle. The recycling of glutamate is closely linked to brain energy metabolism and is essential to sustain glutamatergic neurotransmission. However, a considerable amount of glutamate is also metabolized and serves as a metabolic hub connecting glucose and amino acid metabolism in both neurons and astrocytes. Disruptions in glutamate clearance, leading to neuronal overstimulation and excitotoxicity, have been implicated in several neurodegenerative diseases. Furthermore, the link between brain energy homeostasis and glutamate metabolism is gaining attention in several neurological conditions. In this review, we provide an overview of the dynamics of synaptic glutamate homeostasis and the underlying metabolic processes with a cellular focus on neurons and astrocytes. In particular, we review the recently discovered role of neuronal glutamate uptake in synaptic glutamate homeostasis and discuss current advances in cellular glutamate metabolism in the context of Alzheimer's disease and Huntington's disease. Understanding the intricate regulation of glutamate-dependent metabolic processes at the synapse will not only increase our insight into the metabolic mechanisms of glutamate homeostasis, but may reveal new metabolic targets to ameliorate neurodegeneration.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Kia H Markussen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Paul A Rosenberg
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
30
|
Sherwood MW, Oliet SHR, Panatier A. NMDARs, Coincidence Detectors of Astrocytic and Neuronal Activities. Int J Mol Sci 2021; 22:7258. [PMID: 34298875 PMCID: PMC8307462 DOI: 10.3390/ijms22147258] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
Synaptic plasticity is an extensively studied cellular correlate of learning and memory in which NMDARs play a starring role. One of the most interesting features of NMDARs is their ability to act as a co-incident detector. It is unique amongst neurotransmitter receptors in this respect. Co-incident detection is possible because the opening of NMDARs requires membrane depolarisation and the binding of glutamate. Opening of NMDARs also requires a co-agonist. Although the dynamic regulation of glutamate and membrane depolarization have been well studied in coincident detection, the role of the co-agonist site is unexplored. It turns out that non-neuronal glial cells, astrocytes, regulate co-agonist availability, giving them the ability to influence synaptic plasticity. The unique morphology and spatial arrangement of astrocytes at the synaptic level affords them the capacity to sample and integrate information originating from unrelated synapses, regardless of any pre-synaptic and post-synaptic commonality. As astrocytes are classically considered slow responders, their influence at the synapse is widely recognized as modulatory. The aim herein is to reconsider the potential of astrocytes to participate directly in ongoing synaptic NMDAR activity and co-incident detection.
Collapse
Affiliation(s)
- Mark W. Sherwood
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France;
| | | | - Aude Panatier
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France;
| |
Collapse
|
31
|
Pirozzi CJ, Yan H. The implications of IDH mutations for cancer development and therapy. Nat Rev Clin Oncol 2021; 18:645-661. [PMID: 34131315 DOI: 10.1038/s41571-021-00521-0] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Mutations in the genes encoding the cytoplasmic and mitochondrial forms of isocitrate dehydrogenase (IDH1 and IDH2, respectively; collectively referred to as IDH) are frequently detected in cancers of various origins, including but not limited to acute myeloid leukaemia (20%), cholangiocarcinoma (20%), chondrosarcoma (80%) and glioma (80%). In all cases, neomorphic activity of the mutated enzyme leads to production of the oncometabolite D-2-hydroxyglutarate, which has profound cell-autonomous and non-cell-autonomous effects. The broad effects of IDH mutations on epigenetic, differentiation and metabolic programmes, together with their high prevalence across a variety of cancer types, early presence in tumorigenesis and uniform expression in tumour cells, make mutant IDH an ideal therapeutic target. Herein, we describe the current biological understanding of IDH mutations and the roles of mutant IDH in the various associated cancers. We also present the available preclinical and clinical data on various methods of targeting IDH-mutant cancers and discuss, based on the underlying pathogenesis of different IDH-mutated cancer types, whether the treatment approaches will converge or be context dependent.
Collapse
Affiliation(s)
- Christopher J Pirozzi
- Department of Pathology, Duke University Medical Center, Durham, NC, USA. .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.
| | - Hai Yan
- Department of Pathology, Duke University Medical Center, Durham, NC, USA. .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
32
|
Ebersole J, Rose G, Eid T, Behar K, Patrylo P. Altered hippocampal astroglial metabolism is associated with aging and preserved spatial learning and memory. Neurobiol Aging 2021; 102:188-199. [PMID: 33774381 DOI: 10.1016/j.neurobiolaging.2021.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/23/2022]
Abstract
An age-related decrease in hippocampal metabolism correlates with cognitive decline. Hippocampus-dependent learning and memory requires glutamatergic neurotransmission supported by glutamate-glutamine (GLU-GLN) cycling between neurons and astrocytes. We examined whether GLU-GLN cycling in hippocampal subregions (dentate gyrus and CA1) in Fischer 344 rats was altered with age and cognitive status. Hippocampal slices from young adult, aged cognitively-unimpaired (AU) and aged cognitively-impaired (AI) rats were incubated in artificial cerebrospinal fluid (aCSF) containing 1-13C-glucose to assess neural metabolism. Incorporation of 13C-glucose into glutamate and glutamine, measured by mass spectroscopy/liquid chromatography tandem mass spectroscopy, did not significantly differ between groups. However, when 13C-acetate, a preferential astrocytic metabolite, was used, a significant increase in 13C-labeled glutamate was observed in slices from AU rats. Taken together, the data suggest that resting state neural metabolism and GLU-GLN cycling may be preserved during aging when sufficient extracellular glucose is available, but that enhanced astroglial metabolism can occur under resting state conditions. This may be an aging-related compensatory change to maintain hippocampus-dependent cognitive function.
Collapse
Affiliation(s)
- Jeremy Ebersole
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Gregory Rose
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA; Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA; Center for Integrated Research in the Cognitive and Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin Behar
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; MRRC Neurometabolism Research Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Peter Patrylo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA; Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA; Center for Integrated Research in the Cognitive and Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL, USA.
| |
Collapse
|
33
|
Moldovan OL, Rusu A, Tanase C, Vari CE. Glutamate - A multifaceted molecule: Endogenous neurotransmitter, controversial food additive, design compound for anti-cancer drugs. A critical appraisal. Food Chem Toxicol 2021; 153:112290. [PMID: 34023459 DOI: 10.1016/j.fct.2021.112290] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022]
Abstract
One of the most widely used flavour enhancers in the food industry is monosodium glutamate (MSG). MSG consumption has been on an upward trend, worrying in terms of potential toxic effects. This review is focused on the long-term toxicity of MSG and the experimental evidence that supports it. The article's primary purpose was to survey recently published data regarding the consumption of MSG within safe limits. The administered doses in animal models are very varied and have given rise to controversy. Also, the paper comprises pathways to lower MSG toxicity and highlight other underexploited biological effects, as anti-cancer potential. The administration of MSG, combined with various compounds, has been shown benefit against toxic effects. Several recent studies have identified a possible mechanism that recommends MSG and some derivatives as potential anti-cancer agents. New anti-cancer compounds based on the glutamic acid structure must be studied and further exploited. International regulations require harmonization of safe doses of MSG based on current scientific studies. Replacing MSG with other umami flavour enhancers may be a safer alternative for human health in the future. The biological consequences of MSG consumption or therapeutical administration have not been fully deciphered yet.
Collapse
Affiliation(s)
- Octavia-Laura Moldovan
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142, Târgu Mureș, Romania.
| | - Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142, Târgu Mureș, Romania.
| | - Corneliu Tanase
- Pharmaceutical Botany Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142, Târgu Mureș, Romania.
| | - Camil-Eugen Vari
- Pharmacy and Clinical Pharmacy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142, Târgu Mureș, Romania.
| |
Collapse
|
34
|
Álvarez-Merz I, Luengo JG, Muñoz MD, Hernández-Guijo JM, Solís JM. Hypoxia-induced depression of synaptic transmission becomes irreversible by intracellular accumulation of non-excitatory amino acids. Neuropharmacology 2021; 190:108557. [PMID: 33848510 DOI: 10.1016/j.neuropharm.2021.108557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/10/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
The intracellular accumulation of some amino acids (AAs), mainly glutamine, can contribute to brain edema observed during liver failure. We recently demonstrated that individual applications of high concentrations (10 mM) of some non-excitatory AAs increase the electrical resistance of hippocampal slices, indicating cell swelling. Therefore, we pondered whether an AA mixture's application might cause cell swelling at a physiological concentration range. In rat hippocampal slices, we carried out extra- and intracellular electrophysiological recordings and AAs analysis to address this question. We applied a mixture of 19 AAs at their plasmatic concentrations (Plasma solution: Ala, Gly, Gln, His, Ser, Tau, Thr, Arg, Leu, Met, Pro, Val, Asn, Cys, Phe, Ile, Lys, Tyr, and Trp). This solution was afterward divided into two according to the individual AAs at 10 mM concentration inducing synaptic potentiation (Plasma1, containing the first seven AAs of Plasma) or not (Plasma2, with the remaining AAs). Plasma application increased evoked field potentials requiring extracellular chloride. This effect was mimicked by the Plasma1 but not the Plasma2 solution. Plasma1-induced potentiation was independent of changes in release probability, basic electrophysiological membrane properties, and NMDAR activation. AAs in Plasma1 act cooperatively to accumulate intracellularly and to induce synaptic potentiation. In the presence of Plasma1, the reversible synaptic depression caused by a 40-min hypoxia period turned into an irreversible disappearance of synaptic potentials through an NMDAR-dependent mechanism. The presence of a system A transport inhibitor did not block Plasma1-mediated effects. These results indicate that cell swelling, induced by the accumulation of non-excitotoxic AAs through unidentified transporters, might foster deleterious effects produced by hypoxia-ischemia episodes.
Collapse
Affiliation(s)
- Iris Álvarez-Merz
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain; Departamento de Farmacología y Terapeútica, ITH, Facultad de Medicina, Universidad Autónoma de Madrid, IRYCIS, Avda. Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Javier G Luengo
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain; Departamento de Farmacología y Terapeútica, ITH, Facultad de Medicina, Universidad Autónoma de Madrid, IRYCIS, Avda. Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - María-Dolores Muñoz
- Unidad de Neurología Experimental, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, 28034, Spain
| | - Jesús M Hernández-Guijo
- Departamento de Farmacología y Terapeútica, ITH, Facultad de Medicina, Universidad Autónoma de Madrid, IRYCIS, Avda. Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - José M Solís
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain.
| |
Collapse
|
35
|
Fairweather SJ, Okada S, Gauthier-Coles G, Javed K, Bröer A, Bröer S. A GC-MS/Single-Cell Method to Evaluate Membrane Transporter Substrate Specificity and Signaling. Front Mol Biosci 2021; 8:646574. [PMID: 33928121 PMCID: PMC8076599 DOI: 10.3389/fmolb.2021.646574] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Amino acid transporters play a vital role in metabolism and nutrient signaling pathways. Typically, transport activity is investigated using single substrates and competing amounts of other amino acids. We used GC-MS and LC-MS for metabolic screening of Xenopus laevis oocytes expressing various human amino acid transporters incubated in complex media to establish their comprehensive substrate profiles. For most transporters, amino acid selectivity matched reported substrate profiles. However, we could not detect substantial accumulation of cationic amino acids by SNAT4 and ATB0,+ in contrast to previous reports. In addition, comparative substrate profiles of two related sodium neutral amino acid transporters known as SNAT1 and SNAT2, revealed the latter as a significant leucine accumulator. As a consequence, SNAT2, but not SNAT1, was shown to be an effective activator of the eukaryotic cellular growth regulator mTORC1. We propose, that metabolomic profiling of membrane transporters in Xe nopus laevis oocytes can be used to test their substrate specificity and role in intracellular signaling pathways.
Collapse
Affiliation(s)
- Stephen J. Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Shoko Okada
- Commonwealth Scientific and Industrial Research Institute (CSIRO) Land and Water, Canberra, ACT, Australia
| | | | - Kiran Javed
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Angelika Bröer
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Bröer
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
36
|
Ding L, Xu X, Li C, Wang Y, Xia X, Zheng JC. Glutaminase in microglia: A novel regulator of neuroinflammation. Brain Behav Immun 2021; 92:139-156. [PMID: 33278560 DOI: 10.1016/j.bbi.2020.11.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/11/2020] [Accepted: 11/28/2020] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation is the inflammatory responses that are involved in the pathogenesis of most neurological disorders. Glutaminase (GLS) is the enzyme that catalyzes the hydrolysis of glutamine to produce glutamate. Besides its well-known role in cellular metabolism and excitatory neurotransmission, GLS has recently been increasingly noticed to be up-regulated in activated microglia under pathological conditions. Furthermore, GLS overexpression induces microglial activation, extracellular vesicle secretion, and neuroinflammatory microenvironment formation, which, are compromised by GLS inhibitors in vitro and in vivo. These results indicate that GLS has more complicated implications in brain disease etiology than what are previously known. In this review, we introduce GLS isoforms, expression patterns in the body and the brain, and expression/activities regulation. Next, we discuss the metabolic and neurotransmission functions of GLS. Afterwards, we summarize recent findings of GLS-mediated microglial activation and pro-inflammatory extracellular vesicle secretion, which, in turns, induces neuroinflammation. Lastly, we provide a comprehensive discussion for the involvement of microglial GLS in the pathogenesis of various neurological disorders, indicating microglial GLS as a promising target to treat these diseases.
Collapse
Affiliation(s)
- Lu Ding
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaonan Xu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Congcong Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200434, China.
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200434, China.
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200434, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930, USA.
| |
Collapse
|
37
|
Weidenfeld S, Chupin C, Langner DI, Zetoun T, Rozowsky S, Kuebler WM. Sodium-coupled neutral amino acid transporter SNAT2 counteracts cardiogenic pulmonary edema by driving alveolar fluid clearance. Am J Physiol Lung Cell Mol Physiol 2021; 320:L486-L497. [PMID: 33439101 DOI: 10.1152/ajplung.00461.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The constant transport of ions across the alveolar epithelial barrier regulates alveolar fluid homeostasis. Dysregulation or inhibition of Na+ transport causes fluid accumulation in the distal airspaces resulting in impaired gas exchange and respiratory failure. Previous studies have primarily focused on the critical role of amiloride-sensitive epithelial sodium channel (ENaC) in alveolar fluid clearance (AFC), yet activation of ENaC failed to attenuate pulmonary edema in clinical trials. Since 40% of AFC is amiloride-insensitive, Na+ channels/transporters other than ENaC such as Na+-coupled neutral amino acid transporters (SNATs) may provide novel therapeutic targets. Here, we identified a key role for SNAT2 (SLC38A2) in AFC and pulmonary edema resolution. In isolated perfused mouse and rat lungs, pharmacological inhibition of SNATs by HgCl2 and α-methylaminoisobutyric acid (MeAIB) impaired AFC. Quantitative RT-PCR identified SNAT2 as the highest expressed System A transporter in pulmonary epithelial cells. Pharmacological inhibition or siRNA-mediated knockdown of SNAT2 reduced transport of l-alanine across pulmonary epithelial cells. Homozygous Slc38a2-/- mice were subviable and died shortly after birth with severe cyanosis. Isolated lungs of Slc38a2+/- mice developed higher wet-to-dry weight ratios (W/D) as compared to wild type (WT) in response to hydrostatic stress. Similarly, W/D ratios were increased in Slc38a2+/- mice as compared to controls in an acid-induced lung injury model. Our results identify SNAT2 as a functional transporter for Na+ and neutral amino acids in pulmonary epithelial cells with a relevant role in AFC and the resolution of lung edema. Activation of SNAT2 may provide a new therapeutic strategy to counteract and/or reverse pulmonary edema.
Collapse
Affiliation(s)
- Sarah Weidenfeld
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cécile Chupin
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | - Tamador Zetoun
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Rozowsky
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
38
|
Qureshi T, Sørensen C, Berghuis P, Jensen V, Dobszay MB, Farkas T, Dalen KT, Guo C, Hassel B, Utheim TP, Hvalby Ø, Hafting T, Harkany T, Fyhn M, Chaudhry FA. The Glutamine Transporter Slc38a1 Regulates GABAergic Neurotransmission and Synaptic Plasticity. Cereb Cortex 2020; 29:5166-5179. [PMID: 31050701 PMCID: PMC6918930 DOI: 10.1093/cercor/bhz055] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/18/2019] [Indexed: 01/03/2023] Open
Abstract
GABA signaling sustains fundamental brain functions, from nervous system development to the synchronization of population activity and synaptic plasticity. Despite these pivotal features, molecular determinants underscoring the rapid and cell-autonomous replenishment of the vesicular neurotransmitter GABA and its impact on synaptic plasticity remain elusive. Here, we show that genetic disruption of the glutamine transporter Slc38a1 in mice hampers GABA synthesis, modifies synaptic vesicle morphology in GABAergic presynapses and impairs critical period plasticity. We demonstrate that Slc38a1-mediated glutamine transport regulates vesicular GABA content, induces high-frequency membrane oscillations and shapes cortical processing and plasticity. Taken together, this work shows that Slc38a1 is not merely a transporter accumulating glutamine for metabolic purposes, but a key component regulating several neuronal functions.
Collapse
Affiliation(s)
- Tayyaba Qureshi
- Department of Molecular Medicine, University of Oslo (UiO), Oslo, Norway
| | - Christina Sørensen
- Department of Biosciences, UiO, Oslo, Norway.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Paul Berghuis
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vidar Jensen
- Department of Molecular Medicine, University of Oslo (UiO), Oslo, Norway
| | - Marton B Dobszay
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tamás Farkas
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Caiying Guo
- Janelia Research Campus, Ashburn, Virginia, USA
| | - Bjørnar Hassel
- Department of Neurohabilitation, Oslo University Hospital (OUH) and UiO, Norway
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, OUH, Norway.,Department of Plastic and Reconstructive Surgery, OUS and UiO, Norway
| | - Øivind Hvalby
- Department of Molecular Medicine, University of Oslo (UiO), Oslo, Norway
| | - Torkel Hafting
- Department of Molecular Medicine, University of Oslo (UiO), Oslo, Norway
| | - Tibor Harkany
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Austria
| | | | - Farrukh Abbas Chaudhry
- Department of Molecular Medicine, University of Oslo (UiO), Oslo, Norway.,Department of Plastic and Reconstructive Surgery, OUS and UiO, Norway
| |
Collapse
|
39
|
Popek M, Bobula B, Sowa J, Hess G, Frontczak-Baniewicz M, Albrecht J, Zielińska M. Physiology and Morphological Correlates of Excitatory Transmission are Preserved in Glutamine Transporter SN1-Depleted Mouse Frontal Cortex. Neuroscience 2020; 446:124-136. [DOI: 10.1016/j.neuroscience.2020.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 08/14/2020] [Indexed: 01/22/2023]
|
40
|
Qureshi T, Bjørkmo M, Nordengen K, Gundersen V, Utheim TP, Watne LO, Storm-Mathisen J, Hassel B, Chaudhry FA. Slc38a1 Conveys Astroglia-Derived Glutamine into GABAergic Interneurons for Neurotransmitter GABA Synthesis. Cells 2020; 9:E1686. [PMID: 32668809 PMCID: PMC7407890 DOI: 10.3390/cells9071686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022] Open
Abstract
GABA signaling is involved in a wide range of neuronal functions, such as synchronization of action potential firing, synaptic plasticity and neuronal development. Sustained GABA signaling requires efficient mechanisms for the replenishment of the neurotransmitter pool of GABA. The prevailing theory is that exocytotically released GABA may be transported into perisynaptic astroglia and converted to glutamine, which is then shuttled back to the neurons for resynthesis of GABA-i.e., the glutamate/GABA-glutamine (GGG) cycle. However, an unequivocal demonstration of astroglia-to-nerve terminal transport of glutamine and the contribution of astroglia-derived glutamine to neurotransmitter GABA synthesis is lacking. By genetic inactivation of the amino acid transporter Solute carrier 38 member a1 (Slc38a1)-which is enriched on parvalbumin+ GABAergic neurons-and by intraperitoneal injection of radiolabeled acetate (which is metabolized to glutamine in astroglial cells), we show that Slc38a1 mediates import of astroglia-derived glutamine into GABAergic neurons for synthesis of GABA. In brain slices, we demonstrate the role of Slc38a1 for the uptake of glutamine specifically into GABAergic nerve terminals for the synthesis of GABA depending on demand and glutamine supply. Thus, while leaving room for other pathways, our study demonstrates a key role of Slc38a1 for newly formed GABA, in harmony with the existence of a GGG cycle.
Collapse
Affiliation(s)
- Tayyaba Qureshi
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; (T.Q.); (M.B.); (K.N.); (V.G.); (J.S.-M.)
| | - Mona Bjørkmo
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; (T.Q.); (M.B.); (K.N.); (V.G.); (J.S.-M.)
| | - Kaja Nordengen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; (T.Q.); (M.B.); (K.N.); (V.G.); (J.S.-M.)
| | - Vidar Gundersen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; (T.Q.); (M.B.); (K.N.); (V.G.); (J.S.-M.)
| | - Tor Paaske Utheim
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0424 Oslo, Norway;
| | - Leiv Otto Watne
- Department of Geriatric Medicine, Oslo University Hospital, 0424 Oslo, Norway;
| | - Jon Storm-Mathisen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; (T.Q.); (M.B.); (K.N.); (V.G.); (J.S.-M.)
| | - Bjørnar Hassel
- Department of Neurohabilitation, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway;
| | - Farrukh Abbas Chaudhry
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; (T.Q.); (M.B.); (K.N.); (V.G.); (J.S.-M.)
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0424 Oslo, Norway;
| |
Collapse
|
41
|
Brojeni MS, Nasseri F, Haghparast A, Eliassi A. Paraventricular nucleus-microinjected glucose increases food intake in 18 h food-deprived rats: A central regulatory mechanism on serum ghrelin and leptin levels. Eur J Pharmacol 2020; 876:173073. [DOI: 10.1016/j.ejphar.2020.173073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/13/2020] [Indexed: 01/29/2023]
|
42
|
Selective Upregulation by Theanine of Slc38a1 Expression in Neural Stem Cell for Brain Wellness. Molecules 2020; 25:molecules25020347. [PMID: 31952134 PMCID: PMC7024158 DOI: 10.3390/molecules25020347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
Theanine is an amino acid abundant in green tea with an amide moiety analogous to glutamine (GLN) rather than glutamic acid (Glu) and GABA, which are both well-known as amino acid neurotransmitters in the brain. Theanine has no polyphenol and flavonoid structures required for an anti-oxidative property as seen with catechins and tannins, which are more enriched in green tea. We have shown marked inhibition by this exogenous amino acid theanine of the uptake of [3H]GLN, but not of [3H]Glu, in rat brain synaptosomes. Beside a ubiquitous role as an endogenous amino acid, GLN has been believed to be a main precursor for the neurotransmitter Glu sequestered in a neurotransmitter pool at glutamatergic neurons in the brain. The GLN transporter solute carrier 38a1 (Slc38a1) plays a crucial role in the incorporation of extracellular GLN for the intracellular conversion to Glu by glutaminase and subsequent sequestration at synaptic vesicles in neurons. However, Slc38a1 is also expressed by undifferentiated neural progenitor cells (NPCs) not featuring a neuronal phenotype. NPCs are derived from a primitive stem cell endowed to proliferate for self-renewal and to commit differentiation to several daughter cell lineages such as neurons, astrocytes, and oligodendrocytes. In vitro culture with theanine leads to the marked promotion of the generation of new neurons together with selective upregulation of Slc38a1 transcript expression in NPCs. In this review, we will refer to a possible novel neurogenic role of theanine for brain wellness through a molecular mechanism relevant to facilitated neurogenesis with a focus on Slc38a1 expressed by undifferentiated NPCs on the basis of our accumulating findings to date.
Collapse
|
43
|
Solute carrier transporters: the metabolic gatekeepers of immune cells. Acta Pharm Sin B 2020; 10:61-78. [PMID: 31993307 PMCID: PMC6977534 DOI: 10.1016/j.apsb.2019.12.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/29/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Solute carrier (SLC) transporters meditate many essential physiological functions, including nutrient uptake, ion influx/efflux, and waste disposal. In its protective role against tumors and infections, the mammalian immune system coordinates complex signals to support the proliferation, differentiation, and effector function of individual cell subsets. Recent research in this area has yielded surprising findings on the roles of solute carrier transporters, which were discovered to regulate lymphocyte signaling and control their differentiation, function, and fate by modulating diverse metabolic pathways and balanced levels of different metabolites. In this review, we present current information mainly on glucose transporters, amino-acid transporters, and metal ion transporters, which are critically important for mediating immune cell homeostasis in many different pathological conditions.
Collapse
Key Words
- 3-PG, 3-phosphoglyceric acid
- ABC, ATP-binding cassette
- AIF, apoptosis-inducing factor
- AP-1, activator protein 1
- ASCT2, alanine serine and cysteine transporter system 2
- ATP, adenosine triphosphate
- BCR, B cell receptor
- BMDMs, bone marrow-derived macrophages
- CD45R, a receptor-type protein tyrosine phosphatase
- CTL, cytotoxic T lymphocytes
- DC, dendritic cells
- EAATs, excitatory amino acid transporters
- ER, endoplasmic reticulum
- ERRα, estrogen related receptor alpha
- FFA, free fatty acids
- G-6-P, glucose 6-phosphate
- GLUT, glucose transporters
- GSH, glutathione
- Glucose
- Glutamine
- HIF-1α, hypoxia-inducible factor 1-alpha
- HIV-1, human immunodeficiency virus type 1
- Hk1, hexokinase-1
- IFNβ, interferon beta
- IFNγ, interferon gamma
- IKK, IκB kinase
- IKKβ, IκB kinase beta subunit
- IL, interleukin
- LDHA, lactate dehydrogenase A
- LPS, lipopolysaccharide
- Lymphocytes
- Lyn, tyrosine-protein kinase
- MAPK, mitogen-activated protein kinase
- MCT, monocarboxylate transporters
- MS, multiple sclerosis
- Metal ion
- NADPH, nicotinamide adenine dinucleotide phosphate
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NO, nitric oxide
- NOD2, nucleotide-binding oligomerization domain containing 2
- PEG2, prostaglandin E2
- PI-3K/AKT, phosphatidylinositol-3-OH kinase/serine–threonine kinase
- PPP, pentose phosphate pathway
- Pfk, phosphofructokinase
- RA, rheumatoid arthritis
- RLR, RIG-I-like receptor
- ROS, reactive oxygen species
- SLC, solute carrier
- SLE, systemic lupus erythematosus
- SNAT, sodium-coupled neutral amino acid transporters
- STAT, signal transducers and activators of transcription
- Solute carrier
- TAMs, tumor-associated macrophages
- TCA, tricarboxylic acid
- TCR, T cell receptor
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- TRPM7, transient receptor potential cation channel subfamily M member 7
- Teffs, effector T cells
- Th1/2/17, type 1/2/17 helper T cells
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
- ZIP, zrt/irt-like proteins
- iNOS, inducible nitric oxide synthase
- iTregs, induced regulatory T cells
- mTORC1, mammalian target of rapamycin complex 1
- α-KG, α-ketoglutaric acid
Collapse
|
44
|
Polis B, Samson AO. Role of the metabolism of branched-chain amino acids in the development of Alzheimer's disease and other metabolic disorders. Neural Regen Res 2020; 15:1460-1470. [PMID: 31997805 PMCID: PMC7059578 DOI: 10.4103/1673-5374.274328] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alzheimer’s disease is an incurable chronic neurodegenerative disorder and the leading cause of dementia, imposing a growing economic burden upon society. The disease progression is associated with gradual deposition of amyloid plaques and the formation of neurofibrillary tangles within the brain parenchyma, yet severe dementia is the culminating phase of the enduring pathology. Converging evidence suggests that Alzheimer’s disease-related cognitive decline is the outcome of an extremely complex and persistent pathophysiological process. The disease is characterized by distinctive abnormalities apparent at systemic, histological, macromolecular, and biochemical levels. Moreover, besides the well-defined and self-evident characteristic profuse neurofibrillary tangles, dystrophic neurites, and amyloid-beta deposits, the Alzheimer’s disease-associated pathology includes neuroinflammation, substantial neuronal loss, apoptosis, extensive DNA damage, considerable mitochondrial malfunction, compromised energy metabolism, and chronic oxidative stress. Likewise, distinctive metabolic dysfunction has been named a leading cause and a hallmark of Alzheimer’s disease that is apparent decades prior to disease manifestation. State-of-the-art metabolomics studies demonstrate that altered branched-chain amino acids (BCAAs) metabolism accompanies Alzheimer’s disease development. Lower plasma valine levels are correlated with accelerated cognitive decline, and, conversely, an increase in valine concentration is associated with reduced risk of Alzheimer’s disease. Additionally, a clear BCAAs-related metabolic signature has been identified in subjects with obesity, diabetes, and atherosclerosis. Also, arginine metabolism is dramatically altered in Alzheimer’s disease human brains and animal models. Accordingly, a potential role of the urea cycle in the Alzheimer’s disease development has been hypothesized, and preclinical studies utilizing intervention in the urea cycle and/or BCAAs metabolism have demonstrated clinical potential. Continual failures to offer a competent treatment strategy directed against amyloid-beta or Tau proteins-related lesions, which could face all challenges of the multifaceted Alzheimer’s disease pathology, led to the hypothesis that hyperphosphorylated Tau and deposited amyloid-beta proteins are just hallmarks or epiphenomena, but not the ultimate causes of Alzheimer’s disease. Therefore, approaches targeting amyloid-beta or Tau are not adequate to cure the disease. Accordingly, the modern scientific vision of Alzheimer’s disease etiology and pathogenesis must reach beyond the hallmarks, and look for alternative strategies and areas of research.
Collapse
Affiliation(s)
- Baruh Polis
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Abraham O Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
45
|
Sun Y, Sun J, He Z, Wang G, Wang Y, Zhao D, Wang Z, Luo C, Tian C, Jiang Q. Monocarboxylate Transporter 1 in Brain Diseases and Cancers. Curr Drug Metab 2019; 20:855-866. [DOI: 10.2174/1389200220666191021103018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/21/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022]
Abstract
Background:
Monocarboxylate Transporter 1 (MCT1), an important membrane transport protein, mediates
the translocation of monocarboxylates together with protons across biological membranes. Due to its pathological
significance, MCT1 plays an important role in the progression of some diseases, such as brain diseases and cancers.
Methods:
We summarize the general description of MCT1 and provide a comprehensive understanding of the role of
MCT1 in brain diseases and cancers. Furthermore, this review discusses the opportunities and challenges of MCT1-
targeting drug-delivery systems in the treatment of brain diseases and cancers.
Results:
In the brain, loss of MCT1 function is associated with pathologies of degeneration and injury of the nervous
system. In tumors, MCT1 regulates the activity of signaling pathways and controls the exchange of monocarboxylates
in aerobic glycolysis to affect tumor metabolism, proliferation and invasion. Meanwhile, MCT1 also acts as a
good biomarker for the prediction and diagnosis of cancer progressions.
Conclusion:
MCT1 is an attractive transporter in brain diseases and cancers. Moreover, the development of MCT1-
based small molecule drugs and MCT1 inhibitors in the clinic is promising. This review systematically summarizes
the basic characteristics of MCT1 and its role in brain diseases and cancers, laying the foundation for further research
on MCT1.
Collapse
Affiliation(s)
- Yixin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yang Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Dongyang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhenjie Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
46
|
Yarishkin O, Phuong TTT, Križaj D. Trabecular Meshwork TREK-1 Channels Function as Polymodal Integrators of Pressure and pH. Invest Ophthalmol Vis Sci 2019; 60:2294-2303. [PMID: 31117121 PMCID: PMC6532698 DOI: 10.1167/iovs.19-26851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose The concentration of protons in the aqueous humor (AH) of the vertebrate eye is maintained close to blood pH; however, pathologic conditions and surgery may shift it by orders of magnitude. We investigated whether and how changes in extra- and intracellular pH affect the physiology and function of trabecular meshwork (TM) cells that regulate AH outflow. Methods Electrophysiology, in conjunction with pharmacology, gene knockdown, and optical recording, was used to track the pH dependence of transmembrane currents and mechanotransduction in primary and immortalized human TM cells. Results Extracellular acidification depolarized the resting membrane potential by inhibiting an outward K+-mediated current, whereas alkalinization hyperpolarized the cells and augmented the outward conductance. Intracellular acidification with sodium bicarbonate hyperpolarized TM cells, whereas removal of intracellular protons with ammonium chloride depolarized the membrane potential. The effects of extra- and intracellular acid and alkaline loading were abolished by quinine, a pan-selective inhibitor of two-pore domain potassium (K2P) channels, and suppressed by shRNA-mediated downregulation of the mechanosensitive K2P channel TREK-1. Extracellular acidosis suppressed, whereas alkalosis facilitated, the amplitude of the pressure-evoked TREK-1–mediated outward current. Conclusions These results demonstrate that TM mechanotransduction mediated by TREK-1 channels is profoundly sensitive to extra- and intracellular pH shifts. Intracellular acidification might modulate aqueous outflow and IOP by stimulating TREK-1 channels.
Collapse
Affiliation(s)
- Oleg Yarishkin
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Tam T T Phuong
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States.,Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
47
|
Ke T, Sidoryk-Wegrzynowicz M, Pajarillo E, Rizor A, Soares FAA, Lee E, Aschner M. Role of Astrocytes in Manganese Neurotoxicity Revisited. Neurochem Res 2019; 44:2449-2459. [PMID: 31571097 PMCID: PMC7757856 DOI: 10.1007/s11064-019-02881-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
Abstract
Manganese (Mn) overexposure is a public health concern due to its widespread industrial usage and the risk for environmental contamination. The clinical symptoms of Mn neurotoxicity, or manganism, share several pathological features of Parkinson's disease (PD). Biologically, Mn is an essential trace element, and Mn in the brain is preferentially localized in astrocytes. This review summarizes the role of astrocytes in Mn-induced neurotoxicity, specifically on the role of neurotransmitter recycling, neuroinflammation, and genetics. Mn overexposure can dysregulate astrocytic cycling of glutamine (Gln) and glutamate (Glu), which is the basis for Mn-induced excitotoxic neuronal injury. In addition, reactive astrocytes are important mediators of Mn-induced neuronal damage by potentiating neuroinflammation. Genetic studies, including those with Caenorhabditis elegans (C. elegans) have uncovered several genes associated with Mn neurotoxicity. Though we have yet to fully understand the role of astrocytes in the pathologic changes characteristic of manganism, significant strides have been made over the last two decades in deciphering the role of astrocytes in Mn-induced neurotoxicity and neurodegeneration.
Collapse
Affiliation(s)
- Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Marta Sidoryk-Wegrzynowicz
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Asha Rizor
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Félix Alexandre Antunes Soares
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.,Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA. .,Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY, 10461, USA.
| |
Collapse
|
48
|
Menchini RJ, Chaudhry FA. Multifaceted regulation of the system A transporter Slc38a2 suggests nanoscale regulation of amino acid metabolism and cellular signaling. Neuropharmacology 2019; 161:107789. [PMID: 31574264 DOI: 10.1016/j.neuropharm.2019.107789] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023]
Abstract
Amino acids are essential for cellular protein synthesis, growth, metabolism, signaling and in stress responses. Cell plasma membranes harbor specialized transporters accumulating amino acids to support a variety of cellular biochemical pathways. Several transporters for neutral amino acids have been characterized. However, Slc38a2 (also known as SA1, SAT2, ATA2, SNAT2) representing the classical transport system A activity stands in a unique position: Being a secondarily active transporter energized by the electrochemical gradient of Na+, it creates steep concentration gradients for amino acids such as glutamine: this may subsequently drive the accumulation of additional neutral amino acids through exchange via transport systems ASC and L. Slc38a2 is ubiquitously expressed, yet in a cell-specific manner. In this review, we show that Slc38a2 is regulated at the transcriptional and translational levels as well as by ions and proteins through direct interactions. We describe how Slc38a2 senses amino acid availability and passes this onto intracellular signaling pathways and how it regulates protein synthesis, cellular proliferation and apoptosis through the mechanistic (mammalian) target of rapamycin (mTOR) and general control nonderepressible 2 (GCN2) pathways. Furthermore, we review how this extensively regulated transporter contributes to cellular osmoadaptation and how it is regulated by endoplasmic reticulum stress and various hormonal stimuli to promote cellular metabolism, cellular signaling and cell survival. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
| | - Farrukh Abbas Chaudhry
- Department of Molecular Medicine, University of Oslo, Oslo, Norway; Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
49
|
Luengo JG, Muñoz MD, Álvarez-Merz I, Herranz AS, González JC, Martín del Río R, Hernández-Guijo JM, Solís JM. Intracellular accumulation of amino acids increases synaptic potentials in rat hippocampal slices. Amino Acids 2019; 51:1337-1351. [DOI: 10.1007/s00726-019-02771-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 08/11/2019] [Indexed: 12/22/2022]
|
50
|
Escalante M, Soto-Verdugo J, Hernández-Kelly LC, Hernández-Melchor D, López-Bayghen E, Olivares-Bañuelos TN, Ortega A. GLAST Activity is Modified by Acute Manganese Exposure in Bergmann Glial Cells. Neurochem Res 2019; 45:1365-1374. [PMID: 31363896 DOI: 10.1007/s11064-019-02848-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022]
Abstract
Glutamate is the major excitatory amino acid neurotransmitter in the vertebrate brain. It exerts its actions through the activation of specific plasma membrane receptors expressed in neurons and glial cells. Overactivation of glutamate receptors results in neuronal death, known as excitotoxicity. A family of sodium-dependent glutamate transporters enriched in glial cells are responsible of the vast majority of the removal of this amino acid form the synaptic cleft. Therefore, a precise and exquisite regulation of these proteins is required not only for a proper glutamatergic transmission but also for the prevention of an excitotoxic insult. Manganese is a trace element essential as a cofactor for several enzymatic systems, although in high concentrations is involved in the disruption of brain glutamate homeostasis. The molecular mechanisms associated to manganese neurotoxicity have been focused on mitochondrial function, although energy depletion severely compromises the glutamate uptake process. In this context, in this contribution we analyze the effect of manganese exposure in glial glutamate transporters function. To this end, we used the well-established model of chick cerebellar Bergmann glia cultures. A time and dose dependent modulation of [3H]-D-aspartate uptake was found. An increase in the transporter catalytic efficiency, most probably linked to a discrete increase in the affinity of the transporter was detected upon manganese exposure. Interestingly, glucose uptake was reduced by this metal. These results favor the notion of a direct effect of manganese on glial cells, this in turn alters their coupling with neurons and might lead to changes in glutamatergic transmission.
Collapse
Affiliation(s)
- Miguel Escalante
- Departamento de Toxicología, Centro de Investigación Y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07360, Ciudad de Mexico, Mexico
| | - Jazmín Soto-Verdugo
- Departamento de Toxicología, Centro de Investigación Y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07360, Ciudad de Mexico, Mexico
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación Y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07360, Ciudad de Mexico, Mexico
| | - Dinorah Hernández-Melchor
- Departamento de Toxicología, Centro de Investigación Y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07360, Ciudad de Mexico, Mexico
| | - Esther López-Bayghen
- Departamento de Toxicología, Centro de Investigación Y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07360, Ciudad de Mexico, Mexico
| | - Tatiana N Olivares-Bañuelos
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, 22860, Ensenada, Baja California, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación Y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07360, Ciudad de Mexico, Mexico.
| |
Collapse
|