1
|
Ren H, Yuan Y, Zhang D, Xing Y, Chen Z. The impact of circadian rhythms on retinal immunity. Chronobiol Int 2025; 42:198-212. [PMID: 39917826 DOI: 10.1080/07420528.2025.2460675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/26/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025]
Abstract
The eye is an immune-protected organ, which is driven by factors such as cytokines, chemicals, light, and mechanical stimuli. The circadian clock is an intrinsic timing mechanism that influences the immune activities, such as immune cell count and activity, as well as inflammatory responses. Recent studies have demonstrated that the eye also possesses an intrinsic circadian rhythm, and this rhythmic regulation participates in ocular immune modulation. In this review, we discuss the immunoregulatory mechanisms of the circadian clock within the eye, and reveal new perspectives for the prevention and treatment of ocular diseases.
Collapse
Affiliation(s)
- He Ren
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yilin Yuan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danlei Zhang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
MacIsaac AR, Wellington AJ, Filicetti K, Eggers ED. Impaired dopamine signaling in early diabetic retina: Insights from D1R and D4R agonist effects on whole retina responses. Exp Eye Res 2024; 247:110049. [PMID: 39151774 PMCID: PMC11392630 DOI: 10.1016/j.exer.2024.110049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The retina has low dopamine levels early in diabetes. To determine how low dopamine levels affected dopamine signaling, the effects of dopamine receptor agonists and mRNA localization were measured after 6 weeks of diabetes. Whole retina ex vivo electroretinogram (ERG) recordings were used to analyze how dopamine type 1 receptor (D1R) and type 4 (D4R) agonists change the light-evoked retinal responses of non-diabetic and 6-week diabetic (STZ injected) mouse retinas. Fluorescence in situ hybridization was utilized to analyze D4R and D1R mRNA locations and expression levels. D4R activation reduced A- and B-wave ERG amplitudes and increased B-wave implicit time and rise-time in the non-diabetic group without a corresponding change in the diabetic group. D1R activation increased B-wave rise-time and oscillatory potential peak time in the non-diabetic group also with no change in the diabetic group. The lack of responsivity to D1R or D4R agonists shows an impairment of dopamine signaling in the diabetic retina. D4R mRNA was found primarily in the outer nuclear layer where photoreceptor cell bodies reside. D1R mRNA was found in the inner nuclear layer and ganglion cell layer that contain bipolar, amacrine, horizontal and ganglion cells. There was no change in D4R or D1R mRNA expression between the non-diabetic and diabetic retinas. This suggests that the significant dopamine signaling changes observed were not from lower receptor expression levels but could be due to changes in dopamine receptor activity or protein levels. These studies show that changes in retinal dopamine signaling could be an important mechanism of diabetic retinal dysfunction.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Diabetes Mellitus, Experimental/metabolism
- Diabetic Retinopathy/metabolism
- Dopamine/metabolism
- Dopamine Agonists/pharmacology
- Electroretinography
- In Situ Hybridization, Fluorescence
- Mice, Inbred C57BL
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D4/metabolism
- Receptors, Dopamine D4/genetics
- Receptors, Dopamine D4/agonists
- Retina/metabolism
- Retina/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Angela R MacIsaac
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA.
| | - Andrea J Wellington
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA.
| | - Kyle Filicetti
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA.
| | - Erika D Eggers
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
3
|
Barboni MTS, Széll N, Sohajda Z, Fehér T. Pupillary Light Reflex Reveals Melanopsin System Alteration in the Background of Myopia-26, the Female Limited Form of Early-Onset High Myopia. Invest Ophthalmol Vis Sci 2024; 65:6. [PMID: 38958970 PMCID: PMC11223624 DOI: 10.1167/iovs.65.8.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/17/2024] [Indexed: 07/04/2024] Open
Abstract
Purpose The purpose of this study was to evaluate pupillary light reflex (PLR) to chromatic flashes in patients with early-onset high-myopia (eoHM) without (myopic controls = M-CTRL) and with (female-limited myopia-26 = MYP-26) genetic mutations in the ARR3 gene encoding the cone arrestin. Methods Participants were 26 female subjects divided into 3 groups: emmetropic controls (E-CTRL, N = 12, mean age = 28.6 ± 7.8 years) and 2 myopic (M-CTRL, N = 7, mean age = 25.7 ± 11.5 years and MYP-26, N = 7, mean age = 28.3 ± 15.4 years) groups. In addition, one hemizygous carrier and one control male subject were examined. Direct PLRs were recorded after 10-minute dark adaptation. Stimuli were 1-second red (peak wavelength = 621 nm) and blue (peak wavelength = 470 nm) flashes at photopic luminance of 250 cd/m². A 2-minute interval between the flashes was introduced. Baseline pupil diameter (BPD), peak pupil constriction (PPC), and postillumination pupillary response (PIPR) were extracted from the PLR. Group comparisons were performed with ANOVAs. Results Dark-adapted BPD was comparable among the groups, whereas PPC to the red light was slightly reduced in patients with myopia (P = 0.02). PIPR at 6 seconds elicited by the blue flash was significantly weaker (P < 0.01) in female patients with MYP-26, whereas it was normal in the M-CTRL group and the asymptomatic male carrier. Conclusions L/M-cone abnormalities due to ARR3 gene mutation is currently claimed to underlie the pathological eye growth in MYP-26. Our results suggest that malfunction of the melanopsin system of intrinsically photosensitive retinal ganglion cells (ipRGCs) is specific to patients with symptomatic MYP-26, and may therefore play an additional role in the pathological eye growth of MYP-26.
Collapse
Affiliation(s)
| | - Noémi Széll
- Department of Ophthalmology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Sohajda
- Kenézy Campus Department of Ophthalmology, University of Debrecen, Debrecen, Hungary
| | - Tamás Fehér
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
4
|
Bhoi JD, Goel M, Ribelayga CP, Mangel SC. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function. Prog Retin Eye Res 2023; 94:101119. [PMID: 36503722 PMCID: PMC10164718 DOI: 10.1016/j.preteyeres.2022.101119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Circadian (24-h) clocks are cell-autonomous biological oscillators that orchestrate many aspects of our physiology on a daily basis. Numerous circadian rhythms in mammalian and non-mammalian retinas have been observed and the presence of an endogenous circadian clock has been demonstrated. However, how the clock and associated rhythms assemble into pathways that support and control retina function remains largely unknown. Our goal here is to review the current status of our knowledge and evaluate recent advances. We describe many previously-observed retinal rhythms, including circadian rhythms of morphology, biochemistry, physiology, and gene expression. We evaluate evidence concerning the location and molecular machinery of the retinal circadian clock, as well as consider findings that suggest the presence of multiple clocks. Our primary focus though is to describe in depth circadian rhythms in the light responses of retinal neurons with an emphasis on clock control of rod and cone pathways. We examine evidence that specific biochemical mechanisms produce these daily light response changes. We also discuss evidence for the presence of multiple circadian retinal pathways involving rhythms in neurotransmitter activity, transmitter receptors, metabolism, and pH. We focus on distinct actions of two dopamine receptor systems in the outer retina, a dopamine D4 receptor system that mediates circadian control of rod/cone gap junction coupling and a dopamine D1 receptor system that mediates non-circadian, light/dark adaptive regulation of gap junction coupling between horizontal cells. Finally, we evaluate the role of circadian rhythmicity in retinal degeneration and suggest future directions for the field of retinal circadian biology.
Collapse
Affiliation(s)
- Jacob D Bhoi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA
| | - Manvi Goel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA.
| | - Stuart C Mangel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Flood MD, Wellington AJ, Eggers ED. Impaired Light Adaptation of ON-Sustained Ganglion Cells in Early Diabetes Is Attributable to Diminished Response to Dopamine D4 Receptor Activation. Invest Ophthalmol Vis Sci 2022; 63:33. [PMID: 35077550 PMCID: PMC8802033 DOI: 10.1167/iovs.63.1.33] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinal neuronal signaling is disrupted early in diabetes, before the onset of the vascular pathologies associated with diabetic retinopathy. There is also growing evidence that retinal dopamine, a neuromodulator that mediates light adaptation, is reduced in early diabetes. Previously, we have shown that after 6 weeks of diabetes, light adaptation is impaired in ON-sustained (ON-s) ganglion cells in the mouse retina. The purpose of this study was to determine whether changes in the response to dopamine receptor activation contribute to this dysfunction. Methods Single-cell retinal patch-clamp recordings from the mouse retina were used to determine how activating dopamine type D4 receptors (D4Rs) changes the light-evoked and spontaneous excitatory inputs to ON-s ganglion cells, in both control and 6-week diabetic (STZ-injected) animals. Fluorescence in situ hybridization was also used to assess whether D4R expression was affected by diabetes. Results D4R activation decreased light-evoked and spontaneous inputs to ON-s ganglion cells in control and diabetic retinas. However, D4R activation caused a smaller reduction in light-evoked excitatory inputs to ON-s ganglion cells in diabetic retinas compared to controls. This impaired D4R signaling is not attributable to a decline in D4R expression, as there was no change in D4R mRNA density in the diabetic retinas. Conclusions These results suggest that the cellular response to dopamine signaling is disrupted in early diabetes and may be amenable to chronic dopamine supplementation therapy.
Collapse
Affiliation(s)
- Michael D Flood
- Departments of Physiology and Biomedical Engineering, University of Arizona, Tucson, Arizona, United States
| | - Andrea J Wellington
- Departments of Physiology and Biomedical Engineering, University of Arizona, Tucson, Arizona, United States
| | - Erika D Eggers
- Departments of Physiology and Biomedical Engineering, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
6
|
Stofkova A, Zloh M, Andreanska D, Fiserova I, Kubovciak J, Hejda J, Kutilek P, Murakami M. Depletion of Retinal Dopaminergic Activity in a Mouse Model of Rod Dysfunction Exacerbates Experimental Autoimmune Uveoretinitis: A Role for the Gateway Reflex. Int J Mol Sci 2021; 23:ijms23010453. [PMID: 35008877 PMCID: PMC8745287 DOI: 10.3390/ijms23010453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
The gateway reflex is a mechanism by which neural inputs regulate chemokine expression at endothelial cell barriers, thereby establishing gateways for the invasion of autoreactive T cells into barrier-protected tissues. In this study, we hypothesized that rod photoreceptor dysfunction causes remodeling of retinal neural activity, which influences the blood–retinal barrier and the development of retinal inflammation. We evaluated this hypothesis using Gnat1rd17 mice, a model of night blindness with late-onset rod-cone dystrophy, and experimental autoimmune uveoretinitis (EAU). Retinal remodeling and its effect on EAU development were investigated by transcriptome profiling, target identification, and functional validation. We showed that Gnat1rd17 mice primarily underwent alterations in their retinal dopaminergic system, triggering the development of an exacerbated EAU, which was counteracted by dopamine replacement with L-DOPA administered either systemically or locally. Remarkably, dopamine acted on retinal endothelial cells to inhibit NF-κB and STAT3 activity and the expression of downstream target genes such as chemokines involved in T cell recruitment. These results suggest that rod-mediated dopamine release functions in a gateway reflex manner in the homeostatic control of immune cell entry into the retina, and the loss of retinal dopaminergic activity in conditions associated with rod dysfunction increases the susceptibility to autoimmune uveitis.
Collapse
Affiliation(s)
- Andrea Stofkova
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic; (M.Z.); (D.A.); (I.F.)
- Correspondence: ; Tel.: +420-224-902-718
| | - Miloslav Zloh
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic; (M.Z.); (D.A.); (I.F.)
| | - Dominika Andreanska
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic; (M.Z.); (D.A.); (I.F.)
| | - Ivana Fiserova
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic; (M.Z.); (D.A.); (I.F.)
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic
| | - Jan Kubovciak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Jan Hejda
- Department of Health Care and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna Sq. 3105, 272 01 Kladno, Czech Republic; (J.H.); (P.K.)
| | - Patrik Kutilek
- Department of Health Care and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna Sq. 3105, 272 01 Kladno, Czech Republic; (J.H.); (P.K.)
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan;
| |
Collapse
|
7
|
Roa JN, Ma Y, Mikulski Z, Xu Q, Ilouz R, Taylor SS, Skowronska-Krawczyk D. Protein Kinase A in Human Retina: Differential Localization of Cβ, Cα, RIIα, and RIIβ in Photoreceptors Highlights Non-redundancy of Protein Kinase A Subunits. Front Mol Neurosci 2021; 14:782041. [PMID: 34867193 PMCID: PMC8636463 DOI: 10.3389/fnmol.2021.782041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Protein kinase A (PKA) signaling is essential for numerous processes but the subcellular localization of specific PKA regulatory (R) and catalytic (C) subunits has yet to be explored comprehensively. Additionally, the localization of the Cβ subunit has never been spatially mapped in any tissue even though ∼50% of PKA signaling in neuronal tissues is thought to be mediated by Cβ. Here we used human retina with its highly specialized neurons as a window into PKA signaling in the brain and characterized localization of PKA Cα, Cβ, RIIα, and RIIβ subunits. We found that each subunit presented a distinct localization pattern. Cα and Cβ were localized in all cell layers (photoreceptors, interneurons, retinal ganglion cells), while RIIα and RIIβ were selectively enriched in photoreceptor cells where both showed distinct patterns of co-localization with Cα but not Cβ. Only Cα was observed in photoreceptor outer segments and at the base of the connecting cilium. Cβ in turn, was highly enriched in mitochondria and was especially prominent in the ellipsoid of cone cells. Further investigation of Cβ using RNA BaseScope technology showed that two Cβ splice variants (Cβ4 and Cβ4ab) likely code for the mitochondrial Cβ proteins. Overall, our data indicates that PKA Cα, Cβ, RIIα, and RIIβ subunits are differentially localized and are likely functionally non-redundant in the human retina. Furthermore, Cβ is potentially important for mitochondrial-associated neurodegenerative diseases previously linked to PKA dysfunction.
Collapse
Affiliation(s)
- Jinae N Roa
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States
| | - Yuliang Ma
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Qianlan Xu
- Department of Physiology and Biophysics and Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA, United States
| | - Ronit Ilouz
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics and Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
8
|
Gurlevik U, Kara H, Yasar E. Effect of methylphenidate as a dopaminergic agent on myopia: Pilot study. Int J Clin Pract 2021; 75:e14665. [PMID: 34324770 DOI: 10.1111/ijcp.14665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022] Open
Abstract
Background Methylphenidate (MPH) hydrochloride is used as a first-line treatment for attention deficit hyperactivity disorder (ADHD). However, there is concern that this treatment may be associated with increased risk of refractive disorder. The aim of this study was to investigate the effect of MPH therapy on myopic shifts in refraction in children diagnosed with ADHD. Methods This study, children with ADHD and meeting inclusion criteria were examined before the initiation of MPH treatment and 3, 6 and 12 months after the initiation of treatment. Twenty age-gender-matched participants who applied to the outpatient ophthalmology clinic with various complaints were included in the study as a control group. Cycloplegic refraction examination and detailed eye measurements were performed at each visit. Results Nineteen patients were included in this study and the group consisted of 11 (57.9%) females and 8 (42.1%) males. The mean age of patients was 11.3 ± 2. (range: 8-18) years. During 12 months of use of MPH, the spherical equivalent changed from -0.36 ± 1.08 to -0.39 ± 1.05, and this difference was not statistically significant (P = .187). Axial length ranged from 22.92 ± 0.66. There was a change to 22.93 ± 0.62, and this difference was not statistically significant (P = .076). In the control group, the spherical equivalent changed from -0.43 ± 0.62 to -0.56 ± 0.84, and this difference was statistically significant. (P = .012) There was a change in the axial length from 22.97 ± 0.78 to 22.99 ± 0.62, and this difference was statistically significant (P = .015). Conclusions No significant changes spherical equivalent and axial length were detected during 12-month MPH use, but the increased spherical equivalent and axial length in the control group in the similar age group may indicate that MPH may reduce myopic shifts in refraction progression through dopamine, similar to in vivo studies. What's known Myopia is spreading rapidly in technologically advanced societies. There is strong evidence that myopia develops as the axial length of the eye increases as a result of spending more time indoors and working in close distances in parallel with the increase in education level. Animal studies have shown that decreased dopamine release plays an important role in the development of myopia. What's new The effect of dopamine in slowing or stopping myopia in experimental studies has also been demonstrated in human studies. No significant change in spherical equivalent and axial length was observed in methylphenidate users compared with control patients of similar age group. A significant increase in spherical equivalent and axial length was detected in the control group. This pilot study will shed light on future studies on the safe use of dopamine in the treatment of myopic shifts.
Collapse
Affiliation(s)
- Ugur Gurlevik
- Department of Ophthalmology, Aksaray University Faculty of Medicine, Aksaray Education and Research Hospital, Aksaray, Turkey
| | - Halil Kara
- Department of Child and Adolescent Psychiatry, Aksaray University Faculty of Medicine, Aksaray Education and Research Hospital, Aksaray, Turkey
| | - Erdogan Yasar
- Department of Ophthalmology, Aksaray University Faculty of Medicine, Aksaray Education and Research Hospital, Aksaray, Turkey
| |
Collapse
|
9
|
Yang C, Georgiou M, Atkinson R, Collin J, Al-Aama J, Nagaraja-Grellscheid S, Johnson C, Ali R, Armstrong L, Mozaffari-Jovin S, Lako M. Pre-mRNA Processing Factors and Retinitis Pigmentosa: RNA Splicing and Beyond. Front Cell Dev Biol 2021; 9:700276. [PMID: 34395430 PMCID: PMC8355544 DOI: 10.3389/fcell.2021.700276] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal disease characterized by progressive degeneration of photoreceptors and/or retinal pigment epithelium that eventually results in blindness. Mutations in pre-mRNA processing factors (PRPF3, 4, 6, 8, 31, SNRNP200, and RP9) have been linked to 15–20% of autosomal dominant RP (adRP) cases. Current evidence indicates that PRPF mutations cause retinal specific global spliceosome dysregulation, leading to mis-splicing of numerous genes that are involved in a variety of retina-specific functions and/or general biological processes, including phototransduction, retinol metabolism, photoreceptor disk morphogenesis, retinal cell polarity, ciliogenesis, cytoskeleton and tight junction organization, waste disposal, inflammation, and apoptosis. Importantly, additional PRPF functions beyond RNA splicing have been documented recently, suggesting a more complex mechanism underlying PRPF-RPs driven disease pathogenesis. The current review focuses on the key RP-PRPF genes, depicting the current understanding of their roles in RNA splicing, impact of their mutations on retinal cell’s transcriptome and phenome, discussed in the context of model species including yeast, zebrafish, and mice. Importantly, information on PRPF functions beyond RNA splicing are discussed, aiming at a holistic investigation of PRPF-RP pathogenesis. Finally, work performed in human patient-specific lab models and developing gene and cell-based replacement therapies for the treatment of PRPF-RPs are thoroughly discussed to allow the reader to get a deeper understanding of the disease mechanisms, which we believe will facilitate the establishment of novel and better therapeutic strategies for PRPF-RP patients.
Collapse
Affiliation(s)
- Chunbo Yang
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maria Georgiou
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert Atkinson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jumana Al-Aama
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Colin Johnson
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - Robin Ali
- King's College London, London, United Kingdom
| | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
10
|
Ostrin LA. Ocular and systemic melatonin and the influence of light exposure. Clin Exp Optom 2021; 102:99-108. [DOI: 10.1111/cxo.12824] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lisa A Ostrin
- University of Houston College of Optometry, Houston, Texas, USA,
| |
Collapse
|
11
|
Charish J, Shabanzadeh AP, Chen D, Mehlen P, Sethuramanujam S, Harada H, Bonilha VL, Awatramani G, Bremner R, Monnier PP. Neogenin neutralization prevents photoreceptor loss in inherited retinal degeneration. J Clin Invest 2020; 130:2054-2068. [PMID: 32175920 DOI: 10.1172/jci125898] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/14/2020] [Indexed: 02/05/2023] Open
Abstract
Inherited retinal degenerations (IRDs) are characterized by the progressive loss of photoreceptors and represent one of the most prevalent causes of blindness among working-age populations. Cyclic nucleotide dysregulation is a common pathological feature linked to numerous forms of IRD, yet the precise mechanisms through which this contributes to photoreceptor death remain elusive. Here we demonstrate that cAMP induced upregulation of the dependence receptor neogenin in the retina. Neogenin levels were also elevated in both human and murine degenerating photoreceptors. We found that overexpressing neogenin in mouse photoreceptors was sufficient to induce cell death, whereas silencing neogenin in degenerating murine photoreceptors promoted survival, thus identifying a pro-death signal in IRDs. A possible treatment strategy is modeled whereby peptide neutralization of neogenin in Rd1, Rd10, and Rho P23H-knockin mice promotes rod and cone survival and rescues visual function as measured by light-evoked retinal ganglion cell recordings, scotopic/photopic electroretinogram recordings, and visual acuity tests. These results expose neogenin as a critical link between cAMP and photoreceptor death, and identify a druggable target for the treatment of retinal degeneration.
Collapse
Affiliation(s)
- Jason Charish
- Vision Division, Krembil Research Institute, Toronto, Ontario, Canada.,Department of Physiology and
| | - Alireza P Shabanzadeh
- Vision Division, Krembil Research Institute, Toronto, Ontario, Canada.,Department of Anatomy, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Danian Chen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory, INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
| | | | - Hidekiyo Harada
- Vision Division, Krembil Research Institute, Toronto, Ontario, Canada
| | - Vera L Bonilha
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gautam Awatramani
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Rod Bremner
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology and.,Department of Ophthalmology and Vision Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Philippe P Monnier
- Vision Division, Krembil Research Institute, Toronto, Ontario, Canada.,Department of Physiology and.,Department of Ophthalmology and Vision Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Rhodopsin-mediated light-off-induced protein kinase A activation in mouse rod photoreceptor cells. Proc Natl Acad Sci U S A 2020; 117:26996-27003. [PMID: 33046651 DOI: 10.1073/pnas.2009164117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Light-induced extrasynaptic dopamine release in the retina reduces adenosine 3',5'-cyclic monophosphate (cAMP) in rod photoreceptor cells, which is thought to mediate light-dependent desensitization. However, the fine time course of the cAMP dynamics in rods remains elusive due to technical difficulty. Here, we visualized the spatiotemporal regulation of cAMP-dependent protein kinase (PKA) in mouse rods by two-photon live imaging of retinal explants of PKAchu mice, which express a fluorescent biosensor for PKA. Unexpectedly, in addition to the light-on-induced suppression, we observed prominent light-off-induced PKA activation. This activation required photopic light intensity and was confined to the illuminated rods. The estimated maximum spectral sensitivity of 489 nm and loss of the light-off-induced PKA activation in rod-transducin-knockout retinas strongly suggest the involvement of rhodopsin. In support of this notion, rhodopsin-deficient retinal explants showed only the light-on-induced PKA suppression. Taken together, these results suggest that, upon photopic light stimulation, rhodopsin and dopamine signals are integrated to shape the light-off-induced cAMP production and following PKA activation. This may support the dark adaptation of rods.
Collapse
|
13
|
Goyal V, DeVera C, Laurent V, Sellers J, Chrenek MA, Hicks D, Baba K, Iuvone PM, Tosini G. Dopamine 2 Receptor Signaling Controls the Daily Burst in Phagocytic Activity in the Mouse Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 2020; 61:10. [PMID: 32396631 PMCID: PMC7405625 DOI: 10.1167/iovs.61.5.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose A burst in phagocytosis of spent photoreceptor outer fragments by RPE is a rhythmic process occurring 1 to 2 hours after the onset of light. This phenomenon is considered crucial for the health of the photoreceptors and RPE. We have recently reported that dopamine, via dopamine 2 receptor (D2R), shifts the circadian rhythm in the RPE. Methods Here, we first investigated the impact of the removal of D2R on the daily peak of phagocytosis by RPE and then we analyzed the function and morphology of retina and RPE in the absence of D2R. Results D2R knockout (KO) mice do not show a daily burst of phagocytic activity after the onset of light. RNA sequencing revealed a total of 394 differentially expressed genes (DEGs) between ZT 23 and ZT 1 in the control mice, whereas in D2R KO mice, we detected 1054 DEGs. Pathway analysis of the gene expression data implicated integrin signaling to be one of the upregulated pathways in control but not in D2R KO mice. Consistent with the gene expression data, phosphorylation of focal adhesion kinase (FAK) did not increase significantly in KO mice at ZT 1. No difference in retinal thickness, visual function, or morphology of RPE cells was observed between wild-type (WT) and D2R KO mice at the age of 3 and 12 months. Conclusions Our data suggest that removal of D2R prevents the burst of phagocytosis and a related increase in the phosphorylation of FAK after light onset. The pathway analysis points toward a putative role of D2R in controlling integrin signaling, which is known to play an important role in the control of the daily burst of phagocytosis by the RPE. Our data also indicate that the absence of the burst of phagocytic activity in the early morning does not produce any apparent deleterious effect on the retina or RPE up to 1 year of age.
Collapse
|
14
|
Korshunov KS, Blakemore LJ, Trombley PQ. Illuminating and Sniffing Out the Neuromodulatory Roles of Dopamine in the Retina and Olfactory Bulb. Front Cell Neurosci 2020; 14:275. [PMID: 33110404 PMCID: PMC7488387 DOI: 10.3389/fncel.2020.00275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/04/2020] [Indexed: 01/28/2023] Open
Abstract
In the central nervous system, dopamine is well-known as the neuromodulator that is involved with regulating reward, addiction, motivation, and fine motor control. Yet, decades of findings are revealing another crucial function of dopamine: modulating sensory systems. Dopamine is endogenous to subsets of neurons in the retina and olfactory bulb (OB), where it sharpens sensory processing of visual and olfactory information. For example, dopamine modulation allows the neural circuity in the retina to transition from processing dim light to daylight and the neural circuity in the OB to regulate odor discrimination and detection. Dopamine accomplishes these tasks through numerous, complex mechanisms in both neural structures. In this review, we provide an overview of the established and emerging research on these mechanisms and describe similarities and differences in dopamine expression and modulation of synaptic transmission in the retinas and OBs of various vertebrate organisms. This includes discussion of dopamine neurons’ morphologies, potential identities, and biophysical properties along with their contributions to circadian rhythms and stimulus-driven synthesis, activation, and release of dopamine. As dysregulation of some of these mechanisms may occur in patients with Parkinson’s disease, these symptoms are also discussed. The exploration and comparison of these two separate dopamine populations shows just how remarkably similar the retina and OB are, even though they are functionally distinct. It also shows that the modulatory properties of dopamine neurons are just as important to vision and olfaction as they are to motor coordination and neuropsychiatric/neurodegenerative conditions, thus, we hope this review encourages further research to elucidate these mechanisms.
Collapse
Affiliation(s)
- Kirill S Korshunov
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Laura J Blakemore
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Paul Q Trombley
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
15
|
Cameron MA, Morley JW, Pérez-Fernández V. Seeing the light: different photoreceptor classes work together to drive adaptation in the mammalian retina. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Zhang S, Lyuboslavsky P, Dixon JA, Chrenek MA, Sellers JT, Hamm JM, Ribelayga CP, Zhang Z, Le YZ, Iuvone PM. Effects of Cone Connexin-36 Disruption on Light Adaptation and Circadian Regulation of the Photopic ERG. Invest Ophthalmol Vis Sci 2020; 61:24. [PMID: 32531058 PMCID: PMC7415284 DOI: 10.1167/iovs.61.6.24] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/07/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose The present study tested the hypothesis that connexin-36 (Cx36) and gap junctions between photoreceptor cells contribute to the circadian rhythm of the photopic electroretinogram (ERG) b-wave amplitude. Methods Cone-specific disruption of Cx36 was obtained in mice with a floxed Gjd2 gene and human red/green pigment promoter (HRGP)-driven Cre recombinase. Standard ERG, spectral-domain optical coherence tomography (SD-OCT) and histochemical methods were used. Results HRGPcreGjd2fl/fl mice had a selective reduction in Cx36 protein in the outer plexiform layer; no reduction in Cx36 was observed in the inner plexiform layer. Cx36 disruption had no effect on the number of cones, the thickness of the photoreceptor layer, or the scotopic ERG responses. However, there was a reduction of the photopic ERG circadian rhythm, with b-wave amplitudes in the day and the night locked in the daytime, light-adapted state. In HRGPcreGjd2+/+and Gjd2fl/fl controls, the circadian rhythm of light-adapted ERG persisted, similar to that in wild type mice. Conclusions Cx36 regulation contributes to the circadian rhythm of light-adapted ERG; in the absence of photoreceptor gap junctions, mice appear to be in a fully light-adapted state regardless of the time of day. The higher amplitudes and reduced circadian regulation of the b-wave of HRGPcreGjd2fl/fl mice may be due to increased synaptic strength at the cone to ON bipolar cell synapse due to electrotonic isolation of the terminals lacking gap junctions.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Ophthalmology, Emory University, School of Medicine, Atlanta, Georgia, United States
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Capital Medical University, Beijing, China
| | - Polina Lyuboslavsky
- Department of Ophthalmology, Emory University, School of Medicine, Atlanta, Georgia, United States
| | - Jendayi Azeezah Dixon
- Department of Ophthalmology, Emory University, School of Medicine, Atlanta, Georgia, United States
| | - Micah A. Chrenek
- Department of Ophthalmology, Emory University, School of Medicine, Atlanta, Georgia, United States
| | - Jana T. Sellers
- Department of Ophthalmology, Emory University, School of Medicine, Atlanta, Georgia, United States
| | - Jessica M. Hamm
- Department of Ophthalmology, Emory University, School of Medicine, Atlanta, Georgia, United States
| | - Christophe P. Ribelayga
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Zhijing Zhang
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Yun Z. Le
- Departments of Medicine, Cell Biology, and Ophthalmology and Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - P. Michael Iuvone
- Department of Ophthalmology, Emory University, School of Medicine, Atlanta, Georgia, United States
- Department of Pharmacology, Emory University, School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
17
|
cAMP and Photoreceptor Cell Death in Retinal Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1185:301-304. [PMID: 31884628 DOI: 10.1007/978-3-030-27378-1_49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Inherited retinal degenerations (IRDs) are a genetically heterogeneous group of disorders characterized by the progressive loss of photoreceptor cells. Despite this heterogeneity in the disease-causing mutation, common underlying mechanisms promoting photoreceptor cell death may be present. Dysregulation of photoreceptor cyclic nucleotide signaling may be one such common feature differentiating healthy from diseased photoreceptors. Here we review evidence that elevated retinal cAMP levels promote photoreceptor death and are a common feature of numerous animal models of IRDs. Improving our understanding of how cAMP levels become elevated and identifying downstream effectors may prove important for the development of therapeutics that will be applicable to multiple forms of the disease.
Collapse
|
18
|
Ko GYP. Circadian regulation in the retina: From molecules to network. Eur J Neurosci 2020; 51:194-216. [PMID: 30270466 PMCID: PMC6441387 DOI: 10.1111/ejn.14185] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Abstract
The mammalian retina is the most unique tissue among those that display robust circadian/diurnal oscillations. The retina is not only a light sensing tissue that relays light information to the brain, it has its own circadian "system" independent from any influence from other circadian oscillators. While all retinal cells and retinal pigment epithelium (RPE) possess circadian oscillators, these oscillators integrate by means of neural synapses, electrical coupling (gap junctions), and released neurochemicals (such as dopamine, melatonin, adenosine, and ATP), so the whole retina functions as an integrated circadian system. Dysregulation of retinal clocks not only causes retinal or ocular diseases, it also impacts the circadian rhythm of the whole body, as the light information transmitted from the retina entrains the brain clock that governs the body circadian rhythms. In this review, how circadian oscillations in various retinal cells are integrated, and how retinal diseases affect daily rhythms.
Collapse
Affiliation(s)
- Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| |
Collapse
|
19
|
Nikolaeva DA, Astakhova LA, Firsov ML. The effects of dopamine and dopamine receptor agonists on the phototransduction cascade of frog rods. Mol Vis 2019; 25:400-414. [PMID: 31523118 PMCID: PMC6707617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 08/02/2019] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Accumulating evidence suggests that dopamine, the major catecholamine in the vertebrate retina, may modulate cAMP-mediated signaling in photoreceptors to optimize vision in the light/dark cycle. The main putative mechanism of dopamine-induced adaptation changes in photoreceptors is activation of D2-like receptors (D2R), which leads to a decrease of the intracellular cAMP level and reduction of protein kinase A (PKA) activity. However, the mechanisms by which dopamine exerts its regulating effect on the phototransduction cascade remain largely unknown. The aim of the present study was to investigate the effects of dopamine and dopamine receptor agonists on rod photoresponses. METHODS The experiments were performed on solitary rods of the Rana ridibunda frog. Photoreceptor currents were recorded using a suction pipette technique. The effects of dopamine (0.1-50 µM) and selective dopamine receptor agonists-D1R agonist SKF-38393 (0.1-50 µM), D2R agonist quinpirole (2.5-50 µM), and D1-D2 receptor heterodimer agonist SKF-83959 (50 µM)-were examined. RESULTS We found that, when applied to the rod inner segments (RISs), dopamine and dopamine receptor agonists had no effect on photoresponses. In contrast, the rods responded to dopamine and all agonists applied to their outer segments by decreasing sensitivity to light. At the highest tested concentration (50 µM), the most prominent effect on light sensitivity was induced by D1R agonist SKF-38393, while dopamine, D2R agonist quinpirole, and D1-D2 receptor heterodimer agonist SKF-83959 produced somewhat lower and approximately equal effects. Moreover, SKF-38393 reduced sensitivity at all tested concentrations starting from the smallest one (0.1 µM), whereas dopamine and quinpirole started their action from the higher concentrations of 2.5 µM and 50 µM, respectively. In addition, dopamine, SKF-38393, and quinpirole, on average, did not change the intracellular calcium level as judged from the "exchange current", while SKF-83959 increased it by ~1.3 times. CONCLUSIONS Dopamine induces a decrease in rod sensitivity, mostly by reducing the activation rate of the cascade, and to a much lesser extent, speeding up the turning off of the cascade. The sign of the reaction to all tested drugs, lack of selectivity of dopamine and dopamine receptor agonist action, and analysis of factors that determine sensitivity of photoreceptors suggest that, in rod outer segments (ROSs), dopamine action is mediated by D1-D2 receptor heterodimers but not D1R or D2R alone. This work supports the assumption made earlier by other authors that dopamine exercises its regulatory effect via at least two independent mechanisms, which are cAMP and Ca2+ mediated.
Collapse
|
20
|
Felder-Schmittbuhl MP, Buhr ED, Dkhissi-Benyahya O, Hicks D, Peirson SN, Ribelayga CP, Sandu C, Spessert R, Tosini G. Ocular Clocks: Adapting Mechanisms for Eye Functions and Health. Invest Ophthalmol Vis Sci 2019; 59:4856-4870. [PMID: 30347082 PMCID: PMC6181243 DOI: 10.1167/iovs.18-24957] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vision is a highly rhythmic function adapted to the extensive changes in light intensity occurring over the 24-hour day. This adaptation relies on rhythms in cellular and molecular processes, which are orchestrated by a network of circadian clocks located within the retina and in the eye, synchronized to the day/night cycle and which, together, fine-tune detection and processing of light information over the 24-hour period and ensure retinal homeostasis. Systematic or high throughput studies revealed a series of genes rhythmically expressed in the retina, pointing at specific functions or pathways under circadian control. Conversely, knockout studies demonstrated that the circadian clock regulates retinal processing of light information. In addition, recent data revealed that it also plays a role in development as well as in aging of the retina. Regarding synchronization by the light/dark cycle, the retina displays the unique property of bringing together light sensitivity, clock machinery, and a wide range of rhythmic outputs. Melatonin and dopamine play a particular role in this system, being both outputs and inputs for clocks. The retinal cellular complexity suggests that mechanisms of regulation by light are diverse and intricate. In the context of the whole eye, the retina looks like a major determinant of phase resetting for other tissues such as the retinal pigmented epithelium or cornea. Understanding the pathways linking the cell-specific molecular machineries to their cognate outputs will be one of the major challenges for the future.
Collapse
Affiliation(s)
- Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington Medical School, Seattle, Washington, United States
| | - Ouria Dkhissi-Benyahya
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - David Hicks
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Rainer Spessert
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
21
|
Salem H, Klassen S, Elkhatib R, Pigott T. Dopamine dilemma: case report of treating psychosis in patient with retinitis pigmentosa. PSYCHIAT CLIN PSYCH 2019. [DOI: 10.1080/24750573.2018.1554318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Haitham Salem
- Harris County Psychiatric Center (HCPC), Department of Psychiatry and Behavioral Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stephanie Klassen
- Harris County Psychiatric Center (HCPC), Department of Psychiatry and Behavioral Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rania Elkhatib
- Harris County Psychiatric Center (HCPC), Department of Psychiatry and Behavioral Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Teresa Pigott
- Harris County Psychiatric Center (HCPC), Department of Psychiatry and Behavioral Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
22
|
Uchida A, Pillai JA, Bermel R, Bonner-Jackson A, Rae-Grant A, Fernandez H, Bena J, Jones SE, Leverenz JB, Srivastava SK, Ehlers JP. Outer Retinal Assessment Using Spectral-Domain Optical Coherence Tomography in Patients With Alzheimer's and Parkinson's Disease. Invest Ophthalmol Vis Sci 2018; 59:2768-2777. [PMID: 29860463 PMCID: PMC5983910 DOI: 10.1167/iovs.17-23240] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/09/2018] [Indexed: 01/26/2023] Open
Abstract
Purpose To investigate outer retinal parameters among patients with various chronic neurodegenerative disorders by using spectral-domain coherence tomography (OCT) in a prospective cross-sectional cohort study. Methods A total of 132 participants were enrolled following a comprehensive diagnostic evaluation with neurologic, neuropsychology, and magnetic resonance imaging volumetric evaluations. Participants were 50 years or older, either diagnosed with Alzheimer's disease (AD) dementia, amnestic mild cognitive impairment (MCI), non-AD dementia, Parkinson's disease (PD), or age- and sex-matched controls. All participants underwent a macular cube scan for both eyes by using the Cirrus 4000 HD-OCT (Zeiss, Oberkochen, Germany). The OCT image with the best quality was selected for further analysis. Outer retinal parameters including ellipsoid zone mapping and outer nuclear layer metrics were evaluated with a novel software platform. Results One hundred twenty-four eyes of 124 participants with AD dementia (24 eyes), amnestic MCI (22 eyes), non-AD dementia (20 eyes), PD (22 eyes), and age- and sex-matched controls (36 eyes) were included in the analysis. Eight eyes were excluded either due to the presence of macular disease or poor quality of the OCT image. The mean ages of participants were 65.9 ± 8.9 years. The outer retinal thickness measures did not show any statistical significance between the groups. However, ellipsoid zone to retinal pigment epithelium volume correlated with cognitive testing scores in all study participants. Conclusions There were no identifiable differences in the outer retinal metrics across neurodegenerative disease groups and controls. The relationship between the degree of cognitive impairment and ellipsoid zone to retinal pigment epithelium volume warrants further study.
Collapse
Affiliation(s)
- Atsuro Uchida
- Ophthalmic Imaging Center, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Jagan A. Pillai
- Department of Neurology, Cleveland Clinic, Cleveland, Ohio, United States
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, Ohio, United States
| | - Robert Bermel
- Department of Neurology, Cleveland Clinic, Cleveland, Ohio, United States
- Mellen Center for Multiple Sclerosis, Cleveland, Ohio, United States
| | - Aaron Bonner-Jackson
- Department of Neurology, Cleveland Clinic, Cleveland, Ohio, United States
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, Ohio, United States
| | - Alexander Rae-Grant
- Department of Neurology, Cleveland Clinic, Cleveland, Ohio, United States
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, Ohio, United States
- Mellen Center for Multiple Sclerosis, Cleveland, Ohio, United States
| | - Hubert Fernandez
- Department of Neurology, Cleveland Clinic, Cleveland, Ohio, United States
- Center for Neurological Restoration, Cleveland, Ohio, United States
| | - James Bena
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland, Ohio, United States
| | | | - James B. Leverenz
- Department of Neurology, Cleveland Clinic, Cleveland, Ohio, United States
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, Ohio, United States
| | - Sunil K. Srivastava
- Ophthalmic Imaging Center, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Justis P. Ehlers
- Ophthalmic Imaging Center, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
23
|
Dai H, Jackson CR, Davis GL, Blakely RD, McMahon DG. Is dopamine transporter-mediated dopaminergic signaling in the retina a noninvasive biomarker for attention-deficit/ hyperactivity disorder? A study in a novel dopamine transporter variant Val559 transgenic mouse model. J Neurodev Disord 2017; 9:38. [PMID: 29281965 PMCID: PMC5745861 DOI: 10.1186/s11689-017-9215-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022] Open
Abstract
Background Dopamine (DA) is a critical neuromodulator in the retina. Disruption of retinal DA synthesis and signaling significantly attenuates light-adapted, electroretinogram (ERG) responses, as well as contrast sensitivity and acuity. As these measures can be detected noninvasively, they may provide opportunities to detect disease processes linked to perturbed DA signaling. Recently, we identified a rare, functional DA transporter (DAT, SLC6A3) coding substitution, Ala559Val, in subjects with attention-deficit/hyperactivity disorder (ADHD), demonstrating that DAT Val559 imparts anomalous DA efflux (ADE) with attendant physiological, pharmacological, and behavioral phenotypes. To understand the broader impact of ADE on ADHD, noninvasive measures sensitive to DAT reversal are needed. Methods Here, we explored this question through ERG-based analysis of retinal light responses, as well as HPLC measurements of retinal DA in DAT Val559 mice. Results Male mice homozygous (HOM) for the DAT Val559 variant demonstrated increased, light-adapted ERG b-wave amplitudes compared to wild type (WT) and heterozygous (HET) mice, whereas dark-adapted responses were indistinguishable across genotypes. The elevated amplitude of the photopic light responses in HOM mice could be mimicked in WT mice by applying D1 and D4 DA receptor agonists and suppressed in HOM mice by introducing D4 antagonist, supporting elevated retinal DA signaling arising from ADE. Following the challenge with amphetamine, WT exhibited an increase in light-adapted response amplitudes, while HOM did not. Total retinal DA content was similar across genotypes. Interestingly, female DAT Val559 HOM animals revealed no significant difference in photopic ERG responses when compared with WT and HET littermates. Conclusions These data reveal that noninvasive, in vivo evaluation of retinal responses to light can reveal physiological signatures of ADE, suggesting a possible approach to the segregation of neurobehavioral disorders based on the DAT-dependent control of DA signaling.
Collapse
Affiliation(s)
- Heng Dai
- Department of Biological Sciences, Vanderbilt University, Box 35-1634 Station B, Nashville, TN, 37235-1634, USA
| | - Chad R Jackson
- Department of Biological Sciences, Vanderbilt University, Box 35-1634 Station B, Nashville, TN, 37235-1634, USA.,Present address: Defense Threat Reduction Agency, 8211 Terminal Road, Lorton, VA, 22079, USA
| | - Gwynne L Davis
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Randy D Blakely
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Box 35-1634 Station B, Nashville, TN, 37235-1634, USA.
| |
Collapse
|
24
|
Gnaz couples the circadian and dopaminergic system to G protein-mediated signaling in mouse photoreceptors. PLoS One 2017; 12:e0187411. [PMID: 29088301 PMCID: PMC5663513 DOI: 10.1371/journal.pone.0187411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/19/2017] [Indexed: 01/08/2023] Open
Abstract
The mammalian retina harbors a circadian clockwork that regulates vision and promotes healthiness of retinal neurons, mainly through directing the rhythmic release of the neurohormones dopamine—acting on dopamine D4 receptors—and melatonin—acting on MT1 and MT2 receptors. The gene Gnaz—a unique Gi/o subfamily member—was seen in the present study to be expressed in photoreceptors where its protein product Gαz shows a daily rhythm in its subcellular localization. Apart from subcellular localization, Gnaz displays a daily rhythm in expression—with peak values at night—in preparations of the whole retina, microdissected photoreceptors and photoreceptor-related pinealocytes. In retina, Gnaz rhythmicity was observed to persist under constant darkness and to be abolished in retina deficient for Clock or dopamine D4 receptors. Furthermore, circadian regulation of Gnaz was disturbed in the db/db mouse, a model of diabetic retinopathy. The data of the present study suggest that Gnaz links the circadian clockwork—via dopamine acting on D4 receptors—to G protein-mediated signaling in intact but not diabetic retina.
Collapse
|
25
|
Wong P, Markey M, Rapp CM, Darrow RM, Ziesel A, Organisciak D. Enhancing the efficacy of AREDS antioxidants in light-induced retinal degeneration. Mol Vis 2017; 23:718-739. [PMID: 29062223 PMCID: PMC5640517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/08/2017] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Light-induced photoreceptor cell degeneration and disease progression in age-related macular degeneration (AMD) involve oxidative stress and visual cell loss, which can be prevented, or slowed, by antioxidants. Our goal was to test the protective efficacy of a traditional Age-related Eye Disease Study antioxidant formulation (AREDS) and AREDS combined with non-traditional antioxidants in a preclinical animal model of photooxidative retinal damage. METHODS Male Sprague-Dawley rats were reared in a low-intensity (20 lux) or high-intensity (200 lux) cyclic light environment for 6 weeks. Some animals received a daily dietary supplement consisting of a small cracker infused with an AREDS antioxidant mineral mixture, AREDS antioxidants minus zinc, or zinc oxide alone. Other rats received AREDS combined with a detergent extract of the common herb rosemary, AREDS plus carnosic acid, zinc oxide plus rosemary, or rosemary alone. Antioxidant efficacy was determined by measuring retinal DNA levels 2 weeks after 6 h of intense exposure to white light (9,000 lux). Western blotting was used to determine visual cell opsin and arrestin levels following intense light treatment. Rhodopsin regeneration was determined after 1 h of exposure to light. Gene array analysis was used to determine changes in the expression of retinal genes resulting from light rearing environment or from antioxidant supplementation. RESULTS Chronic high-intensity cyclic light rearing resulted in lower levels of rod and cone opsins, retinal S-antigen (S-ag), and medium wavelength cone arrestin (mCAR) than found for rats maintained in low cyclic light. However, as determined by retinal DNA, and by residual opsin and arrestin levels, 2 weeks after acute photooxidative damage, visual cell loss was greater in rats reared in low cyclic light. Retinal damage decreased with AREDS plus rosemary, or with zinc oxide plus rosemary whereas AREDS alone and zinc oxide alone (at their daily recommended levels) were both ineffective. One week of supplemental AREDS plus carnosic acid resulted in higher levels of rod and cone cell proteins, and higher levels of retinal DNA than for AREDS alone. Rhodopsin regeneration was unaffected by the rosemary treatment. Retinal gene array analysis showed reduced expression of medium- wavelength opsin 1 and arrestin C in the high-light reared rats versus the low-light rats. The transition of rats from low cyclic light to a high cyclic light environment resulted in the differential expression of 280 gene markers, enriched for genes related to inflammation, apoptosis, cytokine, innate immune response, and receptors. Rosemary, zinc oxide plus rosemary, and AREDS plus rosemary suppressed 131, 241, and 266 of these genes (respectively) in high-light versus low-light animals and induced a small subset of changes in gene expression that were independent of light rearing conditions. CONCLUSIONS Long-term environmental light intensity is a major determinant of retinal gene and protein expression, and of visual cell survival following acute photooxidative insult. Rats preconditioned by high-light rearing exhibit lower levels of cone opsin mRNA and protein, and lower mCAR protein, than low-light reared animals, but greater retention of retinal DNA and proteins following photooxidative damage. Rosemary enhanced the protective efficacy of AREDS and led to the greatest effect on the retinal genome in animals reared in high environmental light. Chronic administration of rosemary antioxidants may be a useful adjunct to the therapeutic benefit of AREDS in slowing disease progression in AMD.
Collapse
Affiliation(s)
- Paul Wong
- Department of Ophthalmology, Emory University, Atlanta, GA
| | - M. Markey
- Center for Genomics Research; Wright State University, Dayton, OH
| | - C. M. Rapp
- Petticrew Research Laboratory, Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | - R. M. Darrow
- Petticrew Research Laboratory, Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | - A. Ziesel
- Department of Ophthalmology, Emory University, Atlanta, GA
| | - D.T. Organisciak
- Petticrew Research Laboratory, Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| |
Collapse
|
26
|
Astakhova LA, Nikolaeva DA, Fedotkina TV, Govardovskii VI, Firsov ML. Elevated cAMP improves signal-to-noise ratio in amphibian rod photoreceptors. J Gen Physiol 2017; 149:689-701. [PMID: 28611079 PMCID: PMC5496506 DOI: 10.1085/jgp.201611744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/31/2017] [Indexed: 11/20/2022] Open
Abstract
Vertebrate photoreceptors need to distinguish light signals from background noise to convey visual information to downstream bipolar cells. By affecting both signal and noise, Astakhova et al. find that increases in intracellular cAMP can improve the signal-to-noise ratio by twofold. The absolute sensitivity of vertebrate retinas is set by a background noise, called dark noise, which originates from several different cell types and is generated by different molecular mechanisms. The major share of dark noise is produced by photoreceptors and consists of two components, discrete and continuous. Discrete noise is generated by spontaneous thermal activations of visual pigment. These events are undistinguishable from real single-photon responses (SPRs) and might be considered an equivalent of the signal. Continuous noise is produced by spontaneous fluctuations of the catalytic activity of the cGMP phosphodiesterase. This masks both SPR and spontaneous SPR-like responses. Circadian rhythms affect photoreceptors, among other systems by periodically increasing intracellular cAMP levels ([cAMP]in), which increases the size and changes the shape of SPRs. Here, we show that forskolin, a tool that increases [cAMP]in, affects the magnitude and frequency spectrum of the continuous and discrete components of dark noise in photoreceptors. By changing both components of rod signaling, the signal and the noise, cAMP is able to increase the photoreceptor signal-to-noise ratio by twofold. We propose that this results in a substantial improvement of signal detection, without compromising noise rejection, at the rod bipolar cell synapse.
Collapse
Affiliation(s)
- Luba A Astakhova
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg, Russia
| | - Darya A Nikolaeva
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg, Russia
| | - Tamara V Fedotkina
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg, Russia
| | - Victor I Govardovskii
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg, Russia
| | - Michael L Firsov
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg, Russia
| |
Collapse
|
27
|
Characterization of Antibodies to Identify Cellular Expression of Dopamine Receptor 4. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:663-70. [PMID: 26427473 DOI: 10.1007/978-3-319-17121-0_88] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The dopamine receptor D4 (DRD4) plays an important role in vision. In order to study the DRD4 expression in vivo, it is important to have antibodies that are specific for DRD4 for both immunoblot and immunohistochemical (IHC) applications. In this study, six antibodies raised against DRD4 peptides were tested in vitro, using transfected mammalian cells, and in vivo, using mouse retinas. Three Santa Cruz (SC) antibodies, D-16, N-20, and R-20, were successful in IHC of transfected DRD4; however, N-20 was the only one effective on immunoblot analysis in DRD4 transfected cells and IHC of mouse retinal sections, while R-20, 2B9, and Antibody Verify AAS63631C were non-specific or below detection.
Collapse
|
28
|
Abstract
Ocular clocks, first identified in the retina, are also found in the retinal pigment epithelium (RPE), cornea, and ciliary body. The retina is a complex tissue of many cell types and considerable effort has gone into determining which cell types exhibit clock properties. Current data suggest that photoreceptors as well as inner retinal neurons exhibit clock properties with photoreceptors dominating in nonmammalian vertebrates and inner retinal neurons dominating in mice. However, these differences may in part reflect the choice of circadian output, and it is likely that clock properties are widely dispersed among many retinal cell types. The phase of the retinal clock can be set directly by light. In nonmammalian vertebrates, direct light sensitivity is commonplace among body clocks, but in mice only the retina and cornea retain direct light-dependent phase regulation. This distinguishes the retina and possibly other ocular clocks from peripheral oscillators whose phase depends on the pace-making properties of the hypothalamic central brain clock, the suprachiasmatic nuclei (SCN). However, in mice, retinal circadian oscillations dampen quickly in isolation due to weak coupling of its individual cell-autonomous oscillators, and there is no evidence that retinal clocks are directly controlled through input from other oscillators. Retinal circadian regulation in both mammals and nonmammalian vertebrates uses melatonin and dopamine as dark- and light-adaptive neuromodulators, respectively, and light can regulate circadian phase indirectly through dopamine signaling. The melatonin/dopamine system appears to have evolved among nonmammalian vertebrates and retained with modification in mammals. Circadian clocks in the eye are critical for optimum visual function where they play a role fine tuning visual sensitivity, and their disruption can affect diseases such as glaucoma or retinal degeneration syndromes.
Collapse
Affiliation(s)
- Joseph C Besharse
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| |
Collapse
|
29
|
Yuan WJ, Zhou JF, Zhou C. Fast response and high sensitivity to microsaccades in a cascading-adaptation neural network with short-term synaptic depression. Phys Rev E 2016; 93:042302. [PMID: 27176307 DOI: 10.1103/physreve.93.042302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 06/05/2023]
Abstract
Microsaccades are very small eye movements during fixation. Experimentally, they have been found to play an important role in visual information processing. However, neural responses induced by microsaccades are not yet well understood and are rarely studied theoretically. Here we propose a network model with a cascading adaptation including both retinal adaptation and short-term depression (STD) at thalamocortical synapses. In the neural network model, we compare the microsaccade-induced neural responses in the presence of STD and those without STD. It is found that the cascading with STD can give rise to faster and sharper responses to microsaccades. Moreover, STD can enhance response effectiveness and sensitivity to microsaccadic spatiotemporal changes, suggesting improved detection of small eye movements (or moving visual objects). We also explore the mechanism of the response properties in the model. Our studies strongly indicate that STD plays an important role in neural responses to microsaccades. Our model considers simultaneously retinal adaptation and STD at thalamocortical synapses in the study of microsaccade-induced neural activity, and may be useful for further investigation of the functional roles of microsaccades in visual information processing.
Collapse
Affiliation(s)
- Wu-Jie Yuan
- College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jian-Fang Zhou
- College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| | - Changsong Zhou
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Centre for Nonlinear Studies, Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Research Centre, HKBU Institute of Research and Continuing Education, Virtual University Park Building, South Area Hi-tech Industrial Park, Shenzhen, China
| |
Collapse
|
30
|
Firsov ML, Astakhova LA. The Role of Dopamine in Controlling Retinal Photoreceptor Function in Vertebrates. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11055-015-0210-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Jin NG, Chuang AZ, Masson PJ, Ribelayga CP. Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina. J Physiol 2015; 593:1597-631. [PMID: 25616058 PMCID: PMC4386962 DOI: 10.1113/jphysiol.2014.284919] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/19/2015] [Indexed: 11/08/2022] Open
Abstract
Rod single-photon responses are critical for vision in dim light. Electrical coupling via gap junction channels shapes the light response properties of vertebrate photoreceptors, but the regulation of rod coupling and its impact on the single-photon response have remained unclear. To directly address these questions, we developed a perforated patch-clamp recording technique and recorded from single rod inner segments in isolated intact neural mouse retinae, maintained by superfusion. Experiments were conducted at different times of the day or under constant environmental conditions, at different times across the circadian cycle. We show that rod electrical coupling is regulated by a circadian clock and dopamine, so that coupling is weak during the day and strong at night. Altogether, patch-clamp recordings of single-photon responses in mouse rods, tracer coupling, receptive field measurements and pharmacological manipulations of gap junction and dopamine receptor activity provide compelling evidence that rod coupling is modulated in a circadian manner. These data are consistent with computer modelling. At night, single-photon responses are smaller due to coupling, but the signal-to-noise ratio for a dim (multiphoton) light response is increased at night because of signal averaging between coupled rods.
Collapse
Affiliation(s)
- Nan Ge Jin
- Ruiz Department of Ophthalmology and Visual Science, Medical School, The University of Texas Health Science Centre at Houston6431 Fannin Street, Suite MSB 7.024, Houston, TX, 77030, USA
| | - Alice Z Chuang
- Ruiz Department of Ophthalmology and Visual Science, Medical School, The University of Texas Health Science Centre at Houston6431 Fannin Street, Suite MSB 7.024, Houston, TX, 77030, USA
| | - Philippe J Masson
- Department of Mechanical Engineering, Cullen College of Engineering, University of HoustonN207 Engineering Building 1, Suite W204, Houston, TX, 77204, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, Medical School, The University of Texas Health Science Centre at Houston6431 Fannin Street, Suite MSB 7.024, Houston, TX, 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Centre at Houston, 6767 Bertner Avenue, Mitchell BuildingBSRB Suite 3.8344, Houston, TX, 77030, USA
- Neuroscience Graduate Program, The University of Texas Health Science Centre at Houston, Medical School6431 Fannin Street, Suite MSB 7.262, Houston, TX, 77030, USA
- Neuroscience Research Centre, The University of Texas Health Science Centre at HoustonHouston, 6431 Fannin Street, Suite MSB 7.046, TX, 77030, USA
| |
Collapse
|
32
|
Regulation of photoreceptor gap junction phosphorylation by adenosine in zebrafish retina. Vis Neurosci 2015; 31:237-43. [PMID: 24844306 DOI: 10.1017/s095252381300062x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Electrical coupling of photoreceptors through gap junctions suppresses voltage noise, routes rod signals into cone pathways, expands the dynamic range of rod photoreceptors in high scotopic and mesopic illumination, and improves detection of contrast and small stimuli. In essentially all vertebrates, connexin 35/36 (gene homologs Cx36 in mammals, Cx35 in other vertebrates) is the major gap junction protein observed in photoreceptors, mediating rod-cone, cone-cone, and possibly rod-rod communication. Photoreceptor coupling is dynamically controlled by the day/night cycle and light/dark adaptation, and is directly correlated with phosphorylation of Cx35/36 at two sites, serine110 and serine 276/293 (homologous sites in teleost fish and mammals, respectively). Activity of protein kinase A (PKA) plays a key role during this process. Previous studies have shown that activation of dopamine D4 receptors on photoreceptors inhibits adenylyl cyclase, down-regulates cAMP and PKA activity, and leads to photoreceptor uncoupling, imposing the daytime/light condition. In this study, we explored the role of adenosine, a nighttime signal with a high extracellular concentration at night and a low concentration in the day, in regulating photoreceptor coupling by examining photoreceptor Cx35 phosphorylation in zebrafish retina. Adenosine enhanced photoreceptor Cx35 phosphorylation in daytime, but with a complex dose-response curve. Selective pharmacological manipulations revealed that adenosine A2a receptors provide a potent positive drive to phosphorylate photoreceptor Cx35 under the influence of endogenous adenosine at night. A2a receptors can be activated in the daytime as well by micromolar exogenous adenosine. However, the higher affinity adenosine A1 receptors are also present and have an antagonistic though less potent effect. Thus, the nighttime/darkness signal adenosine provides a net positive drive on Cx35 phosphorylation at night, working in opposition to dopamine to regulate photoreceptor coupling via a push-pull mechanism. However, the lower concentration of adenosine present in the daytime actually reinforces the dopamine signal through action on the A1 receptor.
Collapse
|
33
|
Tian N, Xu HP, Wang P. Dopamine D2 receptors preferentially regulate the development of light responses of the inner retina. Eur J Neurosci 2014; 41:17-30. [PMID: 25393815 DOI: 10.1111/ejn.12783] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/25/2014] [Accepted: 10/13/2014] [Indexed: 01/14/2023]
Abstract
Retinal light responsiveness measured via electroretinography undergoes developmental modulation, and is thought to be critically regulated by both visual experience and dopamine. The primary goal of this study was to determine whether dopamine D2 receptors regulate the visual experience-dependent functional development of the retina. Accordingly, we recorded electroretinograms from wild-type mice and mice with a genetic deletion of the gene that encodes the D2 receptor raised under normal cyclic light conditions and constant darkness. Our results demonstrate that D2 receptor mutation preferentially increases the amplitude of the inner retinal light responses evoked by high-intensity light measured as oscillatory potentials in adult mice. During postnatal development, all three major components of electroretinograms, i.e. a-waves, b-waves, and oscillatory potentials, increase with age. Comparatively, D2 receptor mutation preferentially reduces the age-dependent increase in b-waves evoked by low-intensity light. Light deprivation from birth reduces b-wave amplitudes and completely abolishes the increased amplitude of oscillatory potentials of D2 receptor mutants. Taken together, these results demonstrate that D2 receptors play an important role in the activity-dependent functional development of the mouse retina.
Collapse
Affiliation(s)
- Ning Tian
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | | | | |
Collapse
|
34
|
Leopoldo M, Selivanova SV, Müller A, Lacivita E, Schetz JA, Ametamey SM. In vitro and in vivo evaluation of N-{2-[4-(3-Cyanopyridin-2-yl)piperazin-1-yl]ethyl}-3-[(11) C]methoxybenz-amide, a positron emission tomography (PET) radioligand for dopamine D4 receptors, in rodents. Chem Biodivers 2014; 11:1298-308. [PMID: 25238073 DOI: 10.1002/cbdv.201400178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Indexed: 12/24/2022]
Abstract
The D4 dopamine receptor belongs to the D2 -like family of dopamine receptors, and its exact regional distribution in the central nervous system is still a matter of considerable debate. The availability of a selective radioligand for the D4 receptor with suitable properties for positron emission tomography (PET) would help resolve issues of D4 receptor localization in the brain, and the presumed diurnal change of expressed protein in the eye and pineal gland. We report here on in vitro and in vivo characteristics of the high-affinity D4 receptor-selective ligand N-{2-[4-(3-cyanopyridin-2-yl)piperazin-1-yl]ethyl}-3-[(11) C]methoxybenzamide ([(11) C]2) in rat. The results provide new insights on the in vitro properties that a brain PET dopamine D4 radioligand should possess in order to have improved in vivo utility in rodents.
Collapse
Affiliation(s)
- Marcello Leopoldo
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'A. Moro', via Orabona, 4, IT-70125 Bari
| | | | | | | | | | | |
Collapse
|
35
|
Popova E. Role of dopamine in distal retina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:333-58. [PMID: 24728309 DOI: 10.1007/s00359-014-0906-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/11/2023]
Abstract
Dopamine is the most abundant catecholamine in the vertebrate retina. Despite the description of retinal dopaminergic cells three decades ago, many aspects of their function in the retina remain unclear. There is no consensus among the authors about the stimulus conditions for dopamine release (darkness, steady or flickering light) as well as about its action upon the various types of retinal cells. Many contradictory results exist concerning the dopamine effect on the gross electrical activity of the retina [reflected in electroretinogram (ERG)] and the receptors involved in its action. This review summarized current knowledge about the types of the dopaminergic neurons and receptors in the retina as well as the effects of dopamine receptor agonists and antagonists on the light responses of photoreceptors, horizontal and bipolar cells in both nonmammalian and mammalian retina. Special focus of interest concerns their effects upon the diffuse ERG as a useful tool for assessment of the overall function of the distal retina. An attempt is made to reveal some differences between the dopamine actions upon the activity of the ON versus OFF channel in the distal retina. The author has included her own results demonstrating such differences.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431, Sofia, Bulgaria,
| |
Collapse
|
36
|
He Q, Xu HP, Wang P, Tian N. Dopamine D1 receptors regulate the light dependent development of retinal synaptic responses. PLoS One 2013; 8:e79625. [PMID: 24260267 PMCID: PMC3834122 DOI: 10.1371/journal.pone.0079625] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/02/2013] [Indexed: 12/30/2022] Open
Abstract
Retinal synaptic connections and function are developmentally regulated. Retinal synaptic activity plays critical roles in the development of retinal synaptic circuitry. Dopamine receptors have been thought to play important roles in the activity-dependent synaptic plasticity in central nervous system. The primary goal of this study is to determine whether dopamine D1 receptor regulates the activity-dependent development of retinal light responsiveness. Accordingly, we recorded electroretinogram from wild type mice and mice with genetic deletion of D1 dopamine receptor (D1-/- mice) raised under cyclic light conditions and constant darkness. Our results demonstrated that D1-/- mice have reduced amplitudes of all three major components of electroretinogram in adulthood. When the relative strength of the responses is considered, the D1-/- mice have selective reduction of the amplitudes of a-wave and oscillatory potentials evoked by low-intermediate intensities of lights. During postnatal development, D1-/- mice have increased amplitude of b-wave at the time of eye-opening but reduced developmental increase of the amplitude of b-wave after eye opening. Light deprivation from birth significantly reduced the amplitudes of b-wave and oscillatory potentials, increased the outer retinal light response gain and altered the light response kinetics of both a- and b-waves of wild type mice. In D1-/- mice, the effect of dark rearing on the amplitude of oscillatory potentials was diminished and dark rearing induced effects on the response gain of outer retina and the kinetics of a-wave were reversed. These results demonstrated roles of dopamine D1 receptor in the activity-dependent functional development of mouse retina.
Collapse
Affiliation(s)
- Quanhua He
- College of Pharmacy, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Hong-ping Xu
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ping Wang
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Ning Tian
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
37
|
Joo HR, Peterson BB, Dacey DM, Hattar S, Chen SK. Recurrent axon collaterals of intrinsically photosensitive retinal ganglion cells. Vis Neurosci 2013; 30:175-82. [PMID: 23834959 PMCID: PMC4316817 DOI: 10.1017/s0952523813000199] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Retinal ganglion cells (RGCs), the output neurons of the retina, have axons that project via the optic nerve to diverse targets in the brain. Typically, RGC axons do not branch before exiting the retina and thus do not provide it with synaptic feedback. Although a small subset of RGCs with intraretinal axon collaterals has been previously observed in human, monkey, cat, and turtle, their function remains unknown. A small, more recently identified population of RGCs expresses the photopigment melanopsin. These intrinsically photosensitive retinal ganglion cells (ipRGCs) transmit an irradiance-coding signal to visual nuclei in the brain, contributing both to image-forming vision and to several nonimage-forming functions, including circadian photoentrainment and the pupillary light reflex. In this study, using melanopsin immunolabeling in monkey and a genetic method to sparsely label the melanopsin cells in mouse, we show that a subgroup of ipRGCs have axons that branch en route to the optic disc, forming intraretinal axon collaterals that terminate in the inner plexiform layer of the retina. The previously described collateral-bearing population identified by intracellular dye injection is anatomically indistinguishable from the collateral-bearing melanopsin cells identified here, suggesting they are a subset of the melanopsin-expressing RGC type and may therefore share its functional properties. Identification of an anatomically distinct subpopulation in mouse, monkey, and human suggests this pathway may be conserved in these and other species (turtle and cat) with intraretinal axon collaterals. We speculate that ipRGC axon collaterals constitute a likely synaptic pathway for feedback of an irradiance signal to modulate retinal light responses.
Collapse
Affiliation(s)
- Hannah R. Joo
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
- Department of Biological Structure and the National Primate Research Center, University of Washington, Seattle, WA 98195
| | - Beth B. Peterson
- Department of Biological Structure and the National Primate Research Center, University of Washington, Seattle, WA 98195
| | - Dennis M. Dacey
- Department of Biological Structure and the National Primate Research Center, University of Washington, Seattle, WA 98195
| | - Samer Hattar
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218
| | - Shih-Kuo Chen
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
- Department of Zoology, National Taiwan University, Taipei, Taiwan 106
| |
Collapse
|
38
|
Astakhova LA, Samoiliuk EV, Govardovskii VI, Firsov ML. cAMP controls rod photoreceptor sensitivity via multiple targets in the phototransduction cascade. ACTA ACUST UNITED AC 2013; 140:421-33. [PMID: 23008435 PMCID: PMC3457688 DOI: 10.1085/jgp.201210811] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In early studies, both cyclic AMP (cAMP) and cGMP were considered as potential secondary messengers regulating the conductivity of the vertebrate photoreceptor plasma membrane. Later discovery of the cGMP specificity of cyclic nucleotide–gated channels has shifted attention to cGMP as the only secondary messenger in the phototransduction cascade, and cAMP is not considered in modern schemes of phototransduction. Here, we report evidence that cAMP may also be involved in regulation of the phototransduction cascade. Using a suction pipette technique, we recorded light responses of isolated solitary rods from the frog retina in normal solution and in the medium containing 2 µM of adenylate cyclase activator forskolin. Under forskolin action, flash sensitivity rose more than twofold because of a retarded photoresponse turn-off. The same concentration of forskolin lead to a 2.5-fold increase in the rod outer segment cAMP, which is close to earlier reported natural day/night cAMP variations. Detailed analysis of cAMP action on the phototransduction cascade suggests that several targets are affected by cAMP increase: (a) basal dark phosphodiesterase (PDE) activity decreases; (b) at the same intensity of light background, steady background-induced PDE activity increases; (c) at light backgrounds, guanylate cyclase activity at a given fraction of open channels is reduced; and (d) the magnitude of the Ca2+ exchanger current rises 1.6-fold, which would correspond to a 1.6-fold elevation of [Ca2+]in. Analysis by a complete model of rod phototransduction suggests that an increase of [Ca2+]in might also explain effects (b) and (c). The mechanism(s) by which cAMP could regulate [Ca2+]in and PDE basal activity is unclear. We suggest that these regulations may have adaptive significance and improve the performance of the visual system when it switches between day and night light conditions.
Collapse
Affiliation(s)
- Luba A Astakhova
- IM Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | | | | | | |
Collapse
|
39
|
Tosini G, Baba K, Hwang CK, Iuvone PM. Melatonin: an underappreciated player in retinal physiology and pathophysiology. Exp Eye Res 2012; 103:82-9. [PMID: 22960156 DOI: 10.1016/j.exer.2012.08.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 12/14/2022]
Abstract
In the vertebrate retina, melatonin is synthesized by the photoreceptors with high levels of melatonin at night and lower levels during the day. Melatonin exerts its influence by interacting with a family of G-protein-coupled receptors that are negatively coupled with adenylyl cyclase. Melatonin receptors belonging to the subtypes MT(1) and MT(2) have been identified in the mammalian retina. MT(1) and MT(2) receptors are found in all layers of the neural retina and in the retinal pigmented epithelium. Melatonin in the eye is believed to be involved in the modulation of many important retinal functions; it can modulate the electroretinogram (ERG), and administration of exogenous melatonin increases light-induced photoreceptor degeneration. Melatonin may also have protective effects on retinal pigment epithelial cells, photoreceptors and ganglion cells. A series of studies have implicated melatonin in the pathogenesis of age-related macular degeneration, and melatonin administration may represent a useful approach to prevent and treat glaucoma. Melatonin is used by millions of people around the world to retard aging, improve sleep performance, mitigate jet lag symptoms, and treat depression. Administration of exogenous melatonin at night may also be beneficial for ocular health, but additional investigation is needed to establish its potential.
Collapse
Affiliation(s)
- Gianluca Tosini
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| | | | | | | |
Collapse
|
40
|
Guha S, Baltazar GC, Tu LA, Liu J, Lim JC, Lu W, Argall A, Boesze-Battaglia K, Laties AM, Mitchell CH. Stimulation of the D5 dopamine receptor acidifies the lysosomal pH of retinal pigmented epithelial cells and decreases accumulation of autofluorescent photoreceptor debris. J Neurochem 2012; 122:823-33. [PMID: 22639870 DOI: 10.1111/j.1471-4159.2012.07804.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Optimal neuronal activity requires that supporting cells provide both efficient nutrient delivery and waste disposal. The incomplete processing of engulfed waste by their lysosomes can lead to accumulation of residual material and compromise their support of neurons. As most degradative lysosomal enzymes function best at an acidic pH, lysosomal alkalinization can impede enzyme activity and increase lipofuscin accumulation. We hypothesize that treatment to reacidify compromised lysosomes can enhance degradation. Here, we demonstrate that degradation of ingested photoreceptor outer segments by retinal pigmented epithelial cells is increased by stimulation of D5 dopamine receptors. D1/D5 receptor agonists reacidified lysosomes in cells alkalinized by chloroquine or tamoxifen, with acidification dependent on protein kinase A. Knockdown with siRNA confirmed acidification was mediated by the D5 receptor. Exposure of cells to outer segments increased lipofuscin-like autofluorescence, but SKF 81297 reduced autofluorescence. Likewise, SKF 81297 increased the activity of lysosomal protease cathepsin D in situ. D5DR stimulation also acidified lysosomes of retinal pigmented epithelial cells from elderly ABCA4(-/-) mice, a model of recessive Stargardt's retinal degeneration. In conclusion, D5 receptor stimulation lowers compromised lysosomal pH, enhancing degradation. The reduced accumulation of lipofuscin-like autofluorescence implies the D5 receptor stimulation may enable cells to better support adjacent neurons.
Collapse
Affiliation(s)
- Sonia Guha
- Department of Anatomy and Cell Biology, University of Pennsylvania, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ces A, Reiss D, Walter O, Wichmann J, Prinssen EP, Kieffer BL, Ouagazzal AM. Activation of nociceptin/orphanin FQ peptide receptors disrupts visual but not auditory sensorimotor gating in BALB/cByJ mice: comparison to dopamine receptor agonists. Neuropsychopharmacology 2012; 37:378-89. [PMID: 21881568 PMCID: PMC3242299 DOI: 10.1038/npp.2011.175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/21/2011] [Accepted: 07/25/2011] [Indexed: 11/08/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) peptide and its receptor (NOP receptor) have been implicated in a host of brain functions and diseases, but the contribution of this neuropeptide system to behavioral processes of relevance to psychosis has not been investigated. We examined the effect of the NOP receptor antagonists, Compound 24 and J-113397, and the synthetic agonist, Ro64-6198, on time function (2-2000 ms prepulse-pulse intervals) of acoustic (80 dB/10 ms prepulse) and visual (1000 Lux/20 ms prepulse) prepulse inhibition of startle reflex (PPI), a preattentive sensory filtering mechanism that is central to perceptual and mental integration. The effects of the dopamine D1-like receptor agonist, SKF-81297, the D2-like receptor agonist, quinelorane, and the mixed D1/D2 agonist, apomorphine, were studied for comparison. When acoustic stimulus was used as prepulse, BALB/cByJ mice displayed a monotonic time function of PPI, and consistent with previous studies, apomorphine and SKF-81279 induced PPI impairment, whereas quinelorane had no effect. None of the NOP receptor ligands was effective on acoustic PPI. When flash light was used as prepulse, BALB/cByJ mice displayed a bell-shaped time function of PPI and all dopamine agonists were active. Ro64-6198 was also effective in reducing visual PPI. NOP receptor antagonists showed no activity but blocked disruptive effect of Ro64-6198. Finally, coadministration of the typical antipsychotic, haloperidol, attenuated PPI impairment induced by Ro64-6198, revealing involvement of a dopaminergic component. These findings show that pharmacological stimulation of NOP or dopamine D2-like receptors is more potent in disrupting visual than acoustic PPI in mice, whereas D1-like receptor activation disrupts both. They further suggest that dysfunction of N/OFQ transmission may be implicated in the pathogenesis of psychotic manifestations.
Collapse
Affiliation(s)
| | - David Reiss
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département de Neurobiologie et Génétique, Illkirch, France
| | - Ondine Walter
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département de Neurobiologie et Génétique, Illkirch, France
- Université Louis Pasteur, Strasbourg, France
| | | | | | - Brigitte L Kieffer
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département de Neurobiologie et Génétique, Illkirch, France
- Inserm, U596, Illkirch, France
| | - Abdel-Mouttalib Ouagazzal
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département de Neurobiologie et Génétique, Illkirch, France
- CNRS, UMR7104, Illkirch, France
| |
Collapse
|
42
|
Jackson CR, Chaurasia SS, Hwang CK, Iuvone PM. Dopamine D₄ receptor activation controls circadian timing of the adenylyl cyclase 1/cyclic AMP signaling system in mouse retina. Eur J Neurosci 2011; 34:57-64. [PMID: 21676039 DOI: 10.1111/j.1460-9568.2011.07734.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the mammalian retina, dopamine binding to the dopamine D₄ receptor (D₄R) affects a light-sensitive pool of cyclic AMP by negatively coupling to the type 1 adenylyl cyclase (AC1). AC1 is the primary enzyme controlling cyclic AMP production in dark-adapted photoreceptors. A previous study demonstrated that expression of the gene encoding AC1, Adcy1, is downregulated in mice lacking Drd4, the gene encoding the D₄R. The present investigation provides evidence that D₄R activation entrains the circadian rhythm of Adcy1 mRNA expression. Diurnal and circadian rhythms of Drd4 and Adcy1 mRNA levels were observed in wild-type mouse retina. Also, rhythms in the Ca²⁺-stimulated AC activity and cyclic AMP levels were observed. However, these rhythmic activities were damped or undetectable in mice lacking the D₄R. Pharmacologically activating the D₄R 4 h before its normal stimulation at light onset in the morning advances the phase of the Adcy1 mRNA expression pattern. These data demonstrate that stimulating the D₄R is essential in maintaining the normal rhythmic production of AC1 from transcript to enzyme activity. Thus, dopamine/D₄R signaling is a novel zeitgeber that entrains the rhythm of Adcy1 expression and, consequently, modulates the rhythmic synthesis of cyclic AMP in mouse retina.
Collapse
Affiliation(s)
- Chad R Jackson
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
43
|
Morphologic changes and functional retinal impairment in patients with Parkinson disease without visual loss. Eur J Ophthalmol 2011; 21:24-9. [PMID: 20602324 DOI: 10.5301/ejo.2010.1318] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2010] [Indexed: 11/20/2022]
Abstract
PURPOSE To investigate the anatomic and electrophysiologic changes of the macula and the optic nerve in patients with Parkinson disease (PD) without visual impairment. METHODS Thirty-two eyes of 16 patients with PD (group A) without visual impairment were tested. Visual acuity was 20/20 or better and visual fields as well as color vision testing results were normal. Also, no retinal lesions were assessed. Patients in group B (40 eyes of 20 patients) were age- and sex-matched control subjects. All study participants underwent a comprehensive ophthalmic examination, multifocal electroretinogram (mfERG) recording, and optical coherence tomography (OCT) scan. Thickness of retinal nerve fiber layer (RNFL) along a 3.4-mm-diameter circle centered on the optic nerve head was evaluated using third-generation OCT. RESULTS The mean P1-response density amplitude of ring 1 of mfERG was 136.69 nV/deg2 in patients with PD and 294 nV/deg2 in control subjects and the difference was highly significant. On the contrary, these values in ring 2 and 3 did not differ statistically between controls and patients with PD. The mean inferior and temporal RNFL thickness was significantly lower in patients with PD than in control subjects (p<0.0001 and p=0.0045, respectively). CONCLUSIONS In patients with PD with normal vision, we found a decrease in the electrical activity of the fovea as well as in the thickness of the RNFL. Multifocal electroretinogram and OCT scan objectively detect early subclinical PD-associated visual functional impairment.
Collapse
|
44
|
Heikkinen H, Vinberg F, Nymark S, Koskelainen A. Mesopic background lights enhance dark-adapted cone ERG flash responses in the intact mouse retina: a possible role for gap junctional decoupling. J Neurophysiol 2011; 105:2309-18. [PMID: 21389302 DOI: 10.1152/jn.00536.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The cone-driven flash responses of mouse electroretinogram (ERG) increase as much as twofold over the course of several minutes during adaptation to a rod-compressing background light. The origins of this phenomenon were investigated in the present work by recording preflash-isolated (M-)cone flash responses ex vivo in darkness and during application of various steady background lights. In this protocol, the cone stimulating flash was preceded by a preflash that maintains rods under saturation (hyperpolarized) to allow selective stimulation of the cones at varying background light levels. The light-induced growth was found to represent true enhancement of cone flash responses with respect to their dark-adapted state. It developed within minutes, and its overall magnitude was a graded function of the background light intensity. The threshold intensity of cone response growth was observed with lights in the low mesopic luminance region, at which rod responses are partly compressed. Maximal effect was reached at intensities sufficient to suppress ∼ 90% of the rod responses. Light-induced enhancement of the cone photoresponses was not sensitive to antagonists and agonists of glutamatergic transmission. However, applying gap junction blockers to the dark-adapted retina produced qualitatively similar changes in the cone flash responses as did background light and prevented further growth during subsequent light-adaptation. These results are consistent with the idea that cone ERG photoresponses are suppressed in the dark-adapted mouse retina by gap junctional coupling between rods and cones. This coupling would then be gradually and reversibly removed by mesopic background lights, allowing larger functional range for the cone light responses.
Collapse
Affiliation(s)
- H Heikkinen
- Aalto University School of Science, Department of Biomedical Engineering and Computational Science, PO Box 12200, FI-00076 Aalto, Finland.
| | | | | | | |
Collapse
|
45
|
Lacivita E, De Giorgio P, Lee IT, Rodeheaver SI, Weiss BA, Fracasso C, Caccia S, Berardi F, Perrone R, Zhang MR, Maeda J, Higuchi M, Suhara T, Schetz JA, Leopoldo M. Design, synthesis, radiolabeling, and in vivo evaluation of carbon-11 labeled N-[2-[4-(3-cyanopyridin-2-yl)piperazin-1-yl]ethyl]-3-methoxybenzamide, a potential positron emission tomography tracer for the dopamine D(4) receptors. J Med Chem 2010; 53:7344-55. [PMID: 20873719 DOI: 10.1021/jm100925m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we describe the design, synthesis, and evaluation of physicochemical and pharmacological properties of D(4) dopamine receptor ligands related to N-[2-[4-(4-chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (2). Structural features were incorporated to increase affinity for the target receptor, to improve selectivity over D(2) and σ(1) receptors, to enable labeling with carbon-11 or fluorine-18, and to adjust lipophilicity within the range considered optimal for brain penetration and low nonspecific binding. Compounds 7 and 13 showed the overall best characteristics: nanomolar affinity for the D(4) receptor, >100-fold selectivity over D(2) and D(3) dopamine receptors, 5-HT(1A), 5-HT(2A), and 5-HT(2C) serotonin receptors and σ(1) receptors, and log P = 2.37-2.55. Following intraperitoneal administration in mice, both compounds rapidly entered the central nervous system. The methoxy of N-[2-[4-(3-cyanopyridin-2-yl)piperazin-1-yl]ethyl]-3-methoxybenzamide (7) was radiolabeled with carbon-11 and subjected to PET analysis in non-human primate. [(11)C]7 time-dependently accumulated to saturation in the posterior eye in the region of the retina, a tissue containing a high density of D(4) receptors.
Collapse
Affiliation(s)
- Enza Lacivita
- Dipartimento Farmaco-Chimico, Università degli Studi di Bari A Moro, Via Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cummings DF, Ericksen SS, Goetz A, Schetz JA. Transmembrane segment five serines of the D4 dopamine receptor uniquely influence the interactions of dopamine, norepinephrine, and Ro10-4548. J Pharmacol Exp Ther 2010; 333:682-95. [PMID: 20215412 PMCID: PMC2879936 DOI: 10.1124/jpet.109.164962] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 03/05/2010] [Indexed: 11/22/2022] Open
Abstract
Conserved serines of transmembrane segment (TM) five (TM5) are critical for the interactions of endogenous catecholamines with alpha(1)- and alpha(2)-adrenergic, beta(2)-adrenergic, and D1, D2, and D3 dopamine receptors. The unique high-affinity interaction of the D4 dopamine receptor subtype with both norepinephrine and dopamine, and the fact that TM5 serine interactions have never been studied for this receptor subtype, led us to investigate the interactions of ligands with D4 receptor TM5 serines. Serine-to-alanine mutations at positions 5.42 and 5.46 drastically decreased affinities of dopamine and norepinephrine for the D4 receptor. The D4-S5.43A receptor mutant had substantially reduced affinity for norepinephrine, but a modest loss of affinity for dopamine. In functional assays of cAMP accumulation, norephinephrine was unable to activate any of the mutant receptors, even though the agonist quinpirole displayed wild-type functional properties for all of them. Dopamine was unable to activate the S5.46A mutant and had reduced potency for the S5.43A mutant and reduced potency and efficacy for the S5.42A mutant. In contrast, Ro10-4548 [RAC-2'-2-hydroxy-3-4-(4-hydroxy-2-methoxyphenyl)-1-piperazinyl-propoxy-acetanilide], a catechol-like antagonist of the wild-type receptor unexpectedly functions as an agonist of the S5.43A mutant. Other noncatechol ligands had similar properties for mutant and wild-type receptors. This is the first example of a dopamine receptor point mutation selectively changing the receptor's interaction with a specific antagonist to that of an agonist, and together with other data, provides evidence, supported by molecular modeling, that catecholamine-type agonism is induced by different ligand-specific configurations of intermolecular H-bonds with the TM5 conserved serines.
Collapse
Affiliation(s)
- David F Cummings
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107-2699, USA
| | | | | | | |
Collapse
|
47
|
Kim JS, Bailey MJ, Weller JL, Sugden D, Rath MF, Møller M, Klein DC. Thyroid hormone and adrenergic signaling interact to control pineal expression of the dopamine receptor D4 gene (Drd4). Mol Cell Endocrinol 2010; 314:128-35. [PMID: 19482058 PMCID: PMC2783391 DOI: 10.1016/j.mce.2009.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 05/18/2009] [Accepted: 05/21/2009] [Indexed: 11/28/2022]
Abstract
Dopamine plays diverse and important roles in vertebrate biology, impacting behavior and physiology through actions mediated by specific G-protein-coupled receptors, one of which is the dopamine receptor D4 (Drd4). Here we present studies on the >100-fold daily rhythm in rat pineal Drd4 expression. Our studies indicate that Drd4 is the dominant dopamine receptor gene expressed in the pineal gland. The gene is expressed in pinealocytes at levels which are approximately 100-fold greater than in other tissues, except the retina, in which transcript levels are similar. Pineal Drd4 expression is circadian in nature and under photoneural control. Whereas most rhythmically expressed genes in the pineal are controlled by adrenergic/cAMP signaling, Drd4 expression also requires thyroid hormone. This advance raises the questions of whether Drd4 expression is regulated by this mechanism in other systems and whether thyroid hormone controls expression of other genes in the pineal gland.
Collapse
Affiliation(s)
- Jong-So Kim
- Section on Neuroendocrinology, Program on Developmental Endocrinology and Genetics, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Life Science, POSTECH, Pohang 790-784, Korea
| | - Michael J. Bailey
- Section on Neuroendocrinology, Program on Developmental Endocrinology and Genetics, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Poultry Science, Texas A&M University, College Station, TX 77843
| | - Joan L. Weller
- Section on Neuroendocrinology, Program on Developmental Endocrinology and Genetics, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Sugden
- Division of Reproduction and Endocrinology, School of Biomedical & Health Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Martin F. Rath
- Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute 24.3, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Morten Møller
- Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute 24.3, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - David C. Klein
- Section on Neuroendocrinology, Program on Developmental Endocrinology and Genetics, National Institutes of Health, Bethesda, MD 20892, USA
- To whom correspondence should be addressed at, Building 49, Room 6A82, National Institutes of Health, Bethesda, MD 20892, USA, Tel.: 301-496-6915; Fax: 301-480-3526;
| |
Collapse
|
48
|
Bailes HJ, Lucas RJ. Melanopsin and inner retinal photoreception. Cell Mol Life Sci 2010; 67:99-111. [PMID: 19865798 PMCID: PMC11115928 DOI: 10.1007/s00018-009-0155-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/07/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
Abstract
Over the last ten years there has been growing acceptance that retinal photoreception among mammals extends beyond rods and cones to include a small number of intrinsically photosensitive retinal ganglion cells (ipRGCs). These ipRGCs are capable of responding to light in the absence of rod/cone input thanks to expression of an opsin photopigment called melanopsin. They are specialised for measuring ambient levels of light (irradiance) for a wide variety of so-called non-image-forming light responses. These include synchronisation of circadian clocks to light:dark cycles and the regulation of pupil size, sleep propensity and pineal melatonin production. Here, we provide a review of some of the landmark discoveries in this fast developing field, paying particular emphasis to recent findings and key areas for future investigation.
Collapse
Affiliation(s)
- Helena J Bailes
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | | |
Collapse
|
49
|
Ogilvie JM, Hakenewerth AM, Gardner RR, Martak JG, Maggio VM. Dopamine receptor loss of function is not protective of rd1 rod photoreceptors in vivo. Mol Vis 2009; 15:2868-78. [PMID: 20038975 PMCID: PMC2797042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 12/20/2009] [Indexed: 11/16/2022] Open
Abstract
PURPOSE The retinal degeneration (rd1) mouse undergoes a rapid loss of rod photoreceptors due to a defect in the cGMP-phosphodiesterase gene. We have previously demonstrated that dopamine (DA) antagonists or DA depletion blocks photoreceptor degeneration and that DA is necessary for photoreceptor degeneration in the rd1 mouse retinal organ culture model. Antagonists for either D1- or D2-family DA receptors are protective in rd1 organ cultures. METHODS To determine whether photoreceptor survival can be increased in vivo in the rd1 mouse, we used both a pharmacological and a genetic approach. The pharmacological approach involved three techniques to administer 6-hydroxydopamine (6-OHDA) in an attempt to deplete DA in postnatal mouse retina in vivo. As a genetic alternative, DA receptor signaling was inactivated by crossbreeding rd1 mice to D1, D2, D4, and D5 knockout mice to create four lines of double mutants. RESULTS Pharmacological DA depletion was incomplete due to the limiting size of the postnatal mouse eye and the lethality of systemic inhibition of DA signaling. In all four lines of double mutants, no increase in rod photoreceptor survival was observed. To determine whether protection of rd1 photoreceptors by inhibition of dopaminergic signaling is a result of conditions specific to the organ culture environment, we grew in vitro retinas from the four lines of double mutant mice for four weeks. Again, no increase in photoreceptor survival was seen. Finally, three triple mutants were generated that lacked two DA receptors (D1/D2; D1/D4; and D2/D4) on a rd1 background. In all three cases, rod photoreceptors were not protected from degeneration. CONCLUSIONS The dramatic protection of rd1 rod photoreceptors by inhibition of DA signaling in organ culture has not been reproduced in vivo by either a pharmacological approach, due to technical limitations, or by genetic manipulations. The possible role of compensatory effects during retinal development in DA receptor deficient mice is considered.
Collapse
|
50
|
Jackson CR, Chaurasia SS, Zhou H, Haque R, Storm DR, Iuvone PM. Essential roles of dopamine D4 receptors and the type 1 adenylyl cyclase in photic control of cyclic AMP in photoreceptor cells. J Neurochem 2009; 109:148-57. [PMID: 19166506 DOI: 10.1111/j.1471-4159.2009.05920.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Light and dopamine regulate many physiological functions in the vertebrate retina. Light exposure decreases cyclic AMP formation in photoreceptor cells. Dopamine D(4) receptor (D(4)R) activation promotes light adaptation and suppresses the light-sensitive pool of cyclic AMP in photoreceptor cells. The key signaling pathways involved in regulating cyclic AMP in photoreceptor cells have not been identified. In the present study, we show that the light- and D(4)R-signaling pathways converge on the type 1 Ca(2+)/calmodulin-stimulated adenylyl cyclase (AC1) to regulate cyclic AMP synthesis in photoreceptor cells. In addition, we present evidence that D(4)R activation tonically regulates the expression of AC1 in photoreceptors. In retinas of mice with targeted deletion of the gene (Adcy1) encoding AC1, cyclic AMP levels and Ca(2+)/calmodulin-stimulated adenylyl cyclase activity are markedly reduced, and cyclic AMP accumulation is unaffected by either light or D(4)R activation. Similarly, in mice with disruption of the gene (Drd4) encoding D(4)R, cyclic AMP levels in the dark-adapted retina are significantly lower compared to wild-type retina and are unresponsive to light. These changes in Drd4-/- mice were accompanied by significantly lower Adcy1 mRNA levels in photoreceptor cells and lower Ca(2+)/calmodulin-stimulated adenylyl cyclase activity in retinal membranes compared with wild-type controls. Reduced levels of Adcy1 mRNA were also observed in retinas of wild-type mice treated chronically with a D(4)R antagonist, L-745870. Thus, activation of D(4)R is required for normal expression of AC1 and for the regulation of its catalytic activity by light. These observations illustrate a novel mechanism for cross-talk between dopamine and photic signaling pathways regulating cyclic AMP in photoreceptor cells.
Collapse
Affiliation(s)
- Chad R Jackson
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|