1
|
Intra-axonal protein synthesis in development and beyond. Int J Dev Neurosci 2016; 55:140-149. [PMID: 26970010 DOI: 10.1016/j.ijdevneu.2016.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
Proteins can be locally produced in the periphery of a cell, allowing a rapid and spatially precise response to the changes in its environment. This process is especially relevant in highly polarized and morphologically complex cells such as neurons. The study of local translation in axons has evolved from being primarily focused on developing axons, to the notion that also mature axons can produce proteins. Axonal translation has been implied in several physiological and pathological conditions, and in all cases it shares common molecular actors and pathways as well as regulatory mechanisms. Here, we review the main findings in these fields, and attempt to highlight shared principles.
Collapse
|
2
|
Farah CA, Naqib F, Weatherill DB, Pack CC, Sossin WS. Synapse formation changes the rules for desensitization of PKC translocation in Aplysia. Eur J Neurosci 2014; 41:328-40. [PMID: 25401305 DOI: 10.1111/ejn.12794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 10/15/2014] [Accepted: 10/23/2014] [Indexed: 11/29/2022]
Abstract
Protein kinase Cs (PKCs) are activated by translocating from the cytoplasm to the membrane. We have previously shown that serotonin-mediated translocation of PKC to the plasma membrane in Aplysia sensory neurons was subject to desensitization, a decrease in the ability of serotonin to induce translocation after previous application of serotonin. In Aplysia, changes in the strength of the sensory-motor neuron synapse are important for behavioral sensitization and PKC regulates a number of important aspects of this form of synaptic plasticity. We have previously suggested that the desensitization of PKC translocation in Aplysia sensory neurons may partially explain the differences between spaced and massed training, as spaced applications of serotonin, a cellular analog of spaced training, cause greater desensitization of PKC translocation than one massed application of serotonin, a cellular analog of massed training. Our previous studies were performed in isolated sensory neurons. In the present study, we monitored translocation of fluorescently-tagged PKC to the plasma membrane in living sensory neurons that were co-cultured with motor neurons to allow for synapse formation. We show that desensitization now becomes similar during spaced and massed applications of serotonin. We had previously modeled the signaling pathways that govern desensitization in isolated sensory neurons. We now modify this mathematical model to account for the changes observed in desensitization dynamics following synapse formation. Our study shows that synapse formation leads to significant changes in the molecular signaling networks that underlie desensitization of PKC translocation.
Collapse
Affiliation(s)
- Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
3
|
Kadakkuzha BM, Liu XA, Narvaez M, Kaye A, Akhmedov K, Puthanveettil SV. Asymmetric localization of natural antisense RNA of neuropeptide sensorin in Aplysia sensory neurons during aging and activity. Front Genet 2014; 5:84. [PMID: 24795747 PMCID: PMC4001032 DOI: 10.3389/fgene.2014.00084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/29/2014] [Indexed: 11/21/2022] Open
Abstract
Despite the advances in our understanding of transcriptome, regulation and function of its non-coding components continue to be poorly understood. Here we searched for natural antisense transcript for sensorin (NAT-SRN), a neuropeptide expressed in the presynaptic sensory neurons of gill-withdrawal reflex of the marine snail Aplysia californica. Sensorin (SRN) has a key role in learning and long-term memory storage in Aplysia. We have now identified NAT-SRN in the central nervous system (CNS) and have confirmed its expression by northern blotting and fluorescent RNA in situ hybridization. Quantitative analysis of NAT-SRN in micro-dissected cell bodies and processes of sensory neurons suggest that NAT-SRN is present in the distal neuronal processes along with sense transcripts. Importantly, aging is associated with reduction in levels of NAT-SRN in sensory neuron processes. Furthermore, we find that forskolin, an activator of CREB signaling, differentially alters the distribution of SRN and NAT-SRN. These studies reveal novel insights into physiological regulation of natural antisense RNAs.
Collapse
Affiliation(s)
- Beena M Kadakkuzha
- Department of Neuroscience, The Scripps Research Institute Jupiter, FL, USA
| | - Xin-An Liu
- Department of Neuroscience, The Scripps Research Institute Jupiter, FL, USA
| | - Maria Narvaez
- Department of Neuroscience, The Scripps Research Institute Jupiter, FL, USA
| | - Alexandra Kaye
- Department of Neuroscience, The Scripps Research Institute Jupiter, FL, USA
| | | | | |
Collapse
|
4
|
The Cochlear Ribbon Synaptic Response to Aminogiycoside Ototoxicity in C57BL/6J Mice. J Otol 2014. [DOI: 10.1016/s1672-2930(14)50003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
5
|
Jung H, Yoon BC, Holt CE. Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci 2012; 13:308-24. [PMID: 22498899 PMCID: PMC3682205 DOI: 10.1038/nrn3210] [Citation(s) in RCA: 347] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
mRNAs can be targeted to specific neuronal subcellular domains, which enables rapid changes in the local proteome through local translation. This mRNA-based mechanism links extrinsic signals to spatially restricted cellular responses and can mediate stimulus-driven adaptive responses such as dendritic plasticity. Local mRNA translation also occurs in growing axons where it can mediate directional responses to guidance signals. Recent profiling studies have revealed that both growing and mature axons possess surprisingly complex and dynamic transcriptomes, thereby suggesting that axonal mRNA localization is highly regulated and has a role in a broad range of processes, a view that is increasingly being supported by new experimental evidence. Here, we review current knowledge on the roles and regulatory mechanisms of axonal mRNA translation and discuss emerging links to axon guidance, survival, regeneration and neurological disorders.
Collapse
Affiliation(s)
- Hosung Jung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | | | |
Collapse
|
6
|
Jung H, Holt CE. Local translation of mRNAs in neural development. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:153-65. [PMID: 21956974 PMCID: PMC3683645 DOI: 10.1002/wrna.53] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Growing axons encounter numerous developmental signals to which they must promptly respond in order to properly form complex neural circuitry. In the axons, these signals are often transduced into a local increase or decrease in protein levels. Contrary to the traditional view that the cell bodies are the exclusive source of axonal proteins, it is becoming increasingly clear not only that de novo protein synthesis takes place in axons, but also that it is required for the axons to respond to certain signals. Here we review the current knowledge of local mRNA translation in developing neurons with a special focus on protein synthesis occurring in axons and growth cones.
Collapse
Affiliation(s)
- Hosung Jung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Christine E. Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Long AA, Mahapatra CT, Woodruff EA, Rohrbough J, Leung HT, Shino S, An L, Doerge RW, Metzstein MM, Pak WL, Broadie K. The nonsense-mediated decay pathway maintains synapse architecture and synaptic vesicle cycle efficacy. J Cell Sci 2010; 123:3303-15. [PMID: 20826458 DOI: 10.1242/jcs.069468] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A systematic Drosophila forward genetic screen for photoreceptor synaptic transmission mutants identified no-on-and-no-off transient C (nonC) based on loss of retinal synaptic responses to light stimulation. The cloned gene encodes phosphatidylinositol-3-kinase-like kinase (PIKK) Smg1, a regulatory kinase of the nonsense-mediated decay (NMD) pathway. The Smg proteins act in an mRNA quality control surveillance mechanism to selectively degrade transcripts containing premature stop codons, thereby preventing the translation of truncated proteins with dominant-negative or deleterious gain-of-function activities. At the neuromuscular junction (NMJ) synapse, an extended allelic series of Smg1 mutants show impaired structural architecture, with decreased terminal arbor size, branching and synaptic bouton number. Functionally, loss of Smg1 results in a ~50% reduction in basal neurotransmission strength, as well as progressive transmission fatigue and greatly impaired synaptic vesicle recycling during high-frequency stimulation. Mutation of other NMD pathways genes (Upf2 and Smg6) similarly impairs neurotransmission and synaptic vesicle cycling. These findings suggest that the NMD pathway acts to regulate proper mRNA translation to safeguard synapse morphology and maintain the efficacy of synaptic function.
Collapse
Affiliation(s)
- A Ashleigh Long
- Department of Biological Sciences, Vanderbilt Brain Institute, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Subcellular localization of messenger RNAs (mRNAs) can give precise control over where protein products are synthesized and operate. However, just 10 years ago many in the broader cell biology community would have considered this a specialized mechanism restricted to a very small fraction of transcripts. Since then, it has become clear that subcellular targeting of mRNAs is prevalent, and there is mounting evidence for central roles for this process in many cellular events. Here, we review current knowledge of the mechanisms and functions of mRNA localization in animal cells.
Collapse
Affiliation(s)
- Christine E. Holt
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Simon L. Bullock
- Cell Biology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
9
|
Martí AA, Jockusch S, Stevens N, Ju J, Turro NJ. Fluorescent hybridization probes for sensitive and selective DNA and RNA detection. Acc Chem Res 2007; 40:402-9. [PMID: 17458926 DOI: 10.1021/ar600013q] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We outline the different approaches taken by our group in the design of fluorescent hybridization sensors. Molecular beacons (MBs) and binary probes (BPs) using two dyes (2d-MB and 2d-BP, respectively) have been synthesized; these sensors serve as switches in emission upon binding to target biomolecules, such as DNA. These sensors allow for ratiometric fluorescence detection of polynucleotides (PNs) by visualization of the probes when bound to a target PN. Additionally, three-dye MBs (3d-MB) and BPs (3d-BP) have been developed, where an energy-transfer cascade is employed to decrease the overlap between the fluorophore emission spectra, resulting in a low direct excitation of the acceptor fluorophore. Pyrene-based MB (Py-MB) and BP (Py-BP), which possess the advantage of long fluorescence lifetimes, have also been synthesized. Time-resolved fluorescence spectra (TRES) can be used to discriminate between short-lived background fluorescence and long-lived fluorescence of the pyrene probes. This technique was demonstrated by time-resolving the signal of a Py-BP from the background fluorescence in Aplysia californica cell extracts.
Collapse
Affiliation(s)
- Angel A Martí
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
10
|
Lyles V, Zhao Y, Martin KC. Synapse formation and mRNA localization in cultured Aplysia neurons. Neuron 2006; 49:349-56. [PMID: 16446139 DOI: 10.1016/j.neuron.2005.12.029] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 10/26/2005] [Accepted: 12/27/2005] [Indexed: 10/25/2022]
Abstract
mRNA localization and regulated translation provide a means of spatially restricting gene expression within neurons during axon guidance and long-term synaptic plasticity. Here we show that synapse formation specifically alters the localization of the mRNA encoding sensorin, a peptide neurotransmitter with neurotrophin-like properties. In isolated Aplysia sensory neurons, which do not form chemical synapses, sensorin mRNA is diffusely distributed throughout distal neurites. Upon contact with a target motor neuron, sensorin mRNA rapidly concentrates at synapses. This redistribution only occurs in the presence of a target motor neuron and parallels the distribution of sensorin protein. Reduction of sensorin mRNA, but not protein, with dsRNA inhibits synapse formation. Our results indicate that synapse formation can alter mRNA localization within individual neurons. They further suggest that translation of a specific localized mRNA, encoding the neuropeptide sensorin, is required for synapse formation between sensory and motor neurons.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Aplysia/cytology
- Blotting, Western/methods
- Cells, Cultured
- Coculture Techniques/methods
- Dactinomycin/pharmacology
- Diagnostic Imaging/methods
- Electric Stimulation/methods
- Electrophysiologic Techniques, Cardiac/methods
- Excitatory Postsynaptic Potentials/physiology
- Gene Expression Regulation/physiology
- Green Fluorescent Proteins/metabolism
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- Microinjections/methods
- Motor Neurons/metabolism
- Motor Neurons/physiology
- Neurites/drug effects
- Neurites/metabolism
- Neurons/cytology
- Neurons/drug effects
- Neurons/physiology
- Neurons/radiation effects
- Neurons, Afferent/classification
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Neurons, Afferent/radiation effects
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Potassium Chloride/pharmacology
- Protein Synthesis Inhibitors/pharmacology
- RNA, Double-Stranded/pharmacology
- RNA, Messenger/metabolism
- Synapses/physiology
Collapse
Affiliation(s)
- Vlasta Lyles
- Interdepartmental Program in Neuroscience, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
11
|
Grabham PW, Wu F, Schacher S, Goldberg DJ. Initiating morphological changes associated with long-term facilitation inAplysia is independent of transcription or translation in the cell body. ACTA ACUST UNITED AC 2005; 64:202-12. [PMID: 15849740 DOI: 10.1002/neu.20133] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In Aplysia, the growth of axonal arbor and the formation of new presynaptic varicosities are thought to contribute to long-term facilitation (LTF) produced by serotonin (5-HT). While it is known that there is a requirement for both transcription and translation in LTF and in the accompanying morphological changes, the mechanisms mediating the initiation and maintenance of these changes are poorly understood. We used long-term labeling of the presynaptic sensory neuron to carry out repeated imaging of axonal morphology, coupled with electrophysiology, to further elucidate the macromolecular requirements of this process. Robust synaptic facilitation, axonal growth, and the formation of axonal varicosities were elicited by 5-HT even when transcription was blocked with actinomycin. Increases in synaptic efficacy and varicosity number were detected 12 h after exposure to 5-HT but did not persist to 24 h. Even when sensory neuron cell bodies were removed, eliminating the contributions of both somal transcription and translation, 5-HT elicited these transient morphological and electrophysiological responses. New sensory varicosities contacting the postsynaptic neuron were filled with the neuropeptide sensorin. Under all conditions, global inhibition of protein synthesis completely blocked the formation of new axonal branches and varicosities. These results demonstrate that neither transcription nor somal translation is required to initiate the axonal growth that often accompanies long-term synaptic plasticity-protein synthesis in the axon is sufficient. Macromolecular synthesis in the cell body is, however, required to maintain the enlarged arbor.
Collapse
Affiliation(s)
- Peter W Grabham
- Department of Pharmacology, Columbia University, New York, New York 10032, USA.
| | | | | | | |
Collapse
|
12
|
Hu JY, Glickman L, Wu F, Schacher S. Serotonin regulates the secretion and autocrine action of a neuropeptide to activate MAPK required for long-term facilitation in Aplysia. Neuron 2004; 43:373-85. [PMID: 15294145 DOI: 10.1016/j.neuron.2004.07.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 06/03/2004] [Accepted: 06/08/2004] [Indexed: 11/17/2022]
Abstract
In Aplysia, long-term facilitation (LTF) of sensory neuron synapses requires activation of both protein kinase A (PKA) and mitogen-activated protein kinase (MAPK). We find that 5-HT through activation of PKA regulates secretion of the sensory neuron-specific neuropeptide sensorin, which binds autoreceptors to activate MAPK. Anti-sensorin antibody blocked LTF and MAPK activation produced by 5-HT and LTF produced by medium containing sensorin that was secreted from sensory neurons after 5-HT treatment. A single application of 5-HT followed by a 2 hr incubation with sensorin produced protein synthesis-dependent LTF, growth of new presynaptic varicosities, and activation of MAPK and its translocation into sensory neuron nuclei. Inhibiting PKA during 5-HT applications and inhibiting receptor tyrosine kinase or MAPK during sensorin application blocked both LTF and MAPK activation and translocation. Thus, long-term synaptic plasticity is produced when stimuli activate kinases in a specific sequence by regulating the secretion and autocrine action of a neuropeptide.
Collapse
Affiliation(s)
- Jiang-Yuan Hu
- Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| | | | | | | |
Collapse
|
13
|
Kalinovsky A, Scheiffele P. Transcriptional control of synaptic differentiation by retrograde signals. Curr Opin Neurobiol 2004; 14:272-9. [PMID: 15194106 DOI: 10.1016/j.conb.2004.05.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Synaptic differentiation during development is a multi-step process, which requires reciprocal communication between pre- and postsynaptic cells. Cell surface interactions can induce the assembly of synaptic specializations but maintenance and growth of synapses depend on transcriptional regulation. Transcriptional responses associated with synaptic differentiation are observed in central and peripheral neurons and depend on retrograde signals coming from the target region. Although the identity of most of the retrograde signaling pathways remains to be identified, the TGFbeta family of growth factors have emerged as one crucial signal at the neuromuscular junction. Here, we discuss evidence for transcriptional control during synaptic differentiation and the signaling pathways mediating retrograde TGFbeta signaling.
Collapse
Affiliation(s)
- Anna Kalinovsky
- Columbia University, Department of Physiology and Cellular Biophysics, 630 West 168(th) Street, P&S 11-511, New York, New York 10032, USA
| | | |
Collapse
|
14
|
Abstract
Plasticity of the Aplysia sensorimotor synapse plays a crucial role in learning and memory of withdrawal reflexes. During the past ten years, a growing body of evidence has indicated that the sensorimotor synapse is glutamatergic. This new information has guided several studies that implicate AMPA and NMDA receptors in synaptic plasticity. However, further work is necessary to delineate the exact properties of the postsynaptic receptors, and their role in transmission and plasticity. Despite the still incomplete picture of the intrinsic properties of the sensorimotor synapse, identifying the endogenous transmitter has provided a foundation for new avenues of research, the results of which will further improve our understanding of the neurobiology of learning and memory.
Collapse
Affiliation(s)
- Evangelos G Antzoulatos
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA
| | | |
Collapse
|
15
|
Walters ET, Bodnarova M, Billy AJ, Dulin MF, Díaz-Ríos M, Miller MW, Moroz LL. Somatotopic organization and functional properties of mechanosensory neurons expressing sensorin-A mRNA inAplysia californica. J Comp Neurol 2004; 471:219-40. [PMID: 14986314 DOI: 10.1002/cne.20042] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A previous study reported that a peptide, sensorin-A, is expressed exclusively in mechanosensory neurons having somata in central ganglia of Aplysia. The present study utilized in situ hybridization, staining by nerve back-fill and soma injection, and electrophysiological methods to characterize the locations, numbers, and functions of sensorin-A-expressing neurons and to define the relationships between soma locations and the locations of peripheral axons and receptive fields. Approximately 1,000 cells express sensorin-A mRNA in young adult animals (10-30 g) and 1,200 cells in larger adults (100-300 g). All of the labeled somata are in the CNS, primarily in the abdominal LE, rLE, RE and RF, pleural VC, cerebral J and K, and buccal S clusters. Expression also occurs in a few sparsely distributed cells in most ganglia. Together, receptive fields of all these mechanosensory clusters cover the entire body surface. Each VC cluster forms a somatotopic map of the ipsilateral body, a "sensory aplunculus." Cells in the pleural and cerebral clusters have partially overlapping sensory fields and synaptic targets. Buccal S cells have receptive fields on the buccal mass and lips and display notable differences in electrophysiological properties from other sensorin-A-expressing neurons. Neurons in all of the clusters have relatively high mechanosensory thresholds, responding preferentially to threatening or noxious stimuli. Synaptic outputs to target cells having defensive functions support a nociceptive role, as does peripheral sensitization following noxious stimulation, although additional functions are likely in some clusters. Interesting questions arise from observations that mRNA for sensorin-A is present not only in the somata but also in synaptic regions, connectives, and peripheral fibers.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, University of Texas-Houston Medical School, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The cell body has classically been considered the exclusive source of axonal proteins. However, significant evidence has accumulated recently to support the view that protein synthesis can occur in axons themselves, remote from the cell body. Indeed, local translation in axons may be integral to aspects of synaptogenesis, long-term facilitation, and memory storage in invertebrate axons, and for growth cone navigation in response to environmental stimuli in developing vertebrate axons. Here we review the evidence supporting mRNA translation in axons and discuss the potential roles that local protein synthesis may play during development and subsequent neuronal function. We advance the view that local translation provides a rapid supply of nascent proteins in restricted axonal compartments that can potentially underlie long-term responses to transient stimuli.
Collapse
Affiliation(s)
- Michael Piper
- Department of Anatomy, University of Cambridge, Cambridge CB2 3DY, United Kingdom.
| | | |
Collapse
|
17
|
Liu K, Hu JY, Wang D, Schacher S. Protein synthesis at synapse versus cell body: enhanced but transient expression of long-term facilitation at isolated synapses. JOURNAL OF NEUROBIOLOGY 2003; 56:275-86. [PMID: 12884266 DOI: 10.1002/neu.10242] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Protein synthesis at synaptic terminals contributes to LTP in hippocampus and to the formation of new synaptic connections by sensory neurons (SNs) of Aplysia. Here we report that after removal of the SN cell body, isolated SN synapses of Aplysia in culture express protein-synthesis dependent long-term facilitation (LTF) produced by 5-HT that decays rapidly. Changes in expression of a SN-specific neuropeptide sensorin in isolated SN varicosities parallel the changes in synaptic efficacy. At 24 h after 5-HT the magnitude of LTF produced at isolated SN synapses was significantly greater than that produced when SN cell bodies were present. LTF was maintained at 48 h at connections with SN cell bodies, but not at isolated SN synapses. The increase in synaptic efficacy at isolated SN synapses at 24 h was blocked by the protein synthesis inhibitor anisomycin. LTF was accompanied by changes in expression of sensorin. The increase in sensorin level at isolated SN varicosities with 5-HT was blocked by anisomycin or was reversed 48 h after 5-HT treatment alone. The results suggest that, as is the case for initial synapse formation between SNs and L7, changes in protein synthesis at synaptic terminals may contribute directly to LTF of stable synapses. Changes in expression within the cell body provide additional contributions for long-term maintenance of the new level of synaptic efficacy that was initiated directly by local changes in protein synthesis at or near synaptic terminals.
Collapse
Affiliation(s)
- Ke Liu
- Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, 1051 Riverside Drive, New York, New York 10032, USA
| | | | | | | |
Collapse
|
18
|
Bi J, Hu X, Loh HH, Wei LN. Mouse kappa-opioid receptor mRNA differential transport in neurons. Mol Pharmacol 2003; 64:594-9. [PMID: 12920195 DOI: 10.1124/mol.64.3.594] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Three kappa-opioid receptor (KOR) mRNA isoforms have been detected in different parts of the central nervous system. At the cellular level, three KOR mRNA isoforms are also differentially distributed in the axons and cell bodies of adult mouse trigeminal neurons, as well as in the processes and cell bodies of differentiated P19 neurons. To determine the molecular basis underlying differential distribution of KOR mRNA isoforms, a GFP-fused RNA binding domain, MS2, was generated and used to trace movement of KOR mRNA tagged with the MS2-binding sequence in living neurons of dorsal root ganglia and in differentiated P19 neurons. The 5'- and 3'-untranslated regions (UTRs) of KOR, either alone or in combination, are able to mediate transport of mRNAs to processes of P19 neurons and axons of dorsal root ganglia. The efficiency of mRNA transport mediated by each 5'-UTR of KOR varies among the three isoforms; isoform A is most efficient. This study demonstrates the biological activity of the UTRs of KOR mRNA isoforms in directing differential transport of mRNA in mammalian neurons.
Collapse
Affiliation(s)
- Jing Bi
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church St., SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
19
|
Hu JY, Meng X, Schacher S. Redistribution of syntaxin mRNA in neuronal cell bodies regulates protein expression and transport during synapse formation and long-term synaptic plasticity. J Neurosci 2003; 23:1804-15. [PMID: 12629184 PMCID: PMC6741965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Syntaxin has an important role in regulating vesicle docking and fusion essential for neurotransmitter release. Here, we demonstrate that the distribution of syntaxin mRNA in cell bodies of sensory neurons (SNs) of Aplysia maintained in cell culture is affected by synapse formation, synapse stabilization, and long-term facilitation (LTF) produced by 5-HT. The distribution of the mRNA in turn regulates expression and axonal transport of the protein. Syntaxin mRNA and protein accumulated at the axon hillock of SNs during the initial phase of synapse formation. Significant numbers of granules containing syntaxin were detected in the SN axon. When synaptic strength was stable, both mRNA and protein were targeted away from the axon hillock, and the number of syntaxin granules in the SN axon was reduced. Dramatic increases in mRNA and protein accumulation at the axon hillock and number of syntaxin granules in the SN axon were produced when cultures with stable connections were treated with 5-HT that evoked LTF. Anisomycin (protein synthesis inhibitor) or KT5720 (protein kinase A inhibitor) blocked LTF, accumulation of syntaxin mRNA and protein at the axon hillock, and the increase in syntaxin granules in SN axons. The results indicate that without significant effects on overall mRNA expression, both target interaction and 5-HT via activation of protein kinase A pathway regulate expression of syntaxin and its packaging for transport into axons by influencing the distribution of its mRNA in the SN cell body.
Collapse
Affiliation(s)
- Jiang-Yuan Hu
- Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons and New York State Psychiatric Institute, New York, New York 10032, USA
| | | | | |
Collapse
|
20
|
Giuditta A, Kaplan BB, van Minnen J, Alvarez J, Koenig E. Axonal and presynaptic protein synthesis: new insights into the biology of the neuron. Trends Neurosci 2002; 25:400-4. [PMID: 12127756 DOI: 10.1016/s0166-2236(02)02188-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The presence of a local mRNA translation system in axons and terminals was proposed almost 40 years ago. Over the ensuing period, an impressive body of evidence has grown to support this proposal -- yet the nerve cell body is still considered to be the only source of axonal and presynaptic proteins. To dispel this lingering neglect, we now present the wealth of recent observations bearing on this central idea, and consider their impact on our understanding of the biology of the neuron. We demonstrate that extrasomatic translation sites, which are now well recognized in dendrites, are also present in axonal and presynaptic compartments.
Collapse
Affiliation(s)
- Antonio Giuditta
- Department of General and Environmental Physiology, University of Naples Federico II, Naples, Italy.
| | | | | | | | | |
Collapse
|