1
|
Erdogan CS, Yavuz Y, Ozgun HB, Bilgin VA, Agus S, Kalkan UF, Yilmaz B. Fam163a knockdown and mitochondrial stress in the arcuate nucleus of hypothalamus reduce AgRP neuron activity and differentially regulate mitochondrial dynamics in mice. Acta Physiol (Oxf) 2025; 241:e70020. [PMID: 40071489 PMCID: PMC11897941 DOI: 10.1111/apha.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/21/2025] [Accepted: 02/21/2025] [Indexed: 03/15/2025]
Abstract
AIM Mitochondria play key roles in neuronal activity, particularly in modulating agouti-related protein (AgRP) and proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC), which regulates food intake. FAM163A, a newly identified protein, is suggested to be part of the mitochondrial proteome, though its functions remain largely unknown. This study aimed to investigate the effects of Fam163a knockdown and mitochondrial dysfunction on food intake, AgRP neuron activity, and mitochondrial function in the hypothalamus. METHODS Male C57BL/6 and AgRP-Cre mice received intracranial injections of either Fam163a shRNA, rotenone, or appropriate controls. Behavioral assessments included food intake, locomotor activity, and anxiety-like behaviors. qRT-PCR was used to quantify the expression of the genes related to food intake, mitochondrial biogenesis, dynamics, and oxidative stress. Blood glucose, serum insulin, and leptin levels were measured. Electrophysiological patch-clamp recordings were used to assess the AgRP neuronal activity. RESULTS Fam163a knockdown in the ARC increased the cumulative food intake in short term (first 7 days) without altering the 25-day food intake and significantly increased the Pomc mRNA expression. Fam163a silencing significantly reduced leptin levels. Both Fam163a knockdown and rotenone significantly reduced the firing frequency of AgRP neurons. Neither Fam163a silencing nor rotenone altered locomotor or anxiety-like behaviors. Fam163a knockdown and rotenone differentially altered the expression of mitochondrial biogenesis-, mitophagy-, fusion-, and oxidative stress-related genes. CONCLUSION Hypothalamic FAM163A may play a role in modulating AgRP neuronal activity through regulating mitochondrial biogenesis, dynamics, and redox state. These findings provide insights into the role of FAM163A and mitochondrial stress in the central regulation of metabolism.
Collapse
Affiliation(s)
| | - Yavuz Yavuz
- Department of PhysiologyFaculty of Medicine, Yeditepe UniversityIstanbulTurkey
- Department of Neuroscience and PharmacologyThe University of Iowa Carver College of MedicineIowa CityUSA
| | - Huseyin Bugra Ozgun
- Department of PhysiologyFaculty of Medicine, Yeditepe UniversityIstanbulTurkey
| | - Volkan Adem Bilgin
- Department of PhysiologyFaculty of Medicine, Yeditepe UniversityIstanbulTurkey
| | - Sami Agus
- Department of PhysiologyFaculty of Medicine, Yeditepe UniversityIstanbulTurkey
- Department of PhysiologyAugusta UniversityAugustaGeorgiaUSA
| | - Ugur Faruk Kalkan
- Department of PhysiologyFaculty of Medicine, Yeditepe UniversityIstanbulTurkey
| | - Bayram Yilmaz
- Department of PhysiologyFaculty of Medicine, Yeditepe UniversityIstanbulTurkey
- Department of Physiology, Faculty of MedicineDokuz Eylül UniversityIzmirTurkey
- Izmir Biomedicine and Genome CenterIzmirTurkey
| |
Collapse
|
2
|
Yilmaz B, Erdogan CS, Sandal S, Kelestimur F, Carpenter DO. Obesogens and Energy Homeostasis: Definition, Mechanisms of Action, Exposure, and Adverse Effects on Human Health. Neuroendocrinology 2024; 115:72-100. [PMID: 39622213 DOI: 10.1159/000542901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/28/2024] [Indexed: 02/26/2025]
Abstract
BACKGROUND Obesity is a major risk factor for noncommunicable diseases and is associated with a reduced life expectancy of up to 20 years, as well as with other consequences such as unemployment and increased economic burden for society. It is a multifactorial disease, and physiopathology of obesity involves dysregulated calorie utilization and energy balance, disrupted homeostasis of appetite and satiety, lifestyle factors including sedentary lifestyle, lower socioeconomic status, genetic predisposition, epigenetics, and environmental factors. Some endocrine-disrupting chemicals (EDCs) have been proposed as "obesogens" that stimulate adipogenesis leading to obesity. In this review, definition of obesogens, their adverse effects, underlying mechanisms, and metabolic implications will be updated and discussed. SUMMARY Disruption of lipid homeostasis by EDCs involves multiple mechanisms including increase in the number and size of adipocytes, disruption of endocrine-regulated adiposity and metabolism, alteration of hypothalamic regulation of appetite, satiety, food preference and energy balance, and modification of insulin sensitivity in the liver, skeletal muscle, pancreas, gastrointestinal system, and the brain. At a cellular level, obesogens can exert their endocrine disruptive effects by interfering with peroxisome proliferator-activated receptors and steroid receptors. Human exposure to chemical obesogens mainly occurs by ingestion and, to some extent, by inhalation and dermal uptake, usually in an unconscious manner. Persistent pollutants are lipophilic features; thus, they bioaccumulate in adipose tissue. KEY MESSAGES Although there are an increasing number of reports studying the effects of obesogens, their mechanisms of action remain to be elucidated. In addition, epidemiological studies are needed in order to evaluate human exposure to obesogens.
Collapse
Affiliation(s)
- Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Physiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | | | - Suleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Fahrettin Kelestimur
- Department of Clinical Endocrinology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - David O Carpenter
- Institute for Health and the Environment, 5 University Place, University at Albany, Rensselaer, New York, USA
| |
Collapse
|
3
|
Tamayo-Molina YS, Giraldo MA, Rodríguez BA, Machado-Rodríguez G. A biological rhythm in the hypothalamic system links sleep-wake cycles with feeding-fasting cycles. Sci Rep 2024; 14:28897. [PMID: 39572629 PMCID: PMC11582708 DOI: 10.1038/s41598-024-77915-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
The hypothalamus senses the appetite-regulating hormones and also coordinates the metabolic function in alignment with the circadian rhythm. This alignment is essential to maintain the physiological conditions that prevent clinically important comorbidities, such as obesity or type-2 diabetes. However, a complete model of the hypothalamus that relates food intake with circadian rhythms and appetite hormones has not yet been developed. In this work, we present a computational model that accurately allows interpreting neural activity in terms of hormone regulation and sleep-wake cycles. We used a conductance-based model, which consists of a system of four differential equations that considers the ionotropic and metabotropic receptors, and the input currents from homeostatic hormones. We proposed a logistic function that fits available experimental data of insulin hormone concentration and added it into a short-term ghrelin model that served as an input to our dynamical system. Our results show a double oscillatory system, one synchronized by light-regulated sleep-wake cycles and the other by food-regulated feeding-fasting cycles. We have also found that meal timing frequency is highly relevant for the regulation of the hypothalamus neurons. We therefore present a mathematical model to explore the plausible link between the circadian rhythm and the endogenous food clock.
Collapse
Affiliation(s)
- Y S Tamayo-Molina
- Biophysics Group, Institute of Physics, University of Antioquia, Medellin, Colombia.
- Grupo de Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellin, Colombia.
| | - M A Giraldo
- Biophysics Group, Institute of Physics, University of Antioquia, Medellin, Colombia.
| | - B A Rodríguez
- Grupo de Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellin, Colombia
| | - G Machado-Rodríguez
- Biophysics Group, Institute of Physics, University of Antioquia, Medellin, Colombia
- Grupo de Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
4
|
Khare P, Chand J, Ptakova A, Liguori R, Ferrazzi F, Bishnoi M, Vlachova V, Zimmermann K. The TRPC5 receptor as pharmacological target for pain and metabolic disease. Pharmacol Ther 2024; 263:108727. [PMID: 39384022 DOI: 10.1016/j.pharmthera.2024.108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
The transient receptor potential canonical (TRPC) channels are a group of highly homologous nonselective cation channels from the larger TRP channel family. They have the ability to form homo- and heteromers with varying degrees of calcium (Ca2+) permeability and signalling properties. TRPC5 is the one cold-sensitive among them and likewise facilitates the influx of extracellular Ca2+ into cells to modulate neuronal depolarization and integrate various intracellular signalling pathways. Recent research with cryo-electron microscopy revealed its structure, along with clear insight into downstream signalling and protein-protein interaction sites. Investigations using global and conditional deficient mice revealed the involvement of TRPC5 in metabolic diseases, energy balance, thermosensation and conditions such as osteoarthritis, rheumatoid arthritis, and inflammatory pain including opioid-induced hyperalgesia and hyperalgesia following tooth decay and pulpitis. This review provides an update on recent advances in our understanding of the role of TRPC5 with focus on metabolic diseases and pain.
Collapse
Affiliation(s)
- Pragyanshu Khare
- Department of Anesthesiology, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Jagdish Chand
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Alexandra Ptakova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Renato Liguori
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fulvia Ferrazzi
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mahendra Bishnoi
- TR(i)P for Health Laboratory Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector (Knowledge City), Punjab, India
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Katharina Zimmermann
- Department of Anesthesiology, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
5
|
Kelly MJ, Wagner EJ. Canonical transient receptor potential channels and hypothalamic control of homeostatic functions. J Neuroendocrinol 2024; 36:e13392. [PMID: 38631680 PMCID: PMC11444909 DOI: 10.1111/jne.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Recent molecular biological and electrophysiological studies have identified multiple transient receptor potential (TRP) channels in hypothalamic neurons as critical modulators of homeostatic functions. In particular, the canonical transient receptor potential channels (TRPCs) are expressed in hypothalamic neurons that are vital for the control of fertility and energy homeostasis. Classical neurotransmitters such as serotonin and glutamate and peptide neurotransmitters such as kisspeptin, neurokinin B and pituitary adenylyl cyclase-activating polypeptide signal through their cognate G protein-coupled receptors to activate TPRC 4, 5 channels, which are essentially ligand-gated calcium channels. In addition to neurotransmitters, circulating hormones like insulin and leptin signal through insulin receptor (InsR) and leptin receptor (LRb), respectively, to activate TRPC 5 channels in hypothalamic arcuate nucleus pro-opiomelanocortin (POMC) and kisspeptin (arcuate Kiss1 [Kiss1ARH]) neurons to have profound physiological (excitatory) effects. Besides its overt depolarizing effects, TRPC channels conduct calcium ions into the cytoplasm, which has a plethora of downstream effects. Moreover, not only the expression of Trpc5 mRNA but also the coupling of receptors to TRPC 5 channel opening are regulated in different physiological states. In particular, the mRNA expression of Trpc5 is highly regulated in kisspeptin neurons by circulating estrogens, which ultimately dictates the firing pattern of kisspeptin neurons. In obesity states, InsRs are "uncoupled" from opening TRPC 5 channels in POMC neurons, rendering them less excitable. Therefore, in this review, we will focus on the critical role of TRPC 5 channels in regulating the excitability of Kiss1ARH and POMC neurons in different physiological and pathological states.
Collapse
Affiliation(s)
- Martin J. Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, 97001, USA
| | - Edward J. Wagner
- Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Pomona, CA 91766, USA
| |
Collapse
|
6
|
Okuma H, Tsuchiya K. Tissue-specific activation of insulin signaling as a potential target for obesity-related metabolic disorders. Pharmacol Ther 2024; 262:108699. [PMID: 39111411 DOI: 10.1016/j.pharmthera.2024.108699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024]
Abstract
The incidence of obesity is rapidly increasing worldwide. Obesity-associated insulin resistance has long been established as a significant risk factor for obesity-related disorders such as type 2 diabetes and atherosclerosis. Insulin plays a key role in systemic glucose metabolism, with the liver, skeletal muscle, and adipose tissue as the major acting tissues. Insulin receptors and the downstream insulin signaling-related molecules are expressed in various tissues, including vascular endothelial cells, vascular smooth muscle cells, and monocytes/macrophages. In obesity, decreased insulin action is considered a driver for associated disorders. However, whether insulin action has a positive or negative effect on obesity-related disorders depends on the tissue in which it acts. While an enhancement of insulin signaling in the liver increases hepatic fat accumulation and exacerbates dyslipidemia, enhancement of insulin signaling in adipose tissue protects against obesity-related dysfunction of various organs by increasing the capacity for fat accumulation in the adipose tissue and inhibiting ectopic fat accumulation. Thus, this "healthy adipose tissue expansion" by enhancing insulin sensitivity in adipose tissue, but not in the liver, may be an effective therapeutic strategy for obesity-related disorders. To effectively address obesity-related metabolic disorders, the mechanisms of insulin resistance in various tissues of obese patients must be understood and drugs that enhance insulin action must be developed. In this article, we review the potential of interventions that enhance insulin signaling as a therapeutic strategy for obesity-related disorders, focusing on the molecular mechanisms of insulin action in each tissue.
Collapse
Affiliation(s)
- Hideyuki Okuma
- Department of Diabetes and Endocrinology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 4093898, Japan
| | - Kyoichiro Tsuchiya
- Department of Diabetes and Endocrinology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 4093898, Japan.
| |
Collapse
|
7
|
Rhea EM, Leclerc M, Yassine HN, Capuano AW, Tong H, Petyuk VA, Macauley SL, Fioramonti X, Carmichael O, Calon F, Arvanitakis Z. State of the Science on Brain Insulin Resistance and Cognitive Decline Due to Alzheimer's Disease. Aging Dis 2024; 15:1688-1725. [PMID: 37611907 PMCID: PMC11272209 DOI: 10.14336/ad.2023.0814] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is common and increasing in prevalence worldwide, with devastating public health consequences. While peripheral insulin resistance is a key feature of most forms of T2DM and has been investigated for over a century, research on brain insulin resistance (BIR) has more recently been developed, including in the context of T2DM and non-diabetes states. Recent data support the presence of BIR in the aging brain, even in non-diabetes states, and found that BIR may be a feature in Alzheimer's disease (AD) and contributes to cognitive impairment. Further, therapies used to treat T2DM are now being investigated in the context of AD treatment and prevention, including insulin. In this review, we offer a definition of BIR, and present evidence for BIR in AD; we discuss the expression, function, and activation of the insulin receptor (INSR) in the brain; how BIR could develop; tools to study BIR; how BIR correlates with current AD hallmarks; and regional/cellular involvement of BIR. We close with a discussion on resilience to both BIR and AD, how current tools can be improved to better understand BIR, and future avenues for research. Overall, this review and position paper highlights BIR as a plausible therapeutic target for the prevention of cognitive decline and dementia due to AD.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Manon Leclerc
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
| | - Hussein N Yassine
- Departments of Neurology and Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Ana W Capuano
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Han Tong
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA.
| | - Xavier Fioramonti
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France.
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | - Frederic Calon
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
| | - Zoe Arvanitakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
8
|
Rathod YD, Abdelgawad R, Hübner CA, Di Fulvio M. Slc12a2 loss in insulin-secreting β-cells links development of overweight and metabolic dysregulation to impaired satiation control of feeding. Am J Physiol Endocrinol Metab 2023; 325:E581-E594. [PMID: 37819196 PMCID: PMC10864024 DOI: 10.1152/ajpendo.00197.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
Male mice lacking the Na+-K+-2Cl- cotransporter Slc12a2 (Nkcc1) specifically in insulin-secreting β-cells (Slc12a2βKO) have reduced β-cell mass and mild β-cell secretory dysfunction associated with overweight, glucose intolerance, insulin resistance, and metabolic abnormalities. Here, we confirmed and extended previous results to female Slc12a2βKO mice, which developed a similar metabolic syndrome-like phenotype as males, albeit milder. Notably, male and female Slc12a2βKO mice developed overweight without consuming excess calories. Analysis of the feeding microstructure revealed that young lean Slc12a2βKO male mice ate meals of higher caloric content and at a relatively lower frequency than normal mice, particularly during the night. In addition, overweight Slc12a2βKO mice consumed significantly larger meals than lean mice. Therefore, the reduced satiation control of feeding precedes the onset of overweight and is worsened in older Slc12a2βKO mice. However, the time spent between meals remained intact in lean and overweight Slc12a2βKO mice, indicating conserved satiety responses to ad libitum feeding. Nevertheless, satiety was intensified during and after refeeding only in overweight males. In lean females, satiety responses to refeeding were delayed relative to age- and body weight-matched control mice but normalized in overweight mice. Since meal size did not change during refeeding, these data suggested that the satiety control of eating after fasting is impaired in lean Slc12a2βKO mice before the onset of overweight and independently of their reduced satiation responses. Therefore, our results support the novel hypothesis that reduced satiation precedes the onset of overweight and the development of metabolic dysregulation.NEW & NOTEWORTHY Obesity, defined as excess fat accumulation, increases the absolute risk for metabolic diseases. Although obesity is usually attributed to increased food intake, we demonstrate that body weight gain can be hastened without consuming excess calories. In fact, impaired meal termination control, i.e., satiation, is detectable before the development of overweight in an animal model that develops a metabolic syndrome-like phenotype.
Collapse
Affiliation(s)
- Yakshkumar Dilipbhai Rathod
- Department of Pharmacology and Toxicology, School of Medicine Dayton, Wright State University, Ohio, United States
| | - Rana Abdelgawad
- Department of Pharmacology and Toxicology, School of Medicine Dayton, Wright State University, Ohio, United States
| | - Christian A Hübner
- Institut für Humangenetik Am Klinikum 1, Universitätsklinikum Jena, Jena, Germany
| | - Mauricio Di Fulvio
- Department of Pharmacology and Toxicology, School of Medicine Dayton, Wright State University, Ohio, United States
| |
Collapse
|
9
|
Alberry B, Silveira PP. Brain insulin signaling as a potential mediator of early life adversity effects on physical and mental health. Neurosci Biobehav Rev 2023; 153:105350. [PMID: 37544390 DOI: 10.1016/j.neubiorev.2023.105350] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
In numerous brain structures, insulin signaling modulates the homeostatic processes, sensitivity to reward pathways, executive function, memory, and cognition. Through human studies and animal models, mounting evidence implicates central insulin signaling in the metabolic, physiological, and psychological consequences of early life adversity. In this review, we describe the consequences of early life adversity in the brain where insulin signaling is a key factor and how insulin may moderate the effects of adversity on psychiatric and cardio-metabolic health outcomes. Further understanding of how early life adversity and insulin signaling impact specific brain regions and mental and physical health outcomes will assist in prevention, diagnosis, and potential intervention following early life adversity.
Collapse
Affiliation(s)
- Bonnie Alberry
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patricia Pelufo Silveira
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Chen WH, Shi YC, Huang QY, Chen JM, Wang ZY, Lin S, Shi QY. Potential for NPY receptor-related therapies for polycystic ovary syndrome: an updated review. Hormones (Athens) 2023; 22:441-451. [PMID: 37452264 PMCID: PMC10449684 DOI: 10.1007/s42000-023-00460-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine disease that can cause female infertility and bring economic burden to families and to society. The clinical and/or biochemical manifestations include hyperandrogenism, persistent anovulation, and polycystic ovarian changes, often accompanied by insulin resistance and obesity. Although its pathogenesis is unclear, PCOS involves the abnormal regulation of the hypothalamic-pituitary-ovarian axis and the abnormal activation of GnRH neurons. Neuropeptide Y (NPY) is widely distributed in the arcuate nucleus of the hypothalamus and functions as the physiological integrator of two neuroendocrine systems, one governing feeding and the other controlling reproduction. In recent years, an increasing number of studies have focused on the improvement of the reproductive and metabolic status of PCOS through the therapeutic application of NPY and its receptors. In this review, we summarize the central and peripheral regulation of NPY and its receptors in the development of PCOS and discuss the potential for NPY receptor-related therapies for PCOS.
Collapse
Affiliation(s)
- Wei-Hong Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Qiao-Yi Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Jia-Ming Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Zhi-Yi Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | - Qi-Yang Shi
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
11
|
Wei R, Li D, Jia S, Chen Y, Wang J. MC4R in Central and Peripheral Systems. Adv Biol (Weinh) 2023; 7:e2300035. [PMID: 37043700 DOI: 10.1002/adbi.202300035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/25/2023] [Indexed: 04/14/2023]
Abstract
Obesity has emerged as a critical and urgent health burden during the current global pandemic. Among multiple genetic causes, melanocortin receptor-4 (MC4R), involved in food intake and energy metabolism regulation through various signaling pathways, has been reported to be the lead genetic factor in severe and early onset obesity and hyperphagia disorders. Most previous studies have illustrated the roles of MC4R signaling in energy intake versus expenditure in the central system, while some evidence indicates that MC4R is also expressed in peripheral systems, such as the gut and endocrine organs. However, its physiopathological function remains poorly defined. This review aims to depict the central and peripheral roles of MC4R in energy metabolism and endocrine hormone homeostasis, the diversity of phenotypes, biased downstream signaling caused by distinct MC4R mutations, and current drug development targeting the receptor.
Collapse
Affiliation(s)
- Ran Wei
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Danjie Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Sheng Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| |
Collapse
|
12
|
Pan S, Worker CJ, Feng Earley Y. The hypothalamus as a key regulator of glucose homeostasis: emerging roles of the brain renin-angiotensin system. Am J Physiol Cell Physiol 2023; 325:C141-C154. [PMID: 37273237 PMCID: PMC10312332 DOI: 10.1152/ajpcell.00533.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/06/2023]
Abstract
The regulation of plasma glucose levels is a complex and multifactorial process involving a network of receptors and signaling pathways across numerous organs that act in concert to ensure homeostasis. However, much about the mechanisms and pathways by which the brain regulates glycemic homeostasis remains poorly understood. Understanding the precise mechanisms and circuits employed by the central nervous system to control glucose is critical to resolving the diabetes epidemic. The hypothalamus, a key integrative center within the central nervous system, has recently emerged as a critical site in the regulation of glucose homeostasis. Here, we review the current understanding of the role of the hypothalamus in regulating glucose homeostasis, with an emphasis on the paraventricular nucleus, the arcuate nucleus, the ventromedial hypothalamus, and lateral hypothalamus. In particular, we highlight the emerging role of the brain renin-angiotensin system in the hypothalamus in regulating energy expenditure and metabolic rate, as well as its potential importance in the regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Shiyue Pan
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, Nevada, United States
- Department of Physiology & Cell Biology, School of Medicine, University of Nevada, Reno, Reno, Nevada, United States
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, United States
| | - Caleb J Worker
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, Nevada, United States
- Department of Physiology & Cell Biology, School of Medicine, University of Nevada, Reno, Reno, Nevada, United States
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, United States
| | - Yumei Feng Earley
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, Nevada, United States
- Department of Physiology & Cell Biology, School of Medicine, University of Nevada, Reno, Reno, Nevada, United States
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, United States
| |
Collapse
|
13
|
Medrano M, Allaoui W, Van Bulck M, Thys S, Makrini-Maleville L, Seuntjens E, De Vos WH, Valjent E, Gaszner B, Van Eeckhaut A, Smolders I, De Bundel D. Neuroanatomical characterization of the Nmu-Cre knock-in mice reveals an interconnected network of unique neuropeptidergic cells. Open Biol 2023; 13:220353. [PMID: 37311538 PMCID: PMC10264104 DOI: 10.1098/rsob.220353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/10/2023] [Indexed: 06/15/2023] Open
Abstract
Neuromedin U (NMU) is an evolutionary conserved neuropeptide that has been implicated in multiple processes, such as circadian regulation, energy homeostasis, reward processing and stress coping. Although the central expression of NMU has been addressed previously, the lack of specific and sensitive tools has prevented a comprehensive characterization of NMU-expressing neurons in the brain. We have generated a knock-in mouse model constitutively expressing Cre recombinase under the Nmu promoter. We have validated the model using a multi-level approach based on quantitative reverse-transcription polymerase chain reactions, in situ hybridization, a reporter mouse line and an adenoviral vector driving Cre-dependent expression of a fluorescent protein. Using the Nmu-Cre mouse, we performed a complete characterization of NMU expression in adult mouse brain, unveiling a potential midline NMU modulatory circuit with the ventromedial hypothalamic nucleus (VMH) as a key node. Moreover, immunohistochemical analysis suggested that NMU neurons in the VMH mainly constitute a unique population of hypothalamic cells. Taken together, our results suggest that Cre expression in the Nmu-Cre mouse model largely reflects NMU expression in the adult mouse brain, without altering endogenous NMU expression. Thus, the Nmu-Cre mouse model is a powerful and sensitive tool to explore the role of NMU neurons in mice.
Collapse
Affiliation(s)
- Mireia Medrano
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Wissal Allaoui
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathias Van Bulck
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Sofie Thys
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology and Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, 2610 Antwerp, Belgium
| | | | - Eve Seuntjens
- Department of Biology, Laboratory of Developmental Neurobiology, KU Leuven, 3000 Leuven, Belgium
| | - Winnok H. De Vos
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology and Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, 2610 Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, 2610 Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy (ACAM), 2610 Wilrijk, Belgium
| | - Emmanuel Valjent
- IGF, Université de Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Bálazs Gaszner
- Medical School, Research Group for Mood Disorders, Department of Anatomy and Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Ann Van Eeckhaut
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Ilse Smolders
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Dimitri De Bundel
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| |
Collapse
|
14
|
Sonnefeld L, Rohmann N, Geisler C, Laudes M. Is human obesity an inflammatory disease of the hypothalamus? Eur J Endocrinol 2023; 188:R37-R45. [PMID: 36883605 DOI: 10.1093/ejendo/lvad030] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/23/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Obesity and its comorbidities are long-standing, challenging global health problems. Lack of exercise, overnutrition, and especially the consumption of fat-rich foods are some of the most important factors leading to an increase in prevalence in modern society. The pathophysiology of obesity as a metabolic inflammatory disease has moved into focus since new therapeutic approaches are required. The hypothalamus, a brain area responsible for energy homeostasis, has recently received special attention in this regard. Hypothalamic inflammation was identified to be associated with diet-induced obesity and new evidence suggests that it may be, beyond that, a pathological mechanism of the disease. This inflammation impairs the local signaling of insulin and leptin leading to dysfunction of the regulation of energy balance and thus, weight gain. After a high-fat diet consumption, activation of inflammatory mediators such as the nuclear factor κB or c-Jun N-terminal kinase pathway can be observed, accompanied by elevated secretion of pro-inflammatory interleukins and cytokines. Brain resident glia cells, especially microglia and astrocytes, initiate this release in response to the flux of fatty acids. The gliosis occurs rapidly before the actual weight gain. Dysregulated hypothalamic circuits change the interaction between neuronal and non-neuronal cells, contributing to the establishment of inflammatory processes. Several studies have reported reactive gliosis in obese humans. Although there is evidence for a causative role of hypothalamic inflammation in the obesity development, data on underlying molecular pathways in humans are limited. This review discusses the current state of knowledge on the relationship between hypothalamic inflammation and obesity in humans.
Collapse
Affiliation(s)
- Lena Sonnefeld
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| | - Nathalie Rohmann
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| | - Corinna Geisler
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| |
Collapse
|
15
|
Stincic TL, Kelly MJ. Estrogenic regulation of reproduction and energy homeostasis by a triumvirate of hypothalamic arcuate neurons. J Neuroendocrinol 2022; 34:e13145. [PMID: 35581942 DOI: 10.1111/jne.13145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022]
Abstract
Pregnancy is energetically demanding and therefore, by necessity, reproduction and energy balance are inextricably linked. With insufficient or excessive energy stores a female is liable to suffer complications during pregnancy or produce unhealthy offspring. Gonadotropin-releasing hormone neurons are responsible for initiating both the pulsatile and subsequent surge release of luteinizing hormone to control ovulation. Meticulous work has identified two hypothalamic populations of kisspeptin (Kiss1) neurons that are critical for this pattern of release. The involvement of the hypothalamus is unsurprising because its quintessential function is to couple the endocrine and nervous systems, coordinating energy balance and reproduction. Estrogens, more specifically 17β-estradiol (E2 ), orchestrate the activity of a triumvirate of hypothalamic neurons within the arcuate nucleus (ARH) that govern the physiological underpinnings of these behavioral dynamics. Arising from a common progenitor pool, these cells differentiate into ARH kisspeptin, pro-opiomelanocortin (POMC), and agouti related peptide/neuropeptide Y (AgRP) neurons. Although the excitability of all these subpopulations is subject to genomic and rapid estrogenic regulation, Kiss1 neurons are the most sensitive, reflecting their integral function in female fertility. Based on the premise that E2 coordinates autonomic functions around reproduction, we review recent findings on how Kiss1 neurons interact with gonadotropin-releasing hormone, AgRP and POMC neurons, as well as how the rapid membrane-initiated and intracellular signaling cascades activated by E2 in these neurons are critical for control of homeostatic functions supporting reproduction. In particular, we highlight how Kiss1 and POMC neurons conspire to inhibit AgRP neurons and diminish food motivation in service of reproductive success.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| |
Collapse
|
16
|
Le N, Sayers S, Mata-Pacheco V, Wagner EJ. The PACAP Paradox: Dynamic and Surprisingly Pleiotropic Actions in the Central Regulation of Energy Homeostasis. Front Endocrinol (Lausanne) 2022; 13:877647. [PMID: 35721722 PMCID: PMC9198406 DOI: 10.3389/fendo.2022.877647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022] Open
Abstract
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP), a pleiotropic neuropeptide, is widely distributed throughout the body. The abundance of PACAP expression in the central and peripheral nervous systems, and years of accompanying experimental evidence, indicates that PACAP plays crucial roles in diverse biological processes ranging from autonomic regulation to neuroprotection. In addition, PACAP is also abundantly expressed in the hypothalamic areas like the ventromedial and arcuate nuclei (VMN and ARC, respectively), as well as other brain regions such as the nucleus accumbens (NAc), bed nucleus of stria terminalis (BNST), and ventral tegmental area (VTA) - suggesting that PACAP is capable of regulating energy homeostasis via both the homeostatic and hedonic energy balance circuitries. The evidence gathered over the years has increased our appreciation for its function in controlling energy balance. Therefore, this review aims to further probe how the pleiotropic actions of PACAP in regulating energy homeostasis is influenced by sex and dynamic changes in energy status. We start with a general overview of energy homeostasis, and then introduce the integral components of the homeostatic and hedonic energy balance circuitries. Next, we discuss sex differences inherent to the regulation of energy homeostasis via these two circuitries, as well as the activational effects of sex steroid hormones that bring about these intrinsic disparities between males and females. Finally, we explore the multifaceted role of PACAP in regulating homeostatic and hedonic feeding through its actions in regions like the NAc, BNST, and in particular the ARC, VMN and VTA that occur in sex- and energy status-dependent ways.
Collapse
Affiliation(s)
- Nikki Le
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Sarah Sayers
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Veronica Mata-Pacheco
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Edward J. Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
17
|
Angelidi AM, Belanger MJ, Kokkinos A, Koliaki CC, Mantzoros CS. Novel Noninvasive Approaches to the Treatment of Obesity: From Pharmacotherapy to Gene Therapy. Endocr Rev 2022; 43:507-557. [PMID: 35552683 PMCID: PMC9113190 DOI: 10.1210/endrev/bnab034] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 02/08/2023]
Abstract
Recent insights into the pathophysiologic underlying mechanisms of obesity have led to the discovery of several promising drug targets and novel therapeutic strategies to address the global obesity epidemic and its comorbidities. Current pharmacologic options for obesity management are largely limited in number and of modest efficacy/safety profile. Therefore, the need for safe and more efficacious new agents is urgent. Drugs that are currently under investigation modulate targets across a broad range of systems and tissues, including the central nervous system, gastrointestinal hormones, adipose tissue, kidney, liver, and skeletal muscle. Beyond pharmacotherapeutics, other potential antiobesity strategies are being explored, including novel drug delivery systems, vaccines, modulation of the gut microbiome, and gene therapy. The present review summarizes the pathophysiology of energy homeostasis and highlights pathways being explored in the effort to develop novel antiobesity medications and interventions but does not cover devices and bariatric methods. Emerging pharmacologic agents and alternative approaches targeting these pathways and relevant research in both animals and humans are presented in detail. Special emphasis is given to treatment options at the end of the development pipeline and closer to the clinic (ie, compounds that have a higher chance to be added to our therapeutic armamentarium in the near future). Ultimately, advancements in our understanding of the pathophysiology and interindividual variation of obesity may lead to multimodal and personalized approaches to obesity treatment that will result in safe, effective, and sustainable weight loss until the root causes of the problem are identified and addressed.
Collapse
Affiliation(s)
- Angeliki M Angelidi
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthew J Belanger
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alexander Kokkinos
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Chrysi C Koliaki
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Christos S Mantzoros
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Milanova IV, Korpel NL, Correa-da-Silva F, Berends E, Osman S, la Fleur SE, Fliers E, Kalsbeek A, Yi CX. Loss of Microglial Insulin Receptor Leads to Sex-Dependent Metabolic Disorders in Obese Mice. Int J Mol Sci 2022; 23:ijms23062933. [PMID: 35328354 PMCID: PMC8954452 DOI: 10.3390/ijms23062933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/27/2022] [Accepted: 03/05/2022] [Indexed: 02/08/2023] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are highly prevalent disorders, associated with insulin resistance and chronic inflammation. The brain is key for energy homeostasis and contains many insulin receptors. Microglia, the resident brain immune cells, are known to express insulin receptors (InsR) and to be activated by a hypercaloric environment. The aim of this study was to evaluate whether microglial insulin signaling is involved in the control of systemic energy homeostasis and whether this function is sex-dependent. We generated a microglia-specific knockout of the InsR gene in male and female mice and exposed them to control or obesogenic dietary conditions. Following 10 weeks of diet exposure, we evaluated insulin tolerance, energy metabolism, microglial morphology and phagocytic function, and neuronal populations. Lack of microglial InsR resulted in increased plasma insulin levels and insulin resistance in obese female mice. In the brain, loss of microglial InsR led to a decrease in microglial primary projections in both male and female mice, irrespective of the diet. In addition, in obese male mice lacking microglial InsR the number of proopiomelanocortin neurons was decreased, compared to control diet, while no differences were observed in female mice. Our results demonstrate a sex-dependent effect of microglial InsR-signaling in physiology and obesity, and stress the importance of a heterogeneous approach in the study of diseases such as obesity and T2DM.
Collapse
Affiliation(s)
- Irina V. Milanova
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.V.M.); (N.L.K.); (F.C.-d.-S.); (E.B.); (S.O.); (S.E.l.F.); (E.F.); (A.K.)
- Laboratory of Endocrinology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands
| | - Nikita L. Korpel
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.V.M.); (N.L.K.); (F.C.-d.-S.); (E.B.); (S.O.); (S.E.l.F.); (E.F.); (A.K.)
- Laboratory of Endocrinology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands
| | - Felipe Correa-da-Silva
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.V.M.); (N.L.K.); (F.C.-d.-S.); (E.B.); (S.O.); (S.E.l.F.); (E.F.); (A.K.)
- Laboratory of Endocrinology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands
| | - Eline Berends
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.V.M.); (N.L.K.); (F.C.-d.-S.); (E.B.); (S.O.); (S.E.l.F.); (E.F.); (A.K.)
- Laboratory of Endocrinology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands
| | - Samar Osman
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.V.M.); (N.L.K.); (F.C.-d.-S.); (E.B.); (S.O.); (S.E.l.F.); (E.F.); (A.K.)
- Laboratory of Endocrinology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands
| | - Susanne E. la Fleur
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.V.M.); (N.L.K.); (F.C.-d.-S.); (E.B.); (S.O.); (S.E.l.F.); (E.F.); (A.K.)
- Laboratory of Endocrinology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.V.M.); (N.L.K.); (F.C.-d.-S.); (E.B.); (S.O.); (S.E.l.F.); (E.F.); (A.K.)
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.V.M.); (N.L.K.); (F.C.-d.-S.); (E.B.); (S.O.); (S.E.l.F.); (E.F.); (A.K.)
- Laboratory of Endocrinology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.V.M.); (N.L.K.); (F.C.-d.-S.); (E.B.); (S.O.); (S.E.l.F.); (E.F.); (A.K.)
- Laboratory of Endocrinology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
19
|
Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol 2022; 915:174611. [PMID: 34798121 DOI: 10.1016/j.ejphar.2021.174611] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity is a major health crisis affecting over a third of the global population. This multifactorial disease is regulated via interoceptive neural circuits in the brain, whose alteration results in excessive body weight. Certain central neuronal populations in the brain are recognised as crucial nodes in energy homeostasis; in particular, the hypothalamic arcuate nucleus (ARC) region contains two peptide microcircuits that control energy balance with antagonistic functions: agouti-related peptide/neuropeptide-Y (AgRP/NPY) signals hunger and stimulates food intake; and pro-opiomelanocortin (POMC) signals satiety and reduces food intake. These neuronal peptides levels react to energy status and integrate signals from peripheral ghrelin, leptin, and insulin to regulate feeding and energy expenditure. To manage obesity comprehensively, it is crucial to understand cellular and molecular mechanisms of information processing in ARC neurons, since these regulate energy homeostasis. Importantly, a specific strategy focusing on ARC circuits needs to be devised to assist in treating obese patients and maintaining weight loss with minimal or no side effects. The aim of this review is to elucidate the recent developments in the study of AgRP-, NPY- and POMC-producing neurons, specific to their role in controlling metabolism. The impact of ghrelin, leptin, and insulin signalling via action of these neurons is also surveyed, since they also impact energy balance through this route. Lastly, we present key proteins, targeted genes, compounds, drugs, and therapies that actively work via these neurons and could potentially be used as therapeutic targets for treating obesity conditions.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
20
|
Suwannapaporn P, Chaiyabutr N, Wanasuntronwong A, Thammacharoen S. Arcuate proopiomelanocortin is part of a novel neural connection for short-term low-degree of high ambient temperature effects on food intake. Physiol Behav 2021; 245:113687. [PMID: 34942196 DOI: 10.1016/j.physbeh.2021.113687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022]
Abstract
High ambient temperature (HTa) is an important environmental factor influencing food intake (FI). We previously demonstrated that low-degree HTa exposure decreased FI earlier than activated physiological responses, and this effect was related to the median preoptic nucleus (MnPO) and arcuate nucleus (Arc) connection. The present study refines the condition of low-degree HTa exposure and focuses on the mechanism of Arc neural activation. We demonstrated in the first experiment that with the usual ambient temperature (Ta) at 23 °C, the low degree HTa condition is at a 7 °C temperature difference and with 90 min exposure. Rats exposed to this short-term low-degree HTa had significantly lower 1-h FI than those exposed to control Ta (CTa) without differences in rectal temperature and hematocrit. Under nonfeeding conditions, HTa could enhance c-Fos at the Arc without the activation of proopiomelanocortin (POMC) neurons. Under feeding conditions, HTa could enhance both c-Fos and POMC at Arc. In addition, the number of c-Fos and POMC colocalizations in the HTa group was higher than that in the CTa group. Finally, intracerebral preinfusion with a subthreshold dose of the melanocortin antagonist SHU9119 reversed the effect of low-degree HTa exposure on FI. Therefore, we conclude that the effect of short-term low-degree HTa exposure on FI in rats is mediated in part by activation of POMC neurons at the Arc. The results partially support the hypothesis that Arc is a crucial hypothalamic nucleus for the effect of low-degree HTa exposure on FI.
Collapse
Affiliation(s)
- Pornsiri Suwannapaporn
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Narongsak Chaiyabutr
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Queen Saovabha Memorial Institute, The Thai Red Cross Society, Bangkok 10330, Thailand; The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok 10300, Thailand
| | - Aree Wanasuntronwong
- Department of oral biology, Faculty of Dentistry, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Sumpun Thammacharoen
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
21
|
Daniel T, Ben-Shachar M, Drori E, Hamad S, Permyakova A, Ben-Cnaan E, Tam J, Kerem Z, Rosenzweig T. Grape pomace reduces the severity of non-alcoholic hepatic steatosis and the development of steatohepatitis by improving insulin sensitivity and reducing ectopic fat deposition in mice. J Nutr Biochem 2021; 98:108867. [PMID: 34571189 DOI: 10.1016/j.jnutbio.2021.108867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 07/08/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022]
Abstract
While non-alcoholic fatty liver disease (NAFLD) represents the common cause of chronic liver disease, specific therapies are currently unavailable. The wine industry produces millions of tons of residue (pomace), which contains high levels of bioactive phytochemicals. The aim of this study was to clarify the potential benefits of grape pomace for the treatment of NAFLD at different levels of severity, and to clarify the mechanism of action. C57Bl/6 mice were given high fat diet (HFD) or western diet (WD) as models of obesity and hepatic steatosis or steatohepatitis, respectively, with or without pomace supplementation (50-250 mg/day). Pomace inhibited food intake, and reduced serum leptin and body weight gain. Ectopic fat deposition was reduced, while white adipose tissue mass was preserved. In addition, pomace improved glucose tolerance and insulin sensitivity, prevented the development of adipose tissue inflammation, and reduced hepatic steatosis. Higher expression of genes involved in fatty acids transport and oxidation was observed in adipose tissue, while lipogenic genes were attenuated in the liver of pomace-treated mice. In WD-fed mice, pomace reduced the severity of hepatic steatosis and inflammation and improved blood lipid profile, but was ineffective in reversing hepatic damage of advanced NASH. In conclusion, pomace improved insulin sensitivity and reduced ectopic fat deposition, leading to a healthier metabolic profile. Pomace may hold the potential as a supplement with beneficial health outcomes for the prevention and treatment of hepatic steatosis and other obesity-related pathologies.
Collapse
Affiliation(s)
- Tehila Daniel
- Departments of Molecular Biology and Nutrition Sciences, Ariel University, Ariel, Israel
| | - Michaella Ben-Shachar
- Departments of Molecular Biology and Nutrition Sciences, Ariel University, Ariel, Israel
| | - Elyashiv Drori
- Agriculture and Oenology Research Department, Eastern Regional R&D Center, Ariel, Israel; Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel, Israel
| | - Sharleen Hamad
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anna Permyakova
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elad Ben-Cnaan
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zohar Kerem
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tovit Rosenzweig
- Departments of Molecular Biology and Nutrition Sciences, Ariel University, Ariel, Israel.
| |
Collapse
|
22
|
Copperi F, Kim JD, Diano S. Role of the Melanocortin System in the Central Regulation of Cardiovascular Functions. Front Physiol 2021; 12:725709. [PMID: 34512392 PMCID: PMC8424695 DOI: 10.3389/fphys.2021.725709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence indicates that the melanocortin system is not only a central player in energy homeostasis, food intake and glucose level regulation, but also in the modulation of cardiovascular functions, such as blood pressure and heart rate. The melanocortins, and in particular α- and γ-MSH, have been shown to exert their cardiovascular activity both at the central nervous system level and in the periphery (e.g., in the adrenal gland), binding their receptors MC3R and MC4R and influencing the activity of the sympathetic nervous system. In addition, some studies have shown that the activation of MC3R and MC4R by their endogenous ligands is able to improve the outcome of cardiovascular diseases, such as myocardial and cerebral ischemia. In this brief review, we will discuss the current knowledge of how the melanocortin system influences essential cardiovascular functions, such as blood pressure and heart rate, and its protective role in ischemic events, with a particular focus on the central regulation of such mechanisms.
Collapse
Affiliation(s)
- Francesca Copperi
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
| | - Jung Dae Kim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, United States
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
23
|
Cai W, Zhang X, Batista TM, García-Martín R, Softic S, Wang G, Ramirez AK, Konishi M, O'Neill BT, Kim JH, Kim JK, Kahn CR. Peripheral Insulin Regulates a Broad Network of Gene Expression in Hypothalamus, Hippocampus, and Nucleus Accumbens. Diabetes 2021; 70:1857-1873. [PMID: 34031123 PMCID: PMC8385615 DOI: 10.2337/db20-1119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/09/2021] [Indexed: 11/13/2022]
Abstract
The brain is now recognized as an insulin-sensitive tissue; however, the role of changing insulin concentrations in the peripheral circulation in gene expression in the brain is largely unknown. Here, we performed a hyperinsulinemic-euglycemic clamp on 3-month-old male C57BL/6 mice for 3 h. We show that, in comparison with results in saline-infused controls, increases in peripheral insulin within the physiological range regulate expression of a broad network of genes in the brain. Insulin regulates distinct pathways in the hypothalamus (HTM), hippocampus, and nucleus accumbens. Insulin shows its most robust effect in the HTM and regulates multiple genes involved in neurotransmission, including upregulating expression of multiple subunits of GABA-A receptors, Na+ and K+ channels, and SNARE proteins; differentially modulating glutamate receptors; and suppressing multiple neuropeptides. Insulin also strongly modulates metabolic genes in the HTM, suppressing genes in the glycolysis and pentose phosphate pathways, while increasing expression of genes regulating pyruvate dehydrogenase and long-chain fatty acyl-CoA and cholesterol biosynthesis, thereby rerouting of carbon substrates from glucose metabolism to lipid metabolism required for the biogenesis of membranes for neuronal and glial function and synaptic remodeling. Furthermore, based on the transcriptional signatures, these changes in gene expression involve neurons, astrocytes, oligodendrocytes, microglia, and endothelial cells. Thus, peripheral insulin acutely and potently regulates expression of a broad network of genes involved in neurotransmission and brain metabolism. Dysregulation of these pathways could have dramatic effects in normal physiology and diabetes.
Collapse
Affiliation(s)
- Weikang Cai
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY
| | - Xuemei Zhang
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Thiago M Batista
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Rubén García-Martín
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Samir Softic
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Pediatrics, University of Kentucky, College of Medicine, Lexington, KY
| | - Guoxiao Wang
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Alfred K Ramirez
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Masahiro Konishi
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Brian T O'Neill
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jong Hun Kim
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
- Department of Food Science and Biotechnology, Sungshin University, Seoul, South Korea
| | - Jason K Kim
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
24
|
Huang Y, Lin X, Lin S. Neuropeptide Y and Metabolism Syndrome: An Update on Perspectives of Clinical Therapeutic Intervention Strategies. Front Cell Dev Biol 2021; 9:695623. [PMID: 34307371 PMCID: PMC8299562 DOI: 10.3389/fcell.2021.695623] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Through the past decade of research, the pathogenic mechanisms underlying metabolic syndrome have been suggested to involve not only the peripheral tissues, but also central metabolic regulation imbalances. The hypothalamus, and the arcuate nucleus in particular, is the control center for metabolic homeostasis and energy balance. Neuropeptide Y neurons are particularly abundantly expressed in the arcuate of the hypothalamus, where the blood-brain barrier is weak, such as to critically integrate peripheral metabolic signals with the brain center. Herein, focusing on metabolic syndrome, this manuscript aims to provide an overview of the regulatory effects of Neuropeptide Y on metabolic syndrome and discuss clinical intervention strategy perspectives for neurometabolic disease.
Collapse
Affiliation(s)
- Yinqiong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiahong Lin
- Department of Endocrinology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
25
|
Abstract
In recent years, plenty of researches have reported in obese individuals with abnormal brain processes implicated in homeostatic regulation, reward, emotion, memory, attention, and executive function in eating behaviors. Thus, treating obesity cannot remain "brainless." Behavioral and psychological interventions activate the food reward, attention, and motivation system, leading to minimal weight loss and high relapse rates. Pharmacotherapy is an effective weight loss method and regulate brain activity but with concerns about its brain function safety problems. Obesity surgery, the most effective therapy currently available for obesity, shows pronounced effects on brain activity, such as deactivation of reward and attention system, and activation of inhibition control toward food cues. In this review, we present an overview of alterations in the brain after the three common weight loss methods.
Collapse
|
26
|
Grattan DR, Andrews ZB. Insulin as a neuroendocrine hormone. J Neuroendocrinol 2021; 33:e12966. [PMID: 33786903 DOI: 10.1111/jne.12966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
The year 2021 marks 100 years since the discovery of insulin and this Special Issue of the Journal of Neuroendocrinology was conceived as a way to mark that historic breakthrough. The discovery of insulin and its subsequent use in the treatment of diabetes is one of the most striking success stories in biomedical research. From a neuroendocrinology perspective, the recognition that insulin also exerts widespread and varied actions in the brain is more recent, but potentially also of equal importance with relevance for conditions ranging from obesity to dementia. The reviews contained in this Special Issue were selected to cover the range of known actions of insulin in neuroendocrine function, and also to highlight areas where further understanding of insulin actions in the brain hold great promise for further improvements in human health.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Zane B Andrews
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
27
|
Beddows CA, Dodd GT. Insulin on the brain: The role of central insulin signalling in energy and glucose homeostasis. J Neuroendocrinol 2021; 33:e12947. [PMID: 33687120 DOI: 10.1111/jne.12947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/26/2022]
Abstract
Insulin signals to the brain where it coordinates multiple physiological processes underlying energy and glucose homeostasis. This review explores where and how insulin interacts within the brain parenchyma, how brain insulin signalling functions to coordinate energy and glucose homeostasis and how this contributes to the pathogenesis of metabolic disease.
Collapse
Affiliation(s)
- Cait A Beddows
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Garron T Dodd
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Stincic TL, Rønnekleiv OK, Kelly MJ. Membrane and nuclear initiated estrogenic regulation of homeostasis. Steroids 2021; 168:108428. [PMID: 31229508 PMCID: PMC6923613 DOI: 10.1016/j.steroids.2019.108428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/08/2019] [Accepted: 06/18/2019] [Indexed: 11/23/2022]
Abstract
Reproduction and energy balance are inextricably linked in order to optimize the evolutionary fitness of an organism. With insufficient or excessive energy stores a female is liable to suffer complications during pregnancy and produce unhealthy or obesity-prone offspring. The quintessential function of the hypothalamus is to act as a bridge between the endocrine and nervous systems, coordinating fertility and autonomic functions. Across the female reproductive cycle various motivations wax and wane, following levels of ovarian hormones. Estrogens, more specifically 17β-estradiol (E2), coordinate a triumvirate of hypothalamic neurons within the arcuate nucleus (ARH) that govern the physiological underpinnings of these behavioral dynamics. Arising from a common progenitor pool of cells, this triumvirate is composed of the kisspeptin (Kiss1ARH), proopiomelanocortin (POMC), and neuropeptide Y/agouti-related peptide (AgRP) neurons. Although the excitability of these neuronal subpopulations is subject to genomic and rapid estrogenic regulation, kisspeptin neurons are the most sensitive, reflecting their integral function in female fertility. Based on the premise that E2 coordinates autonomic functions around reproduction, we will review the recent findings on the synaptic interactions between Kiss1, AgRP and POMC neurons and how the rapid membrane-initiated and intracellular signaling cascades activated by E2 in these neurons are critical for control of homeostatic functions supporting reproduction.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Oline K Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States; Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, United States
| | - Martin J Kelly
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States; Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, United States.
| |
Collapse
|
29
|
Ladyman SR, Brooks VL. Central actions of insulin during pregnancy and lactation. J Neuroendocrinol 2021; 33:e12946. [PMID: 33710714 PMCID: PMC9198112 DOI: 10.1111/jne.12946] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022]
Abstract
Pregnancy and lactation are highly metabolically demanding states. Maternal glucose is a key fuel source for the growth and development of the fetus, as well as for the production of milk during lactation. Hence, the maternal body undergoes major adaptations in the systems regulating glucose homeostasis to cope with the increased demand for glucose. As part of these changes, insulin levels are elevated during pregnancy and lower in lactation. The increased insulin secretion during pregnancy plays a vital role in the periphery; however, the potential effects of increased insulin action in the brain have not been widely investigated. In this review, we consider the impact of pregnancy on brain access and brain levels of insulin. Moreover, we explore the hypothesis that pregnancy is associated with site-specific central insulin resistance that is adaptive, allowing for the increases in peripheral insulin secretion without the consequences of increased central and peripheral insulin functions, such as to stimulate glucose uptake into maternal tissues or to inhibit food intake. Conversely, the loss of central insulin actions may impair other functions, such as insulin control of the autonomic nervous system. The potential role of low insulin in facilitating adaptive responses to lactation, such as hyperphagia and suppression of reproductive function, are also discussed. We end the review with a list of key research questions requiring resolution.
Collapse
Affiliation(s)
- Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Virginia L Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
30
|
Daimon CM, Hentges ST. β-endorphin differentially contributes to food anticipatory activity in male and female mice undergoing activity-based anorexia. Physiol Rep 2021; 9:e14788. [PMID: 33661571 PMCID: PMC7931805 DOI: 10.14814/phy2.14788] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 11/24/2022] Open
Abstract
Anorexia nervosa (AN) has a lifetime prevalence of up to 4% and a high mortality rate (~5-10%), yet little is known regarding the etiology of this disease. In an attempt to fill the gaps in knowledge, activity-based anorexia (ABA) in rodents has been a widely used model as it mimics several key features of AN including severely restricted food intake and excessive exercise. Using this model, a role for the hypothalamic proopiomelanocortin (POMC) system has been implicated in the development of ABA as Pomc mRNA is elevated in female rats undergoing the ABA paradigm. Since the Pomc gene product α-MSH potently inhibits food intake, it could be that elevated α-MSH might promote ABA. However, the α-MSH receptor antagonist SHU9119 does not protect against the development of ABA. Interestingly, it has also been shown that female mice lacking the mu opioid receptor (MOR), the primary receptor activated by the Pomc-gene-derived opioid β-endorphin, display blunted food anticipatory behavior (FAA), a key feature of ABA. Thus, we hypothesized that the elevation in Pomc mRNA observed during ABA may lead to increased β-endorphin concentrations and MOR activation to promote ABA. Further, given the known sex differences in AN and ABA, we hypothesized that MORs may contribute differentially in male and female mice. Using wild-type and MOR knockout mice of both sexes, a MOR antagonist and careful analysis of food anticipatory behavior and β-endorphin levels, we found 1) increased Pomc mRNA levels in both female and male mice that underwent ABA, 2) increased β-endorphin in female mice that underwent ABA, and 3) blunted FAA in both sexes in response to MOR genetic deletion yet blunted FAA only in males in response to MOR antagonism. The results presented provide support for both hypotheses and suggest that it may be the β-endorphin resulting from increased Pomc transcription that supports the development of some features of ABA.
Collapse
Affiliation(s)
- Caitlin M Daimon
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Shane T Hentges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
31
|
Rawlinson S, Andrews ZB. Hypothalamic insulin signalling as a nexus regulating mood and metabolism. J Neuroendocrinol 2021; 33:e12939. [PMID: 33634518 DOI: 10.1111/jne.12939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 01/23/2023]
Abstract
Insulin has long been known as a metabolic hormone critical in the treatment of diabetes for its peripheral effects on blood glucose. However, in the last 50 years, insulin has entered the realm of neuroendocrinology and many studies have described its function on insulin receptors in the brain in relation to both metabolic and mood disorders. Indeed, rodent models of impaired insulin signalling show signs of dysregulated energy and glucose homeostasis, as well as anxiety-like and depressive behaviours. Importantly, many metabolic diseases such as obesity and diabetes increase the risk of developing mood disorders; however, the brain mechanisms underlying the connection between metabolism and mood remain unresolved. We present the current literature on the importance of the insulin receptor with respect to regulating glucose and energy homeostasis and mood-related behaviours. Specifically, we hypothesise that the insulin receptor in the hypothalamus, classically known as the homeostatic centre of the brain, plays a causal role in linking metabolic and behavioural effects of insulin signalling. In this review, we discuss insulin signalling in the hypothalamus as a critical point of neural integration controlling metabolism and mood.
Collapse
Affiliation(s)
- Sasha Rawlinson
- Department of Physiology, Monash Biomedicine Discovery Institute Monash University, Clayton, VIC, Australia
| | - Zane B Andrews
- Department of Physiology, Monash Biomedicine Discovery Institute Monash University, Clayton, VIC, Australia
| |
Collapse
|
32
|
Klockars A, Levine AS, Head MA, Perez-Leighton CE, Kotz CM, Olszewski PK. Impact of Gut and Metabolic Hormones on Feeding Reward. Compr Physiol 2021; 11:1425-1447. [PMID: 33577129 DOI: 10.1002/cphy.c190042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ingestion of food activates a cascade of endocrine responses (thereby reflecting a contemporaneous feeding status) that include the release of hormones from the gastrointestinal (GI) tract, such as cholecystokinin (CCK), glucagonlike peptide YY (PYY), peptide PP, and oleoylethanolamide, as well as suppression of ghrelin secretion. The pancreas and adipose tissue, on the other hand, release hormones that serve as a measure of the current metabolic state or the long-term energy stores, that is, insulin, leptin, and adiponectin. It is well known and intuitively understandable that these hormones target either directly (by crossing the blood-brain barrier) or indirectly (e.g., via vagal input) the "homeostatic" brainstem-hypothalamic pathways involved in the regulation of appetite. The current article focuses on yet another target of the metabolic and GI hormones that is critical in inducing changes in food intake, namely, the reward system. We discuss the physiological basis of this functional interaction, its importance in the control of appetite, and the impact that disruption of this crosstalk has on energy intake in select physiological and pathophysiological states. We conclude that metabolic and GI hormones have a capacity to strengthen or weaken a response of the reward system to a given food, and thus, they are fundamental in ensuring that feeding reward is plastic and dependent on the energy status of the organism. © 2021 American Physiological Society. Compr Physiol 11:1425-1447, 2021.
Collapse
Affiliation(s)
- Anica Klockars
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Allen S Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Mitchell A Head
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | | | - Catherine M Kotz
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand.,Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
33
|
Mukai S, Mizokami A, Otani T, Sano T, Matsuda M, Chishaki S, Gao J, Kawakubo-Yasukochi T, Tang R, Kanematsu T, Takeuchi H, Jimi E, Hirata M. Adipocyte-specific GPRC6A ablation promotes diet-induced obesity by inhibiting lipolysis. J Biol Chem 2021; 296:100274. [PMID: 33428938 PMCID: PMC7949034 DOI: 10.1016/j.jbc.2021.100274] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
The G protein–coupled receptor GPRC6A regulates various physiological processes in response to its interaction with multiple ligands, such as extracellular basic amino acids, divalent cations, testosterone, and the uncarboxylated form of osteocalcin (GluOC). Global ablation of GPRC6A increases the susceptibility of mice to diet-induced obesity and related metabolic disorders. However, given that GPRC6A is expressed in many tissues and responds to a variety of hormonal and nutritional signals, the cellular and molecular mechanisms underlying the development of metabolic disorders in conventional knockout mice have remained unclear. On the basis of our previous observation that long-term oral administration of GluOC markedly reduced adipocyte size and improved glucose tolerance in WT mice, we examined whether GPRC6A signaling in adipose tissue might be responsible for prevention of metabolic disorders. We thus generated adipocyte-specific GPRC6A knockout mice, and we found that these animals manifested increased adipose tissue weight, adipocyte hypertrophy, and adipose tissue inflammation when fed a high-fat and high-sucrose diet compared with control mice. These effects were associated with reduced lipolytic activity because of downregulation of lipolytic enzymes such as adipose triglyceride lipase and hormone-sensitive lipase in adipose tissue of the conditional knockout mice. Given that, among GPR6CA ligands tested, GluOC and ornithine increased the expression of adipose triglyceride lipase in cultured 3T3-L1 adipocytes in a manner dependent on GPRC6A, our results suggest that the constitutive activation of GPRC6A signaling in adipocytes by GluOC or ornithine plays a key role in adipose lipid handling and the prevention of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Satoru Mukai
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan; Department of Health and Nutrition care, Faculty of Allied Health Sciences, University of East Asia, Shimonoseki, Japan
| | - Akiko Mizokami
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| | - Takahito Otani
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Tomomi Sano
- Department of Cell Biology and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Sakura Chishaki
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan; Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | - Ronghao Tang
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takashi Kanematsu
- Department of Cell Biology and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroshi Takeuchi
- Division of Applied Pharmacology, Kyushu Dental University, Kitakyushu, Japan
| | - Eijiro Jimi
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan; Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masato Hirata
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan.
| |
Collapse
|
34
|
Kalsbeek MJT, Yi CX. The infundibular peptidergic neurons and glia cells in overeating, obesity, and diabetes. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:315-325. [PMID: 34225937 DOI: 10.1016/b978-0-12-820107-7.00019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dysfunctional regulation of energy homeostasis results in increased bodyweight and obesity, eventually leading to type 2 diabetes mellitus. The infundibular nucleus (IFN) of the hypothalamus is the main regulator of energy homeostasis. The peptidergic neurons and glia cells of the IFN receive metabolic cues concerning energy state of the body from the circulation. The IFN can monitor hormones like insulin and leptin and nutrients like glucose and fatty acids. All these metabolic cues are integrated into an output signal regulating energy homeostasis through the release of neuropeptides. These neuropeptides are released in several inter- and extrahypothalamic brain regions involved in regulation of energy homeostasis. This review will give an overview of the peripheral signals involved in the regulation of energy homeostasis, the peptidergic neurons and glial cells of the IFN, and will highlight the main intra-hypothalamic projection sites of the IFN.
Collapse
Affiliation(s)
- Martin J T Kalsbeek
- Laboratory of Endocrinology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology Metabolism, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - Chun-Xia Yi
- Laboratory of Endocrinology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology Metabolism, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Abstract
Over the past decade, hypothalamic microinflammation has been studied and appreciated as a core mechanism involved in the advancement of metabolic syndrome and aging. Accumulating evidence suggests that atypical microinflammatory insults disturb hypothalamic regulation resulting in metabolic imbalance and aging progression, establishing a common causality for these two pathophysiologic statuses. Studies have causally linked these changes to activation of key proinflammatory pathways, especially NF-κB signaling within the hypothalamus, which leads to hypothalamic neuronal dysregulation, astrogliosis, microgliosis, and loss of adult hypothalamic neural stem/progenitor cells. While hypothalamic microinflammation is a complex, multifaceted process, initial work has been done to reveal how it contributes to the pathogenesis of metabolic syndrome and aging, and studies inhibiting hypothalamic microinflammation through targeting proinflammatory signaling pathways have shown to be beneficial against these disorders and diseases. In this chapter, we provide a broad overview on hypothalamic microinflammation, focusing on its features, inducers, and shared pathogenic roles in metabolic syndrome and aging.
Collapse
Affiliation(s)
- Dongsheng Cai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Sinan Khor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
36
|
Liang J, Jia Y, Yan H, Shen Q, Bian W, Zhao D, Xu Y, Jin Y, Yang M. Prdm16-Mediated Browning is Involved in Resistance to Diet-Induced and Monosodium Glutamate-Induced Obesity. Diabetes Metab Syndr Obes 2021; 14:4351-4360. [PMID: 34737591 PMCID: PMC8558318 DOI: 10.2147/dmso.s335526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To investigate resistance to diet-induced obesity (DIO) and monosodium glutamate (MSG)-induced obesity as well as the underlying mechanisms. METHODS Newborn mice were used to construct DIO and MSG-induced obesity models. Obesity indices, such as body weight, body length, Lee index, body temperature, food intake, fat weight, and leptin level, were examined. Mice that did not exhibit obesity were defined as the obesity-resistant group. The morphological changes of white adipose tissue were observed by hematoxylin and eosin staining, and expression levels of PR domain containing 16 (Prdm16) and uncoupling protein-1 (Ucp-1) in white adipose tissue were measured by Western blot. RESULTS Obesity-resistant mice fed a high-fat diet showed resistance beginning at week 5 along with lower weights and lengths than those in the obesity group from weeks 5 to 12. MSG-induced obesity-resistant mice showed features consistent with resistance to obesity from week 1 along with higher body lengths relative to the obesity group; however, the weight difference was not significant until week 10, when body weights decreased significantly in obesity-resistant mice. The Lee index was lower in obesity-resistant mice than in the obesity group and the normal group, further suggesting obesity resistance. Additionally, obesity-resistant mice showed higher levels of leptin, whereas obese mice induced by a high-fat diet showed leptin resistance. Furthermore, Prdm16 and Ucp-1 levels were both downregulated in the obesity group and upregulated in obesity-resistant mice, showing that white fat browning was highest in obesity-resistant mice. CONCLUSION The phenotypes of mice with DIO and MSG-induced obesity differed. Obesity resistance might be related to Prdm16 and Ucp-1-mediated white adipocyte browning.
Collapse
Affiliation(s)
- Jia Liang
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Ying Jia
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Haijing Yan
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Qingyu Shen
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Weihua Bian
- Department of Cell Biology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Dongmei Zhao
- Department of Anatomy, Binzhou Medical University, Yantai, People’s Republic of China
| | - Yong Xu
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Yongjun Jin
- Department of Endocrinology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Meizi Yang
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
- Correspondence: Meizi Yang; Yongjun Jin Department of Pharmacology, Binzhou Medical University, Yantai, 264003, People’s Republic of ChinaTel +86 535 691 9507Fax +86 535 691 3163 Email ;
| |
Collapse
|
37
|
Belsham DD, Dalvi PS. Insulin signalling in hypothalamic neurones. J Neuroendocrinol 2020; 33:e12919. [PMID: 33227171 DOI: 10.1111/jne.12919] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
Subsequent to the discovery of insulin by Banting and Best in the Department of Physiology at the University of Toronto 100 years ago, the field of insulin signalling and action has grown at a remarkable pace. Yet, the recognition that insulin action in the brain is critical for whole body homeostasis has only recently been appreciated. The hypothalamus is a key region in the brain that responds to circulating insulin by engaging a complex signalling cascade resulting in the ultimate release of neuropeptides that control hunger and feeding. Disruption of this important feedback system can lead to a phenomenon called cellular insulin resistance, where the neurones cease to sense insulin. The factors contributing to insulin resistance, as well as the resulting detrimental effects, include the induction of neuroinflammation, endoplasmic reticulum stress and alterations in the architecture of the blood-brain barrier that allow transport of insulin into the brain. These manifestations usually change energy balance, causing weight gain, often resulting in obesity and its deadly comorbidities, including type 2 diabetes mellitus, cardiovascular disease and metabolic syndrome. Nonetheless, there is still hope because the signal transduction pathways can be targeted at a number of levels by neurone-specific therapeutics. With the advent of unique cell models for investigating the mechanisms involved in these processes, the discovery of novel targets is increasingly possible. Although we are still looking for a cure for diabetes, Banting and Best would be impressed at how far their discovery has advanced and the contemporary knowledge that has been accumulated based on insulin action.
Collapse
Affiliation(s)
- Denise D Belsham
- Departments of Physiology, Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, ON, Canada
| | - Prasad S Dalvi
- Biology Department, Morosky College of Health Professions and Sciences, Gannon University, Erie, PA, USA
| |
Collapse
|
38
|
Sergi D, Williams LM. Potential relationship between dietary long-chain saturated fatty acids and hypothalamic dysfunction in obesity. Nutr Rev 2020; 78:261-277. [PMID: 31532491 DOI: 10.1093/nutrit/nuz056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diet-induced hypothalamic inflammation, which leads to hypothalamic dysfunction and a loss of regulation of energy balance, is emerging as a potential driver of obesity. Excessive intake of long-chain saturated fatty acids is held to be the causative dietary component in hypothalamic inflammation. This review summarizes current evidence on the role of long-chain saturated fatty acids in promoting hypothalamic inflammation and the related induction of central insulin and leptin insensitivity. Particularly, the present review focuses on the molecular mechanisms linking long-chain saturated fatty acids and hypothalamic inflammation, emphasizing the metabolic fate of fatty acids and the resulting lipotoxicity, which is a key driver of hypothalamic dysfunction. In conclusion, long-chain saturated fatty acids are key nutrients that promote hypothalamic inflammation and dysfunction by fostering the build-up of lipotoxic lipid species, such as ceramide. Furthermore, when long-chain saturated fatty acids are consumed in combination with high levels of refined carbohydrates, the proinflammatory effects are exacerbated via a mechanism that relies on the formation of advanced glycation end products.
Collapse
Affiliation(s)
- Domenico Sergi
- Nutrition and Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| | - Lynda M Williams
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
39
|
Kalsbeek MJ, Wolff SE, Korpel NL, la Fleur SE, Romijn JA, Fliers E, Kalsbeek A, Swaab DF, Huitinga I, Hol EM, Yi CX. The impact of antidiabetic treatment on human hypothalamic infundibular neurons and microglia. JCI Insight 2020; 5:133868. [PMID: 32814716 PMCID: PMC7455135 DOI: 10.1172/jci.insight.133868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 07/08/2020] [Indexed: 12/22/2022] Open
Abstract
Animal studies indicate that hypothalamic dysfunction plays a major role in type 2 diabetes mellitus (T2DM) development, and that insulin resistance and inflammation are important mechanisms involved in this disorder. However, it remains unclear how T2DM and antidiabetic treatments affect the human hypothalamus. Here, we characterized the proopiomelanocortin (POMC) immunoreactive (-ir) neurons, the neuropeptide-Y-ir (NPY-ir) neurons, the ionized calcium-binding adapter molecule 1-ir (iba1-ir) microglia, and the transmembrane protein 119-ir (TMEM119-ir) microglia in the infundibular nucleus (IFN) of human postmortem hypothalamus of 32 T2DM subjects with different antidiabetic treatments and 17 matched nondiabetic control subjects. Compared with matched control subjects, T2DM subjects showed a decrease in the number of POMC-ir neurons, but no changes in NPY-ir neurons or microglia. Interestingly, T2DM subjects treated with the antidiabetic drug metformin had fewer NPY-ir neurons and microglia than T2DM subjects not treated with metformin. We found that the number of microglia correlated with the number of NPY-ir neurons, but only in T2DM subjects. These results indicate that different changes in POMC and NPY neurons and microglial cells in the IFN accompany T2DM. In addition, T2DM treatment modality is associated with highly selective changes in hypothalamic neurons and microglial cells.
Collapse
Affiliation(s)
- Martin Jt Kalsbeek
- Laboratory of Endocrinology, and.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Samantha Ec Wolff
- Laboratory of Endocrinology, and.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Nikita L Korpel
- Laboratory of Endocrinology, and.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Susanne E la Fleur
- Laboratory of Endocrinology, and.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Johannes A Romijn
- Department of Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Andries Kalsbeek
- Laboratory of Endocrinology, and.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Dick F Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Inge Huitinga
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Chun-Xia Yi
- Laboratory of Endocrinology, and.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
40
|
Romano A, Friuli M, Cifani C, Gaetani S. Oxytocin in the neural control of eating: At the crossroad between homeostatic and non-homeostatic signals. Neuropharmacology 2020; 171:108082. [PMID: 32259527 DOI: 10.1016/j.neuropharm.2020.108082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
The understanding of the biological substrates regulating feeding behavior is relevant to address the health problems related to food overconsumption. Several studies have expanded the conventional view of the homeostatic regulation of body weight mainly orchestrated by the hypothalamus, to include also the non-homeostatic control of appetite. Such processes include food reward and are mainly coordinated by the activation of the central mesolimbic dopaminergic pathway. The identification of endogenous systems acting as a bridge between homoeostatic and non-homeostatic pathways might represent a significant step toward the development of drugs for the treatment of aberrant eating patterns. Oxytocin is a hypothalamic hormone that is directly secreted into the brain and reaches the blood circulation through the neurohypophysis. Oxytocin regulates a variety of physiologic functions, including eating and metabolism. In the last years both preclinical and clinical studies well characterized oxytocin for its effects in reducing food intake and body weight. In the present review we summarize the role played by oxytocin in the control of both homeostatic and non-homeostatic eating, within cognitive, metabolic and reward mechanisms, to mostly highlight its potential therapeutic effects as a new pharmacological approach for the development of drugs for eating disorders. We conclude that the central oxytocinergic system is possibly one of the mechanisms that coordinate energy balance at the crossroads between homeostatic and non-homeostatic mechanisms. This concept should foster studies aimed at exploring the possible exploitation of oxytocin in the treatment of aberrant eating patterns. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Marzia Friuli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032, Camerino, MC, Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
41
|
Abstract
Addiction to substances such as alcohol, cocaine, opioids, and methamphetamine poses a continuing clinical and public challenge globally. Despite progress in understanding substance use disorders, challenges remain in their treatment. Some of these challenges include limited ability of therapeutics to reach the brain (blood-brain barrier), adverse systemic side effects of current medications, and importantly key aspects of addiction not addressed by currently available treatments (such as cognitive impairment). Inability to sustain abstinence or seek treatment due to cognitive deficits such as poor decision-making and impulsivity is known to cause poor treatment outcomes. In this review, we provide an evidenced-based rationale for intranasal drug delivery as a viable and safe treatment modality to bypass the blood-brain barrier and target insulin to the brain to improve the treatment of addiction. Intranasal insulin with improvement of brain cell energy and glucose metabolism, stress hormone reduction, and improved monoamine transmission may be an ideal approach for treating multiple domains of addiction including memory and impulsivity. This may provide additional benefits to enhance current treatment approaches.
Collapse
Affiliation(s)
- Bhavani Kashyap
- HealthPartners Neuroscience Center, 295 Phalen Blvd, St Paul, Minnesota, 55130, USA.
- HealthPartners Institute, Bloomington, Minnesota, USA.
| | - Leah R Hanson
- HealthPartners Neuroscience Center, 295 Phalen Blvd, St Paul, Minnesota, 55130, USA
- HealthPartners Institute, Bloomington, Minnesota, USA
| | - William H Frey Ii
- HealthPartners Neuroscience Center, 295 Phalen Blvd, St Paul, Minnesota, 55130, USA
- HealthPartners Institute, Bloomington, Minnesota, USA
| |
Collapse
|
42
|
Central administration of insulin and refeeding lead to the phosphorylation of AKT, but not FOXO1, in the hypothalamus of broiler chicks. Physiol Behav 2019; 210:112644. [PMID: 31398442 DOI: 10.1016/j.physbeh.2019.112644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 11/23/2022]
Abstract
Several studies in rodents and layer chickens have demonstrated that insulin upregulates hypothalamic AKT-mediated signaling and expression of proopiomelanocortin (POMC, the precursor of alpha-melanocyte stimulating hormone, an anorexigenic peptide) and suppresses appetite in these animals. However, a previous study has also reported that insulin fails to suppress food intake in broiler chicks. In the present study, no significant differences were observed in hypothalamic AKT and forkhead box O1 (FOXO1) phosphorylation levels between broiler and layer chicks. The phosphorylation rate of AKT, but not that of FOXO1, increased in the hypothalami of broilers refed for 1 h after a 24-h fast, with a corresponding increase in plasma insulin concentration. Intracerebroventricular (ICV) administration of 50 pmol insulin, which could decrease food intake in broiler chicks, significantly increased the AKT phosphorylation rate, whereas no significant change was observed in FOXO1 phosphorylation or POMC expression after ICV insulin administration. These findings suggest that hypothalamic AKT responds to insulin in broiler chicks, but FOXO1-mediated regulation of POMC expression is not induced by insulin, which may be one of the causes of excessive food intake in broiler chickens.
Collapse
|
43
|
Role of Paraventricular Nucleus in Regulation of Feeding Behaviour and the Design of Intranuclear Neuronal Pathway Communications. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09928-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Qiu J, Bosch MA, Zhang C, Rønnekleiv OK, Kelly MJ. Estradiol Protects Neuropeptide Y/Agouti-Related Peptide Neurons against Insulin Resistance in Females. Neuroendocrinology 2019; 110:105-118. [PMID: 31212279 PMCID: PMC6920578 DOI: 10.1159/000501560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/17/2019] [Indexed: 12/18/2022]
Abstract
When it comes to obesity, men exhibit a higher incidence of metabolic syndrome than women in early adult life, but this sex advantage wanes in postmenopausal women. A key diagnostic of the metabolic syndrome is insulin resistance in both peripheral tissues and brain, especially in the hypothalamus. Since the anorexigenic hormone 17β-estradiol (E2) regulates food intake in part by inhibiting the excitability of the hypothalamic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons, we hypothesized that E2 would protect against insulin resistance in NPY/AgRP neurons with diet-induced obesity (DIO). Therefore, we did whole-cell recordings and single cell quantitative polymerase chain reaction in arcuate NPYGFP neurons from both female and male mice to test the efficacy of insulin with DIO. The resting membrane potential and input resistance of NPY/AgRP neurons were significantly increased in DIO versus control-diet fed males. Most notably, the efficacy of insulin to activate KATP channels in NPY/AgRP neurons was significantly attenuated, although the KATP channel opener diazoxide was fully effective in NPY/AgRP neurons from DIO males, indicating that the KATP channels were expressed and functional. In contrast, insulin was fully efficacious to activate KATP channels in DIO females, and the response was reversed by the KATP channel blocker tolbutamide. However, the ability of insulin to activate KATP channels was abrogated with ovariectomy but fully restored with E2 replacement. Insulin resistance in obese males was likely mediated by an increase in suppressor of cytokine signaling-3 (SOCS-3), protein tyrosine phosphatase B (PTP1B) and T-cell protein tyrosine phosphatase (TCPTP) activity, since the expression of all 3 mRNAs were upregulated in the obese males but not in females. As proof of principle, pre-incubation of hypothalamic slices from DIO males with the PTP1B/TCPTP inhibitor CX08005 completely rescued the effects of insulin. Therefore, E2 protects NPY/AgRP neurons in females against insulin resistance through, at least in part, attenuating phosphatase activity. The neuroprotective effects of E2 may explain sex differences in the expression of metabolic syndrome that disappears with the loss of E2 in aging.
Collapse
Affiliation(s)
- Jian Qiu
- Department of Physiology and Pharmacology, Oregon Health
& Science University, Portland, Oregon, USA
| | - Martha A. Bosch
- Department of Physiology and Pharmacology, Oregon Health
& Science University, Portland, Oregon, USA
| | - Chunguang Zhang
- Department of Physiology and Pharmacology, Oregon Health
& Science University, Portland, Oregon, USA
| | - Oline K. Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health
& Science University, Portland, Oregon, USA
- Division of Neuroscience, National Primate Research Center,
Oregon Health & Science University, Beaverton, Oregon, USA
| | - Martin J. Kelly
- Department of Physiology and Pharmacology, Oregon Health
& Science University, Portland, Oregon, USA
- Division of Neuroscience, National Primate Research Center,
Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
45
|
Guilherme A, Henriques F, Bedard AH, Czech MP. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat Rev Endocrinol 2019; 15:207-225. [PMID: 30733616 PMCID: PMC7073451 DOI: 10.1038/s41574-019-0165-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adipose tissue comprises adipocytes and many other cell types that engage in dynamic crosstalk in a highly innervated and vascularized tissue matrix. Although adipose tissue has been studied for decades, it has been appreciated only in the past 5 years that extensive arborization of nerve fibres has a dominant role in regulating the function of adipose tissue. This Review summarizes the latest literature, which suggests that adipocytes signal to local sensory nerve fibres in response to perturbations in lipolysis and lipogenesis. Such adipocyte signalling to the central nervous system causes sympathetic output to distant adipose depots and potentially other metabolic tissues to regulate systemic glucose homeostasis. Paracrine factors identified in the past few years that mediate such adipocyte-neuron crosstalk are also reviewed. Similarly, immune cells and endothelial cells within adipose tissue communicate with local nerve fibres to modulate neurotransmitter tone, blood flow, adipocyte differentiation and energy expenditure, including adipose browning to produce heat. This understudied field of neurometabolism related to adipose tissue biology has great potential to reveal new mechanistic insights and potential therapeutic strategies for obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
46
|
Chapelot D, Charlot K. Physiology of energy homeostasis: Models, actors, challenges and the glucoadipostatic loop. Metabolism 2019; 92:11-25. [PMID: 30500561 DOI: 10.1016/j.metabol.2018.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/25/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
The aim of this review is to discuss the physiology of energy homeostasis (EH), which is a debated concept. Thus, we will see that the set-point theory is highly challenged and that other models integrating an anticipative component, such as energy allostasis, seem more relevant to experimental reports and life preservation. Moreover, the current obesity epidemic suggests that EH is poorly efficient in the modern human dietary environment. Non-homeostatic phenomena linked to hedonism and reward seem to profoundly impair EH. In this review, the apparent failed homeostatic responses to energy challenges such as exercise, cafeteria diet, overfeeding and diet-induced weight loss, as well as their putative determinants, are analyzed to highlight the mechanisms of EH. Then, the hormonal, neuronal, and metabolic factors of energy intake or energy expenditure are briefly presented. Last, this review focuses on the contributions of two of the most pivotal and often overlooked determinants of EH: the availability of endogenous energy and the pattern of energy intake. A glucoadipostatic loop model is finally proposed to link energy stored in adipose tissue to EH through changes in eating behavior via leptin and sympathetic nervous system activity.
Collapse
Affiliation(s)
- Didier Chapelot
- Université Paris 13, Centre de Recherche en Epidémiologie et Statistique, Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Inserm (U1153), Inra (U1125), Cnam, Bobigny, France.
| | - Keyne Charlot
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Brétigny-sur-Orge, France
| |
Collapse
|
47
|
Benomar Y, Taouis M. Molecular Mechanisms Underlying Obesity-Induced Hypothalamic Inflammation and Insulin Resistance: Pivotal Role of Resistin/TLR4 Pathways. Front Endocrinol (Lausanne) 2019; 10:140. [PMID: 30906281 PMCID: PMC6418006 DOI: 10.3389/fendo.2019.00140] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Low-grade inflammation and insulin resistance are among the clinical features of obesity that are thought to promote the progressive onset of type 2 diabetes. However, the underlying mechanisms linking these disorders remain not fully understood. Recent reports pointed out hypothalamic inflammation as a major step in the onset of obesity-induced insulin resistance. In light of the increasing prevalence of obesity and T2D, two worldwide public health concerns, deciphering mechanisms implicated in hypothalamic inflammation constitutes a major challenge in the field of insulin-resistance/obesity. Several clinical and experimental studies have identified resistin as a key hormone linking insulin-resistance to obesity, notably through the activation of Toll Like Receptor (TLR) 4 signaling pathways. In this review, we present an overview of the molecular mechanisms underlying obesity-induced hypothalamic inflammation and insulin resistance with peculiar focus on the role of resistin/TLR4 signaling pathway.
Collapse
|
48
|
Yousefvand S, Hamidi F, Zendehdel M, Parham A. Hypophagic effects of insulin are mediated via NPY 1/NPY 2 receptors in broiler cockerels. Can J Physiol Pharmacol 2018; 96:1301-1307. [PMID: 30326197 DOI: 10.1139/cjpp-2018-0470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Neuropeptide Y (NPY) plays a mediatory role in cerebral insulin function by maintaining energy balance. The current study was designed to determine the role of insulin in food intake and its interaction with NPY receptors in 8 experiments using broiler cockerels (4 treatment groups per experiment, except for experiment 8). Chicks received control solution or 2.5, 5, or 10 ng of insulin in experiment 1 and control solution or 1.25, 2.5, or 5 μg of receptor antagonists B5063, SF22, or SML0891 in experiments 2, 3, and 4 through intracerebroventricular (ICV) injection, respectively. In experiments 5, 6, and 7, chicks received ICV injection of B5063, SF22, SML0891, or co-injection of an antagonist + insulin, control solution, and insulin. In experiment 8, blood glucose was measured. Insulin, B5063, and SML0891 decreased food intake, while SF22 led to an increase in food intake. The hypophagic effect of insulin was also reinforced by injection of B560, but ICV injection of SF22 destroyed this hypophagic effect of insulin and increased food intake (p < 0.05). However, SML0891 had no effect on decreased food intake induced by insulin (p > 0.05). At 30 min postinjection, blood sugar in the control group was higher than that in the insulin group (p < 0.05). Therefore, the NPY1 and NPY2 receptors mediate the hypophagic effect of insulin in broiler cockerels.
Collapse
Affiliation(s)
- Shiba Yousefvand
- a Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farshid Hamidi
- a Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Morteza Zendehdel
- b Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Abbas Parham
- a Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
49
|
Evans MC, Kumar NS, Inglis MA, Anderson GM. Leptin and insulin do not exert redundant control of metabolic or emotive function via dopamine neurons. Horm Behav 2018; 106:93-104. [PMID: 30292429 DOI: 10.1016/j.yhbeh.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 11/16/2022]
Abstract
Leptin and insulin's hunger-suppressing and activity-promoting actions on hypothalamic neurons are well characterized, yet the mechanisms by which they modulate the midbrain dopamine system to influence energy balance remain less clear. A subset of midbrain dopamine neurons express receptors for leptin (Lepr) and insulin (Insr). Leptin-dopamine signaling reduces running reward and homecage activity. However, dopamine-specific deletion of Lepr does not affect body weight or food intake in mice. We hypothesized insulin-dopamine signaling might compensate for disrupted leptin-dopamine signaling. To investigate the degree to which insulin and leptin exert overlapping (i.e. redundant) versus discrete control over dopamine neurons, we generated transgenic male and female mice exhibiting dopamine-specific deletion of either Lepr (Lepr KO), Insr (Insr KO) or both Lepr and Insr (Dbl KO) and assessed their feeding behavior, voluntary activity, and energy expenditure compared to control mice. No differences in body weight, daily food intake, energy expenditure or hyperphagic feeding of palatable chow were observed between Lepr, Insr or Dbl KO mice and control mice. However, consistent with previous findings, Lepr KO (but not Insr or Dbl KO) male mice exhibited significantly increased running wheel activity compared to controls. These data demonstrate that insulin and leptin do not exert redundant control of dopamine neuron-mediated modulation of energy balance. Furthermore, our results indicate neither leptin nor insulin plays a critical role in the modulation of dopamine neurons regarding hedonic feeding behavior or anxiety-related behavior.
Collapse
Affiliation(s)
- Maggie C Evans
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand.
| | - Nivesh S Kumar
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Megan A Inglis
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Greg M Anderson
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| |
Collapse
|
50
|
Abstract
The hypothalamus is the brain region responsible for the maintenance of energetic homeostasis. The regulation of this process arises from the ability of the hypothalamus to orchestrate complex physiological responses such as food intake and energy expenditure, circadian rhythm, stress response, and fertility. Metabolic alterations such as obesity can compromise these hypothalamic regulatory functions. Alterations in circadian rhythm, stress response, and fertility further contribute to aggravate the metabolic dysfunction of obesity and contribute to the development of chronic disorders such as depression and infertility.At cellular level, obesity caused by overnutrition can damage the hypothalamus promoting inflammation and impairing hypothalamic neurogenesis. Furthermore, hypothalamic neurons suffer apoptosis and impairment in synaptic plasticity that can compromise the proper functioning of the hypothalamus. Several factors contribute to these phenomena such as ER stress, oxidative stress, and impairments in autophagy. All these observations occur at the same time and it is still difficult to discern whether inflammatory processes are the main drivers of these cellular dysfunctions or if the hypothalamic hormone resistance (insulin, leptin, and ghrelin) can be pinpointed as the source of several of these events.Understanding the mechanisms that underlie the pathophysiology of obesity in the hypothalamus is crucial for the development of strategies that can prevent or attenuate the deleterious effects of obesity.
Collapse
|