1
|
Parrish DC, Alston EN, Rohrer H, Nkadi P, Woodward WR, Schütz G, Habecker BA. Infarction-induced cytokines cause local depletion of tyrosine hydroxylase in cardiac sympathetic nerves. Exp Physiol 2010; 95:304-14. [PMID: 19880537 PMCID: PMC2858010 DOI: 10.1113/expphysiol.2009.049965] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Myocardial infarction causes a heterogeneity of noradrenergic transmission that contributes to the development of ventricular arrhythmias and sudden cardiac death. Ischaemia-induced alterations in sympathetic transmission include regional variations in cardiac noradrenaline (NA) and in tyrosine hydroxylase, the rate-limiting enzyme in NA synthesis. Inflammatory cytokines that act through gp130 are elevated in the heart after myocardial infarction. These cytokines decrease expression of tyrosine hydroxylase in sympathetic neurons, and indirect evidence suggests that they contribute to the local depletion of tyrosine hydroxylase in the damaged left ventricle. However, gp130 cytokines are also important for the survival of cardiac myocytes following damage to the heart. To examine the effect of cytokines on tyrosine hydroxylase and NA content in cardiac nerves we used gp130(DBH-Cre/lox) mice, which have a deletion of the gp130 receptor in neurons expressing dopamine beta-hydroxylase. The absence of neuronal gp130 prevented the loss of tyrosine hydroxylase in cardiac sympathetic nerves innervating the left ventricle 1 week after ischaemia-reperfusion compared with wild-type C57BL/6J mice. Surprisingly, restoration of tyrosine hydroxylase in the damaged ventricle did not return neuronal NA content to normal levels. Noradrenaline uptake into cardiac nerves was significantly lower in gp130 knockout mice, contributing to the lack of neuronal NA stores. There were no significant differences in left ventricular peak systolic pressure, dP/dt(max) or dP/dt(min) between the two genotypes after myocardial infarction, but ganglionic blockade revealed differences in autonomic tone between the genotypes. Stimulation of the heart with dobutamine or release of endogenous NA with tyramine generated similar responses in both genotypes. Thus, the removal of gp130 from sympathetic neurons prevents the post-infarct depletion of tyrosine hydroxylase in the left ventricle, but does not alter NA content or cardiac function.
Collapse
Affiliation(s)
- Diana C. Parrish
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Eric N. Alston
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Hermann Rohrer
- Department of Neurochemistry, Max-Planck Institute for Brain Research, 60528 Frankfurt, Germany
| | - Paul Nkadi
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, United States
| | - William R. Woodward
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Günther Schütz
- Cell Biology and Tumor Biology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Beth A. Habecker
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States
| |
Collapse
|
2
|
Apostolova G, Dechant G. Development of neurotransmitter phenotypes in sympathetic neurons. Auton Neurosci 2009; 151:30-8. [DOI: 10.1016/j.autneu.2009.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Weihe E, Depboylu C, Schütz B, Schäfer MKH, Eiden LE. Three types of tyrosine hydroxylase-positive CNS neurons distinguished by dopa decarboxylase and VMAT2 co-expression. Cell Mol Neurobiol 2006; 26:659-78. [PMID: 16741673 PMCID: PMC4183211 DOI: 10.1007/s10571-006-9053-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 03/10/2006] [Indexed: 11/25/2022]
Abstract
1. We investigate here for the first time in primate brain the combinatorial expression of the three major functionally relevant proteins for catecholaminergic neurotransmission tyrosine hydroxylase (TH), aromatic acid acid decarboxylase (AADC), and the brain-specific isoform of the vesicular monoamine transporter, VMAT2, using highly specific antibodies and immunofluorescence with confocal microscopy to visualize combinatorial expression of these proteins. 2. In addition to classical TH, AADC, and VMAT2-copositive catecholaminergic neurons, two unique kinds of TH-positive neurons were identified based on co-expression of AADC and VMAT2. 3. TH and AADC co-positive, but VMAT2-negative neurons, are termed "nonexocytotic catecholaminergic TH neurons." These were found in striatum, olfactory bulb, cerebral cortex, area postrema, nucleus tractus solitarius, and in the dorsal motor nucleus of the vagus. 4. TH-positive neurons expressing neither AADC nor VMAT2 are termed "dopaergic TH neurons." We identified these neurons in supraoptic, paraventricular and periventricular hypothalamic nuclei, thalamic paraventicular nucleus, habenula, parabrachial nucleus, cerebral cortex and spinal cord. We were unable to identify any dopaergic (TH-positive, AADC-negative) neurons that expressed VMAT2, suggesting that regulatory mechanisms exist for shutting off VMAT2 expression in neurons that fail to biosynthesize its substrates. 5. In several cases, the corresponding TH phenotypes were identified in the adult rat, suggesting that this rodent is an appropriate experimental model for further investigation of these TH-positive neuronal cell groups in the adult central nervous system. Thus, no examples of TH and VMAT2 co-positive neurons lacking AADC expression were found in rodent adult nervous system. 6. In conclusion, the adult mammalian nervous system contains in addition to classical catecholaminergic neurons, cells that can synthesize dopamine, but cannot transport and store it in synaptic vesicles, and neurons that can synthesize only L-dopa and lack VMAT2 expression. The presence of these additional populations of TH-positive neurons in the adult primate CNS has implications for functional catecholamine neurotransmission, its derangement in disease and drug abuse, and its rescue by gene therapeutic maneuvers in neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Eberhard Weihe
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps-University Marburg, Marburg, Germany
| | - Candan Depboylu
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps-University Marburg, Marburg, Germany
| | - Burkhard Schütz
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps-University Marburg, Marburg, Germany
| | - Martin K.-H. Schäfer
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps-University Marburg, Marburg, Germany
| | - Lee E. Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Rockville Pike, Bethesda, Maryland
- To whom correspondence should be addressed at Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Building 49, Room 5A-68, 9000 Rockville Pike, Bethesda, Maryland 20892;
| |
Collapse
|
4
|
Habecker BA, Willison BD, Shi X, Woodward WR. Chronic depolarization stimulates norepinephrine transporter expression via catecholamines. J Neurochem 2006; 97:1044-51. [PMID: 16573647 DOI: 10.1111/j.1471-4159.2006.03792.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic depolarization increases norepinephrine (NE) uptake and expression of the norepinephrine transporter (NET) in sympathetic neurons, but the mechanisms are unknown. Depolarization of sympathetic neurons stimulates catecholamine synthesis, and several studies suggest that NET can be regulated by catecholamines. It is not clear if the depolarization-induced increase in NET is because of nerve activity per se, or is secondary to elevated catecholamines. To determine if induction of NET mRNA was a result of increased catecholamines, we used pharmacological manipulations to (i) inhibit tyrosine hydroxylase activity in neurons depolarized with 30 mm KCl, thereby preventing increased catecholamines, or (ii) stimulate tyrosine hydroxylase activity in the absence of depolarization. Inhibiting the depolarization-induced increase in catecholamines prevented the up-regulation of NET mRNA, but did not block the increase in tyrosine hydroxylase (TH) mRNA. Furthermore, stimulating catecholamine production in the absence of depolarization elevated NE uptake, NET protein, and NET mRNA in sympathetic neurons. Similarly, elevating endogenous catecholamines in SK-N-BE2M17 neuroblastoma cells increased NE uptake and NET expression. These data suggest that chronic depolarization of sympathetic neurons induces NET expression through increasing catecholamines, and that M17 neuroblastoma cells provide a model system in which to investigate catechol regulation of NET expression.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Physiology and Pharmacology, Oregon Health and Science University School of Medicine, Portland, Oregon 97239, USA.
| | | | | | | |
Collapse
|
5
|
Weihe E, Schütz B, Hartschuh W, Anlauf M, Schäfer MK, Eiden LE. Coexpression of cholinergic and noradrenergic phenotypes in human and nonhuman autonomic nervous system. J Comp Neurol 2006; 492:370-9. [PMID: 16217790 PMCID: PMC2593918 DOI: 10.1002/cne.20745] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has long been known that the sympathetic innervation of the sweat glands is cholinergic in most mammalian species and that, during development, rodent sympathetic cholinergic sweat gland innervation transiently expresses noradrenergic traits. We show here that some noradrenergic traits persist in cholinergic sympathetic innervation of the sweat glands in rodents but that lack of expression of the vesicular monoamine transporter renders these cells functionally nonnoradrenergic. Adult human sweat gland innervation, however, is not only cholinergic but coexpresses all of the proteins required for full noradrenergic function as well, including tyrosine hydroxylase, aromatic amino acid decarboxylase, dopamine beta-hydroxylase, and the vesicular monoamine transporter VMAT2. Thus, cholinergic/noradrenergic cotransmission is apparently a unique feature of the primate autonomic sympathetic nervous system. Furthermore, sympathetic neurons innervating specifically the cutaneous arteriovenous anastomoses (Hoyer-Grosser organs) in humans also possess a full cholinergic/noradrenergic cophenotype. Cholinergic/noradrenergic coexpression is absent from other portions of the human sympathetic nervous system but is extended in the parasympathetic nervous system to intrinsic neurons innervating the heart. These observations suggest a mode of autonomic regulation, based on corelease of norepinephrine and acetylcholine at parasympathocardiac, sudomotor, and selected vasomotor neuroeffector junctions, that is unique to the primate peripheral nervous system.
Collapse
Affiliation(s)
- Eberhard Weihe
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps-University Marburg, 35033 Marburg, Germany
| | - Burkhard Schütz
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps-University Marburg, 35033 Marburg, Germany
| | - Wolfgang Hartschuh
- Department of Dermatology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Martin Anlauf
- Institute for Pathology, University of Kiel, 24105 Kiel, Germany
| | - Martin K. Schäfer
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps-University Marburg, 35033 Marburg, Germany
| | - Lee E. Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, NIMH, NIH, Bethesda, MD 20892-4090, USA
| |
Collapse
|
6
|
Stanke M, Duong CV, Pape M, Geissen M, Burbach G, Deller T, Gascan H, Otto C, Parlato R, Schütz G, Rohrer H. Target-dependent specification of the neurotransmitter phenotype: cholinergic differentiation of sympathetic neurons is mediated in vivo by gp 130 signaling. Development 2005; 133:141-50. [PMID: 16319110 DOI: 10.1242/dev.02189] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sympathetic neurons are generated through a succession of differentiation steps that initially lead to noradrenergic neurons innervating different peripheral target tissues. Specific targets, like sweat glands in rodent footpads, induce a change from noradrenergic to cholinergic transmitter phenotype. Here, we show that cytokines acting through the gp 130 receptor are present in sweat glands. Selective elimination of the gp 130 receptor in sympathetic neurons prevents the acquisition of cholinergic and peptidergic features (VAChT, ChT1, VIP) without affecting other properties of sweat gland innervation. The vast majority of cholinergic neurons in the stellate ganglion, generated postnatally, are absent in gp 130-deficient mice. These results demonstrate an essential role of gp 130-signaling in the target-dependent specification of the cholinergic neurotransmitter phenotype.
Collapse
Affiliation(s)
- Matthias Stanke
- Research Group Developmental Neurobiology, Max-Planck-Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt/M, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Guidry G, Willison BD, Blakely RD, Landis SC, Habecker BA. Developmental expression of the high affinity choline transporter in cholinergic sympathetic neurons. Auton Neurosci 2005; 123:54-61. [PMID: 16278103 PMCID: PMC1407245 DOI: 10.1016/j.autneu.2005.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 10/03/2005] [Accepted: 10/11/2005] [Indexed: 12/29/2022]
Abstract
Choline uptake by the high affinity choline transporter (CHT) is the rate-limiting step in acetylcholine synthesis. Induction of CHT is therefore a critical step in cholinergic differentiation, and we examined the developmental expression of CHT in cholinergic sympathetic neurons that innervate rodent sweat glands. During postnatal development the earliest sympathetic axons in the rear footpads are noradrenergic, containing intense tyrosine hydroxylase immunoreactivity and lacking CHT-immunoreactivity (CHT-IR). By postnatal day 7 (P7) in mouse, and P10 in rat, weak CHT-IR appeared in axons associated with the sweat gland anlagen. CHT staining intensity increased during the following weeks in conjunction with plexus arborization and gland maturation. The pattern of CHT-immunoreactivity (CHT-IR) in the sweat gland innervation was similar to staining for the vesicular acetylcholine transporter and vasoactive intestinal peptide. Immunoblots of tissue from sympathectomized rats confirmed that most of the CHT in footpad was contained in sympathetic neurons. Although CHT expression has been reported in noradrenergic sympathetic neurons of the superior cervical ganglion, these data indicate that in the sympathetic neurons projecting to sweat glands CHT is present at detectable levels only after association with the glands.
Collapse
Affiliation(s)
- G Guidry
- Neural Development Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
8
|
Ito T, Suzuki T, Ichinose H. Nerve growth factor-induced expression of the GTP cyclohydrolase I gene via Ras/MEK pathway in PC12D cells. J Neurochem 2005; 95:563-9. [PMID: 16190874 DOI: 10.1111/j.1471-4159.2005.03414.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neurotrophins are essential for the development and survival of the catecholaminergic neurons. GTP cyclohydrolase I (GCH) is the first and rate-limiting enzyme in the biosynthesis of 5,6,7,8-tertahydrobiopterin (BH4), the required cofactor for tyrosine hydroxylase. Previously, we reported that TH requires the Ras/mitogen-activated protein kinase kinase (MEK) pathway for its induction by nerve growth factor (NGF). Here, we examined intracellular signals required for NGF-induced expression of the GCH gene in PC12D cells. The activity of GCH was increased up to 5-fold after the NGF treatment, and the increase was repressed by pretreatment with U0126, an MEK1/2 inhibitor, but not with protein kinase A (PKA), phosphoinositide 3-kinase (PI3K), p38 mitogen-activated protein kinase (MAPK), and c-Jun NH2-terminal kinase (JNK) inhibitors. Induction of GCH mRNA by NGF was also abolished by pretreatment with U0126. The human GCH promoter activity was significantly enhanced by NGF treatment. Deletion analysis showed that the 465-bp 5'-flanking region is responsible for NGF-enhanced promoter activity. These data suggest that the Ras-MEK pathway is required for coordinate expression of the GCH and TH genes induced by neurotrophins.
Collapse
Affiliation(s)
- Takehito Ito
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | |
Collapse
|
9
|
Xu Q, Wink DA, Colton CA. Nitric oxide production and regulation of neuronal NOS in tyrosine hydroxylase containing neurons. Exp Neurol 2004; 188:341-50. [PMID: 15246834 DOI: 10.1016/j.expneurol.2004.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 04/14/2004] [Accepted: 04/21/2004] [Indexed: 10/26/2022]
Abstract
CAD cells are a murine CNS catecholaminergic (tyrosine hydroxylase-positive; TH+) neuronal cell line that undergoes morphological differentiation to resemble CNS catecholaminergic neurons upon serum deprivation. We show here that CAD cells also express neuronal nitric oxide synthase (nNOS) mRNA and protein and produce readily measurable levels of NO. Since both NO and catecholamines (L-DOPA; dopamine; norepinephrine) are redox active molecules, their production within the same cell may affect the cell's vulnerability to insult. Thus, we examined the regulation of NO production by CAD cells and the effect of NO on cell survival. NO is generated in a dose-dependent fashion by treatment with agents (ionomycin; A23817; KCl) known to increase calcium entry across the cell membrane. The NO level can be increased further by pretreatment with sepiapterin, a membrane permeable precursor for BH4 synthesis, suggesting that the BH4 levels or access required for nNOS activation is limited in CAD cells. Reducing mitochondrial Ca2+ uptake using ruthenium red (RuR) increased ionomycin-mediated NO production over ionomycin alone and indicates a critical role for mitochondria in nNOS regulation. Cell death was significantly increased by ionomycin treatment alone or in conjunction with reduced mitochondrial Ca2+ uptake. However, NO was not the primary mediator of cell death since NOS inhibitors rescued only less than 10% of the cells. These data suggest that endogenous NO production by nNOS is not a major factor in CAD cell death under these conditions.
Collapse
Affiliation(s)
- Qing Xu
- Division of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
10
|
Li W, Knowlton D, Woodward WR, Habecker BA. Regulation of noradrenergic function by inflammatory cytokines and depolarization. J Neurochem 2003; 86:774-83. [PMID: 12859689 DOI: 10.1046/j.1471-4159.2003.01890.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although the sympathetic neurons innervating the heart are exposed to the inflammatory cytokines cardiotrophin-1 (CT-1), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFalpha) after myocardial infarction, the effects of these cytokines on noradrenergic function are not well understood. We used cultured sympathetic neurons to investigate the effects of these cytokines on catecholamine content, the tyrosine hydroxylase co-factor, tetrahydrobiopterin (BH4), and norepinephrine (NE) uptake. CT-1, but not IL-6 or TNFalpha, suppressed NE uptake and catecholamines in these neurons, whereas CT-1 and, to a lesser extent, IL-6 decreased BH4 content. CT-1 exerted these effects by decreasing tyrosine hydroxylase, GTP cyclohydrolase (GCH) and NE transporter mRNAs, while IL-6 lowered only GCH mRNA. The neurons innervating the heart are also activated by the central nervous system after myocardial infarction. We examined the combined effect of depolarization and cytokines on noradrenergic function. In CT-1-treated cells, depolarization caused a small increase in BH4 and NE uptake, and a large increase in catecholamines. These changes were accompanied by increased TH, GCH and NE transporter mRNAs. CT-1 and depolarization regulate expression of noradrenergic properties in an opposing manner, and the combined treatment results in elevated cellular catecholamines and decreased NE uptake relative to control cells.
Collapse
Affiliation(s)
- Wei Li
- Department of Physiology & Pharmacology, Oregon Health & Science University School of Medicine, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|