1
|
Young CA, Burt E, Munnamalai V. A cochlear progenitor pool influences patterning of the mammalian sensory epithelium via MYBL2. Development 2024; 151:dev202635. [PMID: 39254648 PMCID: PMC11423912 DOI: 10.1242/dev.202635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/01/2024] [Indexed: 09/11/2024]
Abstract
During embryonic development, Wnt signaling influences both proliferation and sensory formation in the cochlea. How this dual nature of Wnt signaling is coordinated is unknown. In this study, we define a novel role for a Wnt-regulated gene, Mybl2, which was already known to be important for proliferation, in determining the size and patterning of the sensory epithelium in the murine cochlea. Using a quantitative spatial analysis approach and analyzing Mybl2 loss-of-function, we show that Mybl2 promoted proliferation in the inner sulcus domain but limited the size of the sensory domain by influencing their adjoining boundary position via Jag1 regulation during development. Mybl2 loss-of-function simultaneously decreased proliferation in the inner sulcus and increased the size of the sensory domain, resulting in a wider sensory epithelium with ectopic inner hair cell formation during late embryonic stages. These data suggest that progenitor cells in the inner sulcus determine boundary formation and pattern the sensory epithelium via MYBL2.
Collapse
Affiliation(s)
- Caryl A. Young
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Emily Burt
- Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Vidhya Munnamalai
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| |
Collapse
|
2
|
Young CA, Burt E, Munnamalai V. Sensory progenitors influence patterning of the mammalian auditory sensory epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566920. [PMID: 38014307 PMCID: PMC10680690 DOI: 10.1101/2023.11.13.566920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
During embryonic development Wnt signaling has been shown to influence proliferation and sensory formation in the cochlea. How the dual nature of Wnt signaling is coordinated is unknown. In this study, we define a novel role for a Wnt regulated gene, Mybl2, which was already known to be important for proliferation, in influencing patterning and determining the size of the sensory epithelium in the murine cochlea. Using a quantitative spatial analysis approach and analyzing Mybl2 loss-of-function cochleas, we show that Mybl2 simultaneously specifies the progenitor niche and the size of the sensory domain, and influences the positioning of the medial sensory domain boundary via Jag1 regulation during the mid-gestational stages. Mybl2 conditional knockout resulted in a decrease of proliferation within the progenitor niche. During the late embryonic stages, conditional knockout of Mybl2 produced a wider sensory epithelium across the radial axis with an increase in ectopic inner hair cell formation. These data suggest that Mybl2 -positive progenitors play a role in boundary formation and patterning the sensory epithelium. Summary Statement Mybl2 is a Wnt-regulated gene encoding a transcription factor that is expressed in the cochlear progenitor niche and influences the boundary formation between the niche and the sensory domain during mid-cochlear developmental stages, thereby impacting the size of the sensory epithelium.
Collapse
|
3
|
Żak M, Støle TP, Plagnol V, Daudet N. Regulation of otic neurosensory specification by Notch and Wnt signalling: insights from RNA-seq screenings in the embryonic chicken inner ear. Front Cell Dev Biol 2023; 11:1245330. [PMID: 37900277 PMCID: PMC10600479 DOI: 10.3389/fcell.2023.1245330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
The Notch and Wnt signalling pathways play key roles in the formation of inner ear sensory organs, but little is known about their transcriptional effectors and targets in this context. Here, we perturbed Notch and Wnt activities in the embryonic chicken otic vesicle using pharmacological treatment or in ovo electroporation of plasmid DNA, and used RNA-Seq to analyse the resulting changes in gene expression. Compared to pharmacological treatments, in ovo electroporation changed the expression of fewer genes, a likely consequence of the variability and mosaicism of transfection. The pharmacological inhibition of Notch activity induced a rapid change in the expression of known effectors of this pathway and genes associated with neurogenesis, consistent with a switch towards an otic neurosensory fate. The Wnt datasets contained many genes associated with a neurosensory biological function, confirming the importance of this pathway for neurosensory specification in the otocyst. Finally, the results of a preliminary gain-of-function screening of selected transcription factors and Wnt signalling components suggest that the endogenous programs of otic neurosensory specification are very robust, and in general unaffected by the overexpression of a single factor. Altogether this work provides new insights into the effectors and candidate targets of the Notch and Wnt pathways in the early developing inner ear and could serve as a useful reference for future functional genomics experiments in the embryonic avian inner ear.
Collapse
Affiliation(s)
- Magdalena Żak
- UCL Ear Institute, University College London, London, United Kingdom
| | - Thea P. Støle
- UCL Ear Institute, University College London, London, United Kingdom
| | - Vincent Plagnol
- Genetics Institute, University College London, London, United Kingdom
| | - Nicolas Daudet
- UCL Ear Institute, University College London, London, United Kingdom
| |
Collapse
|
4
|
Thompson MJ, Young CA, Munnamalai V, Umulis DM. Early radial positional information in the cochlea is optimized by a precise linear BMP gradient and enhanced by SOX2. Sci Rep 2023; 13:8567. [PMID: 37237002 PMCID: PMC10219982 DOI: 10.1038/s41598-023-34725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Positional information encoded in signaling molecules is essential for early patterning in the prosensory domain of the developing cochlea. The sensory epithelium, the organ of Corti, contains an exquisite repeating pattern of hair cells and supporting cells. This requires precision in the morphogen signals that set the initial radial compartment boundaries, but this has not been investigated. To measure gradient formation and morphogenetic precision in developing cochlea, we developed a quantitative image analysis procedure measuring SOX2 and pSMAD1/5/9 profiles in mouse embryos at embryonic day (E)12.5, E13.5, and E14.5. Intriguingly, we found that the pSMAD1/5/9 profile forms a linear gradient up to the medial ~ 75% of the PSD from the pSMAD1/5/9 peak in the lateral edge during E12.5 and E13.5. This is a surprising activity readout for a diffusive BMP4 ligand secreted from a tightly constrained lateral region since morphogens typically form exponential or power-law gradient shapes. This is meaningful for gradient interpretation because while linear profiles offer the theoretically highest information content and distributed precision for patterning, a linear morphogen gradient has not yet been observed. Furthermore, this is unique to the cochlear epithelium as the pSMAD1/5/9 gradient is exponential in the surrounding mesenchyme. In addition to the information-optimized linear profile, we found that while pSMAD1/5/9 is stable during this timeframe, an accompanying gradient of SOX2 shifts dynamically. Last, through joint decoding maps of pSMAD1/5/9 and SOX2, we see that there is a high-fidelity mapping between signaling activity and position in the regions that will become Kölliker's organ and the organ of Corti. Mapping is ambiguous in the prosensory domain precursory to the outer sulcus. Altogether, this research provides new insights into the precision of early morphogenetic patterning cues in the radial cochlea prosensory domain.
Collapse
Affiliation(s)
- Matthew J Thompson
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN, 47907, USA
| | - Caryl A Young
- University of Maine, 168 College Ave, Orono, ME, 04469, USA
| | - Vidhya Munnamalai
- University of Maine, 168 College Ave, Orono, ME, 04469, USA.
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - David M Umulis
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN, 47907, USA.
| |
Collapse
|
5
|
Chen X, Wan H, Bai Y, Zhang Y, Hua Q. Advances in Understanding the Notch Signaling Pathway in the Cochlea. Curr Pharm Des 2023; 29:3266-3273. [PMID: 37990430 DOI: 10.2174/0113816128273532231103110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/17/2023] [Indexed: 11/23/2023]
Abstract
The cochlear structure is highly complex and specific, and its development is regulated by multiple signaling pathways. Abnormalities in cochlear development can lead to different degrees of loss of function. Hair cells (HCs), which are difficult to regenerate in the mature mammalian cochlea, are susceptible to damage from noise and ototoxic drugs, and damage to HCs can cause hearing loss to varying degrees. Notch, a classical developmental signaling molecule, has been shown to be closely associated with embryonic cochlear development and plays an important role in HC regeneration in mammals, suggesting that the Notch signaling pathway may be a potential therapeutic target for cochlear development and hearing impairment due to HC damage. In recent years, the important role of the Notch signaling pathway in the cochlea has received increasing attention. In this paper, we review the role of Notch signaling in cochlear development and HC regeneration, with the aim of providing new research ideas for the prevention and treatment of related diseases.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huanzhi Wan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yutong Bai
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuanyuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
6
|
Riley BB. Comparative assessment of Fgf's diverse roles in inner ear development: A zebrafish perspective. Dev Dyn 2021; 250:1524-1551. [PMID: 33830554 DOI: 10.1002/dvdy.343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023] Open
Abstract
Progress in understanding mechanisms of inner ear development has been remarkably rapid in recent years. The research community has benefited from the availability of several diverse model organisms, including zebrafish, chick, and mouse. The complexity of the inner ear has proven to be a challenge, and the complexity of the mammalian cochlea in particular has been the subject of intense scrutiny. Zebrafish lack a cochlea and exhibit a number of other differences from amniote species, hence they are sometimes seen as less relevant for inner ear studies. However, accumulating evidence shows that underlying cellular and molecular mechanisms are often highly conserved. As a case in point, consideration of the diverse functions of Fgf and its downstream effectors reveals many similarities between vertebrate species, allowing meaningful comparisons the can benefit the entire research community. In this review, I will discuss mechanisms by which Fgf controls key events in early otic development in zebrafish and provide direct comparisons with chick and mouse.
Collapse
Affiliation(s)
- Bruce B Riley
- Biology Department, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
7
|
Oliver BL, Young CA, Munnamalai V. Spatial and temporal expression of PORCN is highly dynamic in the developing mouse cochlea. Gene Expr Patterns 2021; 42:119214. [PMID: 34547456 DOI: 10.1016/j.gep.2021.119214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
The mammalian organ of Corti is a highly specialized sensory organ of the cochlea with a fine-grained pattern that is essential for auditory function. The sensory epithelium, the organ of Corti consists of a single row of inner hair cells and three rows of outer hair cells that are intercalated by support cells in a mosaic pattern. Previous studies show that the Wnt pathway regulates proliferation, promotes medial compartment formation in the cochlea, differentiation of the mechanosensory hair cells and axon guidance of Type II afferent neurons. WNT ligand expressions are highly dynamic throughout development but are insufficient to explain the roles of the Wnt pathway. We address a potential way for how WNTs specify the medial compartment by characterizing the expression of Porcupine (PORCN), an O-acyltransferase that is required for WNT secretion. We show PORCN expression across embryonic ages (E)12.5 - E14.5, E16.5, and postnatal day (P)1. Our results showed enriched PORCN in the medial domains during early stages of development, indicating that WNTs have a stronger influence on patterning of the medial compartment. PORCN was rapidly downregulated after E14.5, following the onset of sensory cell differentiation; residual expression remained in some hair cells and supporting cells. On E14.5 and E16.5, we also examined the spatial expression of Gsk3β, an inhibitor of canonical Wnt signaling to determine its potential role in radial patterning of the cochlea. Gsk3β was broadly expressed across the radial axis of the epithelium; therefore, unlikely to control WNT-mediated medial specification. In conclusion, the spatial expression of PORCN enriches WNT secretion from the medial domains of the cochlea to influence the specification of cell fates in the medial sensory domain.
Collapse
Affiliation(s)
| | - Caryl A Young
- The Jackson Laboratory, Bar Harbor, ME, 04609, United States; The University of Maine, Graduate School of Biomedical Sciences and Engineering, Orono, ME, 04469, United States
| | - Vidhya Munnamalai
- The Jackson Laboratory, Bar Harbor, ME, 04609, United States; The University of Maine, Graduate School of Biomedical Sciences and Engineering, Orono, ME, 04469, United States.
| |
Collapse
|
8
|
Bai H, Yang S, Xi C, Wang X, Xu J, Weng M, Zhao R, Jiang L, Gao X, Bing J, Zhang M, Zhang X, Han Z, Zeng S. Signaling pathways (Notch, Wnt, Bmp and Fgf) have additive effects on hair cell regeneration in the chick basilar papilla after streptomycin injury in vitro: Additive effects of signaling pathways on hair cell regeneration. Hear Res 2020; 401:108161. [PMID: 33422722 DOI: 10.1016/j.heares.2020.108161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/12/2020] [Accepted: 12/27/2020] [Indexed: 01/07/2023]
Abstract
Hair cells can be regenerated after damage by transdifferentiation in which a supporting cell directly differentiates into a hair cell without mitosis. However, such regeneration is at the cost of exhausting the support cells in the mammalian mature cochlea. Thus, more effective methods should be found to promote mitotic regeneration but partially preserve support cells after damage. To address the issue, we first injured hair cells in the chick basilar papillae (BP) by treatment with streptomycin in vitro. We then compared the mitotic regeneration on the neural side in the middle part of BP after treatment with a pharmacological inhibitor or agonist of the Notch (DAPT), Wnt (LiCl), Bmp (Noggin) or Fgf (SU5402) signaling pathway, with that after treatment with combinations of two or three inhibitors or agonist of these pathways. Our results indicate that treatments with a single inhibitor or agonist of the Notch, Wnt, Bmp or Fgf signaling pathway could significantly increase mitotic regeneration as well as direct transdifferentiation. The results also show that hair cells (Myosin 7a+), support cells (Sox2+) and mitotically regenerated hair cells (Myosin 7a+/Sox2+/BrdU+) increased significantly on the neural side in the middle part of BP after two or three combinations of the inhibition of Notch, Bmp or Fgf signaling pathway or the activation of Wnt signaling pathway, besides the reported coregulatory effects of Notch and Wnt signaling. The study of the effects of systematic combinations of pathway modulators provided more insight into hair cell regeneration from mitosis.
Collapse
Affiliation(s)
- Huanju Bai
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, 100875 China
| | - Siyuan Yang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158 China; Hainan Instistute of Science and Technology, Haikou, 571126 China
| | - Chao Xi
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, 100875 China
| | - Xi Wang
- Department of Otorhinolaryngolgoy, The General Hospital of the PLA Rocket Force, Beijing, 100088 China
| | - Jincao Xu
- Department of Otorhinolaryngolgoy, The General Hospital of the PLA Rocket Force, Beijing, 100088 China
| | - Menglu Weng
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, 100875 China
| | - Ruxia Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, 100875 China
| | - Lingling Jiang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, 100875 China
| | - Xue Gao
- Department of Otorhinolaryngolgoy, The General Hospital of the PLA Rocket Force, Beijing, 100088 China
| | - Jie Bing
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, 100875 China
| | - Meiguang Zhang
- Department of Otorhinolaryngolgoy, The General Hospital of the PLA Rocket Force, Beijing, 100088 China
| | - Xinwen Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158 China
| | - Zhongming Han
- Department of Otorhinolaryngolgoy, The General Hospital of the PLA Rocket Force, Beijing, 100088 China; Department of Otorhinolaryngolgoy, He Bei YanDa Hospital, Hebei Medical University, Hebei, China 065201.
| | - Shaoju Zeng
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, 100875 China.
| |
Collapse
|
9
|
Notch Signalling: The Multitask Manager of Inner Ear Development and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:129-157. [DOI: 10.1007/978-3-030-34436-8_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Munnamalai V, Fekete DM. The acquisition of positional information across the radial axis of the cochlea. Dev Dyn 2019; 249:281-297. [PMID: 31566832 DOI: 10.1002/dvdy.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Vidhya Munnamalai
- The Jackson Laboratory Bar Harbor Maine
- Graduate Program of Biomedical Sciences and EngineeringUniversity of Maine Orono Maine
- The Neuroscience ProgramSackler School of Biomedical Sciences, Tufts University Boston Massachusetts
| | - Donna M. Fekete
- Department of Biological SciencesPurdue University West Lafayette Indiana
- Purdue Institute for Integrative Neuroscience West Lafayette Indiana
- Purdue Center for Cancer Research West Lafayette Indiana
| |
Collapse
|
11
|
Giffen KP, Liu H, Kramer KL, He DZ. Expression of Protein-Coding Gene Orthologs in Zebrafish and Mouse Inner Ear Non-sensory Supporting Cells. Front Neurosci 2019; 13:1117. [PMID: 31680844 PMCID: PMC6813431 DOI: 10.3389/fnins.2019.01117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/03/2019] [Indexed: 11/13/2022] Open
Abstract
Non-mammalian vertebrates, including zebrafish, retain the ability to regenerate hair cells (HCs) due to unknown molecular mechanisms that regulate proliferation and conversion of non-sensory supporting cells (nsSCs) to HCs. This regenerative capacity is not conserved in mammals. Identification of uniquely expressed orthologous genes in zebrafish nsSCs may reveal gene candidates involved in the proliferation and transdifferentiation of zebrafish nsSCs to HCs in the inner ear. A list of orthologous protein-coding genes was generated based on an Ensembl Biomart comparison of the zebrafish and mouse genomes. Our previously published RNA-seq-based transcriptome datasets of isolated inner ear zebrafish nsSCs and HCs, and mouse non-sensory supporting pillar and Deiters’ cells, and HCs, were merged to analyze gene expression patterns between the two species. Out of 17,498 total orthologs, 11,752 were expressed in zebrafish nsSCs and over 10,000 orthologs were expressed in mouse pillar and Deiters’ cells. Differentially expressed genes common among the zebrafish nsSCs and mouse pillar and Deiters’ cells, compared to species-specific HCs, included 306 downregulated and 314 upregulated genes; however, over 1,500 genes were uniquely upregulated in zebrafish nsSCs. Functional analysis of genes uniquely expressed in nsSCs identified several transcription factors associated with cell fate determination, cell differentiation and nervous system development, indicating inherent molecular properties of nsSCs that promote self-renewal and transdifferentiation into new HCs. Our study provides a means of characterizing these orthologous genes, involved in proliferation and transdifferentiation of nsSCs to HCs in zebrafish, which may lead to identification of potential targets for HC regeneration in mammals.
Collapse
Affiliation(s)
- Kimberlee P Giffen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Kenneth L Kramer
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - David Z He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| |
Collapse
|
12
|
Yang LM, Cheah KSE, Huh SH, Ornitz DM. Sox2 and FGF20 interact to regulate organ of Corti hair cell and supporting cell development in a spatially-graded manner. PLoS Genet 2019; 15:e1008254. [PMID: 31276493 PMCID: PMC6636783 DOI: 10.1371/journal.pgen.1008254] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/17/2019] [Accepted: 06/18/2019] [Indexed: 01/24/2023] Open
Abstract
The mouse organ of Corti, housed inside the cochlea, contains hair cells and supporting cells that transduce sound into electrical signals. These cells develop in two main steps: progenitor specification followed by differentiation. Fibroblast Growth Factor (FGF) signaling is important in this developmental pathway, as deletion of FGF receptor 1 (Fgfr1) or its ligand, Fgf20, leads to the loss of hair cells and supporting cells from the organ of Corti. However, whether FGF20-FGFR1 signaling is required during specification or differentiation, and how it interacts with the transcription factor Sox2, also important for hair cell and supporting cell development, has been a topic of debate. Here, we show that while FGF20-FGFR1 signaling functions during progenitor differentiation, FGFR1 has an FGF20-independent, Sox2-dependent role in specification. We also show that a combination of reduction in Sox2 expression and Fgf20 deletion recapitulates the Fgfr1-deletion phenotype. Furthermore, we uncovered a strong genetic interaction between Sox2 and Fgf20, especially in regulating the development of hair cells and supporting cells towards the basal end and the outer compartment of the cochlea. To explain this genetic interaction and its effects on the basal end of the cochlea, we provide evidence that decreased Sox2 expression delays specification, which begins at the apex of the cochlea and progresses towards the base, while Fgf20-deletion results in premature onset of differentiation, which begins near the base of the cochlea and progresses towards the apex. Thereby, Sox2 and Fgf20 interact to ensure that specification occurs before differentiation towards the cochlear base. These findings reveal an intricate developmental program regulating organ of Corti development along the basal-apical axis of the cochlea.
Collapse
Affiliation(s)
- Lu M. Yang
- Department of Developmental Biology; Washington University School of Medicine; St. Louis, Missouri, United States of America
| | - Kathryn S. E. Cheah
- School of Biomedical Sciences; The University of Hong Kong; Pokfulam, Hong Kong, China
| | - Sung-Ho Huh
- Department of Developmental Biology; Washington University School of Medicine; St. Louis, Missouri, United States of America
- Holland Regenerative Medicine Program, and the Department of Neurological Sciences; University of Nebraska Medical Center; Omaha, Nebraska, United States of America
- * E-mail: (DMO); (SH)
| | - David M. Ornitz
- Department of Developmental Biology; Washington University School of Medicine; St. Louis, Missouri, United States of America
- * E-mail: (DMO); (SH)
| |
Collapse
|
13
|
Spatiotemporal coordination of cellular differentiation and tissue morphogenesis in organ of Corti development. Med Mol Morphol 2018. [PMID: 29536272 DOI: 10.1007/s00795-018-0185-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The organ of Corti, an acoustic sensory organ, is a specifically differentiated epithelium of the cochlear duct, which is a part of the membranous labyrinth in the inner ear. Cells in the organ of Corti are generally classified into two kinds; hair cells, which transduce the mechanical stimuli of sound to the cell membrane electrical potential differences, and supporting cells. These cells emerge from homogeneous prosensory epithelium through cell fate determination and differentiation. In the organ of Corti organogenesis, cell differentiation and the rearrangement of their position proceed in parallel, resulting in a characteristic alignment of mature hair cells and supporting cells. Recently, studies have focused on the signaling molecules and transcription factors that regulate cell fate determination and differentiation processes. In comparison, less is known about the mechanism of the formation of the tissue architecture; however, this is important in the morphogenesis of the organ of Corti. Thus, this review will introduce previous findings that focus on how cell fate determination, cell differentiation, and whole tissue morphogenesis proceed in a spatiotemporally and finely coordinated manner. This overview provides an insight into the regulatory mechanisms of the coordination in the developing organ of Corti.
Collapse
|
14
|
Hypoxia downregulates the angiogenesis in human placenta via Notch1 signaling pathway. ACTA ACUST UNITED AC 2017; 37:541-546. [PMID: 28786053 DOI: 10.1007/s11596-017-1770-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/24/2017] [Indexed: 12/30/2022]
Abstract
Placentation, which is critical for maternal-fetal exchange of nutrients and gases, is a complicated process comprising stepwise vasculogenesis and angiogenesis. Hypoxia caused by impaired trophoblast invasion may cause various angiogenic abnormalities in human placenta. The Notch1 signaling pathway plays an important role in the regulation of angiogenesis. The angiogenesis of human umbilical vein endothelial cells (HUVECs) under normal/hypoxic conditions and the mRNA/protein level of Notch1/Dell4/Jagged1 were investigated in this study. The effects of DAPT/JAG-1 on the migration of HUVECs were also assessed by cell wound healing assay, so as to discover the possible role of notch1 signaling pathway in the angiogenesis of human placenta. The results showed that angiogenic ability of HUVECs was seriously reduced under hypoxic conditions. The mRNA and protein levels of Notch1/Dell4/Jagged1 were decreased in the hypoxic group compared to the control one. In addition, the migration capability of HUVECs was significantly obstructed when treated with DAPT and under hopoxic condition, but promoted when treated with JAG-1. The above results demonstrate that hypoxia downregulates the angiogenesis in human placenta via Notch1 signaling pathway.
Collapse
|
15
|
Chen Q, Quan Y, Wang N, Xie C, Ji Z, He H, Chai R, Li H, Yin S, Chin YE, Wei X, Gao WQ. Inactivation of STAT3 Signaling Impairs Hair Cell Differentiation in the Developing Mouse Cochlea. Stem Cell Reports 2017; 9:231-246. [PMID: 28669599 PMCID: PMC5511372 DOI: 10.1016/j.stemcr.2017.05.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 11/19/2022] Open
Abstract
Although STAT3 signaling is demonstrated to regulate sensory cell differentiation and regeneration in the zebrafish, its exact role is still unclear in mammalian cochleae. Here, we report that STAT3 and its activated form are specifically expressed in hair cells during mouse cochlear development. Importantly, conditional cochlear deletion of Stat3 leads to an inhibition on hair cell differentiation in mice in vivo and in vitro. By cell fate analysis, inactivation of STAT3 signaling shifts the cell division modes from asymmetric to symmetric divisions from supporting cells. Moreover, inhibition of Notch signaling stimulates STAT3 phosphorylation, and inactivation of STAT3 signaling attenuates production of supernumerary hair cells induced by a Notch pathway inhibitor. Our findings highlight an important role of the STAT3 signaling during mouse cochlear hair cell differentiation and may have clinical implications for the recovery of hair cell loss-induced hearing impairment.
Collapse
Affiliation(s)
- Qianqian Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yizhou Quan
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Naitao Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chengying Xie
- Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhongzhong Ji
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hao He
- Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; The Affiliated Six People's Hospital, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Renjie Chai
- MOE Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Huawei Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
| | - Shankai Yin
- The Affiliated Six People's Hospital, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Y Eugene Chin
- China Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences-Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Xunbin Wei
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; The Affiliated Six People's Hospital, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
16
|
Mammalian Cochlear Hair Cell Regeneration and Ribbon Synapse Reformation. Neural Plast 2016; 2016:2523458. [PMID: 28119785 PMCID: PMC5227174 DOI: 10.1155/2016/2523458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 01/29/2023] Open
Abstract
Hair cells (HCs) are the sensory preceptor cells in the inner ear, which play an important role in hearing and balance. The HCs of organ of Corti are susceptible to noise, ototoxic drugs, and infections, thus resulting in permanent hearing loss. Recent approaches of HCs regeneration provide new directions for finding the treatment of sensor neural deafness. To have normal hearing function, the regenerated HCs must be reinnervated by nerve fibers and reform ribbon synapse with the dendrite of spiral ganglion neuron through nerve regeneration. In this review, we discuss the research progress in HC regeneration, the synaptic plasticity, and the reinnervation of new regenerated HCs in mammalian inner ear.
Collapse
|
17
|
Munnamalai V, Fekete DM. Notch-Wnt-Bmp crosstalk regulates radial patterning in the mouse cochlea in a spatiotemporal manner. Development 2016; 143:4003-4015. [PMID: 27633988 DOI: 10.1242/dev.139469] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/01/2016] [Indexed: 01/04/2023]
Abstract
The sensory cells of the mammalian organ of Corti assume a precise mosaic arrangement during embryonic development. Manipulation of Wnt signaling can modulate the proliferation of cochlear progenitors, but whether Wnts are responsible for patterning compartments, or specific hair cells within them, is unclear. To address how the precise timing of Wnt signaling impacts patterning across the radial axis, mouse cochlear cultures were initiated at embryonic day 12.5 and subjected to pharmacological treatments at different stages. Early changes in major patterning genes were assessed to understand the mechanisms underlying alterations of compartments. Results show that Wnt activation can promote medial cell fates by regulating medially expressed Notch genes in a spatiotemporal manner. Wnts can also suppress lateral cell fates by antagonizing Bmp4 expression. Perturbation of the Notch and Bmp pathways revealed which secondary effects were linked to these pathways. Importantly, these effects on cochlear development are dependent on the timing of drug delivery. In conclusion, Wnt signaling in the cochlea influences patterning through complex crosstalk with the Notch and Bmp pathways at several stages of embryonic development.
Collapse
Affiliation(s)
- Vidhya Munnamalai
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Donna M Fekete
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA .,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
18
|
Role of Wnt and Notch signaling in regulating hair cell regeneration in the cochlea. Front Med 2016; 10:237-49. [PMID: 27527363 DOI: 10.1007/s11684-016-0464-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/12/2016] [Indexed: 01/22/2023]
Abstract
Sensory hair cells in the inner ear are responsible for sound recognition. Damage to hair cells in adult mammals causes permanent hearing impairment because these cells cannot regenerate. By contrast, newborn mammals possess limited regenerative capacity because of the active participation of various signaling pathways, including Wnt and Notch signaling. The Wnt and Notch pathways are highly sophisticated and conserved signaling pathways that control multiple cellular events necessary for the formation of sensory hair cells. Both signaling pathways allow resident supporting cells to regenerate hair cells in the neonatal cochlea. In this regard, Wnt and Notch signaling has gained increased research attention in hair cell regeneration. This review presents the current understanding of the Wnt and Notch signaling pathways in the auditory portion of the inner ear and discusses the possibilities of controlling these pathways with the hair cell fate determiner Atoh1 to regulate hair cell regeneration in the mammalian cochlea.
Collapse
|
19
|
Kniss JS, Jiang L, Piotrowski T. Insights into sensory hair cell regeneration from the zebrafish lateral line. Curr Opin Genet Dev 2016; 40:32-40. [PMID: 27266973 DOI: 10.1016/j.gde.2016.05.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/09/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
Loss of mechanosensory hair cells in the inner ear leads to loss of hearing. In humans this results in permanent deafness, as mammals are largely unable to regenerate hair cells. In contrast, zebrafish robustly regenerate hair cells in the sensory lateral line and ear and recent gene expression and time-lapse analyses of cell behaviors at the single cell level have greatly advanced our understanding of the mechanisms responsible for hair cell regeneration. In the lateral line, hair cell regeneration is controlled via dynamic interactions between Notch and Wnt/β-catenin signaling, and likely also between Fgf and the retinoic acid signaling pathways. Less is known about what initiates regeneration and we discuss potential pathways that may trigger proliferation after hair cell damage.
Collapse
Affiliation(s)
- Jonathan S Kniss
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Linjia Jiang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
20
|
Glass DS, Jin X, Riedel-Kruse IH. Signaling Delays Preclude Defects in Lateral Inhibition Patterning. PHYSICAL REVIEW LETTERS 2016; 116:128102. [PMID: 27058104 DOI: 10.1103/physrevlett.116.128102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 06/05/2023]
Abstract
Lateral inhibition represents a well-studied example of biology's ability to self-organize multicellular spatial patterns with single-cell precision. Despite established biochemical mechanisms for lateral inhibition (e.g., Delta-Notch), it remains unclear how cell-cell signaling delays inherent to these mechanisms affect patterning outcomes. We investigate a compact model of lateral inhibition highlighting these delays and find, remarkably, that long delays can ensure defect-free patterning. This effect is underscored by an interplay with synchronous oscillations, cis interactions, and signaling strength. Our results suggest that signaling delays, though previously posited as a source of developmental defects, may in fact be a general regulatory knob for tuning developmental robustness.
Collapse
Affiliation(s)
- David S Glass
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Xiaofan Jin
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
21
|
Basch ML, Brown RM, Jen H, Groves AK. Where hearing starts: the development of the mammalian cochlea. J Anat 2016; 228:233-54. [PMID: 26052920 PMCID: PMC4718162 DOI: 10.1111/joa.12314] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2015] [Indexed: 12/11/2022] Open
Abstract
The mammalian cochlea is a remarkable sensory organ, capable of perceiving sound over a range of 10(12) in pressure, and discriminating both infrasonic and ultrasonic frequencies in different species. The sensory hair cells of the mammalian cochlea are exquisitely sensitive, responding to atomic-level deflections at speeds on the order of tens of microseconds. The number and placement of hair cells are precisely determined during inner ear development, and a large number of developmental processes sculpt the shape, size and morphology of these cells along the length of the cochlear duct to make them optimally responsive to different sound frequencies. In this review, we briefly discuss the evolutionary origins of the mammalian cochlea, and then describe the successive developmental processes that lead to its induction, cell cycle exit, cellular patterning and the establishment of topologically distinct frequency responses along its length.
Collapse
Affiliation(s)
- Martin L. Basch
- Department of NeuroscienceBaylor College of MedicineHoustonTXUSA
| | - Rogers M. Brown
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
| | - Hsin‐I Jen
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
| | - Andrew K. Groves
- Department of NeuroscienceBaylor College of MedicineHoustonTXUSA
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
22
|
A central to peripheral progression of cell cycle exit and hair cell differentiation in the developing mouse cristae. Dev Biol 2016; 411:1-14. [PMID: 26826497 DOI: 10.1016/j.ydbio.2016.01.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 01/15/2023]
Abstract
The inner ear contains six distinct sensory organs that each maintains some ability to regenerate hair cells into adulthood. In the postnatal cochlea, there appears to be a relationship between the developmental maturity of a region and its ability to regenerate as postnatal regeneration largely occurs in the apical turn, which is the last region to differentiate and mature during development. In the mature cristae there are also regional differences in regenerative ability, which led us to hypothesize that there may be a general relationship between the relative maturity of a region and the regenerative competence of that region in all of the inner ear sensory organs. By analyzing adult mouse cristae labeled embryonically with BrdU, we found that hair cell birth starts in the central region and progresses to the periphery with age. Since the peripheral region of the adult cristae also maintains active Notch signaling and some regenerative competence, these results are consistent with the hypothesis that the last regions to develop retain some of their regenerative ability into adulthood. Further, by analyzing embryonic day 14.5 inner ears we provide evidence for a wave of hair cell birth along the longitudinal axis of the cristae from the central regions to the outer edges. Together with the data from the adult inner ears labeled with BrdU as embryos, these results suggest that hair cell differentiation closely follows cell cycle exit in the cristae, unlike in the cochlea where they are uncoupled.
Collapse
|
23
|
Campbell DP, Chrysostomou E, Doetzlhofer A. Canonical Notch signaling plays an instructive role in auditory supporting cell development. Sci Rep 2016; 6:19484. [PMID: 26786414 PMCID: PMC4726253 DOI: 10.1038/srep19484] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023] Open
Abstract
The auditory sensory epithelium, composed of mechano-sensory hair cells (HCs) and highly specialized glial-like supporting cells (SCs), is critical for our ability to detect sound. SCs provide structural and functional support to HCs and play an essential role in cochlear development, homeostasis and repair. Despite their importance, however, surprisingly little is known about the molecular mechanisms guiding SC differentiation. Here, we provide evidence that in addition to its well-characterized inhibitory function, canonical Notch signaling plays a positive, instructive role in the differentiation of SCs. Using γ-secretase inhibitor DAPT to acutely block canonical Notch signaling, we identified a cohort of Notch-regulated SC-specific genes, with diverse functions in cell signaling, cell differentiation, neuronal innervation and synaptogenesis. We validated the newly identified Notch-regulated genes in vivo using genetic gain (Emx2Cre/+; Rosa26N1ICD/+) and loss-of-function approaches (Emx2Cre/+; Rosa26DnMAML1/+). Furthermore, we demonstrate that Notch over-activation in the differentiating murine cochlea (Emx2Cre/+; Rosa26N1ICD/+) actively promotes a SC-specific gene expression program. Finally, we show that outer SCs –so called Deiters’ cells are selectively lost by prolonged reduction (Emx2Cre/+; Rosa26DnMAML1/+/+) or abolishment of canonical Notch signaling (Fgfr3-iCreER; Rbpj−/Δ), indicating a critical role for Notch signaling in Deiters’ cell development.
Collapse
Affiliation(s)
- Dean P Campbell
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine Baltimore, MD 21205, USA.,Center for Sensory Biology, Johns Hopkins University, School of Medicine Baltimore, MD 21205, USA
| | - Elena Chrysostomou
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine Baltimore, MD 21205, USA.,Center for Sensory Biology, Johns Hopkins University, School of Medicine Baltimore, MD 21205, USA
| | - Angelika Doetzlhofer
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine Baltimore, MD 21205, USA.,Center for Sensory Biology, Johns Hopkins University, School of Medicine Baltimore, MD 21205, USA
| |
Collapse
|
24
|
Abstract
The development of the mammalian cochlea is a complex process involving several intersecting signaling pathways to ultimately generate its highly organized cellular architecture. In humans, and in the mouse, there is one row of inner hair cells aligned next to three rows of outer hair cells. The support cells intercalate between the hair cells to create a cellular mosaic across the organ of Corti (OC). Organotypic culture of the cochlea is a valuable technique for investigating the early stages of OC development. Cultures can be established at proliferative stages and maintained in vitro until cellular differentiation commences. It is straightforward to monitor differentiation in response to perturbations of key signaling pathways using pharmacological agents. While postnatal cochlea organ cultures have already been adapted for in vitro studies, it is more challenging to establish cultures at early embryonic stages due to the small size of the organ primordium. The protocol described in this chapter is permissive for all stages of development from E12 cochleas to day 5 neonatal murine cochleas, allowing culture survival up to 2 weeks in vitro.
Collapse
|
25
|
Atkinson PJ, Huarcaya Najarro E, Sayyid ZN, Cheng AG. Sensory hair cell development and regeneration: similarities and differences. Development 2015; 142:1561-71. [PMID: 25922522 DOI: 10.1242/dev.114926] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sensory hair cells are mechanoreceptors of the auditory and vestibular systems and are crucial for hearing and balance. In adult mammals, auditory hair cells are unable to regenerate, and damage to these cells results in permanent hearing loss. By contrast, hair cells in the chick cochlea and the zebrafish lateral line are able to regenerate, prompting studies into the signaling pathways, morphogen gradients and transcription factors that regulate hair cell development and regeneration in various species. Here, we review these findings and discuss how various signaling pathways and factors function to modulate sensory hair cell development and regeneration. By comparing and contrasting development and regeneration, we also highlight the utility and limitations of using defined developmental cues to drive mammalian hair cell regeneration.
Collapse
Affiliation(s)
- Patrick J Atkinson
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elvis Huarcaya Najarro
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zahra N Sayyid
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan G Cheng
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
26
|
Nakajima Y. Signaling regulating inner ear development: cell fate determination, patterning, morphogenesis, and defects. Congenit Anom (Kyoto) 2015; 55:17-25. [PMID: 25040109 DOI: 10.1111/cga.12072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 06/07/2014] [Indexed: 12/28/2022]
Abstract
The membranous labyrinth of the inner ear is a highly complex organ that detects sound and balance. Developmental defects in the inner ear cause congenital hearing loss and balance disorders. The membranous labyrinth consists of three semicircular ducts, the utricle, saccule, and endolymphatic ducts, and the cochlear duct. These complex structures develop from the simple otic placode, which is established in the cranial ectoderm adjacent to the neural crest at the level of the hindbrain at the early neurula stage. During development, the otic placode invaginates to form the otic vesicle, which subsequently gives rise to neurons for the vestibulocochlear ganglion, the non-sensory and sensory epithelia of the membranous labyrinth that includes three ampullary crests, two maculae, and the organ of Corti. Combined paracrine and autocrine signals including fibroblast growth factor, Wnt, retinoic acid, hedgehog, and bone morphogenetic protein regulate fate determination, axis formation, and morphogenesis in the developing inner ear. Juxtacrine signals mediated by Notch pathways play a role in establishing the sensory epithelium, which consists of mechanosensory hair cells and supporting cells. The highly differentiated organ of Corti, which consists of uniformly oriented inner/outer hair cells and specific supporting cells, develops during fetal development. Developmental alterations/arrest causes congenital malformations in the inner ear in a spatiotemporal-restricted manner. A clearer understanding of the mechanisms underlying inner ear development is important not only for the management of patients with congenital inner ear malformations, but also for the development of regenerative therapy for impaired function.
Collapse
Affiliation(s)
- Yuji Nakajima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
27
|
Ma WR, Zhang J. Jag1b is essential for patterning inner ear sensory cristae by regulating anterior morphogenetic tissue separation and preventing posterior cell death. Development 2015; 142:763-73. [DOI: 10.1242/dev.113662] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sensory patches of the vertebrate inner ear, which contain hair cells and supporting cells, are essential for hearing and balance functions. How the stereotypically organized sensory patches are formed remains to be determined. In this study, we isolated a zebrafish mutant in which the jag1b gene is disrupted by an EGFP insertion. Loss of Jag1b causes cell death in the developing posterior crista and results in downregulation of fgf10a in the posterior prosensory cells. Inhibition of FGFR activity in wild-type embryos also causes loss of the posterior crista, suggesting that Fgf10a mediates Jag1b activity. By contrast, in the anterior prosensory domain, Jag1b regulates separation of a single morphogenetic field into anterior and lateral cristae by flattening cells destined to form a nonsensory epithelium between the two cristae. MAPK activation in the nonsensory epithelium precursors is required for the separation. In the jag1b mutant, MAPK activation and cell flattening are extended to anterior crista primordia, causing loss of anterior crista. More importantly, inhibition of MAPK activity, which blocks the differentiation of nonsensory epithelial cells, generated a fused large crista and extra hair cells. Thus, Jag1b uses two distinct mechanisms to form three sensory cristae in zebrafish.
Collapse
Affiliation(s)
- Wei-Rui Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
28
|
Petrovic J, Gálvez H, Neves J, Abelló G, Giraldez F. Differential regulation of Hes/Hey genes during inner ear development. Dev Neurobiol 2014; 75:703-20. [PMID: 25363712 DOI: 10.1002/dneu.22243] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/28/2014] [Indexed: 11/09/2022]
Abstract
Notch signaling plays a crucial role during inner ear development and regeneration. Hes/Hey genes encode for bHLH transcription factors identified as Notch targets. We have studied the expression and regulation of Hes/Hey genes during inner ear development in the chicken embryo. Among several Hes/Hey genes examined, only Hey1 and Hes5 map to the sensory regions, although with salient differences. Hey1 expression follows Jag1 expression except at early prosensory stages while Hes5 expression corresponds well to Dl1 expression throughout otic development. Although Hey1 and Hes5 are direct Notch downstream targets, they differ in the level of Notch required for activation. Moreover, they also differ in mRNA stability, showing different temporal decays after Notch blockade. In addition, Bmp, Wnt and Fgf pathways also modify Hey1 and Hes5 expression in the inner ear. Particularly, the Wnt pathway modulates Hey1 and Jag1 expression. Finally, gain of function experiments show that Hey1 and Hes5 cross-regulate each other in a complex manner. Both Hey1 and Hes5 repress Dl1 and Hes5 expression, suggesting that they prevent the transition to differentiation stages, probably by preventing Atoh1 expression. In spite of its association with Jag1, Hey1 does not seem to be instrumental for lateral induction as it does not promote Jag1 expression. We suggest that, besides being both targets of Notch, Hey1 and Hes5 are subject to a rather complex regulation that includes the stability of their transcripts, cross regulation and other signaling pathways.
Collapse
Affiliation(s)
- Jelena Petrovic
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Hector Gálvez
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Joana Neves
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Gina Abelló
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Fernando Giraldez
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| |
Collapse
|
29
|
Lush ME, Piotrowski T. Sensory hair cell regeneration in the zebrafish lateral line. Dev Dyn 2014; 243:1187-202. [PMID: 25045019 DOI: 10.1002/dvdy.24167] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/12/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. RESULTS Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. CONCLUSIONS Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish.
Collapse
Affiliation(s)
- Mark E Lush
- Stowers Institute for Medical Research, Kansas City, Missouri
| | | |
Collapse
|
30
|
Hadad Y, Cahaner A, Halevy O. Featherless and feathered broilers under control versus hot conditions. 2. Breast muscle development and growth in pre- and posthatch periods. Poult Sci 2014; 93:1076-88. [DOI: 10.3382/ps.2013-03592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
31
|
Ono K, Kita T, Sato S, O'Neill P, Mak SS, Paschaki M, Ito M, Gotoh N, Kawakami K, Sasai Y, Ladher RK. FGFR1-Frs2/3 signalling maintains sensory progenitors during inner ear hair cell formation. PLoS Genet 2014; 10:e1004118. [PMID: 24465223 PMCID: PMC3900395 DOI: 10.1371/journal.pgen.1004118] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 12/02/2013] [Indexed: 12/11/2022] Open
Abstract
Inner ear mechanosensory hair cells transduce sound and balance information. Auditory hair cells emerge from a Sox2-positive sensory patch in the inner ear epithelium, which is progressively restricted during development. This restriction depends on the action of signaling molecules. Fibroblast growth factor (FGF) signalling is important during sensory specification: attenuation of Fgfr1 disrupts cochlear hair cell formation; however, the underlying mechanisms remain unknown. Here we report that in the absence of FGFR1 signaling, the expression of Sox2 within the sensory patch is not maintained. Despite the down-regulation of the prosensory domain markers, p27Kip1, Hey2, and Hes5, progenitors can still exit the cell cycle to form the zone of non-proliferating cells (ZNPC), however the number of cells that form sensory cells is reduced. Analysis of a mutant Fgfr1 allele, unable to bind to the adaptor protein, Frs2/3, indicates that Sox2 maintenance can be regulated by MAP kinase. We suggest that FGF signaling, through the activation of MAP kinase, is necessary for the maintenance of sensory progenitors and commits precursors to sensory cell differentiation in the mammalian cochlea. The ability of our brain to perceive sound depends on its conversion into electrical impulses within the cochlea of the inner ear. The cochlea has dedicated specialized cells, called inner ear hair cells, which register sound energy. Environmental effects, genetic disorders or just the passage of time can damage these cells, and the damage impairs our ability to hear. If we could understand how these cells develop, we might be able to exploit this knowledge to generate new hair cells. In this study we address an old problem: how do signals from the fibroblast growth factor (FGF) family control hair cell number? We used mice in which one of the receptors for FGF (Fgfr1) is mutated and found that the expression of a stem cell protein, Sox2 is not maintained. Sox2 generally acts to keep precursors in the cochlea in a pre-hair cell state. However, in mutant mice Sox2 expression is transient, diminishing the ability of precursors to commit to a hair cell fate. These findings suggest that it may be possible to amplify the number of hair cell progenitors in culture by tuning FGF activity, providing a route to replace damaged inner ear hair cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Cell Cycle
- Cell Differentiation/genetics
- Cochlea/growth & development
- Cochlea/metabolism
- Ear, Inner/cytology
- Ear, Inner/growth & development
- Epithelium/growth & development
- Epithelium/metabolism
- Gene Expression Regulation, Developmental
- Hair Cells, Auditory, Inner/cytology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Protein Binding
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- SOXB1 Transcription Factors/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Kazuya Ono
- Sensory Development, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
- Neurogenesis and Organogenesis, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Tomoko Kita
- Sensory Development, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Shigeru Sato
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Paul O'Neill
- Sensory Development, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Siu-Shan Mak
- Sensory Development, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Marie Paschaki
- Sensory Development, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Masataka Ito
- Department of Anatomy, National Defense Medical College, Tokorozawa, Japan
| | - Noriko Gotoh
- Division of Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yoshiki Sasai
- Neurogenesis and Organogenesis, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Raj K. Ladher
- Sensory Development, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
- * E-mail:
| |
Collapse
|
32
|
Kiernan AE. Notch signaling during cell fate determination in the inner ear. Semin Cell Dev Biol 2013; 24:470-9. [PMID: 23578865 DOI: 10.1016/j.semcdb.2013.04.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/27/2013] [Accepted: 04/02/2013] [Indexed: 01/05/2023]
Abstract
In the inner ear, Notch signaling has been proposed to specify the sensory regions, as well as regulate the differentiation of hair cells and supporting cell within those regions. In addition, Notch plays an important role in otic neurogenesis, by determining which cells differentiate as neurons, sensory cells and non-sensory cells. Here, I review the evidence for the complex and myriad roles Notch participates in during inner ear development. A particular challenge for those studying ear development and Notch is to decipher how activation of a single pathway can lead to different outcomes within the ear, which may include changes in the intrinsic properties of the cell, Notch modulation, and potential non-canonical pathways.
Collapse
Affiliation(s)
- Amy E Kiernan
- Department of Ophthalmology, University of Rochester, Rochester, NY 14642, United States.
| |
Collapse
|
33
|
Munnamalai V, Fekete DM. Wnt signaling during cochlear development. Semin Cell Dev Biol 2013; 24:480-9. [PMID: 23548730 DOI: 10.1016/j.semcdb.2013.03.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/30/2013] [Accepted: 03/21/2013] [Indexed: 02/07/2023]
Abstract
Wnt signaling is a hallmark of all embryonic development with multiple roles at multiple developmental time points. Wnt signaling is also important in the development of several organs, one of which is the inner ear, where it participates in otic specification, the formation of vestibular structures, and the development of the cochlea. In particular, we focus on Wnt signaling in the auditory organ, the cochlea. Attempting to dissect the multiple Wnt signaling pathways in the mammalian cochlea is a challenging task due to limited expression data, particularly at proliferating stages. To offer predictions about Wnt activity, we compare cochlear development with that of other biological systems such as Xenopus retina, brain, cancer cells and osteoblasts. Wnts are likely to regulate development through crosstalk with other signaling pathways, particularly Notch and FGF, leading to changes in the expression of Sox2 and proneural (pro-hair cell) genes. In this review we have consolidated the known signaling pathways in the cochlea with known developmental roles of Wnts from other systems to generate a potential timeline of cochlear development.
Collapse
Affiliation(s)
- Vidhya Munnamalai
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, USA.
| | | |
Collapse
|
34
|
Abstract
Animal studies on inner ear development, repair and regeneration provide understanding of molecular pathways that can be harnessed for treating inner ear disease. Use of transgenic mouse technology, in particular, has contributed knowledge of genes that regulate development of hair cells and innervation, and of molecular players that can induce regeneration, but this technology is not applicable for human treatment, for practical and ethical reasons. Therefore other means for influencing gene expression in the inner ear are needed. We describe several gene vectors useful for inner ear gene therapy and the practical aspects of introducing these vectors into the ear. We then review the progress toward using gene transfer for therapies in both auditory and balance systems, and discuss the technological milestones needed to advance to clinical application of these methods.
Collapse
Affiliation(s)
- Hideto Fukui
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | | |
Collapse
|