1
|
Zhu H, Mu L, Xu X, Huang T, Wang Y, Xu S, Wang Y, Wang W, Wang Z, Wang H, Xue C. EZH2-dependent myelination following sciatic nerve injury. Neural Regen Res 2025; 20:2382-2394. [PMID: 39359095 PMCID: PMC11759024 DOI: 10.4103/nrr.nrr-d-23-02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/26/2024] [Accepted: 03/29/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00028/figure1/v/2024-09-30T120553Z/r/image-tiff Demyelination and remyelination have been major focal points in the study of peripheral nerve regeneration following peripheral nerve injury. Notably, the gene regulatory network of regenerated myelin differs from that of native myelin. Silencing of enhancer of zeste homolog 2 (EZH2) hinders the differentiation, maturation, and myelination of Schwann cells in vitro. To further determine the role of EZH2 in myelination and recovery post-peripheral nerve injury, conditional knockout mice lacking Ezh2 in Schwann cells (Ezh2fl/fl;Dhh-Cre and Ezh2fl/fl;Mpz-Cre) were generated. Our results show that a significant proportion of axons in the sciatic nerve of Ezh2-depleted mice remain unmyelinated. This highlights the crucial role of Ezh2 in initiating Schwann cell myelination. Furthermore, we observed that 21 days after inducing a sciatic nerve crush injury in these mice, most axons had remyelinated at the injury site in the control nerve, while Ezh2fl/fl;Mpz-Cre mice had significantly fewer remyelinated axons compared with their wild-type littermates. This suggests that the absence of Ezh2 in Schwann cells impairs myelin formation and remyelination. In conclusion, EZH2 has emerged as a pivotal regulatory factor in the process of demyelination and myelin regeneration following peripheral nerve injury. Modulating EZH2 activity during these processes may offer a promising therapeutic target for the treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Hui Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Li Mu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xi Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Tianyi Huang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Ying Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Siyuan Xu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yiting Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wencong Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhiping Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Critical Care Medicine, Nantong Fourth People’s Hospital, Nantong, Jiangsu Province, China
| | - Hongkui Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Chengbin Xue
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Schneider A, Won S, Armstrong EA, Cooper AJ, Suresh A, Rivera R, Barrett‐Wilt G, Denu JM, Simcox JA, Svaren J. The role of ATP citrate lyase in myelin formation and maintenance. Glia 2025; 73:105-121. [PMID: 39318247 PMCID: PMC11660526 DOI: 10.1002/glia.24620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
Formation of myelin by Schwann cells is tightly coupled to peripheral nervous system development and is important for neuronal function and long-term maintenance. Perturbation of myelin causes a number of specific disorders that are among the most prevalent diseases affecting the nervous system. Schwann cells synthesize myelin lipids de novo rather than relying on uptake of circulating lipids, yet one unresolved matter is how acetyl CoA, a central metabolite in lipid formation is generated during myelin formation and maintenance. Recent studies have shown that glucose-derived acetyl CoA itself is not required for myelination. However, the importance of mitochondrially-derived acetyl CoA has never been tested for myelination in vivo. Therefore, we have developed a Schwann cell-specific knockout of the ATP citrate lyase (Acly) gene to determine the importance of mitochondrial metabolism to supply acetyl CoA in nerve development. Intriguingly, the ACLY pathway is important for myelin maintenance rather than myelin formation. In addition, ACLY is required to maintain expression of a myelin-associated gene program and to inhibit activation of the latent Schwann cell injury program.
Collapse
Affiliation(s)
- Andrew Schneider
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Seongsik Won
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Eric A. Armstrong
- Wisconsin Institute of DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Aaron J. Cooper
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Comparative Biosciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Amulya Suresh
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Rachell Rivera
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - John M. Denu
- Wisconsin Institute of DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Judith A. Simcox
- Howard Hughes Medical Institute, Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - John Svaren
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Comparative Biosciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
3
|
Mao S, Liu ZY, Liu ZY, Liu P, Lin LC, Zhang Y, Yang JJ, Zhao JY, Tao H. Phase separation of epigenetic landscape in cardiovascular diseases. Biomed Pharmacother 2024; 181:117654. [PMID: 39522265 DOI: 10.1016/j.biopha.2024.117654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The pathogenesis of cardiovascular diseases (CVDs) is intricate, with liquid-liquid phase separation (LLPS) considered a crucial regulatory mechanism. Epigenetics is closely intertwined with cardiovascular diseases, involving mechanisms such as DNA methylation, histone modifications, and non-coding RNAs (ncRNAs) that play pivotal roles in cardiovascular disease progression and regression. It is known that specific proteins and mRNAs associated with epigenetic modifications exhibit LLPS characteristics, influencing cardiovascular diseases. Consequently, targeting epigenetic modifications to modulate LLPS emerges as a promising strategy for cardiovascular diseases treatment. This review delves into the regulatory impact of liquid-liquid phase separation on cardiovascular diseases, with a specific focus on the epigenetic landscape. The current study sought to investigate the relationship between epigenetic landscape and phase separation in cardiovascular diseases development, as well as their therapeutic implications.
Collapse
Affiliation(s)
- Sui Mao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhen-Yu Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Peng Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
4
|
Salzer J, Feltri ML, Jacob C. Schwann Cell Development and Myelination. Cold Spring Harb Perspect Biol 2024; 16:a041360. [PMID: 38503507 PMCID: PMC11368196 DOI: 10.1101/cshperspect.a041360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Glial cells in the peripheral nervous system (PNS), which arise from the neural crest, include axon-associated Schwann cells (SCs) in nerves, synapse-associated SCs at the neuromuscular junction, enteric glia, perikaryon-associated satellite cells in ganglia, and boundary cap cells at the border between the central nervous system (CNS) and the PNS. Here, we focus on axon-associated SCs. These SCs progress through a series of formative stages, which culminate in the generation of myelinating SCs that wrap large-caliber axons and of nonmyelinating (Remak) SCs that enclose multiple, small-caliber axons. In this work, we describe SC development, extrinsic signals from the axon and extracellular matrix (ECM) and the intracellular signaling pathways they activate that regulate SC development, and the morphogenesis and organization of myelinating SCs and the myelin sheath. We review the impact of SCs on the biology and integrity of axons and their emerging role in regulating peripheral nerve architecture. Finally, we explain how transcription and epigenetic factors control and fine-tune SC development and myelination.
Collapse
Affiliation(s)
- James Salzer
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - M Laura Feltri
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203, USA
- IRCCS Neurological Institute Carlo Besta, Milano 20133, Italy
- Department of Biotechnology and Translational Sciences, Universita' Degli Studi di Milano, Milano 20133, Italy
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| |
Collapse
|
5
|
Gordon T. Brief Electrical Stimulation Promotes Recovery after Surgical Repair of Injured Peripheral Nerves. Int J Mol Sci 2024; 25:665. [PMID: 38203836 PMCID: PMC10779324 DOI: 10.3390/ijms25010665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Injured peripheral nerves regenerate their axons in contrast to those in the central nervous system. Yet, functional recovery after surgical repair is often disappointing. The basis for poor recovery is progressive deterioration with time and distance of the growth capacity of the neurons that lose their contact with targets (chronic axotomy) and the growth support of the chronically denervated Schwann cells (SC) in the distal nerve stumps. Nonetheless, chronically denervated atrophic muscle retains the capacity for reinnervation. Declining electrical activity of motoneurons accompanies the progressive fall in axotomized neuronal and denervated SC expression of regeneration-associated-genes and declining regenerative success. Reduced motoneuronal activity is due to the withdrawal of synaptic contacts from the soma. Exogenous neurotrophic factors that promote nerve regeneration can replace the endogenous factors whose expression declines with time. But the profuse axonal outgrowth they provoke and the difficulties in their delivery hinder their efficacy. Brief (1 h) low-frequency (20 Hz) electrical stimulation (ES) proximal to the injury site promotes the expression of endogenous growth factors and, in turn, dramatically accelerates axon outgrowth and target reinnervation. The latter ES effect has been demonstrated in both rats and humans. A conditioning ES of intact nerve days prior to nerve injury increases axonal outgrowth and regeneration rate. Thereby, this form of ES is amenable for nerve transfer surgeries and end-to-side neurorrhaphies. However, additional surgery for applying the required electrodes may be a hurdle. ES is applicable in all surgeries with excellent outcomes.
Collapse
Affiliation(s)
- Tessa Gordon
- Division of Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON M4G 1X8, Canada
| |
Collapse
|
6
|
Duong P, Ramesh R, Schneider A, Won S, Cooper AJ, Svaren J. Modulation of Schwann cell homeostasis by the BAP1 deubiquitinase. Glia 2023; 71:1466-1480. [PMID: 36790040 PMCID: PMC10073320 DOI: 10.1002/glia.24351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/16/2023]
Abstract
Schwann cell programming during myelination involves transcriptional networks that activate gene expression but also repress genes that are active in neural crest/embryonic differentiation of Schwann cells. We previously found that a Schwann cell-specific deletion of the EED subunit of the Polycomb Repressive Complex (PRC2) led to inappropriate activation of many such genes. Moreover, some of these genes become re-activated in the pro-regenerative response of Schwann cells to nerve injury, and we found premature activation of the nerve injury program in a Schwann cell-specific knockout of Eed. Polycomb-associated histone modifications include H3K27 trimethylation formed by PRC2 and H2AK119 monoubiquitination (H2AK119ub1), deposited by Polycomb repressive complex 1 (PRC1). We recently found dynamic regulation of H2AK119ub1 in Schwann cell genes after injury. Therefore, we hypothesized that H2AK119 deubiquitination modulates the dynamic polycomb repression of genes involved in Schwann cell maturation. To determine the role of H2AK119 deubiquitination, we generated a Schwann cell-specific knockout of the H2AK119 deubiquitinase Bap1 (BRCA1-associated protein). We found that loss of Bap1 causes tomacula formation, decreased axon diameters and eventual loss of myelinated axons. The gene expression changes are accompanied by redistribution of H2AK119ub1 and H3K27me3 modifications to extragenic sites throughout the genome. BAP1 interacts with OGT in the PR-DUB complex, and our data suggest that the PR-DUB complex plays a multifunctional role in repression of the injury program. Overall, our results indicate Bap1 is required to restrict the spread of polycomb-associated histone modifications in Schwann cells and to promote myelin homeostasis in peripheral nerve.
Collapse
Affiliation(s)
- Phu Duong
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Raghu Ramesh
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrew Schneider
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Seongsik Won
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aaron J Cooper
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department Of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Chen S, Gu X, Li R, An S, Wang Z. Genome-wide Analysis of Histone H3 Lysine 27 Trimethylation Profiles in Sciatic Nerve of Chronic Constriction Injury Rats. Neurochem Res 2023; 48:1945-1957. [PMID: 36763313 DOI: 10.1007/s11064-023-03879-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/12/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023]
Abstract
The histone H3 lysine 27 trimethylation (H3K27me3) is one of the most important chromatin modifications, which is associated with injury-activated gene expression in Schwann cells (SCs). However, the alteration of genome-wide H3K27me3 enrichments in the development of neuropathic pain is still unknown. Here, we applied the chromatin immunoprecipitation sequencing (ChIP-seq) approach to identify the alteration of differential enrichments of H3K27me3 in chronic constriction injury (CCI) sciatic nerve of rats and potential molecular mechanisms underlying the development of neuropathic pain. Our results indicated that CCI increased the numbers of SCs displaying H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2) and H3K27me3 in the sciatic nerve. ChIP-seq data showed that CCI significantly changed H3K27me3 enrichments on gene promoters in the sciatic nerve. Bioinformatics analyses exhibited that genes gaining H3K27me3 were mostly associated with regulation of cell proliferation, response to stress and oxidation-reduction process. Genes losing this mark were enriched in neuronal generation, and MAPK, cAMP as well as ERBB signaling pathways. Importantly, IL1A, CCL2, NOS2, S100A8, BDNF, GDNF, ERBB3 and C3 were identified as key genes in neuropathic pain. CCI led to significant upregulation of key genes in the sciatic nerve. EZH2 inhibitor reversed CCI-induced increases of H3K27me3 and key gene protein levels, which were accompanied by relieved mechanical allodynia and thermal hyperalgesia in CCI rats. These results indicate that genes with differential enrichments of H3K27me3 in SCs function in various cellular processes and pathways, and many are linked to neuropathic pain after peripheral nerve injury.
Collapse
Affiliation(s)
- Shuhui Chen
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian, 271000, China
| | - Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian, 271000, China
| | - Ruidi Li
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian, 271000, China
| | - Shuhong An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian, 271000, China.
| | - Zhaojin Wang
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian, 271000, China.
| |
Collapse
|
8
|
Zhang X, Lou HE, Gopalan V, Liu Z, Jafarah HM, Lei H, Jones P, Sayers CM, Yohe ME, Chittiboina P, Widemann BC, Thiele CJ, Kelly MC, Hannenhalli S, Shern JF. Single-cell sequencing reveals activation of core transcription factors in PRC2-deficient malignant peripheral nerve sheath tumor. Cell Rep 2022; 40:111363. [PMID: 36130486 PMCID: PMC9585487 DOI: 10.1016/j.celrep.2022.111363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 05/16/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Loss-of-function mutations in the polycomb repressive complex 2 (PRC2) occur frequently in malignant peripheral nerve sheath tumor, an aggressive sarcoma that arises from NF1-deficient Schwann cells. To define the oncogenic mechanisms underlying PRC2 loss, we use engineered cells that dynamically reassemble a competent PRC2 coupled with single-cell sequencing from clinical samples. We discover a two-pronged oncogenic process: first, PRC2 loss leads to remodeling of the bivalent chromatin and enhancer landscape, causing the upregulation of developmentally regulated transcription factors that enforce a transcriptional circuit serving as the cell's core vulnerability. Second, PRC2 loss reduces type I interferon signaling and antigen presentation as downstream consequences of hyperactivated Ras and its cross talk with STAT/IRF transcription factors. Mapping of the transcriptional program of these PRC2-deficient tumor cells onto a constructed developmental trajectory of normal Schwann cells reveals that changes induced by PRC2 loss enforce a cellular profile characteristic of a primitive mesenchymal neural crest stem cell.
Collapse
Affiliation(s)
- Xiyuan Zhang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hannah E Lou
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhihui Liu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hilda M Jafarah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haiyan Lei
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paige Jones
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carly M Sayers
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carol J Thiele
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael C Kelly
- Center for Cancer Research Single Cell Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory, Bethesda, MD 20892, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Ramesh R, Manurung Y, Ma KH, Blakely T, Won S, Moreno-Ramos OA, Wyatt E, Awatramani R, Svaren J. JUN Regulation of Injury-Induced Enhancers in Schwann Cells. J Neurosci 2022; 42:6506-6517. [PMID: 35906072 PMCID: PMC9410756 DOI: 10.1523/jneurosci.2533-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
Schwann cells play a critical role after peripheral nerve injury by clearing myelin debris, forming axon-guiding bands of Büngner, and remyelinating regenerating axons. Schwann cells undergo epigenomic remodeling to differentiate into a repair state that expresses unique genes, some of which are not expressed at other stages of Schwann cell development. We previously identified a set of enhancers that are activated in Schwann cells after nerve injury, and we determined whether these enhancers are preprogrammed into the Schwann cell epigenome as poised enhancers before injury. Poised enhancers share many attributes of active enhancers, such as open chromatin, but are marked by repressive histone H3 lysine 27 (H3K27) trimethylation rather than H3K27 acetylation. We find that most injury-induced enhancers are not marked as poised enhancers before injury indicating that injury-induced enhancers are not preprogrammed in the Schwann cell epigenome. Injury-induced enhancers are enriched with AP-1 binding motifs, and the c-JUN subunit of AP-1 had been shown to be critical to drive the transcriptional response of Schwann cells after injury. Using in vivo chromatin immunoprecipitation sequencing analysis in rat, we find that c-JUN binds to a subset of injury-induced enhancers. To test the role of specific injury-induced enhancers, we focused on c-JUN-binding enhancers upstream of the Sonic hedgehog (Shh) gene, which is only upregulated in repair Schwann cells compared with other stages of Schwann cell development. We used targeted deletions in male/female mice to show that the enhancers are required for robust induction of the Shh gene after injury.SIGNIFICANCE STATEMENT The proregenerative actions of Schwann cells after nerve injury depends on profound reprogramming of the epigenome. The repair state is directed by injury-induced transcription factors, like JUN, which is uniquely required after nerve injury. In this study, we test whether the injury program is preprogrammed into the epigenome as poised enhancers and define which enhancers bind JUN. Finally, we test the roles of these enhancers by performing clustered regularly interspaced short palindromic repeat (CRISPR)-mediated deletion of JUN-bound injury enhancers in the Sonic hedgehog gene. Although many long-range enhancers drive expression of Sonic hedgehog at different developmental stages of specific tissues, these studies identify an entirely new set of enhancers that are required for Sonic hedgehog induction in Schwann cells after injury.
Collapse
Affiliation(s)
- Raghu Ramesh
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Comparative Biomedical Sciences Graduate Program, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Yanti Manurung
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Ki H Ma
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Todd Blakely
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Seongsik Won
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Oscar Andrés Moreno-Ramos
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Eugene Wyatt
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Rajeshwar Awatramani
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Comparative Biomedical Sciences Graduate Program, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Department of Comparative Biosciences, School of Veterinary Medicine University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
10
|
McMorrow LA, Kosalko A, Robinson D, Saiani A, Reid AJ. Advancing Our Understanding of the Chronically Denervated Schwann Cell: A Potential Therapeutic Target? Biomolecules 2022; 12:1128. [PMID: 36009023 PMCID: PMC9406133 DOI: 10.3390/biom12081128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
Outcomes for patients following major peripheral nerve injury are extremely poor. Despite advanced microsurgical techniques, the recovery of function is limited by an inherently slow rate of axonal regeneration. In particular, a time-dependent deterioration in the ability of the distal stump to support axonal growth is a major determinant to the failure of reinnervation. Schwann cells (SC) are crucial in the orchestration of nerve regeneration; their plasticity permits the adoption of a repair phenotype following nerve injury. The repair SC modulates the initial immune response, directs myelin clearance, provides neurotrophic support and remodels the distal nerve. These functions are critical for regeneration; yet the repair phenotype is unstable in the setting of chronic denervation. This phenotypic instability accounts for the deteriorating regenerative support offered by the distal nerve stump. Over the past 10 years, our understanding of the cellular machinery behind this repair phenotype, in particular the role of c-Jun, has increased exponentially, creating opportunities for therapeutic intervention. This review will cover the activation of the repair phenotype in SC, the effects of chronic denervation on SC and current strategies to 'hack' these cellular pathways toward supporting more prolonged periods of neural regeneration.
Collapse
Affiliation(s)
- Liam A. McMorrow
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M23 9LT, UK
| | - Adrian Kosalko
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Daniel Robinson
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Alberto Saiani
- School of Materials & Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Adam J. Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M23 9LT, UK
| |
Collapse
|
11
|
Park HJ, Tsai E, Huang D, Weaver M, Frick L, Alcantara A, Moran JJ, Patzig J, Melendez-Vasquez CV, Crabtree GR, Feltri M, Svaren J, Casaccia P. ACTL6a coordinates axonal caliber recognition and myelination in the peripheral nerve. iScience 2022; 25:104132. [PMID: 35434551 PMCID: PMC9010646 DOI: 10.1016/j.isci.2022.104132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/29/2022] [Accepted: 03/17/2022] [Indexed: 11/12/2022] Open
Abstract
Cells elaborate transcriptional programs in response to external signals. In the peripheral nerves, Schwann cells (SC) sort axons of given caliber and start the process of wrapping their membrane around them. We identify Actin-like protein 6a (ACTL6a), part of SWI/SNF chromatin remodeling complex, as critical for the integration of axonal caliber recognition with the transcriptional program of myelination. Nuclear levels of ACTL6A in SC are increased by contact with large caliber axons or nanofibers, and result in the eviction of repressive histone marks to facilitate myelination. Without Actl6a the SC are unable to coordinate caliber recognition and myelin production. Peripheral nerves in knockout mice display defective radial sorting, hypo-myelination of large caliber axons, and redundant myelin around small caliber axons, resulting in a clinical motor phenotype. Overall, this suggests that ACTL6A is a key component of the machinery integrating external signals for proper myelination of the peripheral nerve.
Collapse
Affiliation(s)
- Hye-Jin Park
- Advanced Science Research Center (ASRC) at The Graduate Center of the City University of New York (CUNY), New York, NY 10031, USA
| | - Eric Tsai
- Advanced Science Research Center (ASRC) at The Graduate Center of the City University of New York (CUNY), New York, NY 10031, USA
- Graduate Program in Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dennis Huang
- Advanced Science Research Center (ASRC) at The Graduate Center of the City University of New York (CUNY), New York, NY 10031, USA
- Graduate Program in Biology, Graduate Center of CUNY, New York, NY 10016, USA
| | - Michael Weaver
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Luciana Frick
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Ace Alcantara
- Graduate Program in Biology, Graduate Center of CUNY, New York, NY 10016, USA
- Hunter College, Department of Biological Sciences, New York, NY 10065, USA
| | - John J. Moran
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53705, USA
| | - Julia Patzig
- Advanced Science Research Center (ASRC) at The Graduate Center of the City University of New York (CUNY), New York, NY 10031, USA
| | - Carmen V. Melendez-Vasquez
- Graduate Program in Biology, Graduate Center of CUNY, New York, NY 10016, USA
- Hunter College, Department of Biological Sciences, New York, NY 10065, USA
| | - Gerald R. Crabtree
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - M.L. Feltri
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53705, USA
| | - Patrizia Casaccia
- Advanced Science Research Center (ASRC) at The Graduate Center of the City University of New York (CUNY), New York, NY 10031, USA
- Graduate Program in Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate Program in Biology, Graduate Center of CUNY, New York, NY 10016, USA
| |
Collapse
|
12
|
Owen RS, Ramarathinam SH, Bailey A, Gastaldello A, Hussey K, Skipp PJ, Purcell AW, Siddle HV. The differentiation state of the Schwann cell progenitor drives phenotypic variation between two contagious cancers. PLoS Pathog 2021; 17:e1010033. [PMID: 34780568 PMCID: PMC8629380 DOI: 10.1371/journal.ppat.1010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/29/2021] [Accepted: 10/13/2021] [Indexed: 01/04/2023] Open
Abstract
Contagious cancers are a rare pathogenic phenomenon in which cancer cells gain the ability to spread between genetically distinct hosts. Nine examples have been identified across marine bivalves, dogs and Tasmanian devils, but the Tasmanian devil is the only mammalian species known to have given rise to two distinct lineages of contagious cancer, termed Devil Facial Tumour 1 (DFT1) and 2 (DFT2). Remarkably, DFT1 and DFT2 arose independently from the same cell type, a Schwann cell, and while their ultra-structural features are highly similar they exhibit variation in their mutational signatures and infection dynamics. As such, DFT1 and DFT2 provide a unique framework for investigating how a common progenitor cell can give rise to distinct contagious cancers. Using a proteomics approach, we show that DFT1 and DFT2 are derived from Schwann cells in different differentiation states, with DFT2 carrying a molecular signature of a less well differentiated Schwann cell. Under inflammatory signals DFT1 and DFT2 have different gene expression profiles, most notably involving Schwann cell markers of differentiation, reflecting the influence of their distinct origins. Further, DFT2 cells express immune cell markers typically expressed during nerve repair, consistent with an ability to manipulate their extracellular environment, facilitating the cell’s ability to transmit between individuals. The emergence of two contagious cancers in the Tasmanian devil suggests that the inherent plasticity of Schwann cells confers a vulnerability to the formation of contagious cancers. Cancer can be an infectious pathogen, with nine known cases, infecting bivalves, dogs and two independent tumours circulating in the endangered Tasmanian devil. These cancers, known as Devil Facial Tumour 1 (DFT1) and Devil Facial Tumour 2 (DFT2), spread through the wild population much like parasites, moving between genetically distinct hosts during social biting behaviours and persisting in the population. As DFT1 and DFT2 are independent contagious cancers that arose from the same cell type, a Schwann cell, they provide a unique model system for studying the emergence of phenotypic variation in cancers derived from a single progenitor cell. In this study, we have shown that these two remarkably similar tumours have emerged from Schwann cells in different differentiation states. The differentiation state of the progenitor has altered the characteristics of each tumour, resulting in different responses to external signals. This work demonstrates that the cellular origin of infection can direct the phenotype of a contagious cancer and how it responds to signals from the host environment. Further, the plasticity of Schwann cells may make these cells more prone to forming contagious cancers, raising the possibility that further parasitic cancers could emerge from this cell type.
Collapse
Affiliation(s)
- Rachel S. Owen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Sri H. Ramarathinam
- Department of Biochemistry and Molecular Biology and the Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Alistair Bailey
- Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Annalisa Gastaldello
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Kathryn Hussey
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Paul J. Skipp
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology and the Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Hannah V. Siddle
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Govbakh I, Kyryk V, Ustymenko A, Rubtsov V, Tsupykov O, Bulgakova NV, Zavodovskiy DO, Sokolowska I, Maznychenko A. Stem Cell Therapy Enhances Motor Activity of Triceps Surae Muscle in Mice with Hereditary Peripheral Neuropathy. Int J Mol Sci 2021; 22:ijms222112026. [PMID: 34769453 PMCID: PMC8584487 DOI: 10.3390/ijms222112026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Impaired motor and sensory functions are the main features of Charcot-Marie-Tooth disease. Mesenchymal stem cell (MSCs) therapy is one of the possible treatments for this disease. It was assumed that MSCs therapy can improve the contractile properties of the triceps surae (TS) muscles in mice with hereditary peripheral neuropathy. Murine adipose-derived mesenchymal stromal cells (AD-MSCs) were obtained for transplantation into TS muscles of FVB-C-Tg(GFPU)5Nagy/J mice. Three months after AD-MSCs transplantation, animals were subjected to electrophysiological investigations. Parameters of TS muscle tension after intermittent high frequency electrical sciatic nerve stimulations were analyzed. It was found that force of TS muscle tension contraction in animals after AD-MSCs treatment was two-time higher than in untreated mice. Normalized values of force muscle contraction in different phases of electrical stimulation were 0.3 ± 0.01 vs. 0.18 ± 0.01 and 0.26 ± 0.03 vs. 0.13 ± 0.03 for treated and untreated animals, respectively. It is assumed that the two-fold increase in TS muscle strength was caused by stem cell therapy. Apparently, AD-MSCs therapy can promote nerve regeneration and partial restoration of muscle function, and thus can be a potential therapeutic agent for the treatment of peripheral neuropathies.
Collapse
Affiliation(s)
- Iryna Govbakh
- Department of General Practice-Family Medicine, Kharkiv Medical Academy of Postgraduate Education, 61000 Kharkiv, Ukraine;
| | - Vitalii Kyryk
- Cell and Tissue Technologies Department, State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 04114 Kyiv, Ukraine; (V.K.); (A.U.); (O.T.)
- Laboratory of Pathophysiology and Immunology, D. F. Chebotarev State Institute of Gerontology NAMS of Ukraine, 04114 Kyiv, Ukraine
| | - Alina Ustymenko
- Cell and Tissue Technologies Department, State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 04114 Kyiv, Ukraine; (V.K.); (A.U.); (O.T.)
- Laboratory of Pathophysiology and Immunology, D. F. Chebotarev State Institute of Gerontology NAMS of Ukraine, 04114 Kyiv, Ukraine
| | - Volodymyr Rubtsov
- Department of Cytology, Histology and Reproductive Medicine, Educational and Scientific Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, 03127 Kyiv, Ukraine;
| | - Oleg Tsupykov
- Cell and Tissue Technologies Department, State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 04114 Kyiv, Ukraine; (V.K.); (A.U.); (O.T.)
- Department of Cytology, Bogomoletz Institute of Physiology NAS of Ukraine, 01024 Kyiv, Ukraine
| | - Nataliya V. Bulgakova
- Department of Movement Physiology, Bogomoletz Institute of Physiology NAS of Ukraine, 01024 Kyiv, Ukraine; (N.V.B.); (D.O.Z.)
| | - Danylo O. Zavodovskiy
- Department of Movement Physiology, Bogomoletz Institute of Physiology NAS of Ukraine, 01024 Kyiv, Ukraine; (N.V.B.); (D.O.Z.)
| | - Inna Sokolowska
- Department of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| | - Andriy Maznychenko
- Department of Movement Physiology, Bogomoletz Institute of Physiology NAS of Ukraine, 01024 Kyiv, Ukraine; (N.V.B.); (D.O.Z.)
- Department of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
- Correspondence: ; Tel.: +38-044-256-24-12
| |
Collapse
|
14
|
Duong P, Ma KH, Ramesh R, Moran JJ, Won S, Svaren J. H3K27 demethylases are dispensable for activation of Polycomb-regulated injury response genes in peripheral nerve. J Biol Chem 2021; 297:100852. [PMID: 34090875 PMCID: PMC8258988 DOI: 10.1016/j.jbc.2021.100852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 11/19/2022] Open
Abstract
The induction of nerve injury response genes in Schwann cells depends on both transcriptional and epigenomic reprogramming. The nerve injury response program is regulated by the repressive histone mark H3K27 trimethylation (H3K27me3), deposited by Polycomb repressive complex 2 (PRC2). Loss of PRC2 function leads to early and augmented induction of the injury response gene network in peripheral nerves, suggesting H3K27 demethylases are required for derepression of Polycomb-regulated nerve injury genes. To determine the function of H3K27 demethylases in nerve injury, we generated Schwann cell-specific knockouts of H3K27 demethylase Kdm6b and double knockouts of Kdm6b/Kdm6a (encoding JMJD3 and UTX). We found that H3K27 demethylases are largely dispensable for Schwann cell development and myelination. In testing the function of H3K27 demethylases after injury, we found early induction of some nerve injury genes was diminished compared with control, but most injury genes were largely unaffected at 1 and 7 days post injury. Although it was proposed that H3K27 demethylases are required to activate expression of the cyclin-dependent kinase inhibitor Cdkn2a in response to injury, Schwann cell-specific deletion of H3K27 demethylases affected neither the expression of this gene nor Schwann cell proliferation after nerve injury. To further characterize the regulation of nerve injury response genes, we found that injury genes are associated with repressive histone H2AK119 ubiquitination catalyzed by PRC1, which declines after injury. Overall, our results indicate H3K27 demethylation is not required for induction of injury response genes and that other mechanisms likely are involved in activating Polycomb-repressed injury genes in peripheral nerve.
Collapse
Affiliation(s)
- Phu Duong
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ki H Ma
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Raghu Ramesh
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John J Moran
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Seongsik Won
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
15
|
Wagstaff LJ, Gomez-Sanchez JA, Fazal SV, Otto GW, Kilpatrick AM, Michael K, Wong LYN, Ma KH, Turmaine M, Svaren J, Gordon T, Arthur-Farraj P, Velasco-Aviles S, Cabedo H, Benito C, Mirsky R, Jessen KR. Failures of nerve regeneration caused by aging or chronic denervation are rescued by restoring Schwann cell c-Jun. eLife 2021; 10:e62232. [PMID: 33475496 PMCID: PMC7819709 DOI: 10.7554/elife.62232] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
After nerve injury, myelin and Remak Schwann cells reprogram to repair cells specialized for regeneration. Normally providing strong regenerative support, these cells fail in aging animals, and during chronic denervation that results from slow axon growth. This impairs axonal regeneration and causes significant clinical problems. In mice, we find that repair cells express reduced c-Jun protein as regenerative support provided by these cells declines during aging and chronic denervation. In both cases, genetically restoring Schwann cell c-Jun levels restores regeneration to control levels. We identify potential gene candidates mediating this effect and implicate Shh in the control of Schwann cell c-Jun levels. This establishes that a common mechanism, reduced c-Jun in Schwann cells, regulates success and failure of nerve repair both during aging and chronic denervation. This provides a molecular framework for addressing important clinical problems, suggesting molecular pathways that can be targeted to promote repair in the PNS.
Collapse
Affiliation(s)
- Laura J Wagstaff
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Jose A Gomez-Sanchez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández‐CSICSan Juan de AlicanteSpain
| | - Shaline V Fazal
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Georg W Otto
- University College London Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Alastair M Kilpatrick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of EdinburghEdinburghUnited Kingdom
| | - Kirolos Michael
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Liam YN Wong
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Ki H Ma
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin‐MadisonMadisonUnited States
| | - Mark Turmaine
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - John Svaren
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin‐MadisonMadisonUnited States
| | - Tessa Gordon
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick ChildrenTorontoCanada
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Sergio Velasco-Aviles
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández‐CSICSan Juan de AlicanteSpain
- Hospital General Universitario de Alicante, ISABIALAlicanteSpain
| | - Hugo Cabedo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández‐CSICSan Juan de AlicanteSpain
- Hospital General Universitario de Alicante, ISABIALAlicanteSpain
| | - Cristina Benito
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Rhona Mirsky
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Kristjan R Jessen
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| |
Collapse
|
16
|
Begeman IJ, Shin K, Osorio-Méndez D, Kurth A, Lee N, Chamberlain TJ, Pelegri FJ, Kang J. Decoding an organ regeneration switch by dissecting cardiac regeneration enhancers. Development 2020; 147:226055. [PMID: 33246928 DOI: 10.1242/dev.194019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
Heart regeneration in regeneration-competent organisms can be accomplished through the remodeling of gene expression in response to cardiac injury. This dynamic transcriptional response relies on the activities of tissue regeneration enhancer elements (TREEs); however, the mechanisms underlying TREEs are poorly understood. We dissected a cardiac regeneration enhancer in zebrafish to elucidate the mechanisms governing spatiotemporal gene expression during heart regeneration. Cardiac lepb regeneration enhancer (cLEN) exhibits dynamic, regeneration-dependent activity in the heart. We found that multiple injury-activated regulatory elements are distributed throughout the enhancer region. This analysis also revealed that cardiac regeneration enhancers are not only activated by injury, but surprisingly, they are also actively repressed in the absence of injury. Our data identified a short (22 bp) DNA element containing a key repressive element. Comparative analysis across Danio species indicated that the repressive element is conserved in closely related species. The repression mechanism is not operational during embryogenesis and emerges when the heart begins to mature. Incorporating both activation and repression components into the mechanism of tissue regeneration constitutes a new paradigm that might be extrapolated to other regeneration scenarios.
Collapse
Affiliation(s)
- Ian J Begeman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Daniel Osorio-Méndez
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew Kurth
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nutishia Lee
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Francisco J Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
17
|
Moreau N, Boucher Y. Hedging against Neuropathic Pain: Role of Hedgehog Signaling in Pathological Nerve Healing. Int J Mol Sci 2020; 21:ijms21239115. [PMID: 33266112 PMCID: PMC7731127 DOI: 10.3390/ijms21239115] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/23/2022] Open
Abstract
The peripheral nervous system has important regenerative capacities that regulate and restore peripheral nerve homeostasis. Following peripheral nerve injury, the nerve undergoes a highly regulated degeneration and regeneration process called Wallerian degeneration, where numerous cell populations interact to allow proper nerve healing. Recent studies have evidenced the prominent role of morphogenetic Hedgehog signaling pathway and its main effectors, Sonic Hedgehog (SHH) and Desert Hedgehog (DHH) in the regenerative drive following nerve injury. Furthermore, dysfunctional regeneration and/or dysfunctional Hedgehog signaling participate in the development of chronic neuropathic pain that sometimes accompanies nerve healing in the clinical context. Understanding the implications of this key signaling pathway could provide exciting new perspectives for future research on peripheral nerve healing.
Collapse
Affiliation(s)
- Nathan Moreau
- Department of Oral Medicine and Oral Surgery, Bretonneau Hospital (AP-HP), 75018 Paris, France;
- Faculty of Dental Medicine-Montrouge, University of Paris, 92120 Montrouge, France
| | - Yves Boucher
- Department of Dental Medicine, Pitié-Salpêtrière Hospital (AP-HP), 75013 Paris, France
- Faculty of Dental Medicine-Garancière, University of Paris, 75006 Paris, France
- Correspondence:
| |
Collapse
|
18
|
Luz-Madrigal A, Grajales-Esquivel E, Tangeman J, Kosse S, Liu L, Wang K, Fausey A, Liang C, Tsonis PA, Del Rio-Tsonis K. DNA demethylation is a driver for chick retina regeneration. Epigenetics 2020; 15:998-1019. [PMID: 32290791 PMCID: PMC7518676 DOI: 10.1080/15592294.2020.1747742] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 01/01/2023] Open
Abstract
Cellular reprogramming resets the epigenetic landscape to drive shifts in transcriptional programmes and cell identity. The embryonic chick can regenerate a complete neural retina, after retinectomy, via retinal pigment epithelium (RPE) reprogramming in the presence of FGF2. In this study, we systematically analysed the reprogramming competent chick RPE prior to injury, and during different stages of reprogramming. In addition to changes in the expression of genes associated with epigenetic modifications during RPE reprogramming, we observed dynamic changes in histone marks associated with bivalent chromatin (H3K27me3/H3K4me3) and intermediates of the process of DNA demethylation including 5hmC and 5caC. Comprehensive analysis of the methylome by whole-genome bisulphite sequencing (WGBS) confirmed extensive rearrangements of DNA methylation patterns including differentially methylated regions (DMRs) found at promoters of genes associated with chromatin organization and fibroblast growth factor production. We also identified Tet methylcytosine dioxygenase 3 (TET3) as an important factor for DNA demethylation and retina regeneration, capable of reprogramming RPE in the absence of exogenous FGF2. In conclusion, we demonstrate that injury early in RPE reprogramming triggers genome-wide dynamic changes in chromatin, including bivalent chromatin and DNA methylation. In the presence of FGF2, these dynamic modifications are further sustained in the commitment to form a new retina. Our findings reveal active DNA demethylation as an important process that may be applied to remove the epigenetic barriers in order to regenerate retina in mammals. ABBREVIATIONS bp: Base pair; DMR: Differentially methylated region; DMC: Differentially methylated cytosines; GFP: Green fluorescent protein; PCR: Polymerase chain reaction. TET: Ten-eleven translocation; RPE: retinal pigment epithelium.
Collapse
Affiliation(s)
- Agustín Luz-Madrigal
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
- Department of Biology and Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Erika Grajales-Esquivel
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Jared Tangeman
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Sarah Kosse
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Lin Liu
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Kai Wang
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Andrew Fausey
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Chun Liang
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
- Department of Computer Science and Software Engineering, Miami University, Oxford, OH, USA
| | - Panagiotis A. Tsonis
- Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, OH, USA
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| |
Collapse
|
19
|
Wang J, Wang J, Yang L, Zhao C, Wu LN, Xu L, Zhang F, Weng Q, Wegner M, Lu QR. CTCF-mediated chromatin looping in EGR2 regulation and SUZ12 recruitment critical for peripheral myelination and repair. Nat Commun 2020; 11:4133. [PMID: 32807777 PMCID: PMC7431862 DOI: 10.1038/s41467-020-17955-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 07/24/2020] [Indexed: 11/25/2022] Open
Abstract
Chromatin organization is critical for cell growth, differentiation, and disease development, however, its functions in peripheral myelination and myelin repair remain elusive. In this report, we demonstrate that the CCCTC-binding factor (CTCF), a crucial chromatin organizer, is essential for Schwann cell myelination and myelin regeneration after nerve injury. Inhibition of CTCF or its deletion blocks Schwann cell differentiation at the pro-myelinating stage, whereas overexpression of CTCF promotes the myelination program. We find that CTCF establishes chromatin interaction loops between enhancer and promoter regulatory elements and promotes expression of a key pro-myelinogenic factor EGR2. In addition, CTCF interacts with SUZ12, a component of polycomb-repressive-complex 2 (PRC2), to repress the transcriptional program associated with negative regulation of Schwann cell maturation. Together, our findings reveal a dual role of CTCF-dependent chromatin organization in promoting myelinogenic programs and recruiting chromatin-repressive complexes to block Schwann cell differentiation inhibitors to control peripheral myelination and repair. Myelination by Schwann cells (SC) in the peripheral nervous system is essential for motor function, and dysregulation of SC myelination can lead to various neuropathies. Here the authors describe a critical role of CCCTC-binding factor (CTCF)-dependent chromatin reorganization in peripheral myelination and myelin regeneration after injury.
Collapse
Affiliation(s)
- Jincheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiajia Wang
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lijun Yang
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Chuntao Zhao
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Laiman Natalie Wu
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lingli Xu
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Feng Zhang
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Q Richard Lu
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
20
|
Regulation of Social Stress and Neural Degeneration by Activity-Regulated Genes and Epigenetic Mechanisms in Dopaminergic Neurons. Mol Neurobiol 2020; 57:4500-4510. [PMID: 32748368 PMCID: PMC7515954 DOI: 10.1007/s12035-020-02037-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023]
Abstract
Transcriptional and epigenetic regulation of both dopaminergic neurons and their accompanying glial cells is of great interest in the search for therapies for neurodegenerative disorders such as Parkinson’s disease (PD). In this review, we collate transcriptional and epigenetic changes identified in adult Drosophila melanogaster dopaminergic neurons in response to either prolonged social deprivation or social enrichment, and compare them with changes identified in mammalian dopaminergic neurons during normal development, stress, injury, and neurodegeneration. Surprisingly, a small set of activity-regulated genes (ARG) encoding transcription factors, and a specific pattern of epigenetic marks on gene promoters, are conserved in dopaminergic neurons over the long evolutionary period between mammals and insects. In addition to their classical function as immediate early genes to mark acute neuronal activity, these ARG transcription factors are repurposed in both insects and mammals to respond to chronic perturbations such as social enrichment, social stress, nerve injury, and neurodegeneration. We suggest that these ARG transcription factors and epigenetic marks may represent important targets for future therapeutic intervention strategies in various neurodegenerative disorders including PD.
Collapse
|
21
|
Wang J, Yang L, Dong C, Wang J, Xu L, Qiu Y, Weng Q, Zhao C, Xin M, Lu QR. EED-mediated histone methylation is critical for CNS myelination and remyelination by inhibiting WNT, BMP, and senescence pathways. SCIENCE ADVANCES 2020; 6:eaaz6477. [PMID: 32851157 PMCID: PMC7423366 DOI: 10.1126/sciadv.aaz6477] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 06/30/2020] [Indexed: 05/07/2023]
Abstract
Mutations in the polycomb repressive complex 2 (PRC2) can cause Weaver-like syndrome, wherein a patient cohort exhibits abnormal white matter; however, PRC2 functions in CNS myelination and regeneration remain elusive. We show here that H3K27me3, the PRC2 catalytic product, increases during oligodendrocyte maturation. Depletion of embryonic ectoderm development (EED), a core PRC2 subunit, reduces differentiation of oligodendrocyte progenitors (OPCs), and causes an OPC-to-astrocyte fate switch in a region-specific manner. Although dispensable for myelin maintenance, EED is critical for oligodendrocyte remyelination. Genomic occupancy and transcriptomic analyses indicate that EED establishes a chromatin landscape that selectively represses inhibitory WNT and bone morphogenetic protein (BMP) signaling, and senescence-associated programs. Blocking WNT or BMP pathways partially restores differentiation defects in EED-deficient OPCs. Thus, our findings reveal that EED/PRC2 is a crucial epigenetic programmer of CNS myelination and repair, while demonstrating a spatiotemporal-specific role of PRC2-mediated chromatin silencing in shaping oligodendrocyte identity and lineage plasticity.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lijun Yang
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chen Dong
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jincheng Wang
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lingli Xu
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yueping Qiu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chuntao Zhao
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mei Xin
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Q. Richard Lu
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Corresponding author.
| |
Collapse
|
22
|
EEF1A1 deacetylation enables transcriptional activation of remyelination. Nat Commun 2020; 11:3420. [PMID: 32647127 PMCID: PMC7347577 DOI: 10.1038/s41467-020-17243-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Remyelination of the peripheral and central nervous systems (PNS and CNS, respectively) is a prerequisite for functional recovery after lesion. However, this process is not always optimal and becomes inefficient in the course of multiple sclerosis. Here we show that, when acetylated, eukaryotic elongation factor 1A1 (eEF1A1) negatively regulates PNS and CNS remyelination. Acetylated eEF1A1 (Ac-eEF1A1) translocates into the nucleus of myelinating cells where it binds to Sox10, a key transcription factor for PNS and CNS myelination and remyelination, to drag Sox10 out of the nucleus. We show that the lysine acetyltransferase Tip60 acetylates eEF1A1, whereas the histone deacetylase HDAC2 deacetylates eEF1A1. Promoting eEF1A1 deacetylation maintains the activation of Sox10 target genes and increases PNS and CNS remyelination efficiency. Taken together, these data identify a major mechanism of Sox10 regulation, which appears promising for future translational studies on PNS and CNS remyelination. The molecular mechanisms regulating remyelination are unclear. Here, the authors show that promoting deacetylation of eEF1A1 prevents the translocation of Sox10 outside the nucleus, contributing to maintaining the expression of Sox10 target genes and increasing remyelination efficiency.
Collapse
|
23
|
Zhang X, Murray B, Mo G, Shern JF. The Role of Polycomb Repressive Complex in Malignant Peripheral Nerve Sheath Tumor. Genes (Basel) 2020; 11:genes11030287. [PMID: 32182803 PMCID: PMC7140867 DOI: 10.3390/genes11030287] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft tissue sarcomas that can arise most frequently in patients with neurofibromatosis type 1 (NF1). Despite an increasing understanding of the molecular mechanisms that underlie these tumors, there remains limited therapeutic options for this aggressive disease. One potentially critical finding is that a significant proportion of MPNSTs exhibit recurrent mutations in the genes EED or SUZ12, which are key components of the polycomb repressive complex 2 (PRC2). Tumors harboring these genetic lesions lose the marker of transcriptional repression, trimethylation of lysine residue 27 on histone H3 (H3K27me3) and have dysregulated oncogenic signaling. Given the recurrence of PRC2 alterations, intensive research efforts are now underway with a focus on detailing the epigenetic and transcriptomic consequences of PRC2 loss as well as development of novel therapeutic strategies for targeting these lesions. In this review article, we will summarize the recent findings of PRC2 in MPNST tumorigenesis, including highlighting the functions of PRC2 in normal Schwann cell development and nerve injury repair, as well as provide commentary on the potential therapeutic vulnerabilities of a PRC2 deficient tumor cell.
Collapse
Affiliation(s)
- Xiyuan Zhang
- Pediatric Oncology Branch, Tumor Evolution and Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (X.Z.); (B.M.); (G.M.)
| | - Béga Murray
- Pediatric Oncology Branch, Tumor Evolution and Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (X.Z.); (B.M.); (G.M.)
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn road, Belfast BT9 7AE, UK
| | - George Mo
- Pediatric Oncology Branch, Tumor Evolution and Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (X.Z.); (B.M.); (G.M.)
- SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Jack F. Shern
- Pediatric Oncology Branch, Tumor Evolution and Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (X.Z.); (B.M.); (G.M.)
- Correspondence:
| |
Collapse
|
24
|
Duman M, Martinez-Moreno M, Jacob C, Tapinos N. Functions of histone modifications and histone modifiers in Schwann cells. Glia 2020; 68:1584-1595. [PMID: 32034929 DOI: 10.1002/glia.23795] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 01/25/2023]
Abstract
Schwann cells (SCs) are the main glial cells present in the peripheral nervous system (PNS). Their primary functions are to insulate peripheral axons to protect them from the environment and to enable fast conduction of electric signals along big caliber axons by enwrapping them in a thick myelin sheath rich in lipids. In addition, SCs have the peculiar ability to foster axonal regrowth after a lesion by demyelinating and converting into repair cells that secrete neurotrophic factors and guide axons back to their former target to finally remyelinate regenerated axons. The different steps of SC development and their role in the maintenance of PNS integrity and regeneration after lesion are controlled by various factors among which transcription factors and chromatin-remodeling enzymes hold major functions. In this review, we discussed how histone modifications and histone-modifying enzymes control SC development, maintenance of PNS integrity and response to injury. The functions of histone modifiers as part of chromatin-remodeling complexes are discussed in another review published in the same issue of Glia.
Collapse
Affiliation(s)
- Mert Duman
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Margot Martinez-Moreno
- Department of Neurosurgery, Molecular Neuroscience & Neuro-Oncology Laboratory, Brown University, Providence, Rhode Island
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nikos Tapinos
- Department of Neurosurgery, Molecular Neuroscience & Neuro-Oncology Laboratory, Brown University, Providence, Rhode Island
| |
Collapse
|
25
|
Abstract
Toxic peripheral neuropathies are an important form of acquired polyneuropathy produced by a variety of xenobiotics and different exposure scenarios. Delineating the mechanisms of neurotoxicants and determining the degenerative biological pathways triggered by peripheral neurotoxicants will facilitate the development of sensitive and specific biochemical-based methods for identifying neurotoxicants, designing therapeutic interventions, and developing structure-activity relationships for predicting potential neurotoxicants. This review presents an overview of the general concepts of toxic peripheral neuropathies with the goal of providing insight into why certain agents target the peripheral nervous system and produce their associated lesions. Experimental data and the main hypotheses for the mechanisms of selected agents that produce neuronopathies, axonopathies, or myelinopathies including covalent or noncovalent modifications, compromised energy or protein biosynthesis, and oxidative injury and disruption of ionic gradients across membranes are presented. The relevance of signaling between the main components of peripheral nerve, that is, glia, neuronal perikaryon, and axon, as a target for neurotoxicants and the contribution of active programmed degenerative pathways to the lesions observed in toxic peripheral neuropathies is also discussed.
Collapse
|
26
|
Rodriguez AM, Kang J. Regeneration enhancers: Starting a journey to unravel regulatory events in tissue regeneration. Semin Cell Dev Biol 2020; 97:47-54. [PMID: 30953740 PMCID: PMC6783330 DOI: 10.1016/j.semcdb.2019.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/19/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022]
Abstract
Regeneration, an ability to replace lost body parts, is widespread across animal species. While mammals poorly regenerate most tissues, teleost fish and urodele amphibians possess remarkable regenerative capacity. Earlier work demonstrated that genes driving regeneration are evolutionarily conserved, indicating that a key factor in diverse tissue regeneration is not the presence or absence of regeneration-driving genes but the mechanisms controlling activation of these genes after injury. Thus, understanding the regulatory events of tissue regeneration could provide the means for unlocking latent capacities for tissue regeneration. After injury, cells undergo extensive epigenetic changes to establish new transcriptional programs for tissue regeneration. Gene transcription in eukaryotes is a complicated process that requires specific interactions between trans-acting regulators and cis-regulatory DNA elements. Among cis-regulatory elements, enhancers are essential to control precise gene expression. Recently, multiple regeneration/injury-associated enhancers have been identified in several model organisms. In this review, we highlight recently discovered regeneration/injury enhancers and their specific characteristics. We also discuss how abnormal regulation of regeneration enhancers influences animal development and physiology. Investigation of regeneration enhancers potentially allows us to begin understanding the fundamental biology of tissue regeneration and inspires new solutions for manipulating regenerative ability.
Collapse
Affiliation(s)
- Anjelica M Rodriguez
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA.
| |
Collapse
|
27
|
Khan S. IGFBP-2 Signaling in the Brain: From Brain Development to Higher Order Brain Functions. Front Endocrinol (Lausanne) 2019; 10:822. [PMID: 31824433 PMCID: PMC6883226 DOI: 10.3389/fendo.2019.00822] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Insulin-like growth factor-binding protein-2 (IGFBP-2) is a pleiotropic polypeptide that functions as autocrine and/or paracrine growth factors. IGFBP-2 is the most abundant of the IGFBPs in the cerebrospinal fluid (CSF), and developing brain showed the highest expression of IGFBP-2. IGFBP-2 expressed in the hippocampus, cortex, olfactory lobes, cerebellum, and amygdala. IGFBP-2 mRNA expression is seen in meninges, blood vessels, and in small cell-body neurons (interneurons) and astrocytes. The expression pattern of IGFBP-2 is often developmentally regulated and cell-specific. Biological activities of IGFBP-2 which are independent of their abilities to bind to insulin-like growth factors (IGFs) are mediated by the heparin binding domain (HBD). To execute IGF-independent functions, some IGFBPs have shown to bind with their putative receptors or to translocate inside the cells. Thus, IGFBP-2 functions can be mediated both via insulin-like growth factor receptor-1 (IGF-IR) and independent of IGF-Rs. In this review, I suggest that IGFBP-2 is not only involved in the growth, development of the brain but also with the regulation of neuronal plasticity to modulate high-level cognitive operations such as spatial learning and memory and information processing. Hence, IGFBP-2 serves as a neurotrophic factor which acts via metaplastic signaling from embryonic to adult stages.
Collapse
|
28
|
Sophie B, Jacob H, Jordan VJS, Yungki P, Laura FM, Yannick P. YAP and TAZ Regulate Cc2d1b and Purβ in Schwann Cells. Front Mol Neurosci 2019; 12:177. [PMID: 31379499 PMCID: PMC6650784 DOI: 10.3389/fnmol.2019.00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022] Open
Abstract
Schwann cells (SCs) are exquisitely sensitive to the elasticity of their environment and their differentiation and capacity to myelinate depend on the transduction of mechanical stimuli by YAP and TAZ. YAP/TAZ, in concert with other transcription factors, regulate several pathways including lipid and sterol biosynthesis as well as extracellular matrix receptor expressions such as integrins and G-proteins. Yet, the characterization of the signaling downstream YAP/TAZ in SCs is incomplete. Myelin sheath production by SC coincides with rapid up-regulation of numerous transcription factors. Here, we show that ablation of YAP/TAZ alters the expression of transcription regulators known to regulate SC myelin gene transcription and differentiation. Furthermore, we link YAP/TAZ to two DNA binding proteins, Cc2d1b and Purβ, which have no described roles in myelinating glial cells. We demonstrate that silencing of either Cc2d1b or Purβ limits the formation of myelin segments. These data provide a deeper insight into the myelin gene transcriptional network and the role of YAP/TAZ in myelinating glial cells.
Collapse
Affiliation(s)
- Belin Sophie
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Herron Jacob
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - VerPlank J S Jordan
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Park Yungki
- Department of Biochemistry, Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, United States
| | - Feltri M Laura
- Department of Biochemistry, Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, United States.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Poitelon Yannick
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| |
Collapse
|
29
|
Jessen KR, Arthur-Farraj P. Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia 2019; 67:421-437. [PMID: 30632639 DOI: 10.1002/glia.23532] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/20/2018] [Accepted: 09/05/2018] [Indexed: 12/16/2022]
Abstract
Schwann cells respond to nerve injury by cellular reprogramming that generates cells specialized for promoting regeneration and repair. These repair cells clear redundant myelin, attract macrophages, support survival of damaged neurons, encourage axonal growth, and guide axons back to their targets. There are interesting parallels between this response and that found in other tissues. At the cellular level, many other tissues also react to injury by cellular reprogramming, generating cells specialized to promote tissue homeostasis and repair. And at the molecular level, a common feature possessed by Schwann cells and many other cells is the injury-induced activation of genes associated with epithelial-mesenchymal transitions and stemness, differentiation states that are linked to cellular plasticity and that help injury-induced tissue remodeling. The number of signaling systems regulating Schwann cell plasticity is rapidly increasing. Importantly, this includes mechanisms that are crucial for the generation of functional repair Schwann cells and nerve regeneration, although they have no or a minor role elsewhere in the Schwann cell lineage. This encourages the view that selective tools can be developed to control these particular cells, amplify their repair supportive functions and prevent their deterioration. In this review, we discuss the emerging similarities between the injury response seen in nerves and in other tissues and survey the transcription factors, epigenetic mechanisms, and signaling cascades that control repair Schwann cells, with emphasis on systems that selectively regulate the Schwann cell injury response.
Collapse
Affiliation(s)
- Kristjan R Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
30
|
Ma KH, Duong P, Moran JJ, Junaidi N, Svaren J. Polycomb repression regulates Schwann cell proliferation and axon regeneration after nerve injury. Glia 2018; 66:2487-2502. [PMID: 30306639 PMCID: PMC6289291 DOI: 10.1002/glia.23500] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 01/01/2023]
Abstract
The transition of differentiated Schwann cells to support of nerve repair after injury is accompanied by remodeling of the Schwann cell epigenome. The EED-containing polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 methylation and represses key nerve repair genes such as Shh, Gdnf, and Bdnf, and their activation is accompanied by loss of H3K27 methylation. Analysis of nerve injury in mice with a Schwann cell-specific loss of EED showed the reversal of polycomb repression is required and a rate limiting step in the increased transcription of Neuregulin 1 (type I), which is required for efficient remyelination. However, mouse nerves with EED-deficient Schwann cells display slow axonal regeneration with significantly low expression of axon guidance genes, including Sema4f and Cntf. Finally, EED loss causes impaired Schwann cell proliferation after injury with significant induction of the Cdkn2a cell cycle inhibitor gene. Interestingly, PRC2 subunits and CDKN2A are commonly co-mutated in the transition from benign neurofibromas to malignant peripheral nerve sheath tumors (MPNST's). RNA-seq analysis of EED-deficient mice identified PRC2-regulated molecular pathways that may contribute to the transition to malignancy in neurofibromatosis.
Collapse
Affiliation(s)
- Ki H. Ma
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Phu Duong
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John J. Moran
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nabil Junaidi
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
31
|
Chine VB, Au NPB, Kumar G, Ma CHE. Targeting Axon Integrity to Prevent Chemotherapy-Induced Peripheral Neuropathy. Mol Neurobiol 2018; 56:3244-3259. [DOI: 10.1007/s12035-018-1301-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
|
32
|
Injury-activated glial cells promote wound healing of the adult skin in mice. Nat Commun 2018; 9:236. [PMID: 29339718 PMCID: PMC5770460 DOI: 10.1038/s41467-017-01488-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 09/21/2017] [Indexed: 02/03/2023] Open
Abstract
Cutaneous wound healing is a complex process that aims to re-establish the original structure of the skin and its functions. Among other disorders, peripheral neuropathies are known to severely impair wound healing capabilities of the skin, revealing the importance of skin innervation for proper repair. Here, we report that peripheral glia are crucially involved in this process. Using a mouse model of wound healing, combined with in vivo fate mapping, we show that injury activates peripheral glia by promoting de-differentiation, cell-cycle re-entry and dissemination of the cells into the wound bed. Moreover, injury-activated glia upregulate the expression of many secreted factors previously associated with wound healing and promote myofibroblast differentiation by paracrine modulation of TGF-β signalling. Accordingly, depletion of these cells impairs epithelial proliferation and wound closure through contraction, while their expansion promotes myofibroblast formation. Thus, injury-activated glia and/or their secretome might have therapeutic potential in human wound healing disorders.
Collapse
|
33
|
Abstract
The journey of Schwann cells from their origin in the neural crest to their ensheathment and myelination of peripheral nerves is a remarkable one. Their apparent static function in enabling saltatory conduction of mature nerve is not only vital for long-term health of peripheral nerve but also belies an innate capacity of terminally differentiated Schwann cells to radically alter their differentiation status in the face of nerve injury. The transition from migrating neural crest cells to nerve ensheathment, and then myelination of large diameter axons has been characterized extensively and several of the transcriptional networks have been identified. However, transcription factors must also modify chromatin structure during Schwann cell maturation and this review will focus on chromatin modification machinery that is involved in promoting the transition to, and maintenance of, myelinating Schwann cells. In addition, Schwann cells are known to play important regenerative roles after peripheral nerve injury, and information on epigenomic reprogramming of the Schwann cell genome has emerged. Characterization of epigenomic requirements for myelin maintenance and Schwann cell responses to injury will be vital in understanding how the various Schwann cell functions can be optimized to maintain and repair peripheral nerve function.
Collapse
Affiliation(s)
- Ki H Ma
- 1 Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - John Svaren
- 1 Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.,2 Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
34
|
Fuhrmann D, Elsässer HP. Schwann cell Myc-interacting zinc-finger protein 1 without pox virus and zinc finger: epigenetic implications in a peripheral neuropathy. Neural Regen Res 2018; 13:1534-1537. [PMID: 30127108 PMCID: PMC6126141 DOI: 10.4103/1673-5374.235221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Functionality of adult peripheral nerves essentially relies on differentiation of Schwann cells during postnatal development, as well as fine-tuned re- and transdifferentiation in response to peripheral nerve injury. Epigenetic histone modifications play a major role during the differentiation of embryonic stem cells and diverse organ specific progenitor cells, yet only little is known about the epigenetic regulation of Schwann cells. Just recently, Fuhrmann et al. reported how the transcription factor Myc-interacting zinc-finger protein 1 (Miz1) might contribute to Schwann cell differentiation through repression of the histone demethylase Kdm8. Here, we discuss the potential novel role of Miz1 in Schwann cell differentiation and give a short overview about previously reported histone modifications underlying peripheral nerve development and response to injury.
Collapse
Affiliation(s)
- David Fuhrmann
- Department of Cytobiology and Cytopathobiology, Philipps University of Marburg, Marburg, Germany
| | - Hans-Peter Elsässer
- Department of Cytobiology and Cytopathobiology, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
35
|
Liu PP, Xu YJ, Teng ZQ, Liu CM. Polycomb Repressive Complex 2: Emerging Roles in the Central Nervous System. Neuroscientist 2017; 24:208-220. [DOI: 10.1177/1073858417747839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The polycomb repressive complex 2 (PRC2) is responsible for catalyzing both di- and trimethylation of histone H3 at lysine 27 (H3K27me2/3). The subunits of PRC2 are widely expressed in the central nervous system (CNS). PRC2 as well as H3K27me2/3, play distinct roles in neuronal identity, proliferation and differentiation of neural stem/progenitor cells, neuronal morphology, and gliogenesis. Mutations or dysregulations of PRC2 subunits often cause neurological diseases. Therefore, PRC2 might represent a common target of different pathological processes that drive neurodegenerative diseases. A better understanding of the intricate and complex regulatory networks mediated by PRC2 in CNS will help to develop new therapeutic approaches and to generate specific brain cell types for treating neurological diseases.
Collapse
Affiliation(s)
- Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Jie Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Miz1 Controls Schwann Cell Proliferation via H3K36 me2 Demethylase Kdm8 to Prevent Peripheral Nerve Demyelination. J Neurosci 2017; 38:858-877. [PMID: 29217679 DOI: 10.1523/jneurosci.0843-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022] Open
Abstract
Schwann cell differentiation and myelination depends on chromatin remodeling, histone acetylation, and methylation, which all affect Schwann cell proliferation. We previously reported that the deletion of the POZ (POxvirus and Zinc finger) domain of the transcription factor Miz1 (Myc-interacting zinc finger protein; encoded by Zbtb17) in mouse Schwann cells (Miz1ΔPOZ) causes a neuropathy at 90 d after birth [postnatal day (P) 90], with a subsequent spontaneous regeneration. Here we show that RNA sequencing from Miz1ΔPOZ and control animals at P30 revealed a set of upregulated genes with a strong correlation to cell-cycle regulation. Consistently, a subset of Schwann cells did not exit the cell cycle as observed in control animals and the growth fraction increased over time. From the RNAseq gene list, two direct Miz1 target genes were identified, one of which encodes the histone H3K36me2 demethylase Kdm8. We show that the expression of Kdm8 is repressed by Miz1 and that its release in Miz1ΔPOZ cells induces a decrease of H3K36me2, especially in deregulated cell-cycle-related genes. The linkage between elevated Kdm8 expression, hypomethylation of H3K36 at cell-cycle-relevant genes, and the subsequent re-entering of adult Schwann cells into the cell cycle suggests that the release of Kdm8 repression in the absence of a functional Miz1 is a central issue in the development of the Miz1ΔPOZ phenotype.SIGNIFICANCE STATEMENT The deletion of the Miz1 (Myc-interacting zinc finger protein 1) POZ (POxvirus and Zinc finger) domain in Schwann cells causes a neuropathy. Here we report sustained Schwann cell proliferation caused by an increased expression of the direct Miz1 target gene Kdm8, encoding a H3K36me2 demethylase. Hence, the demethylation of H3K36 is linked to the pathogenesis of a neuropathy.
Collapse
|
37
|
Jacob C. Chromatin-remodeling enzymes in control of Schwann cell development, maintenance and plasticity. Curr Opin Neurobiol 2017; 47:24-30. [PMID: 28850819 DOI: 10.1016/j.conb.2017.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/28/2017] [Accepted: 08/10/2017] [Indexed: 01/06/2023]
Abstract
Gene regulation is essential for cellular differentiation and plasticity. Schwann cells (SCs), the myelinating glia of the peripheral nervous system (PNS), develop from neural crest cells to mature myelinating SCs and can at early developmental stage differentiate into various cell types. After a PNS lesion, SCs can also convert into repair cells that guide and stimulate axonal regrowth, and remyelinate regenerated axons. What controls their development and versatile nature? Several recent studies highlight the key roles of chromatin modifiers in these processes, allowing SCs to regulate their gene expression profile and thereby acquire or change their identity and quickly react to their environment.
Collapse
Affiliation(s)
- Claire Jacob
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| |
Collapse
|
38
|
Tricaud N, Park HT. Wallerian demyelination: chronicle of a cellular cataclysm. Cell Mol Life Sci 2017; 74:4049-4057. [PMID: 28600652 PMCID: PMC5641270 DOI: 10.1007/s00018-017-2565-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/10/2017] [Accepted: 06/01/2017] [Indexed: 12/23/2022]
Abstract
Wallerian demyelination is characteristic of peripheral nerve degeneration after traumatic injury. After axonal degeneration, the myelinated Schwann cell undergoes a stereotypical cellular program that results in the disintegration of the myelin sheath, a process termed demyelination. In this review, we chronologically describe this program starting from the late and visible features of myelin destruction and going backward to the initial molecular steps that trigger the nuclear reprogramming few hours after injury. Wallerian demyelination is a wonderful model for myelin degeneration occurring in the diverse forms of demyelinating peripheral neuropathies that plague human beings.
Collapse
Affiliation(s)
- Nicolas Tricaud
- INSERM U1051, Institut des Neurosciences de Montpellier (INM), Université de Montpellier, Montpellier, France.
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center, Department of Physiology, College of Medicine, Dong-A University, Busan, South Korea
| |
Collapse
|
39
|
Brügger V, Duman M, Bochud M, Münger E, Heller M, Ruff S, Jacob C. Delaying histone deacetylase response to injury accelerates conversion into repair Schwann cells and nerve regeneration. Nat Commun 2017; 8:14272. [PMID: 28139683 PMCID: PMC5290322 DOI: 10.1038/ncomms14272] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 12/14/2016] [Indexed: 02/02/2023] Open
Abstract
The peripheral nervous system (PNS) regenerates after injury. However, regeneration is often compromised in the case of large lesions, and the speed of axon reconnection to their target is critical for successful functional recovery. After injury, mature Schwann cells (SCs) convert into repair cells that foster axonal regrowth, and redifferentiate to rebuild myelin. These processes require the regulation of several transcription factors, but the driving mechanisms remain partially understood. Here we identify an early response to nerve injury controlled by histone deacetylase 2 (HDAC2), which coordinates the action of other chromatin-remodelling enzymes to induce the upregulation of Oct6, a key transcription factor for SC development. Inactivating this mechanism using mouse genetics allows earlier conversion into repair cells and leads to faster axonal regrowth, but impairs remyelination. Consistently, short-term HDAC1/2 inhibitor treatment early after lesion accelerates functional recovery and enhances regeneration, thereby identifying a new therapeutic strategy to improve PNS regeneration after lesion.
Collapse
Affiliation(s)
- Valérie Brügger
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Mert Duman
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Maëlle Bochud
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Emmanuelle Münger
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department of Clinical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Sophie Ruff
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Claire Jacob
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| |
Collapse
|
40
|
Quintes S, Brinkmann BG. Transcriptional inhibition in Schwann cell development and nerve regeneration. Neural Regen Res 2017; 12:1241-1246. [PMID: 28966633 PMCID: PMC5607813 DOI: 10.4103/1673-5374.213537] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Schwann cells, the myelinating glial cells of the peripheral nervous system are remarkably plastic after nerve trauma. Their transdifferentiation into specialized repair cells after injury shares some features with their development from the neural crest. Both processes are governed by a tightly regulated balance between activators and inhibitors to ensure timely lineage progression and allow re-maturation after nerve injury. Functional recovery after injury is very successful in rodents, however, in humans, lack of regeneration after nerve trauma and loss of function as the result of peripheral neuropathies represents a significant problem. Our understanding of the basic molecular machinery underlying Schwann cell maturation and plasticity has made significant progress in recent years and novel players have been discovered. While the transcriptional activators of Schwann cell development and nerve repair have been well defined, the mechanisms counteracting negative regulation of (re-)myelination are less well understood. Recently, transcriptional inhibition has emerged as a new regulatory mechanism in Schwann cell development and nerve repair. This mini-review summarizes some of the regulatory mechanisms controlling both processes and the novel concept of “inhibiting the inhibitors” in the context of Schwann cell plasticity.
Collapse
Affiliation(s)
- Susanne Quintes
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Bastian G Brinkmann
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany
| |
Collapse
|
41
|
Ma KH, Hung HA, Svaren J. Epigenomic Regulation of Schwann Cell Reprogramming in Peripheral Nerve Injury. J Neurosci 2016; 36:9135-47. [PMID: 27581455 PMCID: PMC5005723 DOI: 10.1523/jneurosci.1370-16.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/08/2016] [Accepted: 07/15/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The rapid and dynamic transcriptional changes of Schwann cells in response to injury are critical to peripheral nerve repair, yet the epigenomic reprograming that leads to the induction of injury-activated genes has not been characterized. Polycomb Repressive Complex 2 (PRC2) catalyzes the trimethylation of lysine 27 of histone H3 (H3K27me3), which produces a transcriptionally repressive chromatin environment. We find that many promoters and/or gene bodies of injury-activated genes of mature rat nerves are occupied with H3K27me3. In contrast, the majority of distal enhancers that gain H3K27 acetylation after injury are not repressed by H3K27 methylation before injury, which is normally observed in developmentally poised enhancers. Injury induces demethylation of H3K27 in many genes, such as Sonic hedgehog (Shh), which is silenced throughout Schwann cell development before injury. In addition, experiments using a Schwann cell-specific mouse knock-out of the Eed subunit of PRC2 indicate that demethylation is a rate-limiting step in the activation of such genes. We also show that some transcription start sites of H3K27me3-repressed injury genes of uninjured nerves are bound with a mark of active promoters H3K4me3, for example, Shh and Gdnf, and the reduction of H3K27me3 results in increased trimethylation of H3K4. Our findings identify reversal of polycomb repression as a key step in gene activation after injury. SIGNIFICANCE STATEMENT Peripheral nerve regeneration after injury is dependent upon implementation of a novel genetic program in Schwann cells that supports axonal survival and regeneration. Identifying means to enhance Schwann cell reprogramming after nerve injury could be used to foster effective remyelination in the treatment of demyelinating disorders and in identifying pathways involved in regenerative process of myelination. Although recent progress has identified transcriptional determinants of successful reprogramming of the Schwann cell transcriptome after nerve injury, our results have highlighted a novel epigenomic pathway in which reversal of the Polycomb pathway of repressive histone methylation is required for activation of a significant number of injury-induced genes.
Collapse
Affiliation(s)
- Ki H Ma
- Waisman Center, Cellular and Molecular Pathology Graduate Program, and
| | - Holly A Hung
- Waisman Center, Cellular and Molecular Pathology Graduate Program, and
| | - John Svaren
- Waisman Center, Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53705
| |
Collapse
|
42
|
Lopez-Anido C, Poitelon Y, Gopinath C, Moran JJ, Ma KH, Law WD, Antonellis A, Feltri ML, Svaren J. Tead1 regulates the expression of Peripheral Myelin Protein 22 during Schwann cell development. Hum Mol Genet 2016; 25:3055-3069. [PMID: 27288457 DOI: 10.1093/hmg/ddw158] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/14/2016] [Accepted: 05/18/2016] [Indexed: 12/17/2022] Open
Abstract
Schwann cells are myelinating glia in the peripheral nervous system that form the myelin sheath. A major cause of peripheral neuropathy is a copy number variant involving the Peripheral Myelin Protein 22 (PMP22) gene, which is located within a 1.4-Mb duplication on chromosome 17 associated with the most common form of Charcot-Marie-Tooth Disease (CMT1A). Rodent models of CMT1A have been used to show that reducing Pmp22 overexpression mitigates several aspects of a CMT1A-related phenotype. Mechanistic studies of Pmp22 regulation identified enhancers regulated by the Sox10 (SRY sex determining region Y-box 10) and Egr2/Krox20 (Early growth response protein 2) transcription factors in myelinated nerves. However, relatively little is known regarding how other transcription factors induce Pmp22 expression during Schwann cell development and myelination. Here, we examined Pmp22 enhancers as a function of cell type-specificity, nerve injury and development. While Pmp22 enhancers marked by active histone modifications were lost or remodeled after injury, we found that these enhancers were permissive in early development prior to Pmp22 upregulation. Pmp22 enhancers contain binding motifs for TEA domain (Tead) transcription factors of the Hippo signaling pathway. We discovered that Tead1 and co-activators Yap and Taz are required for Pmp22 expression, as well as for the expression of Egr2 Tead1 directly binds Pmp22 and Egr2 enhancers early in development and Tead1 binding is induced during myelination, correlating with Pmp22 expression. The data identify Tead1 as a novel regulator of Pmp22 expression during development in concert with Sox10 and Egr2.
Collapse
Affiliation(s)
- Camila Lopez-Anido
- Waisman Center, Madison, WI, USA.,Comparative Biomedical Sciences Graduate Program, Madison, WI, USA
| | | | - Chetna Gopinath
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Ki Hwan Ma
- Waisman Center, Madison, WI, USA.,Cellular and Molecular Pathology Graduate Program, Madison, WI, USA
| | - William D Law
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anthony Antonellis
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - M Laura Feltri
- Hunter James Kelly Research Institute, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - John Svaren
- Waisman Center, Madison, WI, USA .,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
43
|
Ness JK, Skiles AA, Yap EH, Fajardo EJ, Fiser A, Tapinos N. Nuc-ErbB3 regulates H3K27me3 levels and HMT activity to establish epigenetic repression during peripheral myelination. Glia 2016; 64:977-92. [PMID: 27017927 PMCID: PMC5021170 DOI: 10.1002/glia.22977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 02/01/2016] [Indexed: 12/04/2022]
Abstract
Nuc‐ErbB3 an alternative transcript from the ErbB3 locus binds to a specific DNA motif and associates with Schwann cell chromatin. Here we generated a nuc‐ErbB3 knockin mouse that lacks nuc‐ErbB3 expression in the nucleus without affecting the neuregulin‐ErbB3 receptor signaling. Nuc‐ErbB3 knockin mice exhibit hypermyelination and aberrant myelination at the paranodal region. This phenotype is attributed to de‐repression of myelination associated gene transcription following loss of nuc‐ErbB3 and histone H3K27me3 promoter occupancy. Nuc‐ErbB3 knockin mice exhibit reduced association of H3K27me3 with myelination‐associated gene promoters and increased RNA Pol‐II rate of transcription of these genes. In addition, nuc‐ErbB3 directly regulates levels of H3K27me3 in Schwann cells. Nuc‐ErbB3 knockin mice exhibit significant decrease of histone H3K27me3 methyltransferase (HMT) activity and reduced levels of H3K27me3. Collectively, nuc‐ErbB3 is a master transcriptional repressor, which regulates HMT activity to establish a repressive chromatin landscape on promoters of genes during peripheral myelination. GLIA 2016;64:977–992 Nuc‐ErbB3 knock‐in mice exhibit peripheral hypermyelination. Nuc‐ErbB3 regulates total levels of H3K27me3 and HMT activity. Nuc‐ErbB3 induces transcriptional repression of myelination associated genes.
Collapse
Affiliation(s)
- Jennifer K Ness
- Molecular Neuroscience and Neurooncology Laboratory, Geisinger Clinic, Danville, Pennsylvania
| | - Amanda A Skiles
- Molecular Neuroscience and Neurooncology Laboratory, Geisinger Clinic, Danville, Pennsylvania
| | - Eng-Hui Yap
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Eduardo J Fajardo
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Nikos Tapinos
- Molecular Neuroscience and Neurooncology Laboratory, Geisinger Clinic, Danville, Pennsylvania
| |
Collapse
|
44
|
Jessen KR, Mirsky R. The repair Schwann cell and its function in regenerating nerves. J Physiol 2016; 594:3521-31. [PMID: 26864683 PMCID: PMC4929314 DOI: 10.1113/jp270874] [Citation(s) in RCA: 793] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/28/2015] [Indexed: 01/05/2023] Open
Abstract
Nerve injury triggers the conversion of myelin and non‐myelin (Remak) Schwann cells to a cell phenotype specialized to promote repair. Distal to damage, these repair Schwann cells provide the necessary signals and spatial cues for the survival of injured neurons, axonal regeneration and target reinnervation. The conversion to repair Schwann cells involves de‐differentiation together with alternative differentiation, or activation, a combination that is typical of cell type conversions often referred to as (direct or lineage) reprogramming. Thus, injury‐induced Schwann cell reprogramming involves down‐regulation of myelin genes combined with activation of a set of repair‐supportive features, including up‐regulation of trophic factors, elevation of cytokines as part of the innate immune response, myelin clearance by activation of myelin autophagy in Schwann cells and macrophage recruitment, and the formation of regeneration tracks, Bungner's bands, for directing axons to their targets. This repair programme is controlled transcriptionally by mechanisms involving the transcription factor c‐Jun, which is rapidly up‐regulated in Schwann cells after injury. In the absence of c‐Jun, damage results in the formation of a dysfunctional repair cell, neuronal death and failure of functional recovery. c‐Jun, although not required for Schwann cell development, is therefore central to the reprogramming of myelin and non‐myelin (Remak) Schwann cells to repair cells after injury. In future, the signalling that specifies this cell requires further analysis so that pharmacological tools that boost and maintain the repair Schwann cell phenotype can be developed.
![]()
Collapse
Affiliation(s)
- K R Jessen
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - R Mirsky
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
45
|
Affiliation(s)
- Ki H Ma
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|