1
|
Patil N, Patil K, Jain M, Mohammed A, Yadav A, Dhanda PS, Kole C, Dave K, Kaushik P, Azhar Abdul Razab MK, Hamzah Z, Nawi NM. A systematic study of molecular targets of cannabidiol in Alzheimer's disease. J Alzheimers Dis Rep 2024; 8:1339-1360. [PMID: 40034365 PMCID: PMC11863746 DOI: 10.1177/25424823241284464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/27/2024] [Indexed: 03/05/2025] Open
Abstract
Background Alzheimer's disease (AD) is a prevalent, incurable, and chronic neurodegenerative condition characterized by the accumulation of amyloid-β protein (Aβ), disrupting various bodily systems. Despite the lack of a cure, phenolic compounds like cannabidiol (CBD), a non-psychoactive component of cannabis, have emerged as potential therapeutic agents for AD. Objective This systematic review explores the impact of different types of cannabidiol on AD, unveiling their neuroprotective mechanisms. Methods The research used PubMed, Scopus, and Web of Science databases with keywords like "Alzheimer's disease" and "Cannabidiol." Studies were evaluated based on title, abstract, and relevance to treating AD with CBD. No restrictions on research type or publication year. Excluded were hypothesis papers, reviews, books, unavailable articles, etc. Results Microsoft Excel identified 551 articles, with 92 included in the study, but only 22 were thoroughly evaluated. In-vivo and in-silico studies indicate that CBD may disrupt Aβ42, reduce pro-inflammatory molecule release, prevent reactive oxygen species formation, inhibit lipid oxidation, and counteract Aβ-induced increases in intracellular calcium, thereby protecting neurons from apoptosis. Conclusions In summary, the study indicates that CBD and its analogs reduce the production of Aβ42. Overall, these findings support the potential of CBD in alleviating the underlying pathology and symptoms associated with AD, underscoring the crucial need for further rigorous scientific investigation to elucidate the therapeutic applications and mechanisms of CBD in AD.
Collapse
Affiliation(s)
- Nil Patil
- Cell & Developmental Biology Lab, Research & Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Khushalika Patil
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Mukul Jain
- Cell & Developmental Biology Lab, Research & Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
- Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Arifullah Mohammed
- Department of Agriculture Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Alpa Yadav
- Department of Botany, Indra Gandhi University, Meerpur, Rewari, India
| | | | | | - Kirtan Dave
- Bioinformatics Laboratory, Research & Development Cell, Parul University, Vadodara, Gujarat, India
| | - Prashant Kaushik
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | | | - Zulhazman Hamzah
- Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Norazlina Mat Nawi
- Department of Nuclear Medicine, Radiotherapy & Oncology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
2
|
Lu Y, Hatzipantelis CJ, Langmead CJ, Stewart GD. Molecular insights into orphan G protein-coupled receptors relevant to schizophrenia. Br J Pharmacol 2024; 181:2095-2113. [PMID: 37605621 DOI: 10.1111/bph.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/25/2023] [Accepted: 07/23/2023] [Indexed: 08/23/2023] Open
Abstract
Schizophrenia remains a sizable socio-economic burden that continues to be treated with therapeutics based on 70-year old science. All currently approved therapeutics primarily target the dopamine D2 receptor to achieve their efficacy. Whilst dopaminergic dysregulation is a key feature in this disorder, the targeting of dopaminergic machinery has yielded limited efficacy and an appreciable side effect burden. Over the recent decades, numerous drugs that engage non-dopaminergic G protein-coupled receptors (GPCRs) have yielded a promise of efficacy without the deleterious side effect profile, yet none have successfully completed clinical studies and progressed to the market. More recently, there has been increased attention around non-dopaminergic GPCR-targeting drugs, which demonstrated efficacy in some schizophrenia symptom domains. This provides renewed hope that effective schizophrenia treatment may lie outside of the dopaminergic space. Despite the potential for muscarinic receptor- (and other well-characterised GPCR families) targeting drugs to treat schizophrenia, they are often plagued with complications such as lack of receptor subtype selectivity and peripheral on-target side effects. Orphan GPCR studies have opened a new avenue of exploration with many demonstrating schizophrenia-relevant mechanisms and a favourable expression profile, thus offering potential for novel drug development. This review discusses centrally expressed orphan GPCRs: GPR3, GPR6, GPR12, GPR52, GPR85, GPR88 and GPR139 and their relationship to schizophrenia. We review their expression, signalling mechanisms and cellular function, in conjunction with small molecule development and structural insights. We seek to provide a snapshot of the growing evidence and development potential of new classes of schizophrenia therapeutics. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Yao Lu
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | | | - Christopher J Langmead
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| | - Gregory D Stewart
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| |
Collapse
|
3
|
Yang HH, Han KM, Kim A, Kang Y, Tae WS, Han MR, Ham BJ. Neuroimaging and epigenetic analysis reveal novel epigenetic loci in major depressive disorder. Psychol Med 2024; 54:2585-2598. [PMID: 38721773 DOI: 10.1017/s0033291724000709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
BACKGROUND Epigenetic modifications, such as DNA methylation, contribute to the pathophysiology of major depressive disorder (MDD). This study aimed to identify novel MDD-associated epigenetic loci using DNA methylation profiles and explore the correlations between epigenetic loci and cortical thickness changes in patients with MDD. METHODS A total of 350 patients with MDD and 161 healthy controls (HCs) were included in the epigenome-wide association studies (EWAS). We analyzed methylation, copy number alteration (CNA), and gene network profiles in the MDD group. A total of 234 patients with MDD and 135 HCs were included in neuroimaging methylation analysis. Pearson's partial correlation analysis was used to estimate the correlation between cortical thickness of brain regions and DNA methylation levels of the loci. RESULTS In total, 2018 differentially methylated probes (DMPs) and 351 differentially methylated regions (DMRs) were identified. DMP-related genes were enriched in two networks involved in the central nervous system. In neuroimaging analysis, patients with MDD showed cortical thinning in the prefrontal regions and cortical thickening in several occipital regions. Cortical thickness of the left ventrolateral prefrontal cortex (VLPFC, i.e. pars triangularis) was negatively correlated with eight DMPs associated with six genes (EML6, ZFP64, CLSTN3, KCNMA1, TAOK2, and NT5E). CONCLUSION Through combining DNA methylation and neuroimaging analyses, negative correlations were identified between the cortical thickness of the left VLPFC and DNA methylation levels of eight DMPs. Our findings could improve our understanding of the pathophysiology of MDD.
Collapse
Affiliation(s)
- Hyun-Ho Yang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Mi-Ryung Han
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Öz-Arslan D, Yavuz M, Kan B. Exploring orphan GPCRs in neurodegenerative diseases. Front Pharmacol 2024; 15:1394516. [PMID: 38895631 PMCID: PMC11183337 DOI: 10.3389/fphar.2024.1394516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Neurodegenerative disorders represent a significant and growing health burden worldwide. Unfortunately, limited therapeutic options are currently available despite ongoing efforts. Over the past decades, research efforts have increasingly focused on understanding the molecular mechanisms underlying these devastating conditions. Orphan receptors, a class of receptors with no known endogenous ligands, emerge as promising druggable targets for diverse diseases. This review aims to direct attention to a subgroup of orphan GPCRs, in particular class A orphans that have roles in neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Multiple sclerosis. We highlight the diverse roles orphan receptors play in regulating critical cellular processes such as synaptic transmission, neuronal survival and neuro-inflammation. Moreover, we discuss the therapeutic potential of targeting orphan receptors for the treatment of neurodegenerative disorders, emphasizing recent advances in drug discovery and preclinical studies. Finally, we outline future directions and challenges in orphan receptor research.
Collapse
Affiliation(s)
- Devrim Öz-Arslan
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Türkiye
- Department of Neurosciences, Acibadem MAA University, Institute of Health Sciences, İstanbul, Türkiye
| | - Melis Yavuz
- Department of Neurosciences, Acibadem MAA University, Institute of Health Sciences, İstanbul, Türkiye
- Department of Pharmacology, Acibadem MAA University, School of Pharmacy, Istanbul, Türkiye
| | - Beki Kan
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Türkiye
- Department of Neurosciences, Acibadem MAA University, Institute of Health Sciences, İstanbul, Türkiye
| |
Collapse
|
5
|
Wang P, Lv L, Li H, Wang CY, Zhou J. Opportunities and challenges in drug discovery targeting the orphan receptor GPR12. Drug Discov Today 2023; 28:103698. [PMID: 37422169 DOI: 10.1016/j.drudis.2023.103698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
G-protein-coupled receptor 12 (GPR12) is a brain-specific expression orphan G-protein-coupled receptor (oGPCR) that regulates various physiological processes. It is an emerging therapeutic target for central nervous system (CNS) disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), attention deficit hyperactivity disorder (ADHD), and schizophrenia, as well as other human diseases, such as cancer, obesity, and metabolic disorders. GPR12 remains a less extensively investigated oGPCR, particularly in terms of its biological functions, signaling pathways, and ligand discovery. The discovery of drug-like small-molecule modulators to probe the brain functions of GPR12 or to act as a potential drug candidates, as well as the identification of reliable biomarkers, are vital to elucidate the roles of this receptor in various human diseases and develop novel target-based therapeutics.
Collapse
Affiliation(s)
- Pingyuan Wang
- Key Laboratory of Evolution and Marine Biodiversity Ministry of Education, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Ling Lv
- Key Laboratory of Evolution and Marine Biodiversity Ministry of Education, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Haoran Li
- Key Laboratory of Evolution and Marine Biodiversity Ministry of Education, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chang-Yun Wang
- Key Laboratory of Evolution and Marine Biodiversity Ministry of Education, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
6
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Li H, Zhang J, Yu Y, Luo F, Wu L, Liu J, Chen N, Liu Z, Hua T. Structural insight into the constitutive activity of human orphan receptor GPR12. Sci Bull (Beijing) 2023; 68:95-104. [PMID: 36593162 DOI: 10.1016/j.scib.2022.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/22/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
G protein-coupled receptor 12 (GPR12) is an orphan G protein-coupled receptor that is highly expressed in the thalamus of the brain and plays a vital role in driving thalamocortical functions in short-term memory. GPR12 performs high constitutive activity and couples with Gs, increasing the intracellular cyclic adenosine monophosphate (cAMP) level when it is expressed. However, exploitation for drug development is limited since it is unclear how GPR12 initiates self-activation and signal transduction, and whether it can be modulated by endogenous or synthetic ligands. Here, we report the cryo-electron microscopy structure of the GPR12-Gs complex in the absence of agonists. Our structure reveals the key determinants for the intrinsically high basal activity of GPR12, including extracellular loop 2 partially occupying the orthosteric binding pocket, a tight-packed TM1 and TM7, and unique activation-related residues in TM6 and TM7. Together with mutagenesis data, this study will improve our understanding of the function and self-activation of the orphan receptor GPR12, enable the identification of endogenous ligands, and guide drug discovery efforts that target GPR12.
Collapse
Affiliation(s)
- Hao Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jinyi Zhang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanan Yu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Feng Luo
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Na Chen
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Zhijie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
8
|
Wang L, Yang D, Zhang Y, Jiao Y. GPR12 Inhibits Apoptosis in Epithelial Ovarian Cancer via the Activation of ERK1/2 Signaling. Front Oncol 2022; 12:932689. [PMID: 35903681 PMCID: PMC9316591 DOI: 10.3389/fonc.2022.932689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancies in women worldwide. G protein–coupled receptor 12 (GPR12) is a member of G protein–coupled receptors (GPCRs) and plays an important role in the regulation of cell proliferation and survival. However, its role in EOC is underappreciated. In this study, we found that GPR12 is highly expressed in the EOC tissues and can be an ideal biomarker to predict the prognosis of patients with EOC. GPR12 knockdown obviously inhibits the proliferation of EOC cells by inducing cellular apoptosis in vitro and in vivo. Meanwhile, bioinformatic analysis showed that the inhibitory effect of GPR12 knockdown on the cell viability is closely related with Extracellular signal-regulated kinases 1/2 (ERK1/2) pathway, which has been confirmed by the fact that the activity of ERK1/2 pathway has been significantly blocked in the GPR12 knockdown cells. LM22B-10, ERK1/2 pathway activator, could reverse the inhibited proliferation caused by GPR12 knockdown in the EOC cells. Our findings suggest that GPR12 is involved in the EOC process and is a potential therapeutic target for EOC.
Collapse
Affiliation(s)
- Lu Wang
- Department of General Medicine, Liaoning Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Da Yang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yao Zhang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yisheng Jiao
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Yisheng Jiao,
| |
Collapse
|
9
|
Ozturk S. Molecular determinants of the meiotic arrests in mammalian oocytes at different stages of maturation. Cell Cycle 2022; 21:547-571. [PMID: 35072590 PMCID: PMC8942507 DOI: 10.1080/15384101.2022.2026704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 01/26/2023] Open
Abstract
Mammalian oocytes undergo two rounds of developmental arrest during maturation: at the diplotene of the first meiotic prophase and metaphase of the second meiosis. These arrests are strictly regulated by follicular cells temporally producing the secondary messengers, cAMP and cGMP, and other factors to regulate maturation promoting factor (composed of cyclin B1 and cyclin-dependent kinase 1) levels in the oocytes. Out of these normally appearing developmental arrests, permanent arrests may occur in the oocytes at germinal vesicle (GV), metaphase I (MI), or metaphase II (MII) stage. This issue may arise from absence or altered expression of the oocyte-related genes playing key roles in nuclear and cytoplasmic maturation. Additionally, the assisted reproductive technology (ART) applications such as ovarian stimulation and in vitro culture conditions both of which harbor various types of chemical agents may contribute to forming the permanent arrests. In this review, the molecular determinants of developmental and permanent arrests occurring in the mammalian oocytes are comprehensively evaluated in the light of current knowledge. As number of permanently arrested oocytes at different stages is increasing in ART centers, potential approaches for inducing permanent arrests to obtain competent oocytes are discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
10
|
GPR3 accelerates neurite outgrowth and neuronal polarity formation via PI3 kinase-mediating signaling pathway in cultured primary neurons. Mol Cell Neurosci 2021; 118:103691. [PMID: 34871769 DOI: 10.1016/j.mcn.2021.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 11/23/2022] Open
Abstract
During neuronal development, immature neurons extend neurites and subsequently polarize to form an axon and dendrites. We have previously reported that G protein-coupled receptor 3 (GPR3) levels increase during neuronal development, and that GPR3 has functions in neurite outgrowth and neuronal differentiation in cerebellar granular neurons. Moreover, GPR3 is transported and concentrated at the tips of neurite, thereby contributing to the local activation of protein kinase A (PKA). However, the signaling pathways for GPR3-mediated neurite outgrowth and its subsequent effects on neuronal polarization have not yet been elucidated. We therefore analyzed the signaling pathways related to GPR3-mediated neurite outgrowth, and also focused on the possible roles of GPR3 in axon polarization. We demonstrated that, in cerebellar granular neurons, GPR3-mediated neurite outgrowth was mediated by multiple signaling pathways, including those of PKA, extracellular signal-regulated kinases (ERKs), and most strongly phosphatidylinositol 3-kinase (PI3K). In addition, the GPR3-mediated activation of neurite outgrowth was associated with G protein-coupled receptor kinase 2 (GRK2)-mediated signaling and phosphorylation of the C-terminus serine/threonine residues of GPR3, which affected downstream protein kinase B (Akt) signaling. We further demonstrated that GPR3 was transiently increased early in the development of rodent hippocampal neurons. It was subsequently concentrated at the tip of the longest neurite, and was thus associated with accelerated polarity formation in a PI3K-dependent manner in rat hippocampal neurons. In addition, GPR3 knockout in mouse hippocampal neurons led to delayed neuronal polarity formation, thereby affecting the dephosphorylation of collapsing response mediator protein 2 (CRMP2), which is downstream of the PI3K signaling pathway. Taken together, these findings suggest that the intrinsic expression of GPR3 in differentiated neurons constitutively activates PI3K-mediated signaling pathway predominantly, thus accelerating neurite outgrowth and further augmenting polarity formation in primary cultured neurons.
Collapse
|
11
|
Biringer RG. Endocannabinoid signaling pathways: beyond CB1R and CB2R. J Cell Commun Signal 2021; 15:335-360. [PMID: 33978927 PMCID: PMC8222499 DOI: 10.1007/s12079-021-00622-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
The search for cannabinoid receptors other than CB1R and CB2R has been ongoing for over a decade. A number of orphan receptors have been proposed as potential cannabinoid receptors primarily based on phylogenic arguments and reactivity towards known endocannabinoids and phytocannabinoids. Seven putative cannabinoid receptors are described and discussed, and evidence for and against their inclusion in this category are presented.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
12
|
Potential and Limits of Cannabinoids in Alzheimer's Disease Therapy. BIOLOGY 2021; 10:biology10060542. [PMID: 34204237 PMCID: PMC8234911 DOI: 10.3390/biology10060542] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary This review was aimed at exploring the potentiality of drugging the endocannabinoid system as a therapeutic option for Alzheimer’s disease (AD). Recent discoveries have demonstrated how the modulation of cannabinoid receptor 1 (CB1) and receptor 2 (CB2) can exert neuroprotective effects without the recreational and pharmacological properties of Cannabis sativa. Thus, this review explores the potential of cannabinoids in AD, also highlighting their limitations in perspective to point out the need for further research on cannabinoids in AD therapy. Abstract Alzheimer’s disease (AD) is a detrimental brain disorder characterized by a gradual cognitive decline and neuronal deterioration. To date, the treatments available are effective only in the early stage of the disease. The AD etiology has not been completely revealed, and investigating new pathological mechanisms is essential for developing effective and safe drugs. The recreational and pharmacological properties of marijuana are known for centuries, but only recently the scientific community started to investigate the potential use of cannabinoids in AD therapy—sometimes with contradictory outcomes. Since the endocannabinoid system (ECS) is highly expressed in the hippocampus and cortex, cannabis use/abuse has often been associated with memory and learning dysfunction in vulnerable individuals. However, the latest findings in AD rodent models have shown promising effects of cannabinoids in reducing amyloid plaque deposition and stimulating hippocampal neurogenesis. Beneficial effects on several dementia-related symptoms have also been reported in clinical trials after cannabinoid treatments. Accordingly, future studies should address identifying the correct therapeutic dosage and timing of treatment from the perspective of using cannabinoids in AD therapy. The present paper aims to summarize the potential and limitations of cannabinoids as therapeutics for AD, focusing on recent pre-clinical and clinical evidence.
Collapse
|
13
|
Mizuno H, Kihara Y. Druggable Lipid GPCRs: Past, Present, and Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:223-258. [PMID: 32894513 DOI: 10.1007/978-3-030-50621-6_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) have seven transmembrane spanning domains and comprise the largest superfamily with ~800 receptors in humans. GPCRs are attractive targets for drug discovery because they transduce intracellular signaling in response to endogenous ligands via heterotrimeric G proteins or arrestins, resulting in a wide variety of physiological and pathophysiological responses. The endogenous ligands for GPCRs are highly chemically diverse and include ions, biogenic amines, nucleotides, peptides, and lipids. In this review, we follow the KonMari method to better understand druggable lipid GPCRs. First, we have a comprehensive tidying up of lipid GPCRs including receptors for prostanoids, leukotrienes, specialized pro-resolving mediators (SPMs), lysophospholipids, sphingosine 1-phosphate (S1P), cannabinoids, platelet-activating factor (PAF), free fatty acids (FFAs), and sterols. This tidying up consolidates 46 lipid GPCRs and declutters several perplexing lipid GPCRs. Then, we further tidy up the lipid GPCR-directed drugs from the literature and databases, which identified 24 clinical drugs targeting 16 unique lipid GPCRs available in the market and 44 drugs under evaluation in more than 100 clinical trials as of 2019. Finally, we introduce drug designs for GPCRs that spark joy, such as positive or negative allosteric modulators (PAM or NAM), biased agonism, functional antagonism like fingolimod, and monoclonal antibodies (MAbs). These strategic drug designs may increase the efficacy and specificity of drugs and reduce side effects. Technological advances will help to discover more endogenous lipid ligands from the vast number of remaining orphan GPCRs and will also lead to the development novel lipid GPCR drugs to treat various diseases.
Collapse
Affiliation(s)
| | - Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
14
|
Allende G, Chávez-Reyes J, Guerrero-Alba R, Vázquez-León P, Marichal-Cancino BA. Advances in Neurobiology and Pharmacology of GPR12. Front Pharmacol 2020; 11:628. [PMID: 32457622 PMCID: PMC7226366 DOI: 10.3389/fphar.2020.00628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/21/2020] [Indexed: 01/19/2023] Open
Abstract
GPR12 is a G protein-coupled orphan receptor genetically related to type 1 and type 2 cannabinoid receptors (CB1 and CB2) which are ancient proteins expressed all over the body. Both cannabinoid receptors, but especially CB1, are involved in neurodevelopment and cognitive processes such as learning, memory, brain reward, coordination, etc. GPR12 shares with CB1 that both are mainly expressed into the brain. Regrettably, very little is known about physiology of GPR12. Concerning its pharmacology, GPR12 seems to be endogenously activated by the lysophospholipids sphingosine-1-phosphate (S1P) and sphingosyl-phosphorylcholine (SPC). Exogenously, GPR12 is a target for the phytocannabinoid cannabidiol (CBD). Functionally, GPR12 seems to be related to neurogenesis and neural inflammation, but its relationship with cognitive functions remains to be characterized. Although GPR12 was initially suggested to be a cannabinoid receptor, it does not meet the five criteria proposed in 2010 by the International Union of Basic and Clinical Pharmacology (IUPHAR). In this review, we analyze all the direct available information in PubMed database about expression, function, and pharmacology of this receptor in central nervous system (CNS) trying to provide a broad overview of its current and prospective neurophysiology. Moreover, in this mini-review we highlight the need to produce more relevant data about the functions of GPR12 in CNS. Hence, this work should motivate further research in this field.
Collapse
Affiliation(s)
- Gonzalo Allende
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Jesús Chávez-Reyes
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Priscila Vázquez-León
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| |
Collapse
|
15
|
Laboute T, Gandía J, Pellissier LP, Corde Y, Rebeillard F, Gallo M, Gauthier C, Léauté A, Diaz J, Poupon A, Kieffer BL, Le Merrer J, Becker JA. The orphan receptor GPR88 blunts the signaling of opioid receptors and multiple striatal GPCRs. eLife 2020; 9:50519. [PMID: 32003745 PMCID: PMC7012601 DOI: 10.7554/elife.50519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
GPR88 is an orphan G protein-coupled receptor (GPCR) considered as a promising therapeutic target for neuropsychiatric disorders; its pharmacology, however, remains scarcely understood. Based on our previous report of increased delta opioid receptor activity in Gpr88 null mice, we investigated the impact of GPR88 co-expression on the signaling of opioid receptors in vitro and revealed that GPR88 inhibits the activation of both their G protein- and β-arrestin-dependent signaling pathways. In Gpr88 knockout mice, morphine-induced locomotor sensitization, withdrawal and supra-spinal analgesia were facilitated, consistent with a tonic inhibitory action of GPR88 on µOR signaling. We then explored GPR88 interactions with more striatal versus non-neuronal GPCRs, and revealed that GPR88 can decrease the G protein-dependent signaling of most receptors in close proximity, but impedes β-arrestin recruitment by all receptors tested. Our study unravels an unsuspected buffering role of GPR88 expression on GPCR signaling, with intriguing consequences for opioid and striatal functions.
Collapse
Affiliation(s)
- Thibaut Laboute
- Deficits of Reward GPCRs and Sociability, Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours, Inserm, Nouzilly, France
| | - Jorge Gandía
- Deficits of Reward GPCRs and Sociability, Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours, Inserm, Nouzilly, France
| | - Lucie P Pellissier
- Deficits of Reward GPCRs and Sociability, Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours, Inserm, Nouzilly, France.,Biology and Bioinformatics of Signalling Systems, Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours, Nouzilly, France
| | - Yannick Corde
- Deficits of Reward GPCRs and Sociability, Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours, Inserm, Nouzilly, France
| | - Florian Rebeillard
- Cellular Biology and Molecular Pharmacology of central Receptors, Centre de Psychiatrie et Neurosciences, Inserm UMR_S894 - Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria Gallo
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Christophe Gauthier
- Biology and Bioinformatics of Signalling Systems, Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours, Nouzilly, France
| | - Audrey Léauté
- Deficits of Reward GPCRs and Sociability, Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours, Inserm, Nouzilly, France
| | - Jorge Diaz
- Cellular Biology and Molecular Pharmacology of central Receptors, Centre de Psychiatrie et Neurosciences, Inserm UMR_S894 - Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Poupon
- Biology and Bioinformatics of Signalling Systems, Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours, Nouzilly, France
| | - Brigitte L Kieffer
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, Inserm U1258, Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France
| | - Julie Le Merrer
- Deficits of Reward GPCRs and Sociability, Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours, Inserm, Nouzilly, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, Inserm U1258, Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France
| | - Jérôme Aj Becker
- Deficits of Reward GPCRs and Sociability, Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours, Inserm, Nouzilly, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, Inserm U1258, Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France
| |
Collapse
|
16
|
Role of Sphingosylphosphorylcholine in Tumor and Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11111696. [PMID: 31683697 PMCID: PMC6896196 DOI: 10.3390/cancers11111696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Sphingosylphosphorylcholine (SPC) is a unique type of lysosphingolipid found in some diseases, and has been studied in cardiovascular, neurological, and inflammatory phenomena. In particular, SPC’s studies on cancer have been conducted mainly in terms of effects on cancer cells, and relatively little consideration has been given to aspects of tumor microenvironment. This review summarizes the effects of SPC on cancer and tumor microenvironment, and presents the results and prospects of modulators that regulate the various actions of SPC.
Collapse
|
17
|
Laun AS, Shrader SH, Brown KJ, Song ZH. GPR3, GPR6, and GPR12 as novel molecular targets: their biological functions and interaction with cannabidiol. Acta Pharmacol Sin 2019; 40:300-308. [PMID: 29941868 PMCID: PMC6460361 DOI: 10.1038/s41401-018-0031-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/17/2018] [Indexed: 01/08/2023]
Abstract
The G protein-coupled receptors 3, 6, and 12 (GPR3, GPR6, and GPR12) comprise a family of closely related orphan receptors with no confirmed endogenous ligands. These receptors are constitutively active and capable of signaling through G protein-mediated and non-G protein-mediated mechanisms. These orphan receptors have previously been reported to play important roles in many normal physiological functions and to be involved in a variety of pathological conditions. Although they are orphans, GPR3, GPR6, and GPR12 are phylogenetically most closely related to the cannabinoid receptors. Using β-arrestin2 recruitment and cAMP accumulation assays, we recently found that the nonpsychoactive phytocannabinoid cannabidiol (CBD) is an inverse agonist for GPR3, GPR6, and GPR12. This discovery highlights these orphan receptors as potential new molecular targets for CBD, provides novel mechanisms of action, and suggests new therapeutic uses of CBD for illnesses such as Alzheimer's disease, Parkinson's disease, cancer, and infertility. Furthermore, identification of CBD as a new inverse agonist for GPR3, GPR6, and GPR12 provides the initial chemical scaffolds upon which potent and efficacious agents acting on these receptors can be developed, with the goal of developing chemical tools for studying these orphan receptors and ultimately new therapeutic agents.
Collapse
Affiliation(s)
- Alyssa S Laun
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Sarah H Shrader
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Kevin J Brown
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
18
|
Abstract
A central dogma of mammalian reproductive biology is that the size of the primordial follicle pool represents reproductive capacity in females. The assembly of the primordial follicle starts after the primordial germ cells (PGCs)-derived oocyte releases from the synchronously dividing germline cysts. PGCs initiate meiosis during fetal development. However, after synapsis and recombination of homologous chromosomes, they arrest at the diplotene stage of the first meiotic prophase (MI). The diplotene-arrested oocyte, together with the surrounding of a single layer of flattened granulosa cells, forms a basic unit of the ovary, the primordial follicle. At the start of each estrous (animal) or menstrual cycle (human), in response to a surge of luteinizing hormone (LH) from the pituitary gland, a limited number of primordial follicles are triggered to develop into primary follicles, preantral follicles, antral follicles and reach to preovulatory follicle stage. During the transition from the preantral to antral stages, the enclosed oocyte gradually acquires the capacity to resume meiosis. Meiotic resumption from the prophase of MI is morphologically characterized by the dissolution of the oocyte nuclear envelope, which is generally termed the "germinal vesicle breakdown" (GVBD). Following GVBD and completion of MI, the oocyte enters meiosis II without an obvious S-phase and arrests at metaphase phase II (MII) until fertilization. The underlying mechanism of meiotic arrest has been widely explored in numerous studies. Many studies indicated that two cellular second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) play an essential role in maintaining oocyte meiotic arrest. This review will discuss how these two cyclic nucleotides regulate oocyte maturation by blocking or initiating meiotic processes, and to provide an insight in future research.
Collapse
Affiliation(s)
- Bo Pan
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Building #70, Guelph, ON, N1G 2W1, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Building #70, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
19
|
Vázquez L, Corzo-Martínez M, Arranz-Martínez P, Barroso E, Reglero G, Torres C. Bioactive Lipids. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-78030-6_58] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Ge D, Yue HW, Liu HH, Zhao J. Emerging roles of sphingosylphosphorylcholine in modulating cardiovascular functions and diseases. Acta Pharmacol Sin 2018; 39:1830-1836. [PMID: 30050085 DOI: 10.1038/s41401-018-0036-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/03/2018] [Indexed: 11/10/2022]
Abstract
Sphingosylphosphorylcholine (SPC) is a bioactive sphingolipid in blood plasma that is metabolized from the hydrolysis of the membrane sphingolipid. SPC maintains low levels in the circulation under normal conditions, which makes studying its origin and action difficult. In recent years, however, it has been revealed that SPC may act as a first messenger through G protein-coupled receptors (S1P1-5, GPR12) or membrane lipid rafts, or as a second messenger mediating intracellular Ca2+ release in diverse human organ systems. SPC is a constituent of lipoproteins, and the activation of platelets promotes the release of SPC into blood, both implying a certain effect of SPC in modulating the pathological process of the heart and vessels. A line of evidence indeed confirms that SPC exerts a pronounced influence on the cardiovascular system through modulation of the functions of myocytes, vein endothelial cells, as well as vascular smooth muscle cells. In this review we summarize the current knowledge of the potential roles of SPC in the development of cardiovascular diseases and discuss the possible underlying mechanisms.
Collapse
|
21
|
Morales P, Isawi I, Reggio PH. Towards a better understanding of the cannabinoid-related orphan receptors GPR3, GPR6, and GPR12. Drug Metab Rev 2018; 50:74-93. [PMID: 29390908 DOI: 10.1080/03602532.2018.1428616] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
GPR3, GPR6, and GPR12 are three orphan receptors that belong to the Class A family of G-protein-coupled receptors (GPCRs). These GPCRs share over 60% of sequence similarity among them. Because of their close phylogenetic relationship, GPR3, GPR6, and GPR12 share a high percentage of homology with other lipid receptors such as the lysophospholipid and the cannabinoid receptors. On the basis of sequence similarities at key structural motifs, these orphan receptors have been related to the cannabinoid family. However, further experimental data are required to confirm this association. GPR3, GPR6, and GPR12 are predominantly expressed in mammalian brain. Their high constitutive activation of adenylyl cyclase triggers increases in cAMP levels similar in amplitude to fully activated GPCRs. This feature defines their physiological role under certain pathological conditions. In this review, we aim to summarize the knowledge attained so far on the understanding of these receptors. Expression patterns, pharmacology, physiopathological relevance, and molecules targeting GPR3, GPR6, and GPR12 will be analyzed herein. Interestingly, certain cannabinoid ligands have been reported to modulate these orphan receptors. The current debate about sphingolipids as putative endogenous ligands will also be addressed. A special focus will be on their potential role in the brain, particularly under neurological conditions such as Parkinson or Alzheimer's disease. Reported physiological roles outside the central nervous system will also be covered. This critical overview may contribute to a further comprehension of the physiopathological role of these orphan GPCRs, hopefully attracting more research towards a future therapeutic exploitation of these promising targets.
Collapse
Affiliation(s)
- Paula Morales
- a Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , NC , USA
| | - Israa Isawi
- a Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , NC , USA
| | - Patricia H Reggio
- a Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , NC , USA
| |
Collapse
|
22
|
Kang JH, Kim HJ, Park MK, Lee CH. Sphingosylphosphorylcholine Induces Thrombospondin-1 Secretion in MCF10A Cells via ERK2. Biomol Ther (Seoul) 2017; 25:625-633. [PMID: 28274095 PMCID: PMC5685432 DOI: 10.4062/biomolther.2016.228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/11/2016] [Accepted: 01/09/2017] [Indexed: 01/06/2023] Open
Abstract
Sphingosylphosphorylcholine (SPC) is one of the bioactive phospholipids that has many cellular functions such as cell migration, adhesion, proliferation, angiogenesis, and Ca²⁺ signaling. Recent studies have reported that SPC induces invasion of breast cancer cells via matrix metalloproteinase-3 (MMP-3) secretion leading to WNT activation. Thrombospondin-1 (TSP-1) is a matricellular and calcium-binding protein that binds to a wide variety of integrin and non-integrin cell surface receptors. It regulates cell proliferation, migration, and apoptosis in inflammation, angiogenesis and neoplasia. TSP-1 promotes aggressive phenotype via epithelial mesenchymal transition (EMT). The relationship between SPC and TSP-1 is unclear. We found SPC induced EMT leading to mesenchymal morphology, decrease of E-cadherin expression and increases of N-cadherin and vimentin. SPC induced secretion of thrombospondin-1 (TSP-1) during SPC-induced EMT of various breast cancer cells. Gene silencing of TSP-1 suppressed SPC-induced EMT as well as migration and invasion of MCF10A cells. An extracellular signal-regulated kinase inhibitor, PD98059, significantly suppressed the secretion of TSP-1, expressions of N-cadherin and vimentin, and decrease of E-cadherin in MCF10A cells. ERK2 siRNA suppressed TSP-1 secretion and EMT. From online PROGgene V2, relapse free survival is low in patients having high TSP-1 expressed breast cancer. Taken together, we found that SPC induced EMT and TSP-1 secretion via ERK2 signaling pathway. These results suggests that SPC-induced TSP-1 might be a new target for suppression of metastasis of breast cancer cells.
Collapse
Affiliation(s)
- June Hee Kang
- College of Pharmacy, Dongguk University, Seoul 10326, Republic of Korea
| | - Hyun Ji Kim
- College of Pharmacy, Dongguk University, Seoul 10326, Republic of Korea
| | - Mi Kyung Park
- College of Pharmacy, Dongguk University, Seoul 10326, Republic of Korea.,National Cancer Center, Goyang, 10408, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 10326, Republic of Korea
| |
Collapse
|
23
|
Taroc EZM, Prasad A, Lin JM, Forni PE. The terminal nerve plays a prominent role in GnRH-1 neuronal migration independent from proper olfactory and vomeronasal connections to the olfactory bulbs. Biol Open 2017; 6:1552-1568. [PMID: 28970231 PMCID: PMC5665474 DOI: 10.1242/bio.029074] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gonadotropin-releasing hormone-1 (GnRH-1) neurons (GnRH-1 ns) migrate from the developing olfactory pit into the hypothalamus during embryonic development. Migration of the GnRH-1 neurons is required for mammalian reproduction as these cells control release of gonadotropins from the anterior pituitary gland. Disturbances in GnRH-1 ns migration, GnRH-1 synthesis, secretion or signaling lead to varying degrees of hypogonadotropic hypogonadism (HH), which impairs pubertal onset and fertility. HH associated with congenital olfactory defects is clinically defined as Kallmann Syndrome (KS). The association of olfactory defects with HH in KS suggested a potential direct relationship between defective olfactory axonal routing, lack of olfactory bulbs (OBs) and aberrant GnRH-1 ns migration. However, it has never been experimentally proven that the formation of axonal connections of the olfactory/vomeronasal neurons to their functional targets are necessary for the migration of GnRH-1 ns to the hypothalamus. Loss-of-function of the Arx-1 homeobox gene leads to the lack of proper formation of the OBs with abnormal axonal termination of olfactory sensory neurons (
Yoshihara et al., 2005). Our data prove that correct development of the OBs and axonal connection of the olfactory/vomeronasal sensory neurons to the forebrain are not required for GnRH-1 ns migration, and suggest that the terminal nerve, which forms the GnRH-1 migratory scaffold, follows different guidance cues and differs in gene expression from olfactory/vomeronasal sensory neurons. Summary: Our work reveals that correct olfactory bulb development is not required for GnRH-1 neuronal migration. This study challenges the idea that GnRH-1 neuronal migration to the hypothalamus relies on correct routing of the olfactory and vomeronasal neurons and supports the existence of the TN in mammals.
Collapse
Affiliation(s)
- Ed Zandro M Taroc
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Aparna Prasad
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Jennifer M Lin
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Paolo E Forni
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| |
Collapse
|
24
|
Morales P, Reggio PH. An Update on Non-CB 1, Non-CB 2 Cannabinoid Related G-Protein-Coupled Receptors. Cannabis Cannabinoid Res 2017; 2:265-273. [PMID: 29098189 PMCID: PMC5665501 DOI: 10.1089/can.2017.0036] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) has been shown to be of great importance in the regulation of numerous physiological and pathological processes. To date, two Class A G-protein-coupled receptors (GPCRs) have been discovered and validated as the main therapeutic targets of this system: the cannabinoid receptor type 1 (CB1), which is the most abundant neuromodulatory receptor in the brain, and the cannabinoid receptor type 2 (CB2), predominantly found in the immune system among other organs and tissues. Endogenous cannabinoid receptor ligands (endocannabinoids) and the enzymes involved in their synthesis, cell uptake, and degradation have also been identified as part of the ECS. However, its complex pharmacology suggests that other GPCRs may also play physiologically relevant roles in this therapeutically promising system. In the last years, GPCRs such as GPR18 and GPR55 have emerged as possible missing members of the cannabinoid family. This categorization still stimulates strong debate due to the lack of pharmacological tools to validate it. Because of their close phylogenetic relationship, the Class A orphan GPCRs, GPR3, GPR6, and GPR12, have also been associated with the cannabinoids. Moreover, certain endo-, phyto-, and synthetic cannabinoid ligands have displayed activity at other well-established GPCRs, including the opioid, adenosine, serotonin, and dopamine receptor families. In addition, the cannabinoid receptors have also been shown to form dimers with other GPCRs triggering cross-talk signaling under specific conditions. In this mini review, we aim to provide insight into the non-CB1, non-CB2 cannabinoid-related GPCRs that have been reported thus far. We consider the physiological relevance of these molecular targets in modulating the ECS.
Collapse
Affiliation(s)
- Paula Morales
- Chemistry and Biochemistry Department, UNC Greensboro, Greensboro, North Carolina
| | - Patricia H. Reggio
- Chemistry and Biochemistry Department, UNC Greensboro, Greensboro, North Carolina
| |
Collapse
|
25
|
Brown KJ, Laun AS, Song ZH. Cannabidiol, a novel inverse agonist for GPR12. Biochem Biophys Res Commun 2017; 493:451-454. [PMID: 28888984 DOI: 10.1016/j.bbrc.2017.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
Abstract
GPR12 is a constitutively active, Gs protein-coupled receptor that currently has no confirmed endogenous ligands. GPR12 may be involved in physiological processes such as maintenance of oocyte meiotic arrest and brain development, as well as pathological conditions such as metastatic cancer. In this study, the potential effects of various classes of cannabinoids on GPR12 were tested using a cAMP accumulation assay. Our data demonstrate that cannabidiol (CBD), a major non-psychoactive phytocannabinoid, acted as an inverse agonist to inhibit cAMP accumulation stimulated by the constitutively active GPR12. Thus, GPR12 is a novel molecular target for CBD. The structure-activity relationship studies of CBD indicate that both the free hydroxyl and the pentyl side chain are crucial for the effects of CBD on GPR12. Furthermore, studies using cholera toxin, which blocks Gs protein and pertussis toxin, which blocks Gi protein, revealed that Gs, but not Gi is involved in the inverse agonism of CBD on GPR12. CBD is a promising novel therapeutic agent for cancer, and GPR12 has been shown to alter viscoelasticity of metastatic cancer cells. Since we have demonstrated that CBD is an inverse agonist for GPR12, this provides novel mechanism of action for CBD, and an initial chemical scaffold upon which highly potent and efficacious agents acting on GPR12 may be developed with the ultimate goal of blocking cancer metastasis.
Collapse
Affiliation(s)
- Kevin J Brown
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, United States
| | - Alyssa S Laun
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, United States
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, United States.
| |
Collapse
|
26
|
Khan MZ, He L. Neuro-psychopharmacological perspective of Orphan receptors of Rhodopsin (class A) family of G protein-coupled receptors. Psychopharmacology (Berl) 2017; 234:1181-1207. [PMID: 28289782 DOI: 10.1007/s00213-017-4586-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/27/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND In the central nervous system (CNS), G protein-coupled receptors (GPCRs) are the most fruitful targets for neuropsychopharmacological drug development. Rhodopsin (class A) is the most studied class of GPCR and includes orphan receptors for which the endogenous ligand is not known or is unclear. Characterization of orphan GPCRs has proven to be challenging, and the production pace of GPCR-based drugs has been incredibly slow. OBJECTIVE Determination of the functions of these receptors may provide unexpected insight into physiological and neuropathological processes. Advances in various methods and techniques to investigate orphan receptors including in situ hybridization and knockdown/knockout (KD/KO) showed extensive expression of these receptors in the mammalian brain and unmasked their physiological and neuropathological roles. Due to these rapid progress and development, orphan GPCRs are rising as a new and promising class of drug targets for neurodegenerative diseases and psychiatric disorders. CONCLUSION This review presents a neuropsychopharmacological perspective of 26 orphan receptors of rhodopsin (class A) family, namely GPR3, GPR6, GPR12, GPR17, GPR26, GPR35, GPR39, GPR48, GPR49, GPR50, GPR52, GPR55, GPR61, GPR62, GPR63, GPR68, GPR75, GPR78, GPR83, GPR84, GPR85, GPR88, GPR153, GPR162, GPR171, and TAAR6. We discussed the expression of these receptors in mammalian brain and their physiological roles. Furthermore, we have briefly highlighted their roles in neurodegenerative diseases and psychiatric disorders including Alzheimer's disease, Parkinson's disease, neuroinflammation, inflammatory pain, bipolar and schizophrenic disorders, epilepsy, anxiety, and depression.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, Jiangsu Province, 210009, China.
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, Jiangsu Province, 210009, China
| |
Collapse
|
27
|
Kemppainen K, Wentus N, Lassila T, Laiho A, Törnquist K. Sphingosylphosphorylcholine regulates the Hippo signaling pathway in a dual manner. Cell Signal 2016; 28:1894-1903. [DOI: 10.1016/j.cellsig.2016.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 08/22/2016] [Accepted: 09/11/2016] [Indexed: 10/21/2022]
|
28
|
Kim HJ, Kang GJ, Kim EJ, Park MK, Byun HJ, Nam S, Lee H, Lee CH. Novel effects of sphingosylphosphorylcholine on invasion of breast cancer: Involvement of matrix metalloproteinase-3 secretion leading to WNT activation. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1533-43. [PMID: 27216977 DOI: 10.1016/j.bbadis.2016.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/27/2016] [Accepted: 05/18/2016] [Indexed: 01/17/2023]
Abstract
Sphingosylphosphorylcholine (SPC) participates in several cellular processes including metastasis. SPC induces keratin reorganization and regulates the viscoelasticity of metastatic cancer cells including PANC-1 cancer cells leading to enhanced migration and invasion. The role of SPC and the relevant mechanism in invasion of breast cell are as yet unknown. SPC dose-dependently induces invasion of breast cancer cells or breast immortalized cells. Reverse transcription polymerase chain reaction and Western blot analyses of MCF10A and ZR-75-1 cells indicated that SPC induces expression and secretion of matrix metalloproteinase-3 (MMP3). From online KMPLOT, relapse free survival is high in patients having low MMP3 expressed basal breast cancer (n=581, p=0.032). UK370106 (MMP3 inhibitor) or gene silencing of MMP3 markedly inhibited the SPC-induced invasion of MCF10A cells. An extracellular signal-regulated kinase (ERK) inhibitor, PD98059, significantly suppressed the secretion and the gelatinolytic activity of MMP3, and invasion in MCF10A cells. Over-expression of ERK1 and ERK2 promoted both the expression and secretion of MMP3. In contrast, gene silencing of ERK1 and ERK2 attenuated the secretion of MMP3 in MCF10A cells. The effects of SPC-induced MMP3 secretion on β-catenin and TCF/lymphoid enhancer factor (LEF) promoter activity were examined since MMP3 indirectly activates canonical Wnt signaling. SPC induced translocation of β-catenin to nucleus and increased TCF/LEF promoter activity. These events were suppressed by UK370106 or PD98059. Wnt inhibitor, FH535 inhibited SPC-induced MMP3 secretion and invasion. Taken together, these results suggest that SPC induces MMP3 expression and secretion via ERK leading to Wnt activation.
Collapse
Affiliation(s)
- Hyun Ji Kim
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Gyeoung Jin Kang
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Eun Ji Kim
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyun Jung Byun
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Seungyoon Nam
- Department of Life Sciences, College of BioNano Technology, Gachon University, Sungnam 13120, Republic of Korea
| | - Ho Lee
- National Cancer Center, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Chang Hoon Lee
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
29
|
Novel effects of FTY720 on perinuclear reorganization of keratin network induced by sphingosylphosphorylcholine: Involvement of protein phosphatase 2A and G-protein-coupled receptor-12. Eur J Pharmacol 2016; 775:86-95. [PMID: 26872988 DOI: 10.1016/j.ejphar.2016.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/31/2016] [Accepted: 02/08/2016] [Indexed: 01/09/2023]
Abstract
Sphingosylphosphorylcholine (SPC) evokes perinuclear reorganization of keratin 8 (K8) filaments and regulates the viscoelasticity of metastatic cancer cells leading to enhanced migration. Few studies have addressed the compounds modulating the viscoelasticity of metastatic cancer cells. We studied the effects of sphingosine (SPH), sphingosine 1-phosphate (S1P), FTY720 and FTY720-phosphate (FTY720P) on SPC-induced K8 phosphorylation and reorganization using Western blot and confocal microscopy, and also evaluated the elasticity of PANC-1 cells by atomic force microscopy. FTY720, FTY720P, SPH, and S1P concentration-dependently inhibited SPC-evoked phosphorylation and reorganization of K8, and migration of PANC-1 cells. SPC triggered reduction and narrow distribution of elastic constant K and conversely, FTY720 blocked them. A common upstream regulator of JNK and ERK, protein phosphatase 2A (PP2A) expression was reduced by SPC, but was restored by FTY720 and FTY72P. Butyryl forskolin, a PP2A activator, suppressed SPC-induced K8 phosphorylation and okadaic acid, a PP2A inhibitor, induced K8 phosphorylation. Gene silencing of PP2A also led to K8 phosphorylation, reorganization and migration. We also investigated the involvement of GPR12, a high-affinity SPC receptor, in SPC-evoked keratin phosphorylation and reorganization. GPR12 siRNA suppressed the SPC-triggered phosphorylation and reorganization of K8. GPR12 overexpression stimulated keratin phosphorylation and reorganization even without SPC. FTY720 and FTY720P suppressed the GPR12-induced phosphorylation and reorganization of K8. The collective data indicates that FTY720 and FTY720P suppress SPC-induced phosphorylation and reorganization of K8 in PANC-1 cells by restoring the expression of PP2A via GPR12. These findings might be helpful in the development of compounds that modulate the viscoelasticity of metastatic cancer cells and various SPC actions.
Collapse
|
30
|
Sabourdy F, Astudillo L, Colacios C, Dubot P, Mrad M, Ségui B, Andrieu-Abadie N, Levade T. Monogenic neurological disorders of sphingolipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1040-51. [PMID: 25660725 DOI: 10.1016/j.bbalip.2015.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
Sphingolipids comprise a wide variety of molecules containing a sphingoid long-chain base that can be N-acylated. These lipids are particularly abundant in the central nervous system, being membrane components of neurons as well as non-neuronal cells. Direct evidence that these brain lipids play critical functions in brain physiology is illustrated by the dramatic consequences of genetic disturbances of their metabolism. Inherited defects of both synthesis and catabolism of sphingolipids are now identified in humans. These monogenic disorders are due to mutations in the genes encoding for the enzymes that catalyze either the formation or degradation of simple sphingolipids such as ceramides, or complex sphingolipids like glycolipids. They cause varying degrees of central nervous system dysfunction, quite similarly to the neurological disorders induced in mice by gene disruption of the corresponding enzymes. Herein, the enzyme deficiencies and metabolic alterations that underlie these diseases are reviewed. Their possible pathophysiological mechanisms and the functions played by sphingolipids one can deduce from these conditions are discussed. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Frédérique Sabourdy
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France; Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Leonardo Astudillo
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France; Service de Médecine Interne, CHU Purpan, Toulouse, France
| | - Céline Colacios
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France
| | - Patricia Dubot
- Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Marguerite Mrad
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France
| | - Bruno Ségui
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France
| | - Nathalie Andrieu-Abadie
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France
| | - Thierry Levade
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France; Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France.
| |
Collapse
|
31
|
Shaifta Y, Snetkov VA, Prieto-Lloret J, Knock GA, Smirnov SV, Aaronson PI, Ward JPT. Sphingosylphosphorylcholine potentiates vasoreactivity and voltage-gated Ca2+ entry via NOX1 and reactive oxygen species. Cardiovasc Res 2015; 106:121-30. [PMID: 25661082 PMCID: PMC4362402 DOI: 10.1093/cvr/cvv029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aims Sphingosylphosphorylcholine (SPC) elicits vasoconstriction at micromolar concentrations. At lower concentrations (≤1 µmol/L), however, it does not constrict intrapulmonary arteries (IPAs), but strongly potentiates vasoreactivity. Our aim was to determine whether this also occurs in a systemic artery and to delineate the signalling pathway. Methods and results Rat mesenteric arteries and IPAs mounted on a myograph were challenged with ∼25 mmol/L [K+] to induce a small vasoconstriction. SPC (1 µmol/L) dramatically potentiated this constriction in all arteries by ∼400%. The potentiation was greatly suppressed or abolished by inhibition of phospholipase C (PLC; U73122), PKCε (inhibitory peptide), Src (PP2), and NADPH oxidase (VAS2870), and also by Tempol (superoxide scavenger), but not by inhibition of Rho kinase (Y27632). Potentiation was lost in mesenteric arteries from p47phox–/–, but not NOX2−/–, mice. The intracellular superoxide generator LY83583 mimicked the effect of SPC. SPC elevated reactive oxygen species (ROS) in vascular smooth muscle cells, and this was blocked by PP2, VAS2870, and siRNA knockdown of PKCε. SPC (1 µmol/L) significantly reduced the EC50 for U46619-induced vasoconstriction, an action ablated by Tempol. In patch-clamped mesenteric artery cells, SPC (200 nmol/L) enhanced Ba2+ current through L-type Ca2+ channels, an action abolished by Tempol but mimicked by LY83583. Conclusion Our results suggest that low concentrations of SPC activate a PLC-coupled and NOX1-mediated increase in ROS, with consequent enhancement of voltage-gated Ca2+ entry and thus vasoreactivity. We speculate that this pathway is not specific for SPC, but may also contribute to vasoconstriction elicited by other G-protein coupled receptor and PLC-coupled agonists.
Collapse
Affiliation(s)
- Yasin Shaifta
- Division of Asthma, Allergy, and Lung Biology, King's College London, 5th Floor Tower Wing, Guy's Campus, London SE1 9RT, UK
| | - Vladimir A Snetkov
- Division of Asthma, Allergy, and Lung Biology, King's College London, 5th Floor Tower Wing, Guy's Campus, London SE1 9RT, UK
| | - Jesus Prieto-Lloret
- Division of Asthma, Allergy, and Lung Biology, King's College London, 5th Floor Tower Wing, Guy's Campus, London SE1 9RT, UK
| | - Greg A Knock
- Division of Asthma, Allergy, and Lung Biology, King's College London, 5th Floor Tower Wing, Guy's Campus, London SE1 9RT, UK
| | - Sergey V Smirnov
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Philip I Aaronson
- Division of Asthma, Allergy, and Lung Biology, King's College London, 5th Floor Tower Wing, Guy's Campus, London SE1 9RT, UK
| | - Jeremy P T Ward
- Division of Asthma, Allergy, and Lung Biology, King's College London, 5th Floor Tower Wing, Guy's Campus, London SE1 9RT, UK
| |
Collapse
|
32
|
Ye C, Zhang Z, Wang Z, Hua Q, Zhang R, Xie X. Identification of a novel small-molecule agonist for human G protein-coupled receptor 3. J Pharmacol Exp Ther 2014; 349:437-43. [PMID: 24633425 DOI: 10.1124/jpet.114.213082] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptor 3 (GPR3) is an orphan G protein-coupled receptor (GPCR) predominantly expressed in mammalian brain and oocytes. GPR3 plays important roles in these two organs and is known as a Gαs-coupled receptor-activated constitutively in cells. However, the signal transduction pathway and pharmacological function of GPR3 remain unclear because of the lack of a specific ligand. By use of a human embryonic kidney 293 cell line stably expressing FLAG-GPR3-green fluorescent protein, a chemical screening for GPR3 ligands was performed using homogeneous time-resolved fluorescence cAMP assay. Diphenyleneiodonium chloride (DPI) was identified as a novel agonist of GPR3 with weak or no cross-reactivity with other GPCRs. DPI was further characterized to activate several GPR3-mediated signal transduction pathways, including Ca(2+) mobilization, cAMP accumulation, membrane recruitment of β-arrestin2, and receptor desensitization. Parallel studies revealed that the activity of DPI is much more pronounced than sphingosine 1-phosphate, a previously reported GPR3 agonist. Our study identified a novel and specific agonist of GPR3, which provides a useful tool for further study of this orphan GPCR.
Collapse
Affiliation(s)
- Chenli Ye
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China (C.Y., Z.Z., Q.H., R.Z., X.X.); and CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Z.W., X.X.)
| | | | | | | | | | | |
Collapse
|
33
|
Im DS. Intercellular Lipid Mediators and GPCR Drug Discovery. Biomol Ther (Seoul) 2014; 21:411-22. [PMID: 24404331 PMCID: PMC3879912 DOI: 10.4062/biomolther.2013.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 01/08/2023] Open
Abstract
G-protein-coupled receptors (GPCR) are the largest superfamily of receptors responsible for signaling between cells and tissues, and because they play important physiological roles in homeostasis, they are major drug targets. New technologies have been developed for the identification of new ligands, new GPCR functions, and for drug discovery purposes. In particular, intercellular lipid mediators, such as, lysophosphatidic acid and sphingosine 1-phosphate have attracted much attention for drug discovery and this has resulted in the development of fingolimod (FTY-720) and AM095. The discovery of new intercellular lipid mediators and their GPCRs are discussed from the perspective of drug development. Lipid GPCRs for lysophospholipids, including lysophosphatidylserine, lysophosphatidylinositol, lysophosphatidylcholine, free fatty acids, fatty acid derivatives, and other lipid mediators are reviewed.
Collapse
Affiliation(s)
- Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|
34
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 509] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
35
|
Zhang BL, Li Y, Ding JH, Dong FL, Hou YJ, Jiang BC, Shi FX, Xu YX. Sphingosine 1-phosphate acts as an activator for the porcine Gpr3 of constitutively active G protein-coupled receptors. J Zhejiang Univ Sci B 2012; 13:555-66. [PMID: 22761247 DOI: 10.1631/jzus.b1100353] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We cloned the complete coding sequences of porcine Gpr3, Gpr6, and Gpr12 genes. Further, on the basis of their high levels of sequence similarity, these genes are identified as a subfamily of G protein-coupled receptors. These putative protein sequences also showed high sequence identity with other mammalian orthologs, including several highly conserved motifs. A wide expression of the Gpr3 gene in pigs was observed through tissue distribution analysis by reverse transcriptase-polymerase chain reaction (RT-PCR) and real-time PCR, specially in the brain, pituitary, fat, liver and oocyte, where its strong expression was observed. The Gpr3 gene was found to be located on chromosome 6 and a single exon coded for the entire open-reading frame. Expression of porcine Gpr3 in HEK293 cells resulted in constitutive activation of adenylate cyclase (AC) similar in amplitude to that produced by fully stimulated G(s)-coupled receptors. Moreover, sphingosine 1-phosphate (S1P) could increase AC activation via the constitutively active Gpr3 receptor. When a Gpr3-green fluorescent protein (GFP) construct was expressed in HEK293 cells, GFP-labeled Gpr3 protein was shown to be localized in the plasmalemma and subcellular membranes. After S1P treatment, agonist-mediated internalization could be visualized by confocal microscopy. In short, our findings suggest the porcine Gpr3, Gpr6, and Gpr12 genes as a subfamily of G protein-coupled receptors, and porcine Gpr3 was a constitutively active G protein-coupled receptor. Constitutive activation of AC and agonist-mediated internalization of Gpr3 receptor could be modulated by the S1P, suggesting that S1P might act as an activator for porcine Gpr3 receptor.
Collapse
Affiliation(s)
- Bao-le Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lu X, Zhang N, Meng B, Dong S, Hu Y. Involvement of GPR12 in the regulation of cell proliferation and survival. Mol Cell Biochem 2012; 366:101-10. [PMID: 22430950 DOI: 10.1007/s11010-012-1287-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/02/2012] [Indexed: 01/27/2023]
Abstract
GPR12, a member of the orphan G-protein-coupled receptor family, constitutively activates the Gs protein and increases intracellular cyclic AMP concentrations. GPR12 can be activated by its known ligand-sphingosylphosphorylcholine, which regulates cellular physiological activities, including proliferation, neurite extension, cell clustering, and maintenance of meiotic arrest. However, signaling pathways involved in the GPR12-mediated physiological and biochemical changes are still not clearly illustrated. In the present study, heterologous GPR12 expression was demonstrated to promote proliferation and survival in human embryonic kidney 293 cells. Immunochemical analysis showed that Ki67, a prototypic cell cycle-related nuclear protein, might participate in the regulation of GPR12-mediated cell proliferation. Activation of extracellular signal-regulated protein kinase signaling and increased total Erk1/2 and B-cell lymphoma/leukemia-2 expression were also observed in HEK293 cells overexpressing human GPR12. In addition, we found that GPR12 promoted cell survival under serum deprivation, indicating that GPR12 may play a role in cell proliferation and survival.
Collapse
Affiliation(s)
- Xiaoming Lu
- Institutes for Advanced Interdisciplinary Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | | | | | | | | |
Collapse
|
37
|
Lu X, Zhang N, Dong S, Hu Y. Involvement of GPR12 in the induction of neurite outgrowth in PC12 cells. Brain Res Bull 2011; 87:30-6. [PMID: 21985983 DOI: 10.1016/j.brainresbull.2011.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 09/19/2011] [Accepted: 09/25/2011] [Indexed: 10/17/2022]
Abstract
GPR12, an orphan G protein-coupled receptor, constitutively activates the Gs signaling pathway and further increases intracellular cyclic AMP. GPR12 overexpression has been reported to promote neurite extension in neurons or transform neuro2a neuroblastoma cells into neuron-like cells. However, the possible effects and mechanisms of GPR12 in the differentiation of PC12 cells are still unknown. The present study shows that GPR12 overexpression induced PC12 cells differentiation into neuron-like cells with enlarged cell sizes and neuritogenesis possibly via activation of Erk1/2 signaling and significantly increased the expression of several neurite outgrowth-related genes, including Bcl-xL, Bcl-2 and synaptophysin. These findings indicate that GPR12 may play a role in neurite outgrowth during PC12 cell differentiation.
Collapse
Affiliation(s)
- Xiaoming Lu
- Advanced Institutes for Interdisciplinary Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | | | | | | |
Collapse
|
38
|
Kleger A, Liebau S, Lin Q, von Wichert G, Seufferlein T. The impact of bioactive lipids on cardiovascular development. Stem Cells Int 2011; 2011:916180. [PMID: 21876704 PMCID: PMC3159013 DOI: 10.4061/2011/916180] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/05/2011] [Indexed: 12/30/2022] Open
Abstract
Lysophospholipids comprise a group of bioactive molecules with multiple biological functions. The cardinal members of this signalling molecule group are sphingosylphosphorylcholine (SPC), lysophosphatidic acid (LPA), and sphingosine 1-phosphate (S1P) which are, at least in part, homologous to each other. Bioactive lipids usually act via G-protein coupled receptors (GPCRs), but can also function as direct intracellular messengers. Recently, it became evident that bioactive lipids play a role during cellular differentiation development. SPC induces mesodermal differentiation of mouse ES cells and differentiation of promyelocytic leukemia cells, by a mechanism being critically dependent on MEK-ERK signalling. LPA stimulates the clonal expansion of neurospheres from neural stem/progenitor cells and induces c-fos via activation of mitogen- and stress-activated protein kinase 1 (MSK1) in ES cells. S1P acts on hematopoietic progenitor cells as a chemotactic factor and has also been found to be critical for cardiac and skeletal muscle regeneration. Furthermore, S1P promotes cardiogenesis and similarly activates Erk signalling in mouse ES cells. Interestingly, S1P may also act to maintain human stem cell pluripotency. Both LPA and S1P positively regulate the proliferative capacity of murine ES cells. In this paper we will focus on the differential and developmental impact of lysophospholipids on cardiovascular development.
Collapse
Affiliation(s)
- Alexander Kleger
- Department of Internal Medicine I, University of Ulm, 89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
39
|
Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB₁ and CB₂. Pharmacol Rev 2010; 62:588-631. [PMID: 21079038 PMCID: PMC2993256 DOI: 10.1124/pr.110.003004] [Citation(s) in RCA: 1235] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There are at least two types of cannabinoid receptors (CB(1) and CB(2)). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ(9)-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB(1), non-CB(2) established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB(1) and/or CB(2) receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel "CB(3)" cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB(1), non-CB(2) pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB(3) receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB(1) receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB(1)/CB(2) receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB(1), non-CB(2) cannabinoid receptors; and 4) current cannabinoid receptor nomenclature.
Collapse
MESH Headings
- Cannabinoid Receptor Agonists
- Cannabinoid Receptor Antagonists
- Cannabinoid Receptor Modulators/metabolism
- Cannabinoids/metabolism
- Humans
- Ligands
- Phylogeny
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Cannabinoid/metabolism
- Terminology as Topic
Collapse
Affiliation(s)
- R G Pertwee
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Im DS. New intercellular lipid mediators and their GPCRs: An update. Prostaglandins Other Lipid Mediat 2009; 89:53-6. [DOI: 10.1016/j.prostaglandins.2009.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 01/24/2009] [Accepted: 01/25/2009] [Indexed: 01/08/2023]
|
41
|
Yin H, Chu A, Li W, Wang B, Shelton F, Otero F, Nguyen DG, Caldwell JS, Chen YA. Lipid G protein-coupled receptor ligand identification using beta-arrestin PathHunter assay. J Biol Chem 2009; 284:12328-38. [PMID: 19286662 DOI: 10.1074/jbc.m806516200] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A growing number of orphan G-protein-coupled receptors (GPCRs) have been reported to be activated by lipid ligands, such as lysophosphatidic acid, sphingosine 1-phosphate (S1P), and cannabinoids, for which there are already well established receptors. These new ligand claims are controversial due to either lack of independent confirmations or conflicting reports. We used the beta-arrestin PathHunter assay system, a newly developed, generic GPCR assay format that measures beta-arrestin binding to GPCRs, to evaluate lipid receptor and ligand pairing. This assay eliminates interference from endogenous receptors on the parental cells because it measures a signal that is specifically generated by the tagged receptor and is immediately downstream of receptor activation. We screened a large number of newly "deorphaned" receptors (GPR23, GPR92, GPR55, G2A, GPR18, GPR3, GPR6, GPR12, and GPR63) and control receptors against a collection of approximately 400 lipid molecules to try to identify the receptor ligand in an unbiased fashion. GPR92 was confirmed to be a lysophosphatidic acid receptor with weaker responses to farnesyl pyrophosphate and geranylgeranyl diphosphate. The putative cannabinoid receptor GPR55 responded strongly to AM251, rimonabant, and lysophosphatidylinositol but only very weakly to endocannabinoids. G2A receptor was confirmed to be an oxidized free fatty acid receptor. In addition, we discovered that 3,3'-diindolylmethane, a dietary molecule from cruciferous vegetables, which has known anti-cancer properties, to be a CB(2) receptor partial agonist, with binding affinity around 1 microm. The anti-inflammatory effect of 3,3'-diindolylmethane in RAW264.7 cells was shown to be partially mediated by CB(2).
Collapse
Affiliation(s)
- Hong Yin
- GPCR Platform, Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lin ZJ, Lu XM, Zhu TJ, Fang YC, Gu QQ, Zhu W. GPR12 selections of the metabolites from an endophytic Streptomyces sp. associated with Cistanches deserticola. Arch Pharm Res 2008; 31:1108-14. [PMID: 18806952 DOI: 10.1007/s12272-001-1276-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 07/04/2008] [Accepted: 08/12/2008] [Indexed: 12/01/2022]
Abstract
An endophytic Streptomyces sp. (AC-2) was isolated from the root of Cistanches deserticola Y.C.Ma.. Chemical investigations of the culture broth of AC-2 afforded fifteen compounds including K1115 A (1), tyrosol (2), phenylethylamine derivatives (3, 4), cyclic dipeptides (5-8), nucleosides and their aglycones (9-13), N-acetyltryptamine (14), and pyrrole-2-carboxylic acid (15). Only tyrosol can promote an increase of intracellular cAMP special on GPR12 transfected cells, such as CHO and HEK293, which means it may be a possible ligand for GPR12.
Collapse
Affiliation(s)
- Zhen-Jian Lin
- Key laboratory of Marine Drugs, Chinese Ministry of Education, Qingdao, 266003, People's Republic of China
| | | | | | | | | | | |
Collapse
|
43
|
Two new 5-hydroxy-2-pyrone derivatives isolated from a marine-derived fungus Aspergillus flavus. J Antibiot (Tokyo) 2008; 61:245-9. [PMID: 18503205 DOI: 10.1038/ja.2008.36] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two new compounds, 4-(hydroxymethyl)-5-hydroxy-2H-pyran-2-one (1) and (5-hydroxy-2-oxo-2H-pyran-4-yl) methyl acetate (2), have been isolated from a marine-derived fungus Aspergillus flavus. Their structures were determined by spectroscopic data. Compound 1 induced the production of cAMP on GPR12 transfected CHO and HEK293 cells in a dose-dependent manner, which indicated 1 might be a possible ligand for GPR12.
Collapse
|
44
|
DiLuigi A, Weitzman VN, Pace MC, Siano LJ, Maier D, Mehlmann LM. Meiotic arrest in human oocytes is maintained by a Gs signaling pathway. Biol Reprod 2008; 78:667-72. [PMID: 18184921 PMCID: PMC2322874 DOI: 10.1095/biolreprod.107.066019] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In mammalian oocytes, the maintenance of meiotic prophase I arrest prior to the surge of LH that stimulates meiotic maturation depends on a high level of cAMP within the oocyte. In mouse and rat, the cAMP is generated in the oocyte, and this requires the activity of a constitutively active, Gs-linked receptor, GPR3 or GPR12, respectively. To examine if human oocyte meiotic arrest depends on a similar pathway, we used RT-PCR and Western blotting to look at whether human oocytes express the same components for maintaining arrest as rodent oocytes. RNA encoding GPR3, but not GPR12, was expressed. RNA encoding adenylate cyclase type 3, which is the major adenylate cyclase required for maintaining meiotic arrest in the mouse oocyte, was also expressed, as was Galphas protein. To determine if this pathway is functional in the human oocyte, we examined the effect of injecting a function-blocking antibody against Galphas on meiotic resumption. This antibody stimulated meiotic resumption of human oocytes that were maintained at the prophase I stage using a phosphodiesterase inhibitor. These results demonstrate that human oocytes maintain meiotic arrest prior to the LH surge using a signaling pathway similar to that of rodent oocytes.
Collapse
Affiliation(s)
- Andrea DiLuigi
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
- Center for Advanced Reproductive Services, University of Connecticut Health Center, Farmington, CT 06032
| | - Vanessa N. Weitzman
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
- Center for Advanced Reproductive Services, University of Connecticut Health Center, Farmington, CT 06032
| | - Margaret C. Pace
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
| | - Linda J. Siano
- Center for Advanced Reproductive Services, University of Connecticut Health Center, Farmington, CT 06032
| | - Donald Maier
- Center for Advanced Reproductive Services, University of Connecticut Health Center, Farmington, CT 06032
| | - Lisa M. Mehlmann
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
| |
Collapse
|
45
|
Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 2008; 9:139-50. [PMID: 18216770 DOI: 10.1038/nrm2329] [Citation(s) in RCA: 2920] [Impact Index Per Article: 171.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It has become increasingly difficult to find an area of cell biology in which lipids do not have important, if not key, roles as signalling and regulatory molecules. The rapidly expanding field of bioactive lipids is exemplified by many sphingolipids, such as ceramide, sphingosine, sphingosine-1-phosphate (S1P), ceramide-1-phosphate and lyso-sphingomyelin, which have roles in the regulation of cell growth, death, senescence, adhesion, migration, inflammation, angiogenesis and intracellular trafficking. Deciphering the mechanisms of these varied cell functions necessitates an understanding of the complex pathways of sphingolipid metabolism and the mechanisms that regulate lipid generation and lipid action.
Collapse
Affiliation(s)
- Yusuf A Hannun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA.
| | | |
Collapse
|
46
|
The signaling mechanism of the sphingosylphosphorylcholine-induced contraction in cat esophageal smooth muscle cells. Arch Pharm Res 2008; 30:1608-18. [PMID: 18254249 DOI: 10.1007/bf02977331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We investigated the signaling pathway on sphingosinephosphorylcholine (SPC) -induced contraction in cat esophageal smooth muscle cells. SPC induced in a dose-dependent manner contractile effect. We have previously shown that lysophospholipid (LPL) receptor subtypes including the S1P1, S1P2, S1P3, and S1P5 receptor are present in esophageal smooth muscle. Only EDG-5 (S1P2) receptor antibody penetration into permeablilized cells inhibited the SPC-induced contraction. Pertussis toxin (PTX) and specific antibodies to G(i1), G(i2), G(i3) and G(o) inhibited the contraction, implying that SPC-induced contraction depends on PTX-sensitive G(i1), G(i2), G(i3), and G(o) protein. A phospholipase inhibitor U73122 and incubation of permeabilized cells with PLC-beta3 antibody inhibited SPC-induced contraction. The PKC-mediated contraction may be isozyme specific since only PKCepsilon antibody inhibited the contraction. Preincubation with MEK inhibitor PD98059 blocked the SPC-induced contraction, but p38 MAPK inhibitor SB202190 did not. Cotreatment with GF109203X and PD98059 did not show synergistic effects, suggesting that these two kinases are involved in the same signaling pathway in the SPC-induced contraction. The data suggest that S1P-induced contraction in feline esophageal smooth muscle cells depends on activation of the G(i1), G(i2), G(i3) and G(o) proteins and the PLCbeta3 isozyme via the S1P2 receptor, leading to stimulation of a PKCE pathway, which subsequently activates a p44/p42 MAPK pathway.
Collapse
|
47
|
Characterizations of sphingosylphosphorylcholine-induced scratching responses in ICR mice using naltrexon, capsaicin, ketotifen and Y-27632. Eur J Pharmacol 2008; 583:92-6. [DOI: 10.1016/j.ejphar.2008.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 12/21/2007] [Accepted: 01/15/2008] [Indexed: 11/23/2022]
|
48
|
Dyatlovitskaya EV. Sphingolipid receptors. BIOCHEMISTRY (MOSCOW) 2008; 73:119-22. [PMID: 18298366 DOI: 10.1134/s0006297908020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The role of sphingolipids as receptors of bacteria, viruses, and toxins and also as ligands of proteinaceous receptors involved in the cell-cell signaling in animals is considered.
Collapse
Affiliation(s)
- E V Dyatlovitskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow.
| |
Collapse
|
49
|
Fuellen G. Homology and phylogeny and their automated inference. Naturwissenschaften 2008; 95:469-81. [PMID: 18288471 DOI: 10.1007/s00114-008-0348-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 12/20/2007] [Accepted: 01/12/2008] [Indexed: 11/25/2022]
Abstract
The analysis of the ever-increasing amount of biological and biomedical data can be pushed forward by comparing the data within and among species. For example, an integrative analysis of data from the genome sequencing projects for various species traces the evolution of the genomes and identifies conserved and innovative parts. Here, I review the foundations and advantages of this "historical" approach and evaluate recent attempts at automating such analyses. Biological data is comparable if a common origin exists (homology), as is the case for members of a gene family originating via duplication of an ancestral gene. If the family has relatives in other species, we can assume that the ancestral gene was present in the ancestral species from which all the other species evolved. In particular, describing the relationships among the duplicated biological sequences found in the various species is often possible by a phylogeny, which is more informative than homology statements. Detecting and elaborating on common origins may answer how certain biological sequences developed, and predict what sequences are in a particular species and what their function is. Such knowledge transfer from sequences in one species to the homologous sequences of the other is based on the principle of 'my closest relative looks and behaves like I do', often referred to as 'guilt by association'. To enable knowledge transfer on a large scale, several automated 'phylogenomics pipelines' have been developed in recent years, and seven of these will be described and compared. Overall, the examples in this review demonstrate that homology and phylogeny analyses, done on a large (and automated) scale, can give insights into function in biology and biomedicine.
Collapse
Affiliation(s)
- Georg Fuellen
- Bioinformatics Research Group, Institute for Mathematics and Computer Science, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany.
| |
Collapse
|
50
|
Abstract
Nerve cells mould the lipid fabric of their membranes to ease vesicle fusion, regulate ion fluxes and create specialized microenvironments that contribute to cellular communication. The chemical diversity of membrane lipids controls protein traffic, facilitates recognition between cells and leads to the production of hundreds of molecules that carry information both within and across cells. With so many roles, it is no wonder that lipids make up half of the human brain in dry weight. The objective of neural lipidomics is to understand how these molecules work together; this difficult task will greatly benefit from technical advances that might enable the testing of emerging hypotheses.
Collapse
Affiliation(s)
- Daniele Piomelli
- Department of Pharmacology, University of California, Irvine, California 92697, USA.
| | | | | |
Collapse
|