1
|
Dorrego-Rivas A, Grubb MS. Developing and maintaining a nose-to-brain map of odorant identity. Open Biol 2022; 12:220053. [PMID: 35765817 PMCID: PMC9240688 DOI: 10.1098/rsob.220053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023] Open
Abstract
Olfactory sensory neurons (OSNs) in the olfactory epithelium of the nose transduce chemical odorant stimuli into electrical signals. These signals are then sent to the OSNs' target structure in the brain, the main olfactory bulb (OB), which performs the initial stages of sensory processing in olfaction. The projection of OSNs to the OB is highly organized in a chemospatial map, whereby axon terminals from OSNs expressing the same odorant receptor (OR) coalesce into individual spherical structures known as glomeruli. This nose-to-brain map of odorant identity is built from late embryonic development to early postnatal life, through a complex combination of genetically encoded, OR-dependent and activity-dependent mechanisms. It must then be actively maintained throughout adulthood as OSNs experience turnover due to external insult and ongoing neurogenesis. Our review describes and discusses these two distinct and crucial processes in olfaction, focusing on the known mechanisms that first establish and then maintain chemospatial order in the mammalian OSN-to-OB projection.
Collapse
Affiliation(s)
- Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S. Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
2
|
Cheng RP, Dang P, Taku AA, Moon YJ, Pham V, Sun X, Zhao E, Raper JA. Loss of Neuropilin2a/b or Sema3fa alters olfactory sensory axon dynamics and protoglomerular targeting. Neural Dev 2022; 17:1. [PMID: 34980234 PMCID: PMC8725463 DOI: 10.1186/s13064-021-00157-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Olfactory Sensory Neuron (OSN) axons project from the zebrafish olfactory epithelium to reproducible intermediate target locations in the olfactory bulb called protoglomeruli at early stages in development. Two classes of OSNs expressing either OMP or TRPC2 exclusively target distinct, complementary protoglomeruli. Using RNAseq, we identified axon guidance receptors nrp2a and nrp2b, and their ligand sema3fa, as potential guidance factors that are differentially expressed between these two classes of OSNs. METHODS To investigate their role in OSN axon guidance, we assessed the protoglomerular targeting fidelity of OSNs labeled by OMP:RFP and TRPC2:Venus transgenes in nrp2a, nrp2b, or sema3fa mutants. We used double mutant and genetic interaction experiments to interrogate the relationship between the three genes. We used live time-lapse imaging to compare the dynamic behaviors of OSN growth cones during protoglomerular targeting in heterozygous and mutant larvae. RESULTS The fidelity of protoglomerular targeting of TRPC2-class OSNs is degraded in nrp2a, nrp2b, or sema3fa mutants, as axons misproject into OMP-specific protoglomeruli and other ectopic locations in the bulb. These misprojections are further enhanced in nrp2a;nrp2b double mutants suggesting that nrp2s work at least partially in parallel in the same guidance process. Results from genetic interaction experiments are consistent with sema3fa acting in the same biological pathway as both nrp2a and nrp2b. Live time-lapse imaging was used to examine the dynamic behavior of TRPC2-class growth cones in nrp2a mutants compared to heterozygous siblings. Some TRPC2-class growth cones ectopically enter the dorsal-medial region of the bulb in both groups, but in fully mutant embryos, they are less likely to correct the error through retraction. The same result was observed when TRPC2-class growth cone behavior was compared between sema3fa heterozygous and sema3fa mutant larvae. CONCLUSIONS Our results suggest that nrp2a and nrp2b expressed in TRPC2-class OSNs help prevent their mixing with axon projections in OMP-specific protoglomeruli, and further, that sema3fa helps to exclude TRPC2-class axons by repulsion from the dorsal-medial bulb.
Collapse
Affiliation(s)
- Ryan P Cheng
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Puneet Dang
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Alemji A Taku
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Yoon Ji Moon
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Vi Pham
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Xiaohe Sun
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Ethan Zhao
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Jonathan A Raper
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Francia S, Lodovichi C. The role of the odorant receptors in the formation of the sensory map. BMC Biol 2021; 19:174. [PMID: 34452614 PMCID: PMC8394594 DOI: 10.1186/s12915-021-01116-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
In the olfactory system, odorant receptors (ORs) expressed at the cell membrane of olfactory sensory neurons detect odorants and direct sensory axons toward precise target locations in the brain, reflected in the presence of olfactory sensory maps. This dual role of ORs is corroborated by their subcellular expression both in cilia, where they bind odorants, and at axon terminals, a location suitable for axon guidance cues. Here, we provide an overview and discuss previous work on the role of ORs in establishing the topographic organization of the olfactory system and recent findings on the mechanisms of activation and function of axonal ORs.
Collapse
Affiliation(s)
- Simona Francia
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine, Padua, Italy. .,Neuroscience Institute CNR, Via Orus 2, 35129, Padua, Italy. .,Department of Biomedical Sciences, University of Padua, Padua, Italy. .,Padova Neuroscience Center, Padua, Italy.
| |
Collapse
|
4
|
Lodovichi C. Topographic organization in the olfactory bulb. Cell Tissue Res 2021; 383:457-472. [PMID: 33404841 PMCID: PMC7873094 DOI: 10.1007/s00441-020-03348-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022]
Abstract
The ability of the olfactory system to detect and discriminate a broad spectrum of odor molecules with extraordinary sensitivity relies on a wide range of odorant receptors and on the distinct architecture of neuronal circuits in olfactory brain areas. More than 1000 odorant receptors, distributed almost randomly in the olfactory epithelium, are plotted out in two mirror-symmetric maps of glomeruli in the olfactory bulb, the first relay station of the olfactory system. How does such a precise spatial arrangement of glomeruli emerge from a random distribution of receptor neurons? Remarkably, the identity of odorant receptors defines not only the molecular receptive range of sensory neurons but also their glomerular target. Despite their key role, odorant receptors are not the only determinant, since the specificity of neuronal connections emerges from a complex interplay between several molecular cues and electrical activity. This review provides an overview of the mechanisms underlying olfactory circuit formation. In particular, recent findings on the role of odorant receptors in regulating axon targeting and of spontaneous activity in the development and maintenance of synaptic connections are discussed.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Neuroscience Institute CNR, Department of Biomedical Science, Veneto Institute of Molecular Medicine, Padova Neuroscience Center, Padova, Italy.
| |
Collapse
|
5
|
Yamashita N. Retrograde signaling via axonal transport through signaling endosomes. J Pharmacol Sci 2019; 141:91-96. [PMID: 31679963 DOI: 10.1016/j.jphs.2019.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 11/28/2022] Open
Abstract
Neurons extend axons far from cell bodies, and retrograde communications from distal axons to cell bodies and/or dendrites play critical roles in the development and maintenance of neuronal circuits. In neurotrophin signaling, the retrograde axonal transport of endosomes containing active ligand-receptor complexes from distal axons to somatodendrite compartments mediates retrograde signaling. However, the generality and specificity of these endosome-based transportations called "signaling endosomes" remain to be elucidated. Here, I summarize the discovery of semaphorin3A signaling endosomes, the first example other than neurotrophins to regulate dendritic development via AMPA receptor GluA2 localization in dendrites. The molecular components of Sema3A and neurotrophin signaling endosomes are distinct, but partially overlap to regulate specific and common cellular events. Because receptors are transported back to the cell bodies, neurons must replenish receptors on the growth cone surface to ensure continued response to the target-derived ligands. Recent findings have demonstrated that retrograde signaling endosomes also induce anterograde delivery of nascent receptors in neurotrophin signaling. The coupling between anterograde and retrograde axonal transport via signaling endosomes therefore plays a critical role in regulating proper neuronal network formation.
Collapse
Affiliation(s)
- Naoya Yamashita
- Department of Pharmacology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
6
|
Semaphorin 3A as an inhibitive factor for migration of olfactory ensheathing cells through cofilin activation is involved in formation of olfactory nerve layer. Mol Cell Neurosci 2018; 92:27-39. [PMID: 29940213 DOI: 10.1016/j.mcn.2018.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/23/2018] [Accepted: 06/19/2018] [Indexed: 01/27/2023] Open
Abstract
Olfactory ensheathing cells (OECs) migrate from olfactory epithelium towards olfactory bulb (OB), contributing to formation of the presumptive olfactory nerve layer during development. However, it remains unclear that molecular mechanism of regulation of OEC migration in OB. In the present study, we found that OECs highly expressed the receptors of semaphorin 3A (Sema3A) in vitro and in vivo, whereas Sema3A displayed a gradient expression pattern with higher in inner layer of OB and lower in outer layer of OB. Furthermore, the collapse assays, Boyden chamber migration assays and single-cell migration assays showed that Sema3A induced the collapse of leading front of OECs and inhibited OEC migration. Thirdly, the leading front of OECs exhibited adaptation in a protein synthesis-independent manner, and endocytosis-dependent manner during Sema3A-induced OEC migration. Finally, Sema3A-induced collapse of leading front was required the decrease of focal adhesion and a retrograde F-actin flow in a cofilin activation-dependent manner. Taken together, these results demonstrate that Sema3A as an inhibitive migratory factor for OEC migration through cofilin activation is involved in the formation of olfactory nerve layer.
Collapse
|
7
|
Dang P, Fisher SA, Stefanik DJ, Kim J, Raper JA. Coordination of olfactory receptor choice with guidance receptor expression and function in olfactory sensory neurons. PLoS Genet 2018; 14:e1007164. [PMID: 29385124 PMCID: PMC5809090 DOI: 10.1371/journal.pgen.1007164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/12/2018] [Accepted: 12/25/2017] [Indexed: 11/18/2022] Open
Abstract
Olfactory sensory neurons choose to express a single odorant receptor (OR) from a large gene repertoire and extend axons to reproducible, OR-specific locations within the olfactory bulb. This developmental process produces a topographically organized map of odorant experience in the brain. The axon guidance mechanisms that generate this pattern of connectivity, as well as those that coordinate OR choice and axonal guidance receptor expression, are incompletely understood. We applied the powerful approach of single-cell RNA-seq on newly born olfactory sensory neurons (OSNs) in young zebrafish larvae to address these issues. Expression profiles were generated for 56 individual Olfactory Marker Protein (OMP) positive sensory neurons by single-cell (SC) RNA-seq. We show that just as in mouse OSNs, mature zebrafish OSNs typically express a single predominant OR transcript. Our previous work suggests that OSN targeting is related to the OR clade from which a sensory neuron chooses to express its odorant receptor. We categorized each of the mature cells based on the clade of their predominantly expressed OR. Transcripts expressed at higher levels in each of three clade-related categories were identified using Penalized Linear Discriminant Analysis (PLDA). A genome-wide approach was used to identify membrane-associated proteins that are most likely to have guidance-related activity. We found that OSNs that choose to express an OR from a particular clade also express specific subsets of potential axon guidance genes and transcription factors. We validated our identification of candidate axon guidance genes for one clade of OSNs using bulk RNA-seq from a subset of transgene-labeled neurons that project to a single protoglomerulus. The differential expression patterns of selected candidate guidance genes were confirmed using fluorescent in situ hybridization. Most importantly, we observed axonal mistargeting in knockouts of three candidate axonal guidance genes identified in this analysis: nrp1a, nrp1b, and robo2. In each case, targeting errors were detected in the subset of axons that normally express these transcripts at high levels, and not in the axons that express them at low levels. Our findings demonstrate that specific, functional, axonal guidance related genes are expressed in subsets of OSNs that that can be categorized by their patterns of OR expression.
Collapse
Affiliation(s)
- Puneet Dang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, United States of America
| | - Stephen A. Fisher
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Derek J. Stefanik
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jonathan A. Raper
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Assens A, Dal Col JA, Njoku A, Dietschi Q, Kan C, Feinstein P, Carleton A, Rodriguez I. Alteration of Nrp1 signaling at different stages of olfactory neuron maturation promotes glomerular shifts along distinct axes in the olfactory bulb. Development 2016; 143:3817-3825. [PMID: 27578798 DOI: 10.1242/dev.138941] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/23/2016] [Indexed: 12/25/2022]
Abstract
Building the topographic map in the mammalian olfactory bulb is explained by a model based on two axes along which sensory neurons are guided: one dorsoventral and one anteroposterior. This latter axis relies on specific expression levels of Nrp1. To evaluate the role of this receptor in this process, we used an in vivo genetic approach to decrease or suppress Nrp1 in specific neuronal populations and at different time points during axonal targeting. We observed, in neurons that express the M71 or M72 odorant receptors, that Nrp1 inactivation leads to two distinct wiring alterations, depending on the time at which Nrp1 expression is altered: first, a surprising dorsal shift of the M71 and M72 glomeruli, which often fuse with their contralateral counterparts, and second the formation of anteriorized glomeruli. The two phenotypes are partly recapitulated in mice lacking the Nrp1 ligand Sema3A and in mice whose sensory neurons express an Nrp1 mutant unable to bind Sema3A. Using a mosaic conditional approach, we show that M71 axonal fibers can bypass the Nrp1 signals that define their target area, since they are hijacked and coalesce with Nrp1-deficient M71-expressing axons that target elsewhere. Together, these findings show drastically different axonal targeting outcomes dependent on the timing at which Nrp1/Sema3A signaling is altered.
Collapse
Affiliation(s)
- Alexis Assens
- Department of Genetics and Evolution, University of Geneva, Geneva 1205, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva 1205, Switzerland
| | - Julien A Dal Col
- Department of Genetics and Evolution, University of Geneva, Geneva 1205, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva 1205, Switzerland
| | - Anthony Njoku
- Department of Genetics and Evolution, University of Geneva, Geneva 1205, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva 1205, Switzerland
| | - Quentin Dietschi
- Department of Genetics and Evolution, University of Geneva, Geneva 1205, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva 1205, Switzerland
| | - Chenda Kan
- Department of Genetics and Evolution, University of Geneva, Geneva 1205, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva 1205, Switzerland
| | - Paul Feinstein
- Department of Biological Sciences, Hunter College and The Graduate Center Biochemistry, Biology and Biopsychology and Behavioral Neuroscience Programs, CUNY, New York, NY10065, USA
| | - Alan Carleton
- Geneva Neuroscience Center, University of Geneva, Geneva 1205, Switzerland .,Department of Basic Neurosciences, School of Medicine, University of Geneva, Geneva 1205, Switzerland
| | - Ivan Rodriguez
- Department of Genetics and Evolution, University of Geneva, Geneva 1205, Switzerland .,Geneva Neuroscience Center, University of Geneva, Geneva 1205, Switzerland
| |
Collapse
|
9
|
Taku AA, Marcaccio CL, Ye W, Krause GJ, Raper JA. Attractant and repellent cues cooperate in guiding a subset of olfactory sensory axons to a well-defined protoglomerular target. Development 2016; 143:123-32. [PMID: 26732841 DOI: 10.1242/dev.127985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Olfactory sensory axons target well-defined intermediate targets in the zebrafish olfactory bulb called protoglomeruli well before they form odorant receptor-specific glomeruli. A subset of olfactory sensory neurons are labeled by expression of the or111-7:IRES:GAL4 transgene whose axons terminate in the central zone (CZ) protoglomerulus. Previous work has shown that some of these axons misproject to the more dorsal and anterior dorsal zone (DZ) protoglomerulus in the absence of Netrin 1/Dcc signaling. In search of additional cues that guide these axons to the CZ, we found that Semaphorin 3D (Sema3D) is expressed in the anterior bulb and acts as a repellent that pushes them towards the CZ. Further analysis indicates that Sema3D signaling is mediated through Nrp1a, while Nrp2b also promotes CZ targeting but in a Sema3D-independent manner. nrp1a, nrp2b and dcc transcripts are detected in or111-7 transgene-expressing neurons early in development and both Nrp1a and Dcc act cell-autonomously in sensory neurons to promote accurate targeting to the CZ. dcc and nrp1a double mutants have significantly more DZ misprojections than either single mutant, suggesting that the two signaling systems act independently and in parallel to direct a specific subset of sensory axons to their initial protoglomerular target.
Collapse
Affiliation(s)
- Alemji A Taku
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Christina L Marcaccio
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Wenda Ye
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Gregory J Krause
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jonathan A Raper
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Aguillon R, Blader P, Batut J. Patterning, morphogenesis, and neurogenesis of zebrafish cranial sensory placodes. Methods Cell Biol 2016; 134:33-67. [PMID: 27312490 DOI: 10.1016/bs.mcb.2016.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peripheral sensory organs and ganglia found in the vertebrate head arise during embryonic development from distinct ectodermal thickenings, called cranial sensory placodes (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, and otic). A series of patterning events leads to the establishment of these placodes. Subsequently, these placodes undergo specific morphogenetic movements and cell-type specification in order to shape the final placodal derivatives and to produce differentiated cell types necessary for their function. In this chapter, we will focus on recent studies in the zebrafish that have advanced our understanding of cranial sensory placode development. We will summarize the signaling events and their molecular effectors guiding the formation of the so-called preplacodal region, and the subsequent subdivision of this region along the anteroposterior axis that gives rise to specific placode identities as well as those controlling morphogenesis and neurogenesis. Finally, we will highlight the approaches used in zebrafish that have been established to precisely label cell populations, to follow their development, and/or to characterize cell fates within a specific placode.
Collapse
Affiliation(s)
- R Aguillon
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - P Blader
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - J Batut
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
11
|
Yamashita N, Aoki R, Chen S, Jitsuki-Takahashi A, Ohura S, Kamiya H, Goshima Y. Voltage-gated calcium and sodium channels mediate Sema3A retrograde signaling that regulates dendritic development. Brain Res 2015; 1631:127-36. [PMID: 26638837 DOI: 10.1016/j.brainres.2015.11.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
Abstract
Growing axons rely on local signaling at the growth cone for guidance cues. Semaphorin3A (Sema3A), a secreted repulsive axon guidance molecule, regulates synapse maturation and dendritic branching. We previously showed that local Sema3A signaling in the growth cones elicits retrograde retrograde signaling via PlexinA4 (PlexA4), one component of the Sema3A receptor, thereby regulating dendritic localization of AMPA receptor GluA2 and proper dendritic development. In present study, we found that nimodipine (voltage-gated L-type Ca(2+) channel blocker) and tetrodotoxin (TTX; voltage-gated Na(+) channel blocker) suppress Sema3A-induced dendritic localization of GluA2 and dendritic branch formation in cultured hippocampal neurons. The local application of nimodipine or TTX to distal axons suppresses retrograde transport of Venus-Sema3A that has been exogenously applied to the distal axons. Sema3A facilitates axonal transport of PlexA4, which is also suppressed in neurons treated with either TTX or nimodipine. These data suggest that voltage-gated calcium and sodium channels mediate Sema3A retrograde signaling that regulates dendritic GluA2 localization and branch formation.
Collapse
Affiliation(s)
- Naoya Yamashita
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA; JSPS Postdoctoral Fellowship for Research Abroad, Chiyoda-ku 102-0083, Japan
| | - Reina Aoki
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Sandy Chen
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Aoi Jitsuki-Takahashi
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Shunsuke Ohura
- Department of Neurobiology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Haruyuki Kamiya
- Department of Neurobiology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.
| |
Collapse
|
12
|
Nasal Administration of Cholera Toxin as a Mucosal Adjuvant Damages the Olfactory System in Mice. PLoS One 2015; 10:e0139368. [PMID: 26422280 PMCID: PMC4589288 DOI: 10.1371/journal.pone.0139368] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/12/2015] [Indexed: 12/30/2022] Open
Abstract
Cholera toxin (CT) induces severe diarrhea in humans but acts as an adjuvant to enhance immune responses to vaccines when administered orally. Nasally administered CT also acts as an adjuvant, but CT and CT derivatives, including the B subunit of CT (CTB), are taken up from the olfactory epithelium and transported to the olfactory bulbs and therefore may be toxic to the central nervous system. To assess the toxicity, we investigated whether nasally administered CT or CT derivatives impair the olfactory system. In mice, nasal administration of CT, but not CTB or a non-toxic CT derivative, reduced the expression of olfactory marker protein (OMP) in the olfactory epithelium and olfactory bulbs and impaired odor responses, as determined with behavioral tests and optical imaging. Thus, nasally administered CT, like orally administered CT, is toxic and damages the olfactory system in mice. However, CTB and a non-toxic CT derivative, do not damage the olfactory system. The optical imaging we used here will be useful for assessing the safety of nasal vaccines and adjuvants during their development for human use and CT can be used as a positive control in this test.
Collapse
|
13
|
Kishida T, Thewissen J, Usip S, Suydam RS, George JC. Organization and distribution of glomeruli in the bowhead whale olfactory bulb. PeerJ 2015; 3:e897. [PMID: 25945304 PMCID: PMC4419441 DOI: 10.7717/peerj.897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/28/2015] [Indexed: 12/20/2022] Open
Abstract
Although modern baleen whales (Mysticeti) retain a functional olfactory system that includes olfactory bulbs, cranial nerve I and olfactory receptor genes, their olfactory capabilities have been reduced to a great degree. This reduction likely occurred as a selective response to their fully aquatic lifestyle. The glomeruli that occur in the olfactory bulb can be divided into two non-overlapping domains, a dorsal domain and a ventral domain. Recent molecular studies revealed that all modern whales have lost olfactory receptor genes and marker genes that are specific to the dorsal domain. Here we show that olfactory bulbs of bowhead whales (Balaena mysticetus) lack glomeruli on the dorsal side, consistent with the molecular data. In addition, we estimate that there are more than 4,000 glomeruli elsewhere in the bowhead whale olfactory bulb, which is surprising given that bowhead whales possess only 80 intact olfactory receptor genes. Olfactory sensory neurons that express the same olfactory receptors in rodents generally project to two specific glomeruli in an olfactory bulb, implying an approximate 1:2 ratio of the number of olfactory receptors to the number of glomeruli. Here we show that this ratio does not apply to bowhead whales, reiterating the conceptual limits of using rodents as model organisms for understanding the initial coding of odor information among mammals.
Collapse
Affiliation(s)
| | - Jgm Thewissen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University , Rootstown, OH , USA
| | - Sharon Usip
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University , Rootstown, OH , USA
| | - Robert S Suydam
- Department of Wildlife Management, North Slope Borough , Barrow, AK , USA
| | - John C George
- Department of Wildlife Management, North Slope Borough , Barrow, AK , USA
| |
Collapse
|
14
|
Yamashita N, Jitsuki-Takahashi A, Ogawara M, Ohkubo W, Araki T, Hotta C, Tamura T, Hashimoto SI, Yabuki T, Tsuji T, Sasakura Y, Okumura H, Takaiwa A, Koyama C, Murakami K, Goshima Y. Anti-Semaphorin 3A neutralization monoclonal antibody prevents sepsis development in lipopolysaccharide-treated mice. Int Immunol 2015; 27:459-66. [PMID: 25855660 DOI: 10.1093/intimm/dxv014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 03/25/2015] [Indexed: 12/12/2022] Open
Abstract
Semaphorin 3A (Sema3A), originally identified as a potent growth cone collapsing factor in developing sensory neurons, is now recognized as a key player in immune, cardiovascular, bone metabolism and neurological systems. Here we established an anti-Sema3A monoclonal antibody that neutralizes the effects of Sema3A both in vitro and in vivo. The anti-Sema3A neutralization chick IgM antibodies were screened by combining an autonomously diversifying library selection system and an in vitro growth cone collapse assay. We further developed function-blocking chick-mouse chimeric and humanized anti-Sema3A antibodies. We found that our anti-Sema3A antibodies were effective for improving the survival rate in lipopolysaccharide-induced sepsis in mice. Our antibody is a potential therapeutic agent that may prevent the onset of or alleviate symptoms of human diseases associated with Sema3A.
Collapse
Affiliation(s)
- Naoya Yamashita
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Aoi Jitsuki-Takahashi
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Miyuki Ogawara
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Wataru Ohkubo
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tomomi Araki
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Chie Hotta
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | | | | | - Toru Tsuji
- Chiome Bioscience Inc., Tokyo 151-0071, Japan
| | | | | | - Aki Takaiwa
- Chiome Bioscience Inc., Tokyo 151-0071, Japan
| | | | | | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
15
|
Masuda T, Taniguchi M. Congenital diseases and semaphorin signaling: overview to date of the evidence linking them. Congenit Anom (Kyoto) 2015; 55:26-30. [PMID: 25385160 DOI: 10.1111/cga.12095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/31/2014] [Indexed: 12/12/2022]
Abstract
Semaphorins and their receptors, neuropilins and plexins, were initially characterized as a modulator of axonal guidance during development, but are now recognized as a regulator of a wide range of developmental events including morphogenesis and angiogenesis, and activities of the immune system. Owing to the development of next-generation sequencing technologies together with other useful DNA assays, it has also become clear that semaphorin signaling plays a crucial role in many congenital diseases such as retinal degeneration and congenital heart defects. This review summarizes the recent knowledge about the relationship between a variety of congenital diseases and semaphorin signaling.
Collapse
Affiliation(s)
- Tomoyuki Masuda
- Department of Neurobiology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
16
|
Identification of a microRNA regulator for axon guidance in the olfactory bulb of adult mice. Gene 2014; 547:319-28. [PMID: 24992028 DOI: 10.1016/j.gene.2014.06.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 01/09/2023]
Abstract
Semaphorin3A (sema3a), mainly localized in the olfactory neuron layer and periglomerular layer, is essential for the normal arrangement of axons in the olfactory bulb both in embryonic and adult mice functioning through its dynamic spatiotemporal expression. The regulators that can modulate the expression of sema3a by direct interaction, however, are unknown. In order to find the regulators of sema3a in the olfactory bulb, we focused on microRNAs, well-known post-transcriptional regulators. We found that axon guidance is the main molecular and biological process ongoing in the steady-state olfactory bulb of the adult mouse by screening the abundant microRNAs and exploring their functions in the olfactory bulb via our customized microRNA arrays, Gene Ontology and Kyoto Encyclopedia of Genes annotation. Furthermore, we traced the expression of three candidate regulators (miR-30c, miR-200b, and miR-429) and sema3a by the quantitative real-time polymerase chain reaction and immunohistochemistry. The results showed that only miR-30c expression corresponded inversely with sema3a. Finally, miR-30c was verified to be a specific regulator of sema3a by dual luciferase reporter assay in vitro. Taken together, our results suggested that miR-30c is a potential regulator in axon-guidance by suppressing the expression of sema3a, which will give new insights in elucidating the mechanism of architectonic and functional maintenance of the olfactory bulb.
Collapse
|
17
|
Plexin-A4-dependent retrograde semaphorin 3A signalling regulates the dendritic localization of GluA2-containing AMPA receptors. Nat Commun 2014; 5:3424. [DOI: 10.1038/ncomms4424] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/11/2014] [Indexed: 01/07/2023] Open
|
18
|
Vo T, Carulli D, Ehlert EM, Kwok JC, Dick G, Mecollari V, Moloney EB, Neufeld G, de Winter F, Fawcett JW, Verhaagen J. The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain. Mol Cell Neurosci 2013; 56:186-200. [DOI: 10.1016/j.mcn.2013.04.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 04/30/2013] [Indexed: 01/22/2023] Open
|
19
|
Carulli D, Foscarin S, Faralli A, Pajaj E, Rossi F. Modulation of semaphorin3A in perineuronal nets during structural plasticity in the adult cerebellum. Mol Cell Neurosci 2013; 57:10-22. [PMID: 23999154 DOI: 10.1016/j.mcn.2013.08.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/05/2013] [Accepted: 08/24/2013] [Indexed: 02/02/2023] Open
Abstract
In the adult central nervous system (CNS) subsets of neurons are enwrapped by densely organized extracellular matrix structures, called perineuronal nets (PNNs). PNNs are formed at the end of critical periods and contribute to synapse stabilization. Enzymatic degradation of PNNs or genetic deletion of specific PNN components leads to the prolongation of the plasticity period. PNNs consist of extracellular matrix molecules, including chondroitin sulfate proteoglycans, hyaluronan, tenascins and link proteins. It has been recently shown that the chemorepulsive axon guidance protein semaphorin3A (Sema3A) is also a constituent of PNNs, binding with high affinity to the sugar chains of chondroitin sulfate proteoglycans. To elucidate whether the expression of Sema3A is modified in parallel with structural plasticity in the adult CNS, we examined Sema3A expression in the deep cerebellar nuclei of the adult mouse in a number of conditions associated with structural reorganization of the local connectivity. We found that Sema3A in PNNs is reduced during enhanced neuritic remodeling, in both physiological and injury-induced conditions. Moreover, we provide evidence that Sema3A is tightly associated with Purkinje axons and their terminals and its amount in the PNNs is related to Purkinje cell innervation of DCN neurons, but not to glutamatergic inputs. On the whole these data suggest that Sema3A may contribute to the growth-inhibitory properties of PNNs and Purkinje neurons may directly control their specific connection pattern through the release and capture of this guidance cue in the specialized ECM that surrounds their terminals.
Collapse
Affiliation(s)
- Daniela Carulli
- Department of Neuroscience, Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy; Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Turin, Italy.
| | | | | | | | | |
Collapse
|
20
|
Hu Y, Poopalasundaram S, Graham A, Bouloux PM. GnRH neuronal migration and olfactory bulb neurite outgrowth are dependent on FGF receptor 1 signaling, specifically via the PI3K p110α isoform in chick embryo. Endocrinology 2013; 154:388-99. [PMID: 23150492 DOI: 10.1210/en.2012-1555] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fibroblast growth factor (FGF) signaling is essential for both olfactory bulb (OB) morphogenesis and the specification, migration, and maturation of the GnRH-secreting neurons. Disruption of FGF signaling contributes to Kallmann syndrome characterized by both anosmia and sexual immaturity. However, several unanswered questions remain as to which specific FGF receptor (FGFR)-1 signaling pathways are necessary for OB and GnRH neuronal development. Here, using pharmacological phosphatidylinositol 3-kinase (PI3K) isoform-specific inhibitors, we demonstrate a central role for the PI3K p110α isoform as a downstream effector of FGFR1 signaling for both GnRH neuronal migration and OB development. We show that signaling via the PI3K p110α isoform is required for GnRH neuronal migration in explant cultures of embryonic day (E) 4 chick olfactory placodes. We also show that in ovo administration of LY294002, a global PI3K inhibitor as well as an inhibitor to the PI3K p110α isoform into the olfactory placode of E3 chick embryo impairs GnRH neuronal migration toward the forebrain. In contrast, in ovo PI3K inhibitor treatment produced no obvious defects on primary olfactory sensory neuron axonal targeting and bundle formation. We also demonstrate that anosmin-1 and FGF2 induced neuronal migration of immortalized human embryonic GnRH neuroblast cells (FNC-B4-hTERT) is mediated by modulating FGFR1 signaling via the PI3K p110α isoform, specifically through phosphorylation of the PI3K downstream effectors, Akt and glycogen synthase kinase-3β. Finally, we show that neurite outgrowth and elongation of OB neurons in E10 chick OB explants are also dependent on the PI3K p110α isoform downstream of FGFR1. This study provides mechanistic insight into the etiology of Kallmann syndrome.
Collapse
Affiliation(s)
- Youli Hu
- Centre for Neuroendocrinology, University College London Medical School, Royal Free Campus, London NW3 2PF, United Kingdom.
| | | | | | | |
Collapse
|
21
|
Lodovichi C, Belluscio L. Odorant receptors in the formation of the olfactory bulb circuitry. Physiology (Bethesda) 2012; 27:200-12. [PMID: 22875451 DOI: 10.1152/physiol.00015.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In mammals, smell is mediated by odorant receptors expressed by sensory neurons in the nose. These specialized receptors are found both on olfactory sensory neurons' cilia and axon terminals. Although the primary function of ciliary odorant receptors is to detect odorants, their axonal role remains unclear but is thought to involve axon guidance. This review discusses findings that show axonal odorant receptors are indeed functional and capable of modulating neural connectivity.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Venetian Institute of Molecular Medicine, and Institute of Neuroscience-CNR, Padua, Italy
| | | |
Collapse
|
22
|
Abstract
Semaphorins are key players in the control of neural circuit development. Recent studies have uncovered several exciting and novel aspects of neuronal semaphorin signalling in various cellular processes--including neuronal polarization, topographical mapping and axon sorting--that are crucial for the assembly of functional neuronal connections. This progress is important for further understanding the many neuronal and non-neuronal functions of semaphorins and for gaining insight into their emerging roles in the perturbed neural connectivity that is observed in some diseases. This Review discusses recent advances in semaphorin research, focusing on novel aspects of neuronal semaphorin receptor regulation and previously unexplored cellular functions of semaphorins in the nervous system.
Collapse
|
23
|
Sadrian B, Cheng TW, Shull O, Gong Q. Rap1gap2 regulates axon outgrowth in olfactory sensory neurons. Mol Cell Neurosci 2012; 50:272-82. [PMID: 22732430 DOI: 10.1016/j.mcn.2012.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 12/30/2022] Open
Abstract
Olfactory sensory neurons (OSNs) extend their axons from the nasal epithelium to their odorant receptor-dependent locations in the olfactory bulb. Previous studies have identified several membrane proteins along the projection pathway, and on OSN axons themselves, which regulate this process; however, little is known about the signaling mechanisms through which these factors act. We have identified and characterized Rap1gap2, a novel small GTPase regulator, in OSNs during early postnatal mouse development. Rap1gap2 overexpression limits neurite outgrowth and branching in Neuro-2a cells, and counteracts Rap1-induced augmentation of neurite outgrowth. Rap1gap2 expression is developmentally regulated within OSNs, with high expression in early postnatal stages that ultimately drops to undetectable levels by adulthood. This temporal pattern coincides with an early postnatal plastic period of OSN innervation refinement at the OB glomerular layer. Rap1gap2 stunts OSN axon outgrowth when overexpressed in vitro, while knock-down of Rap1gap2 transcript results in a significant increase in axon length. These results indicate an important role of Rap1gap2 in OSN axon growth dynamics during early postnatal development.
Collapse
Affiliation(s)
- Benjamin Sadrian
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
24
|
Calpain cleaves and activates the TRPC5 channel to participate in semaphorin 3A-induced neuronal growth cone collapse. Proc Natl Acad Sci U S A 2012; 109:7888-92. [PMID: 22547824 DOI: 10.1073/pnas.1205869109] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nonselective cation channel transient receptor potential canonical (TRPC)5 is found predominantly in the brain and has been proposed to regulate neuronal processes and growth cones. Here, we demonstrate that semaphorin 3A-mediated growth cone collapse is reduced in hippocampal neurons from TRPC5 null mice. This reduction is reproduced by inhibition of the calcium-sensitive protease calpain in wild-type neurons but not in TRPC5(-/-) neurons. We show that calpain-1 and calpain-2 cleave and functionally activate TRPC5. Mutation of a critical threonine at position 857 inhibits calpain-2 cleavage of the channel. Finally, we show that the truncated TRPC5 predicted to result from calpain cleavage is functionally active. These results indicate that semaphorin 3A initiates growth cone collapse via activation of calpain that in turn potentiates TRPC5 activity. Thus, TRPC5 acts downstream of semaphorin signaling to cause changes in neuronal growth cone morphology and nervous system development.
Collapse
|
25
|
Imai T, Sakano H. Axon-axon interactions in neuronal circuit assembly: lessons from olfactory map formation. Eur J Neurosci 2012; 34:1647-54. [PMID: 22103421 DOI: 10.1111/j.1460-9568.2011.07817.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During the development of the nervous system, neurons often connect axons and dendrites over long distances, which are navigated by chemical cues. During the past few decades, studies on axon guidance have focused on chemical cues provided by the axonal target or intermediate target. However, recent studies have shed light on the roles and mechanisms underlying axon-axon interactions during neuronal circuit assembly. The roles of axon-axon interactions are best exemplified in recent studies on olfactory map formation in vertebrates. Pioneer-follower interaction is essential for the axonal pathfinding process. Pre-target axon sorting establishes the anterior-posterior map order. The temporal order of axonal projection is converted to dorsal-ventral topography with the aid of secreted molecules provided by early-arriving axons. An activity-dependent process to form a discrete map also depends on axon sorting. Thus, an emerging principle of olfactory map formation is the 'self-organisation' of axons rather than the 'lock and key' matching between axons and targets. In this review, we discuss how axon-axon interactions contribute to neuronal circuit assembly.
Collapse
Affiliation(s)
- Takeshi Imai
- Laboratory for Sensory Circuit Formation, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | | |
Collapse
|
26
|
Collapsin response mediator proteins regulate neuronal development and plasticity by switching their phosphorylation status. Mol Neurobiol 2012; 45:234-46. [PMID: 22351471 DOI: 10.1007/s12035-012-8242-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/29/2012] [Indexed: 12/21/2022]
Abstract
Collapsin response mediator protein (CRMP) was originally identified as a molecule involved in semaphorin3A signaling. CRMPs are now known to consist of five homologous cytosolic proteins, CRMP1-5. All of them are phosphorylated and highly expressed in the developing and adult nervous system. In vitro experiments have clearly demonstrated that CRMPs play important roles in neuronal development and maturation through the regulation of their phosphorylation. Several recent knockout mice studies have revealed in vivo roles of CRMPs in neuronal migration, neuronal network formation, synapse formation, synaptic plasticity, and neuronal diseases. Dynamic spatiotemporal regulation of phosphorylation status of CRMPs is involved in many aspects of neuronal development.
Collapse
|
27
|
Abstract
Odor signals received by odorant receptors (ORs) expressed by olfactory sensory neurons (OSNs) in the olfactory epithelium (OE) are represented as an odor map in the olfactory bulb (OB). In the mouse, there are ~1,000 different OR species, and each OSN expresses only one functional OR gene in a monoallelic manner. Furthermore, OSN axons expressing the same type of OR converge on a specific target site in the OB, forming a glomerular structure. Because each glomerulus represents a single OR species, and a single odorant can interact with multiple OR species, odor signals received in the OE are converted into a topographic map of multiple glomeruli activated with varying magnitudes. Here we review recent progress in the study of the mammalian olfactory system, focusing on the formation of the olfactory map and the transmission of topographical information in the OB to the olfactory cortex to elicit various behaviors.
Collapse
Affiliation(s)
- Kensaku Mori
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
28
|
Abstract
BACKGROUND The vagus nerve is the major neural connection between the gastrointestinal tract and the central nervous system. During fetal development, axons from the cell bodies of the nodose ganglia and the dorsal motor nucleus grow into the gut to find their enteric targets, providing the vagal sensory and motor innervations respectively. Vagal sensory and motor axons innervate selective targets, suggesting a role for guidance cues in the establishment of the normal pattern of enteric vagal innervation. PURPOSE This review explores known molecular mechanisms that guide vagal innervation in the gastrointestinal tract. Guidance and growth factors, such as netrin-1 and its receptor, deleted in colorectal cancer, extracellular matrix molecules, such as laminin-111, and members of the neurotrophin family of molecules, such as brain-derived neurotrophic factor have been identified as mediating the guidance of vagal axons to the fetal mouse gut. In addition to increasing our understanding of the development of enteric innervation, studies of vagal development may also reveal clinically relevant insights into the underlying mechanisms of vago-vagal communication with the gastrointestinal tract.
Collapse
Affiliation(s)
- E M Ratcliffe
- Division of Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada.
| | | | | |
Collapse
|
29
|
Schwarting GA, Henion TR. Regulation and function of axon guidance and adhesion molecules during olfactory map formation. J Cell Biochem 2011; 112:2663-71. [PMID: 21618591 PMCID: PMC3376016 DOI: 10.1002/jcb.23203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The olfactory system presents a practical model for investigating basic mechanisms involved in patterning connections between peripheral sensory neurons and central targets. Our understanding of olfactory map formation was advanced greatly by the discovery of cAMP signaling as an important determinant of glomerular positioning in the olfactory bulb. Additionally, several cell adhesion molecules have been identified recently that are proposed to regulate homotypic interactions among projecting axons. From these studies a model has emerged to partially explain the wiring of axons from widely dispersed neuron populations in the nasal cavity to relatively stereotyped glomerular positions. These advances have revitalized interest in axon guidance molecules in establishing olfactory topography, but also open new questions regarding how these patterns of guidance cues are established and function, and what other pathways, such as glycosylation, might be involved. This review summarizes the current state of this field and the important molecules that impact on cAMP-dependent mechanism in olfactory axon guidance.
Collapse
Affiliation(s)
- Gerald A Schwarting
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | |
Collapse
|
30
|
Messina A, Ferraris N, Wray S, Cagnoni G, Donohue DE, Casoni F, Kramer PR, Derijck AA, Adolfs Y, Fasolo A, Pasterkamp RJ, Giacobini P. Dysregulation of Semaphorin7A/β1-integrin signaling leads to defective GnRH-1 cell migration, abnormal gonadal development and altered fertility. Hum Mol Genet 2011; 20:4759-74. [PMID: 21903667 DOI: 10.1093/hmg/ddr403] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Reproduction in mammals is dependent on the function of specific neurons that secrete gonadotropin-releasing hormone-1 (GnRH-1). These neurons originate prenatally in the nasal placode and migrate into the forebrain along the olfactory-vomeronasal nerves. Alterations in this migratory process lead to defective GnRH-1 secretion, resulting in heterogeneous genetic disorders such as idiopathic hypogonadotropic hypogonadism (IHH), and other reproductive diseases characterized by the reduction or failure of sexual competence. Combining mouse genetics with in vitro models, we demonstrate that Semaphorin 7A (Sema7A) is essential for the development of the GnRH-1 neuronal system. Loss of Sema7A signaling alters the migration of GnRH-1 neurons, resulting in significantly reduced numbers of these neurons in the adult brain as well as in reduced gonadal size and subfertility. We also show that GnRH-1 cells differentially express the Sema7 receptors β1-integrin and Plexin C1 as a function of their migratory stage, whereas the ligand is robustly expressed along developing olfactory/vomeronasal fibers. Disruption of Sema7A function in vitro inhibits β1-integrin-mediated migration. Analysis of Plexin C1(-/-) mice did not reveal any difference in the migratory process of GnRH-1 neurons, indicating that Sema7A mainly signals through β1-integrin to regulate GnRH-1 cell motility. In conclusion, we have identified Sema7A as a gene implicated in the normal development of the GnRH-1 system in mice and as a genetic marker for the elucidation of some forms of GnRH-1 deficiency in humans.
Collapse
Affiliation(s)
- Andrea Messina
- Department of Human and Animal Biology, University of Turin, Turin 10123, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Eckler MJ, McKenna WL, Taghvaei S, McConnell SK, Chen B. Fezf1 and Fezf2 are required for olfactory development and sensory neuron identity. J Comp Neurol 2011; 519:1829-46. [PMID: 21452247 PMCID: PMC3268373 DOI: 10.1002/cne.22596] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The murine olfactory system consists of main and accessory systems that perform distinct and overlapping functions. The main olfactory epithelium (MOE) is primarily involved in the detection of volatile odorants, while neurons in the vomeronasal organ (VNO), part of the accessory olfactory system, are important for pheromone detection. During development, the MOE and VNO both originate from the olfactory pit; however, the mechanisms regulating development of these anatomically distinct organs from a common olfactory primordium are unknown. Here we report that two closely related zinc-finger transcription factors, FEZF1 and FEZF2, regulate the identity of MOE sensory neurons and are essential for the survival of VNO neurons respectively. Fezf1 is predominantly expressed in the MOE while Fezf2 expression is restricted to the VNO. In Fezf1-deficient mice, olfactory neurons fail to mature and also express markers of functional VNO neurons. In Fezf2-deficient mice, VNO neurons degenerate prior to birth. These results identify Fezf1 and Fezf2 as important regulators of olfactory system development and sensory neuron identity.
Collapse
Affiliation(s)
- Matthew J. Eckler
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - William L. McKenna
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Sahar Taghvaei
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Susan K. McConnell
- Department of Biological Sciences, Stanford University, Stanford, CA 94305
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| |
Collapse
|
32
|
Matsuda I, Fukaya M, Nakao H, Nakao K, Matsumoto H, Mori K, Watanabe M, Aiba A. Development of the somatosensory cortex, the cerebellum, and the main olfactory system in Semaphorin 3F knockout mice. Neurosci Res 2010; 66:321-9. [DOI: 10.1016/j.neures.2009.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 12/01/2009] [Accepted: 12/04/2009] [Indexed: 10/20/2022]
|
33
|
Yanicostas C, Herbomel E, Dipietromaria A, Soussi-Yanicostas N. Anosmin-1a is required for fasciculation and terminal targeting of olfactory sensory neuron axons in the zebrafish olfactory system. Mol Cell Endocrinol 2009; 312:53-60. [PMID: 19464344 DOI: 10.1016/j.mce.2009.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 04/10/2009] [Accepted: 04/17/2009] [Indexed: 11/30/2022]
Abstract
The KAL-1 gene underlies the X-linked form of Kallmann syndrome (KS), a neurological disorder that impairs the development of the olfactory and GnRH systems. KAL-1 encodes anosmin-1, a cell matrix protein that shows cell adhesion, neurite outgrowth, and axon-guidance and -branching activities. We used zebrafish embryos as model to better understand the role of this protein during olfactory system (OS) development. First, we detected the protein in olfactory sensory neurons from 22 h post-fertilization (hpf) onward, i.e. prior their pioneer axons reached presumptive olfactory bulbs (OBs). We found that anosmin-1a depletion impaired the fasciculation of olfactory axons and their terminal targeting within OBs. Last, we showed that kal1a inactivation induced a severe decrease in the number of GABAergic and dopaminergic OB neurons. Though the phenotypes induced following anosmin-1a depletion in zebrafish embryos did not match precisely the defects observed in KS patients, our results provide the first demonstration of a direct requirement for anosmin-1 in OS development in vertebrates and stress the role of OB innervation on OB neuron differentiation.
Collapse
Affiliation(s)
- Constantin Yanicostas
- Centre de Recherche de l'Institut du Cerveau et de la Moëlle épinière, Paris, France
| | | | | | | |
Collapse
|
34
|
Hong W, Zhu H, Potter CJ, Barsh G, Kurusu M, Zinn K, Luo L. Leucine-rich repeat transmembrane proteins instruct discrete dendrite targeting in an olfactory map. Nat Neurosci 2009; 12:1542-50. [PMID: 19915565 PMCID: PMC2826190 DOI: 10.1038/nn.2442] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 10/01/2009] [Indexed: 11/09/2022]
Abstract
Olfactory systems utilize discrete neural pathways to process and integrate odorant information. In Drosophila, axons of first-order olfactory receptor neurons (ORNs) and dendrites of second-order projection neurons (PNs) form class-specific synaptic connections at approximately 50 glomeruli. The mechanisms underlying PN dendrite targeting to distinct glomeruli in a three-dimensional discrete neural map are unclear. We found that the leucine-rich repeat (LRR) transmembrane protein Capricious (Caps) was differentially expressed in different classes of PNs. Loss-of-function and gain-of-function studies indicated that Caps instructs the segregation of Caps-positive and Caps-negative PN dendrites to discrete glomerular targets. Moreover, Caps-mediated PN dendrite targeting was independent of presynaptic ORNs and did not involve homophilic interactions. The closely related protein Tartan was partially redundant with Caps. These LRR proteins are probably part of a combinatorial cell-surface code that instructs discrete olfactory map formation.
Collapse
Affiliation(s)
- Weizhe Hong
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Degano AL, Pasterkamp RJ, Ronnett GV. MeCP2 deficiency disrupts axonal guidance, fasciculation, and targeting by altering Semaphorin 3F function. Mol Cell Neurosci 2009; 42:243-54. [PMID: 19628041 PMCID: PMC3290450 DOI: 10.1016/j.mcn.2009.07.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/24/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022] Open
Abstract
Rett syndrome (RTT) is an autism spectrum disorder that results from mutations in the transcriptional regulator methyl-CpG binding protein 2 (MECP2). In the present work, we demonstrate that MeCP2 deficiency disrupts the establishment of neural connections before synaptogenesis. Using both in vitro and in vivo approaches, we identify dynamic alterations in the expression of class 3 semaphorins that are accompanied by defects in axonal fasciculation, guidance, and targeting with MeCP2 deficiency. Olfactory axons from Mecp2 mutant mice display aberrant repulsion when co-cultured with mutant olfactory bulb explants. This defect is restored when mutant olfactory axons are co-cultured with wild type olfactory bulbs. Thus, a non-cell autonomous mechanism involving Semaphorin 3F function may underlie abnormalities in the establishment of connectivity with Mecp2 mutation. These findings have broad implications for the role of MECP2 in neurodevelopment and RTT, given the critical role of the semaphorins in the formation of neural circuits.
Collapse
Affiliation(s)
- Alicia L Degano
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
36
|
Imai T, Yamazaki T, Kobayakawa R, Kobayakawa K, Abe T, Suzuki M, Sakano H. Pre-target axon sorting establishes the neural map topography. Science 2009; 325:585-90. [PMID: 19589963 DOI: 10.1126/science.1173596] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sensory information detected by the peripheral nervous system is represented as a topographic map in the brain. It has long been thought that the topography of the map is determined by graded positional cues that are expressed by the target. Here, we analyzed the pre-target axon sorting for olfactory map formation in mice. In olfactory sensory neurons, an axon guidance receptor, Neuropilin-1, and its repulsive ligand, Semaphorin-3A, are expressed in a complementary manner. We found that expression levels of Neuropilin-1 determined both pre-target sorting and projection sites of axons. Olfactory sensory neuron-specific knockout of Semaphorin-3A perturbed axon sorting and altered the olfactory map topography. Thus, pre-target axon sorting plays an important role in establishing the topographic order based on the relative levels of guidance molecules expressed by axons.
Collapse
Affiliation(s)
- Takeshi Imai
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0032, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Zou DJ, Chesler A, Firestein S. How the olfactory bulb got its glomeruli: a just so story? Nat Rev Neurosci 2009; 10:611-8. [PMID: 19584894 DOI: 10.1038/nrn2666] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The nearly 2,000 glomeruli that cover the surface of the olfactory bulb are so distinctive that they were noted specifically in the earliest of Cajal's catalogues. They have variously been considered a functional unit, an organizational unit and a crucial component of the olfactory coding circuit. Despite their central position in olfactory processing, the development of the glomeruli has only recently begun to be investigated with new and powerful genetic tools. Some unexpected findings have been made that may lead to a new understanding of the processes involved in wiring sensory regions of the brain. It may no longer be sufficient to simply invoke genes, spikes and their interplay in the construction of brain circuits. The story of 'how the olfactory bulb got its glomeruli' may be more complex, and more revealing, than has been supposed.
Collapse
Affiliation(s)
- Dong-Jing Zou
- Department of Biological Sciences, Columbia University, 923 Fairchild Center M.C. 2438 New York, NY 10027, USA
| | | | | |
Collapse
|
38
|
Imai T, Sakano H. Odorant receptor-mediated signaling in the mouse. Curr Opin Neurobiol 2009; 18:251-60. [PMID: 18721880 DOI: 10.1016/j.conb.2008.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 07/16/2008] [Indexed: 11/17/2022]
Abstract
In the mouse olfactory system, there are approximately 1000 types of odorant receptors (ORs), which perform multiple functions in olfactory sensory neurons (OSNs). In addition to detecting odors, the functional OR protein ensures the singular gene choice of the OR by negative-feedback regulation. ORs also direct the axonal projection of OSNs both globally and locally by modulating the transcriptional levels of axon-guidance and axon-sorting molecules. In these latter processes, the second messenger, cAMP, plays differential roles in the fasciculation and targeting of axons. In this review, we will discuss how ORs differentially regulate intracellular signals for distinct functions.
Collapse
Affiliation(s)
- Takeshi Imai
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan.
| | | |
Collapse
|
39
|
Role of semaphorins during axon growth and guidance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 621:50-64. [PMID: 18269210 DOI: 10.1007/978-0-387-76715-4_4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
40
|
Axon Guidance Events in the Wiring of the Mammalian Olfactory System. Mol Neurobiol 2008; 39:1-9. [DOI: 10.1007/s12035-008-8047-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
|
41
|
Abstract
The anatomical organization of a neural system can offer a glimpse into its functional logic. The basic premise is that by understanding how something is put together one can figure out how it works. Unfortunately, organization is not always represented purely at an anatomical level and is sometimes best revealed through molecular or functional studies. The mammalian olfactory system exhibits organizational features at all these levels including 1) anatomically distinct structural layers in the olfactory bulb, 2) molecular maps based upon odorant receptor expression, and 3) functional local circuits giving rise to odor columns that provide a contextual logic for an intrabulbar map. In addition, various forms of cellular plasticity have been shown to play an integral role in shaping the structural properties of most neural systems and must be considered when assessing each system's anatomical organization. Interestingly, the olfactory system invokes an added level of complexity for understanding organization in that it regenerates both at the peripheral and the central levels. Thus, olfaction offers a rare opportunity to study both the structural and the functional properties of a regenerating sensory system in direct response to environmental stimuli. In this review, we discuss neural organization in the form of maps and explore the relationship between regeneration and plasticity.
Collapse
Affiliation(s)
- Diana M Cummings
- Developmental Neural Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3703, USA
| | | |
Collapse
|
42
|
Kaneko-Goto T, Yoshihara SI, Miyazaki H, Yoshihara Y. BIG-2 mediates olfactory axon convergence to target glomeruli. Neuron 2008; 57:834-46. [PMID: 18367085 DOI: 10.1016/j.neuron.2008.01.023] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 12/06/2007] [Accepted: 01/18/2008] [Indexed: 10/22/2022]
Abstract
Olfactory sensory neurons expressing a given odorant receptor converge axons onto a few topographically fixed glomeruli in the olfactory bulb, leading to establishment of the odor map. Here, we report that BIG-2/contactin-4, an axonal glycoprotein belonging to the immunoglobulin superfamily, is expressed in a subpopulation of mouse olfactory sensory neurons. A mosaic pattern of glomerular arrangement is observed with strongly BIG-2-positive, weakly positive, and negative axon terminals in the olfactory bulb, which is overlapping but not identical with those of Kirrel2 and ephrin-A5. There is a close correlation between the BIG-2 expression level and the odorant receptor choice in individual sensory neurons. In BIG-2-deficient mice, olfactory sensory neurons expressing a given odorant receptor frequently innervate multiple glomeruli at ectopic locations. These results suggest that BIG-2 is one of the axon guidance molecules crucial for the formation and maintenance of functional odor map in the olfactory bulb.
Collapse
Affiliation(s)
- Tomomi Kaneko-Goto
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
43
|
Abstract
The olfactory system represents a complex model for the investigation of factors that influence the guidance of sensory axon populations to specific targets in the CNS. In the mouse, the projections of approximately 1,000 neuronal subsets, each defined by expression of a distinct odorant receptor (OR), converge at unique glomerular loci in the olfactory bulb (OB). Unlike the case in other sensory systems, proper guidance is achieved without benefit of any known cues in the target itself that are capable of attracting or repelling specific axons. It has long been argued that OR proteins are the critical molecules orchestrating guidance. However, recent studies suggest that axon identity may be dependent on the graded expression of a variety of unique olfactory axon guidance cues. This review focuses attention on these non-OR factors and their roles in olfactory axon guidance.
Collapse
Affiliation(s)
- Gerald A Schwarting
- Shriver Center and Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | | |
Collapse
|
44
|
Scolnick JA, Cui K, Duggan CD, Xuan S, Yuan XB, Efstratiadis A, Ngai J. Role of IGF signaling in olfactory sensory map formation and axon guidance. Neuron 2008; 57:847-57. [PMID: 18367086 PMCID: PMC2364597 DOI: 10.1016/j.neuron.2008.01.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 09/25/2007] [Accepted: 01/14/2008] [Indexed: 01/16/2023]
Abstract
Olfactory neurons project their axons to spatially invariant glomeruli in the olfactory bulb, forming an ordered pattern of innervation comprising the olfactory sensory map. A mirror symmetry exists within this map, such that neurons expressing a given receptor typically project to one glomerulus on the medial face and one glomerulus on the lateral face of the bulb. The mechanisms underlying an olfactory neuron's choice to project medially versus laterally remain largely unknown, however. Here we demonstrate that insulin-like growth factor (IGF) signaling is required for sensory innervation of the lateral olfactory bulb. Mutations that eliminate IGF signaling cause axons destined for targets in the lateral bulb to shift to ectopic sites on the ventral-medial surface. Using primary cultures of olfactory and cerebellar neurons, we further show that IGF is a chemoattractant for axon growth cones. Together these observations reveal a role of IGF signaling in sensory map formation and axon guidance.
Collapse
Affiliation(s)
- Jonathan A Scolnick
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Functional Genomics Laboratory, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
The protocadherin-alpha family is involved in axonal coalescence of olfactory sensory neurons into glomeruli of the olfactory bulb in mouse. Mol Cell Neurosci 2008; 38:66-79. [PMID: 18353676 DOI: 10.1016/j.mcn.2008.01.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 01/04/2008] [Accepted: 01/25/2008] [Indexed: 11/20/2022] Open
Abstract
Olfactory sensory neurons (OSNs) that express the same odorant receptor project their axons to specific glomeruli in the main olfactory bulb. Protocadherin-alpha (Pcdha) proteins, diverse cadherin-related molecules that are encoded as a gene cluster, are highly concentrated in OSN axons and olfactory glomeruli. Here, we describe Pcdha mutant mice, in which the constant region of the Pcdha gene cluster has been deleted by gene targeting. The mutant mice show abnormal sorting of OSN axons into glomeruli. There are multiple, small, extraneous glomeruli for the odorant receptors M71 and MOR23. These abnormal patterns of M71 and MOR23 glomeruli persist until adulthood. Many M71 glomeruli, but apparently not MOR23 glomeruli, are heterogeneous in axonal innervation. Thus, Pcdha molecules are involved in coalescence of OSN axons into OR-specific glomeruli of the olfactory bulb.
Collapse
|
46
|
Imai T, Sakano H. Odorant receptor gene choice and axonal projection in the mouse olfactory system. Results Probl Cell Differ 2008; 47:57-75. [PMID: 19083127 DOI: 10.1007/400_2008_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the mouse olfactory system, each olfactory sensory neuron (OSN) expresses a single type of odorant receptor (OR) out of approximately 1,000 in a monoallelic manner. Furthermore, OSNs expressing the same OR converge their axons to a specific set of glomeruli on the olfactory bulb. These two basic principles are fundamental to the peripheral olfactory system, and are regulated by the expressed OR protein itself. Singular OR gene choice is ensured by the combination of stochastic enhancer-promoter interaction and negative-feedback regulation by OR proteins. In the axonal projection, OR-derived cyclic AMP signals and neuronal activity determine the expression levels of axon guidance/sorting molecules, and thereby direct glomerular positioning and axon sorting.
Collapse
Affiliation(s)
- T Imai
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | | |
Collapse
|
47
|
Abstract
Semaphorin proteins, although initially characterized as repulsive neuronal guidance cues, are now appreciated as major contributors to morphogenesis and homeostasis for a wide range of tissue types. Semaphorin-mediated long- and short-range repulsive, and attractive, guidance has profound influences on cellular morphology. The diversity of semaphorin receptor complexes utilized by various semaphorin ligands, the ability of semaphorins themselves to serve as receptors, and the myriad of intracellular signaling components that comprise semaphorin signaling cascades all contribute to cell-type-specific responses to semaphorins. Analysis of the molecular and cellular mechanisms underlying semaphorin function in neural and vascular systems provides insight into principles governing how this large protein family contributes to organogenesis, function, and disease.
Collapse
Affiliation(s)
- Tracy S Tran
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
48
|
Schwarting GA, Henion TR. Lactosamine differentially affects olfactory sensory neuron projections to the olfactory bulb. Dev Neurobiol 2007; 67:1627-40. [PMID: 17567839 DOI: 10.1002/dneu.20536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During embryonic development, olfactory sensory neurons extend axons that form synapses with the dendrites of projection neurons in glomeruli of the olfactory bulb (OB). The glycosyltransferase beta3GnT1 regulates the expression of 1B2-reactive lactosamine glycans that are mosaically distributed among glomeruli. In newborn beta3GnT1-/- mice, lactosamine expression is lost, and many glomeruli fail to form. To determine the role of lactosamine in OB targeting, we analyzed the trajectories of specific OR axon populations and their reactivity with 1B2 in beta3GnT1-/- mice. mI7 axons and P2 axons, both of which are weakly 1B2+ in wild-type mice, fail to grow to their normal positions in the glomerular layer during early postnatal development and never recover in adult mutant mice. In contrast, many M72 axons, which are always lactosamine negative in wild-type mice, survive but are misguided to the extreme anterior OB in neonatal mutant mice and persist as heterotypic glomeruli, even in adult null mice. These results show that the loss of lactosamine differentially affects each OR population. Those that lose their normal expression of lactosamine fail to form stable connections with mitral and tufted cells in the OB, disappear during early postnatal development, and do not recover in adults. Neurons that are normally lactosamine negative, survive early postnatal degeneration in beta3GnT1-/- mice but extend axons that converge on inappropriate targets in the mutant OB.
Collapse
|
49
|
Imai T, Sakano H. Roles of odorant receptors in projecting axons in the mouse olfactory system. Curr Opin Neurobiol 2007; 17:507-15. [PMID: 17935969 DOI: 10.1016/j.conb.2007.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/06/2007] [Accepted: 08/24/2007] [Indexed: 01/18/2023]
Abstract
In the mouse olfactory epithelium, there are about ten million olfactory sensory neurons, each expressing a single type of odorant receptor out of approximately 1000. Olfactory sensory neurons expressing the same odorant receptor converge their axons to a specific set of glomeruli on the olfactory bulb. How odorant receptors play an instructive role in the projection of axons to the olfactory bulb has been one of the major issues of developmental neurobiology. Recent studies revealed previously overlooked roles of odorant receptor-derived cAMP signals in the axonal projection of olfactory sensory neurons; the levels of cAMP and neuronal activity appear to determine the expression levels of axon guidance/sorting molecules and thereby direct the axonal projection of olfactory sensory neurons. These findings provide new insights as to how peripheral inputs instruct neuronal circuit formation in the mammalian brain.
Collapse
Affiliation(s)
- Takeshi Imai
- Department of Biophysics and Biochemistry, Graduate school of Science, The University of Tokyo, Tokyo 113-0032, Japan.
| | | |
Collapse
|
50
|
Franssen EHP, de Bree FM, Verhaagen J. Olfactory ensheathing glia: Their contribution to primary olfactory nervous system regeneration and their regenerative potential following transplantation into the injured spinal cord. ACTA ACUST UNITED AC 2007; 56:236-58. [PMID: 17884174 DOI: 10.1016/j.brainresrev.2007.07.013] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 07/25/2007] [Accepted: 07/30/2007] [Indexed: 11/26/2022]
Abstract
Olfactory ensheathing glia (OEG) are a specialized type of glia that guide primary olfactory axons from the neuroepithelium in the nasal cavity to the brain. The primary olfactory system is able to regenerate after a lesion and OEG contribute to this process by providing a growth-supportive environment for newly formed axons. In the spinal cord, axons are not able to restore connections after an injury. The effects of OEG transplants on the regeneration of the injured spinal cord have been studied for over a decade. To date, of all the studies using only OEG as a transplant, 41 showed positive effects, while 13 studies showed limited or no effects. There are several contradictory reports on the migratory and axon growth-supporting properties of transplanted OEG. Hence, the regenerative potential of OEG has become the subject of intense discussion. In this review, we first provide an overview of the molecular and cellular characteristics of OEG in their natural environment, the primary olfactory nervous system. Second, their potential to stimulate regeneration in the injured spinal cord is discussed. OEG influence scar formation by their ability to interact with astrocytes, they are able to remyelinate axons and promote angiogenesis. The ability of OEG to interact with scar tissue cells is an important difference with Schwann cells and may be a unique characteristic of OEG. Because of these effects after transplantation and because of their role in primary olfactory system regeneration, the OEG can be considered as a source of neuroregeneration-promoting molecules. To identify these molecules, more insight into the molecular biology of OEG is required. We believe that genome-wide gene expression studies of OEG in their native environment, in culture and after transplantation will ultimately reveal unique combinations of molecules involved in the regeneration-promoting potential of OEG.
Collapse
Affiliation(s)
- Elske H P Franssen
- Netherlands Insitute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | | | | |
Collapse
|