1
|
Park HY. Development of color learning protocol based on music-color association for people with visual impairment. Ann Med 2025; 57:2476728. [PMID: 40059778 PMCID: PMC11894748 DOI: 10.1080/07853890.2025.2476728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 01/16/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND This research developed and confirmed the feasibility of a color-learning mobile application for people with visual impairment based on the hypothesis that the music-color association may be synaesthetically induced through emotion. METHODS In total, 120 participants with visual impairment, comprising 60 congenital and 60 adventitious cases, were recruited. They underwent sequential procedures: Procedure 1 involved selecting color-music associations and designing tasks; Procedure 2 focused on application development with accessibility features; and Procedure 3 verified usability and effectiveness. RESULTS Significant improvements were observed in hue, luminance, and saturation scores following the use of the music-color association application among participants with both congenital and adventitious visual impairment. The effectiveness of the application in facilitating color learning is evident, suggesting its potential utility in enhancing color perception in this population. CONCLUSIONS This research introduces a novel framework for color learning among visually impaired individuals using a music-based synesthetic approach. The developed mobile application offers a promising avenue for efficiently improving color perception and learning, thereby addressing the critical need for accessibility and education for this population. Further research should explore the long-term effects and broader applications of synesthetic-induced learning in diverse contexts.
Collapse
Affiliation(s)
- Hye Young Park
- Music Therapy Major, Graduate School of Church Music, Kosin University, Busan, South Korea
| |
Collapse
|
2
|
Matuszewski J, Bola Ł, Collignon O, Marchewka A. Similar Computational Hierarchies for Reading and Speech in the Occipital Cortex of Sighed and Blind: Converging Evidence from fMRI and Chronometric TMS. J Neurosci 2025; 45:e1153242024. [PMID: 40032525 PMCID: PMC12079739 DOI: 10.1523/jneurosci.1153-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 03/05/2025] Open
Abstract
High-level perception results from interactions between hierarchical brain systems responsive to gradually increasing feature complexities. During reading, the initial evaluation of simple visual features in the early visual cortex (EVC) is followed by orthographic and lexical computations in the ventral occipitotemporal cortex (vOTC). While similar visual regions are engaged in tactile Braille reading in congenitally blind people, it is unclear whether the visual network maintains or reorganizes its hierarchy for reading in this population. Combining fMRI and chronometric transcranial magnetic stimulation (TMS), our study revealed a clear correspondence between sighted and blind individuals (both male and female) on how their occipital cortices functionally supports reading and speech processing. Using fMRI, we first observed that vOTC, but not EVC, showed an enhanced response to lexical vs nonlexical information in both groups and sensory modalities. Using TMS, we further found that, in both groups, the processing of written words and pseudowords was disrupted by the EVC stimulation at both early and late time windows. In contrast, the vOTC stimulation disrupted the processing of these written stimuli only when applied at late time windows, again in both groups. In the speech domain, we observed TMS effects only for meaningful words and only in the blind participants. Overall, our results suggest that, while the responses in the deprived visual areas might extend their functional response to other sensory modalities, the computational gradients between early and higher-order occipital regions are retained, at least for reading.
Collapse
Affiliation(s)
- Jacek Matuszewski
- Crossmodal Perception and Plasticity Lab, Institute of Research in Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Łukasz Bola
- Institute of Psychology, Polish Academy of Sciences, Warsaw 00-378, Poland
| | - Olivier Collignon
- Crossmodal Perception and Plasticity Lab, Institute of Research in Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
- School of Health Sciences, HES-SO Valais-Wallis, The Sense Innovation and Research Center, Lausanne 1011, Switzerland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| |
Collapse
|
3
|
Scheller M, Proulx MJ, de Haan M, Dahlmann-Noor A, Petrini K. Visual experience affects neural correlates of audio-haptic integration: A case study of non-sighted individuals. PROGRESS IN BRAIN RESEARCH 2025; 292:25-70. [PMID: 40409923 DOI: 10.1016/bs.pbr.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
The ability to reduce sensory uncertainty by integrating information across different senses develops late in humans and depends on cross-modal, sensory experience during childhood and adolescence. While the dependence of audio-haptic integration on vision suggests cross-modal neural reorganization, evidence for such changes is lacking. Furthermore, little is known about the neural processes underlying audio-haptic integration even in sighted adults. Here, we examined electrophysiological correlates of audio-haptic integration in sighted adults (n = 29), non-sighted adults (n = 7), and sighted adolescents (n = 12) using a data-driven electrical neuroimaging approach. In sighted adults, optimal integration performance was predicted by topographical and super-additive strength modulations around 205-285 ms. Data from four individuals who went blind before the age of 8-9 years suggests that they achieved optimal integration via different, sub-additive mechanisms at earlier processing stages. Sighted adolescents showed no robust multisensory modulations. Late-blind adults, who did not show behavioral benefits of integration, demonstrated modulations at early latencies. Our findings suggest a critical period for the development of optimal audio-haptic integration dependent on visual experience around the late childhood and early adolescence.
Collapse
Affiliation(s)
- Meike Scheller
- Department of Psychology, University of Bath, Bath, United Kingdom; Department of Psychology, Durham University, Durham, United Kingdom.
| | - Michael J Proulx
- Department of Psychology, University of Bath, Bath, United Kingdom; The Centre for the Analysis of Motion, Entertainment Research and Applications (CAMERA), Bath, United Kingdom; Bath Institute for the Augmented Human (IAH), Bath, United Kingdom
| | - Michelle de Haan
- Developmental Neurosciences Programme, University College London, London, United Kingdom
| | - Annegret Dahlmann-Noor
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom; Paediatric Service, Moorfields Eye Hospital, London, United Kingdom
| | - Karin Petrini
- Department of Psychology, University of Bath, Bath, United Kingdom; The Centre for the Analysis of Motion, Entertainment Research and Applications (CAMERA), Bath, United Kingdom; Bath Institute for the Augmented Human (IAH), Bath, United Kingdom
| |
Collapse
|
4
|
Cooney SM, Holmes CA, Cappagli G, Cocchi E, Gori M, Newell FN. Susceptibility to spatial illusions does not depend on visual experience: Evidence from sighted and blind children. Q J Exp Psychol (Hove) 2025:17470218251336082. [PMID: 40205750 DOI: 10.1177/17470218251336082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Visuospatial illusions may be a by-product of learned regularities in the environment or they may reflect the recruitment of sensory mechanisms that, in some contexts, provide an erroneous spatial estimate. Young children experience visual illusions, and blind adults are susceptible using touch alone, suggesting that the perceptual inferences influencing illusions are amodal and rapidly acquired. However, other evidence, such as visual illusions in the newly sighted, points to the involvement of innate mechanisms. To help tease apart cognitive from sensory influences, we investigated susceptibility to the Ebbinghaus, Müller-Lyer and Vertical-Horizontal illusions in children aged 6-14 years following visual-only, haptic-only and bimodal exploration. Consistent with previous findings, children of all ages were susceptible to all three visual illusions. In addition, illusions of extent but not of size were experienced using haptics alone. We then tested 17 congenitally blind children to investigate whether illusions were mediated by vision. Similar to their sighted counterparts, blind children were also susceptible to illusions following haptic exploration suggesting that early visual experience is not necessary for spatial illusions to be perceived. Reduced susceptibility in older children to some illusions further implies that explicit or formal knowledge of spatial relations is unlikely to mediate these experiences. Instead, the results are consistent with previous evidence for cross-modal interactions in 'visual' brain regions and point to the possibility that illusions may be driven by innate developmental processes that are not entirely dependent on, although are refined by, visual experience.
Collapse
Affiliation(s)
- Sarah M Cooney
- Institute of Neuroscience and School of Psychology, Trinity College Dublin, Ireland
- School of Psychology, University College Dublin, Dublin, Ireland
| | - Corinne A Holmes
- Institute of Neuroscience and School of Psychology, Trinity College Dublin, Ireland
| | - Giulia Cappagli
- U-VIP: Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| | - Elena Cocchi
- Istituto David Chiossone per Ciechi ed Ipovedenti ONLUS, Genova, Italy
| | - Monica Gori
- U-VIP: Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| | - Fiona N Newell
- Institute of Neuroscience and School of Psychology, Trinity College Dublin, Ireland
- Department of Psychology, New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
5
|
Arshavsky YI. Multifunctionality of human linguistic neurons (circuits and single neurons). J Neurophysiol 2025; 133:1-2. [PMID: 39589814 DOI: 10.1152/jn.00543.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Affiliation(s)
- Yuri I Arshavsky
- BioCircuits Institute, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
6
|
Haupt M, Graumann M, Teng S, Kaltenbach C, Cichy R. The transformation of sensory to perceptual braille letter representations in the visually deprived brain. eLife 2024; 13:RP98148. [PMID: 39630852 PMCID: PMC11616995 DOI: 10.7554/elife.98148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Experience-based plasticity of the human cortex mediates the influence of individual experience on cognition and behavior. The complete loss of a sensory modality is among the most extreme such experiences. Investigating such a selective, yet extreme change in experience allows for the characterization of experience-based plasticity at its boundaries. Here, we investigated information processing in individuals who lost vision at birth or early in life by probing the processing of braille letter information. We characterized the transformation of braille letter information from sensory representations depending on the reading hand to perceptual representations that are independent of the reading hand. Using a multivariate analysis framework in combination with functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and behavioral assessment, we tracked cortical braille representations in space and time, and probed their behavioral relevance. We located sensory representations in tactile processing areas and perceptual representations in sighted reading areas, with the lateral occipital complex as a connecting 'hinge' region. This elucidates the plasticity of the visually deprived brain in terms of information processing. Regarding information processing in time, we found that sensory representations emerge before perceptual representations. This indicates that even extreme cases of brain plasticity adhere to a common temporal scheme in the progression from sensory to perceptual transformations. Ascertaining behavioral relevance through perceived similarity ratings, we found that perceptual representations in sighted reading areas, but not sensory representations in tactile processing areas are suitably formatted to guide behavior. Together, our results reveal a nuanced picture of both the potentials and limits of experience-dependent plasticity in the visually deprived brain.
Collapse
Affiliation(s)
- Marleen Haupt
- Department of Education and Psychology, Freie Universität BerlinBerlinGermany
| | - Monika Graumann
- Department of Education and Psychology, Freie Universität BerlinBerlinGermany
- Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu BerlinBerlinGermany
| | - Santani Teng
- Smith-Kettlewell Eye Research InstituteSan FranciscoUnited States
| | - Carina Kaltenbach
- Department of Education and Psychology, Freie Universität BerlinBerlinGermany
| | - Radoslaw Cichy
- Department of Education and Psychology, Freie Universität BerlinBerlinGermany
- Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu BerlinBerlinGermany
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
| |
Collapse
|
7
|
Riyahi P, Phillips MA, Boley N, Colonnese MT. Experience Dependence of Alpha Rhythms and Neural Dynamics in the Mouse Visual Cortex. J Neurosci 2024; 44:e2011222024. [PMID: 39151954 PMCID: PMC11411595 DOI: 10.1523/jneurosci.2011-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/13/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
The role of experience in the development and maintenance of emergent network properties such as cortical oscillations and states is poorly understood. To define how early-life experience affects cortical dynamics in the visual cortex of adult, head-fixed mice, we examined the effects of two forms of blindness initiated before eye opening and continuing through recording: (1) bilateral loss of retinal input (enucleation) and (2) degradation of visual input (eyelid suture). Neither form of deprivation fundamentally altered the state-dependent regulation of firing rates or local field potentials. However, each deprivation caused unique changes in network behavior. Laminar analysis revealed two different generative mechanisms for low-frequency synchronization: one prevalent during movement and the other during quiet wakefulness. The former was absent in enucleated mice, suggesting a mouse homolog of human alpha oscillations. In addition, neurons in enucleated animals were less correlated and fired more regularly, but no change in mean firing rate. Eyelid suture decreased firing rates during quiet wakefulness, but not during movement, with no effect on neural correlations or regularity. Sutured animals showed a broadband increase in depth EEG power and an increased occurrence, but reduced central frequency, of narrowband gamma oscillations. The complementary-rather than additive-effects of lid suture and enucleation suggest that the development of emergent network properties does not require vision but is plastic to modified input. Our results suggest a complex interaction of internal set points and experience determines mature cortical activity, with low-frequency synchronization being particularly susceptible to early deprivation.
Collapse
Affiliation(s)
- Pouria Riyahi
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia 20052
- Department of Biomedical Engineering, The George Washington University School of Medicine, Washington, District of Columbia 20052
| | - Marnie A Phillips
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia 20052
| | - Nathaniel Boley
- Institute for Biomedical Sciences, The George Washington University School of Medicine, Washington, District of Columbia 20052
| | - Matthew T Colonnese
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia 20052
| |
Collapse
|
8
|
Ahulló-Fuster MA, Sánchez-Sánchez ML, Varela-Donoso E, Ortiz T. Early attentional processing and cortical remapping strategies of tactile stimuli in adults with an early and late-onset visual impairment: A cross-sectional study. PLoS One 2024; 19:e0306478. [PMID: 38980866 PMCID: PMC11232978 DOI: 10.1371/journal.pone.0306478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
Neuroplastic changes appear in people with visual impairment (VI) and they show greater tactile abilities. Improvements in performance could be associated with the development of enhanced early attentional processes based on neuroplasticity. Currently, the various early attentional and cortical remapping strategies that are utilized by people with early (EB) and late-onset blindness (LB) remain unclear. Thus, more research is required to develop effective rehabilitation programs and substitution devices. Our objective was to explore the differences in spatial tactile brain processing in adults with EB, LB and a sighted control group (CG). In this cross-sectional study 27 participants with VI were categorized into EB (n = 14) and LB (n = 13) groups. They were then compared with a CG (n = 15). A vibrotactile device and event-related potentials (ERPs) were utilized while participants performed a spatial tactile line recognition task. The P100 latency and cortical areas of maximal activity were analyzed during the task. The three groups had no statistical differences in P100 latency (p>0.05). All subjects showed significant activation in the right superior frontal areas. Only individuals with VI activated the left superior frontal regions. In EB subjects, a higher activation was found in the mid-frontal and occipital areas. A higher activation of the mid-frontal, anterior cingulate cortex and orbitofrontal zones was observed in LB participants. Compared to the CG, LB individuals showed greater activity in the left orbitofrontal zone, while EB exhibited greater activity in the right superior parietal cortex. The EB had greater activity in the left orbitofrontal region compared to the LB. People with VI may not have faster early attentional processing. EB subjects activate the occipital lobe and right superior parietal cortex during tactile stimulation because of an early lack of visual stimuli and a multimodal information processing. In individuals with LB and EB the orbitofrontal area is activated, suggesting greater emotional processing.
Collapse
Affiliation(s)
- Mónica-Alba Ahulló-Fuster
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, Complutense University of Madrid, Madrid, Spain
| | - M. Luz Sánchez-Sánchez
- Physiotherapy in Motion, Multispeciality Research Group (PTinMOTION), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Enrique Varela-Donoso
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, Complutense University of Madrid, Madrid, Spain
| | - Tomás Ortiz
- Department of Legal Medicine, Psychiatry and Pathology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
9
|
Stout JA, Mahzarnia A, Dai R, Anderson RJ, Cousins S, Zhuang J, Lad EM, Whitaker DB, Madden DJ, Potter GG, Whitson HE, Badea A. Accelerated Brain Atrophy, Microstructural Decline and Connectopathy in Age-Related Macular Degeneration. Biomedicines 2024; 12:147. [PMID: 38255252 PMCID: PMC10813528 DOI: 10.3390/biomedicines12010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Age-related macular degeneration (AMD) has recently been linked to cognitive impairment. We hypothesized that AMD modifies the brain aging trajectory, and we conducted a longitudinal diffusion MRI study on 40 participants (20 with AMD and 20 controls) to reveal the location, extent, and dynamics of AMD-related brain changes. Voxel-based analyses at the first visit identified reduced volume in AMD participants in the cuneate gyrus, associated with vision, and the temporal and bilateral cingulate gyrus, linked to higher cognition and memory. The second visit occurred 2 years after the first and revealed that AMD participants had reduced cingulate and superior frontal gyrus volumes, as well as lower fractional anisotropy (FA) for the bilateral occipital lobe, including the visual and the superior frontal cortex. We detected faster rates of volume and FA reduction in AMD participants in the left temporal cortex. We identified inter-lingual and lingual-cerebellar connections as important differentiators in AMD participants. Bundle analyses revealed that the lingual gyrus had a lower streamline length in the AMD participants at the first visit, indicating a connection between retinal and brain health. FA differences in select inter-lingual and lingual cerebellar bundles at the second visit showed downstream effects of vision loss. Our analyses revealed widespread changes in AMD participants, beyond brain networks directly involved in vision processing.
Collapse
Affiliation(s)
- Jacques A. Stout
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA; (J.A.S.); (J.Z.); (D.J.M.)
| | - Ali Mahzarnia
- Radiology Department, Duke University Medical Center, Durham, NC 27710, USA; (A.M.); (R.D.); (R.J.A.)
| | - Rui Dai
- Radiology Department, Duke University Medical Center, Durham, NC 27710, USA; (A.M.); (R.D.); (R.J.A.)
| | - Robert J. Anderson
- Radiology Department, Duke University Medical Center, Durham, NC 27710, USA; (A.M.); (R.D.); (R.J.A.)
| | - Scott Cousins
- Ophthalmology Department, Duke University Medical Center, Durham, NC 27710, USA; (S.C.); (E.M.L.); (D.B.W.); (H.E.W.)
| | - Jie Zhuang
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA; (J.A.S.); (J.Z.); (D.J.M.)
| | - Eleonora M. Lad
- Ophthalmology Department, Duke University Medical Center, Durham, NC 27710, USA; (S.C.); (E.M.L.); (D.B.W.); (H.E.W.)
| | - Diane B. Whitaker
- Ophthalmology Department, Duke University Medical Center, Durham, NC 27710, USA; (S.C.); (E.M.L.); (D.B.W.); (H.E.W.)
| | - David J. Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA; (J.A.S.); (J.Z.); (D.J.M.)
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA;
| | - Guy G. Potter
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA;
| | - Heather E. Whitson
- Ophthalmology Department, Duke University Medical Center, Durham, NC 27710, USA; (S.C.); (E.M.L.); (D.B.W.); (H.E.W.)
- Department of Medicine, Duke University Medical School, Durham, NC 27710, USA
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Alexandra Badea
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA; (J.A.S.); (J.Z.); (D.J.M.)
- Radiology Department, Duke University Medical Center, Durham, NC 27710, USA; (A.M.); (R.D.); (R.J.A.)
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
10
|
Kang J, Bertani R, Raheel K, Soteriou M, Rosenzweig J, Valentin A, Goadsby PJ, Tahmasian M, Moran R, Ilic K, Ockelford A, Rosenzweig I. Mental Imagery in Dreams of Congenitally Blind People. Brain Sci 2023; 13:1394. [PMID: 37891763 PMCID: PMC10605848 DOI: 10.3390/brainsci13101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
It is unclear to what extent the absence of vision affects the sensory sensitivity for oneiric construction. Similarly, the presence of visual imagery in the mentation of dreams of congenitally blind people has been largely disputed. We investigate the presence and nature of oneiric visuo-spatial impressions by analysing 180 dreams of seven congenitally blind people identified from the online database DreamBank. A higher presence of auditory, haptic, olfactory, and gustatory sensation in dreams of congenitally blind people was demonstrated, when compared to normally sighted individuals. Nonetheless, oneiric visual imagery in reports of congenitally blind subjects was also noted, in opposition to some previous studies, and raising questions about the possible underlying neuro-mechanisms.
Collapse
Affiliation(s)
- Jungwoo Kang
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London WC2R 2LS, UK
| | - Rita Bertani
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London WC2R 2LS, UK
| | - Kausar Raheel
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London WC2R 2LS, UK
| | - Matthew Soteriou
- Department of Philosophy, King’s College London, London WC2R 2LS, UK
| | - Jan Rosenzweig
- Department of Engineering, King’s College London, London WC2R 2LS, UK
| | - Antonio Valentin
- Basic and Clinical Neuroscience, IoPPN, King’s College London, London WC2R 2LS, UK
| | - Peter J. Goadsby
- NIHR-Wellcome Trust King’s Clinical Research Facility, King’s College London, London WC2R 2LS, UK
| | - Masoud Tahmasian
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428 Jülich, Germany
| | - Rosalyn Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London WC2R 2LS, UK
| | - Katarina Ilic
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London WC2R 2LS, UK
- BRAIN, Department of Neuroimaging, King’s College London, London WC2R 2LS, UK
| | - Adam Ockelford
- Centre for Learning, Teaching and Human Development, School of Education, University of Roehampton, London SW15 5PJ, UK
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London WC2R 2LS, UK
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 1UL, UK
| |
Collapse
|
11
|
Beck J, Dzięgiel-Fivet G, Jednoróg K. Similarities and differences in the neural correlates of letter and speech sound integration in blind and sighted readers. Neuroimage 2023; 278:120296. [PMID: 37495199 DOI: 10.1016/j.neuroimage.2023.120296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023] Open
Abstract
Learning letter and speech sound (LS) associations is a major step in reading acquisition common for all alphabetic scripts, including Braille used by blind readers. The left superior temporal cortex (STC) plays an important role in audiovisual LS integration in sighted people, but it is still unknown what neural mechanisms are responsible for audiotactile LS integration in blind individuals. Here, we investigated the similarities and differences between LS integration in blind Braille (N = 42, age range: 9-60 y.o.) and sighted print (N = 47, age range: 9-60 y.o.) readers who acquired reading using different sensory modalities. In both groups, the STC responded to both isolated letters and isolated speech sounds, showed enhanced activation when they were presented together, and distinguished between congruent and incongruent letter and speech sound pairs. However, the direction of the congruency effect was different between the groups. Sighted subjects showed higher activity for incongruent LS pairs in the bilateral STC, similarly to previously studied typical readers of transparent orthographies. In the blind, congruent pairs resulted in an increased response in the right STC. These differences may be related to more sequential processing of Braille as compared to print reading. At the same time, behavioral efficiency in LS discrimination decisions and the congruency effect were found to be related to age and reading skill only in sighted participants, suggesting potential differences in the developmental trajectories of LS integration between blind and sighted readers.
Collapse
Affiliation(s)
- Joanna Beck
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw 02-093, Poland.
| | - Gabriela Dzięgiel-Fivet
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw 02-093, Poland
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw 02-093, Poland.
| |
Collapse
|
12
|
Seydell-Greenwald A, Wang X, Newport EL, Bi Y, Striem-Amit E. Spoken language processing activates the primary visual cortex. PLoS One 2023; 18:e0289671. [PMID: 37566582 PMCID: PMC10420367 DOI: 10.1371/journal.pone.0289671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Primary visual cortex (V1) is generally thought of as a low-level sensory area that primarily processes basic visual features. Although there is evidence for multisensory effects on its activity, these are typically found for the processing of simple sounds and their properties, for example spatially or temporally-congruent simple sounds. However, in congenitally blind individuals, V1 is involved in language processing, with no evidence of major changes in anatomical connectivity that could explain this seemingly drastic functional change. This is at odds with current accounts of neural plasticity, which emphasize the role of connectivity and conserved function in determining a neural tissue's role even after atypical early experiences. To reconcile what appears to be unprecedented functional reorganization with known accounts of plasticity limitations, we tested whether V1's multisensory roles include responses to spoken language in sighted individuals. Using fMRI, we found that V1 in normally sighted individuals was indeed activated by comprehensible spoken sentences as compared to an incomprehensible reversed speech control condition, and more strongly so in the left compared to the right hemisphere. Activation in V1 for language was also significant and comparable for abstract and concrete words, suggesting it was not driven by visual imagery. Last, this activation did not stem from increased attention to the auditory onset of words, nor was it correlated with attentional arousal ratings, making general attention accounts an unlikely explanation. Together these findings suggest that V1 responds to spoken language even in sighted individuals, reflecting the binding of multisensory high-level signals, potentially to predict visual input. This capability might be the basis for the strong V1 language activation observed in people born blind, re-affirming the notion that plasticity is guided by pre-existing connectivity and abilities in the typically developed brain.
Collapse
Affiliation(s)
- Anna Seydell-Greenwald
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States of America
| | - Xiaoying Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Elissa L. Newport
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ella Striem-Amit
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
13
|
Ilic K, Bertani R, Lapteva N, Drakatos P, Delogu A, Raheel K, Soteriou M, Mutti C, Steier J, Carmichael DW, Goadsby PJ, Ockelford A, Rosenzweig I. Visuo-spatial imagery in dreams of congenitally and early blind: a systematic review. Front Integr Neurosci 2023; 17:1204129. [PMID: 37457556 PMCID: PMC10347682 DOI: 10.3389/fnint.2023.1204129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Background The presence of visual imagery in dreams of congenitally blind people has long been a matter of substantial controversy. We set to systematically review body of published work on the presence and nature of oneiric visuo-spatial impressions in congenitally and early blind subjects across different areas of research, from experimental psychology, functional neuroimaging, sensory substitution, and sleep research. Methods Relevant studies were identified using the following databases: EMBASE, MEDLINE and PsychINFO. Results Studies using diverse imaging techniques and sensory substitution devices broadly suggest that the "blind" occipital cortex may be able to integrate non-visual sensory inputs, and thus possibly also generate visuo-spatial impressions. Visual impressions have also been reported by blind subjects who had near-death or out-of-body experiences. Conclusion Deciphering the mechanistic nature of these visual impression could open new possibility in utilization of neuroplasticity and its potential role for treatment of neurodisability.
Collapse
Affiliation(s)
- Katarina Ilic
- Department of Neuroimaging, Sleep and Brain Plasticity Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- BRAIN, Imaging Centre, CNS, King’s College London, London, United Kingdom
| | - Rita Bertani
- Department of Neuroimaging, Sleep and Brain Plasticity Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Neda Lapteva
- Department of Neuroimaging, Sleep and Brain Plasticity Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Panagis Drakatos
- Department of Neuroimaging, Sleep and Brain Plasticity Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Kausar Raheel
- Department of Neuroimaging, Sleep and Brain Plasticity Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Matthew Soteriou
- Department of Philosophy, King’s College London, London, United Kingdom
| | - Carlotta Mutti
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
| | - Joerg Steier
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - David W. Carmichael
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Peter J. Goadsby
- NIHR-Wellcome Trust King’s Clinical Research Facility, King’s College London, London, United Kingdom
| | - Adam Ockelford
- Centre for Learning, Teaching and Human Development, School of Education, University of Roehampton, London, United Kingdom
| | - Ivana Rosenzweig
- Department of Neuroimaging, Sleep and Brain Plasticity Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
14
|
Leo F, Gori M, Sciutti A. Early blindness modulates haptic object recognition. Front Hum Neurosci 2022; 16:941593. [PMID: 36158621 PMCID: PMC9498977 DOI: 10.3389/fnhum.2022.941593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Haptic object recognition is usually an efficient process although slower and less accurate than its visual counterpart. The early loss of vision imposes a greater reliance on haptic perception for recognition compared to the sighted. Therefore, we may expect that congenitally blind persons could recognize objects through touch more quickly and accurately than late blind or sighted people. However, the literature provided mixed results. Furthermore, most of the studies on haptic object recognition focused on performance, devoting little attention to the exploration procedures that conducted to that performance. In this study, we used iCube, an instrumented cube recording its orientation in space as well as the location of the points of contact on its faces. Three groups of congenitally blind, late blind and age and gender-matched blindfolded sighted participants were asked to explore the cube faces where little pins were positioned in varying number. Participants were required to explore the cube twice, reporting whether the cube was the same or it differed in pins disposition. Results showed that recognition accuracy was not modulated by the level of visual ability. However, congenitally blind touched more cells simultaneously while exploring the faces and changed more the pattern of touched cells from one recording sample to the next than late blind and sighted. Furthermore, the number of simultaneously touched cells negatively correlated with exploration duration. These findings indicate that early blindness shapes haptic exploration of objects that can be held in hands.
Collapse
Affiliation(s)
- Fabrizio Leo
- Cognitive Architecture for Collaborative Technologies Unit, Istituto Italiano di Tecnologia, Genova, Italy
- *Correspondence: Fabrizio Leo,
| | - Monica Gori
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessandra Sciutti
- Cognitive Architecture for Collaborative Technologies Unit, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
15
|
Functional cortical associations and their intraclass correlations and heritability as revealed by the fMRI Human Connectome Project. Exp Brain Res 2022; 240:1459-1469. [PMID: 35292842 DOI: 10.1007/s00221-022-06346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/04/2022] [Indexed: 11/04/2022]
Abstract
We report on the functional connectivity (FC), its intraclass correlation (ICC), and heritability among 70 areas of the human cerebral cortex. FC was estimated as the Pearson correlation between averaged prewhitened Blood Oxygenation Level-Dependent time series of cortical areas in 988 young adult participants in the Human Connectome Project. Pairs of areas were assigned to three groups, namely homotopic (same area in the two hemispheres), ipsilateral (both areas in the same hemisphere), and heterotopic (nonhomotopic areas in different hemispheres). ICC for each pair of areas was computed for six genetic groups, namely monozygotic (MZ) twins, dizygotic (DZ) twins, singleton siblings of MZ twins (MZsb), singleton siblings of DZ twins (DZsb), non-twin siblings (SB), and unrelated individuals (UNR). With respect to FC, we found the following. (a) Homotopic FC was stronger than ipsilateral and heterotopic FC; (b) average FCs of left and right cortical areas were highly and positively correlated; and (c) FC varied in a systematic fashion along the anterior-posterior and inferior-superior dimensions, such that it increased from anterior to posterior and from inferior to superior. With respect to ICC, we found the following. (a) Homotopic ICC was significantly higher than ipsilateral and heterotopic ICC, but the latter two did not differ significantly from each other; (b) ICC was highest for MZ twins; (c) ICC of DZ twins was significantly lower than that of the MZ twins and higher than that of the three sibling groups (MZsb, DZsb, SB); and (d) ICC was close to zero for UNR. Finally, with respect to heritability, it was highest for homotopic areas, followed by ipsilateral, and heterotopic; however, it did not differ statistically significantly from each other.
Collapse
|
16
|
Narcisse D, Mustafi SM, Carlson M, Kim S, Batabyal S, Wright W, Mohanty SK. Monitoring Visual Cortical Activities During Progressive Retinal Degeneration Using Functional Bioluminescence Imaging. Front Neurosci 2021; 15:750684. [PMID: 34690687 PMCID: PMC8530108 DOI: 10.3389/fnins.2021.750684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Mouse models of inherited retinal degenerative diseases such as retinitis pigmentosa are characterized by degeneration of photoreceptors, which hinders the generation of signal to be transmitted to the visual cortex. By monitoring Ca2+-bioluminescence neural activity, we quantified changes in visual cortical activities in response to visual stimuli in RD10 mice during progression of retinal degeneration, which correlated with progressive deteriorations of electro-retinography signal from the eyes. The number of active neurons in the visual cortex, the intensity of Ca2+-bioluminescence response, and neural activation parameter showed progressive deterioration during aging. Further, we correlated the thinning of retina as measured by Optical Coherence Tomography with the decrease in visual cortical activities as retinal degeneration progressed. The present study establishes Ca2+-bioluminescence monitoring as a longitudinal imaging modality to characterize activities in visual cortex of retinal degenerative disease models and therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Sanghoon Kim
- Nanoscope Technologies LLC, Bedford, TX, United States
| | | | - Weldon Wright
- Nanoscope Technologies LLC, Bedford, TX, United States
| | | |
Collapse
|
17
|
Thaler L, Norman LJ. No effect of 10-week training in click-based echolocation on auditory localization in people who are blind. Exp Brain Res 2021; 239:3625-3633. [PMID: 34609546 PMCID: PMC8599323 DOI: 10.1007/s00221-021-06230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022]
Abstract
What factors are important in the calibration of mental representations of auditory space? A substantial body of research investigating the audiospatial abilities of people who are blind has shown that visual experience might be an important factor for accurate performance in some audiospatial tasks. Yet, it has also been shown that long-term experience using click-based echolocation might play a similar role, with blind expert echolocators demonstrating auditory localization abilities that are superior to those of people who are blind and who do not use click-based echolocation by Vercillo et al. (Neuropsychologia 67: 35–40, 2015). Based on this hypothesis we might predict that training in click-based echolocation may lead to improvement in performance in auditory localization tasks in people who are blind. Here we investigated this hypothesis in a sample of 12 adult people who have been blind from birth. We did not find evidence for an improvement in performance in auditory localization after 10 weeks of training despite significant improvement in echolocation ability. It is possible that longer-term experience with click-based echolocation is required for effects to develop, or that other factors can explain the association between echolocation expertise and superior auditory localization. Considering the practical relevance of click-based echolocation for people who are visually impaired, future research should address these questions.
Collapse
Affiliation(s)
- Lore Thaler
- Department of Psychology, Durham University, Science Site, South Road, Durham, DH1 3LE, UK.
| | - Liam J Norman
- Department of Psychology, Durham University, Science Site, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
18
|
Alvarez I, Finlayson NJ, Ei S, de Haas B, Greenwood JA, Schwarzkopf DS. Heritable functional architecture in human visual cortex. Neuroimage 2021; 239:118286. [PMID: 34153449 PMCID: PMC7611349 DOI: 10.1016/j.neuroimage.2021.118286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
We analyzed retinotopic maps from monozygotic and dizygotic twin pairs. Visual field maps in V1-V3 are more similar in monozygotic twins. Heritability is greater in V1 and V3 for polar angle and population receptive field sizes. Eccentricity maps show lesser degree of heritability. Further evidence for link between cortical morphology and topology of retinotopic maps.
How much of the functional organization of our visual system is inherited? Here we tested the heritability of retinotopic maps in human visual cortex using functional magnetic resonance imaging. We demonstrate that retinotopic organization shows a closer correspondence in monozygotic (MZ) compared to dizygotic (DZ) twin pairs, suggesting a partial genetic determination. Using population receptive field (pRF) analysis to examine the preferred spatial location and selectivity of these neuronal populations, we estimate a heritability around 10–20% for polar angle preferences and spatial selectivity, as quantified by pRF size, in extrastriate areas V2 and V3. Our findings are consistent with heritability in both the macroscopic arrangement of visual regions and stimulus tuning properties of visual cortex. This could constitute a neural substrate for variations in a range of perceptual effects, which themselves have been found to be at least partially genetically determined. These findings also add convergent evidence for the hypothesis that functional map topology is linked with cortical morphology.
Collapse
Affiliation(s)
- Ivan Alvarez
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States; Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom
| | - Nonie J Finlayson
- Experimental Psychology, University College London, United Kingdom; Ipsos, Brisbane, Queensland, Australia
| | - Shwe Ei
- Experimental Psychology, University College London, United Kingdom; GKT School of Medical Education, Kings College London, United Kingdom
| | - Benjamin de Haas
- Experimental Psychology, University College London, United Kingdom; Department of Psychology, Justus-Liebig University, Giessen, Germany
| | - John A Greenwood
- Experimental Psychology, University College London, United Kingdom
| | - D Samuel Schwarzkopf
- Experimental Psychology, University College London, United Kingdom; School of Optometry & Vision Science, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
19
|
Norman LJ, Dodsworth C, Foresteire D, Thaler L. Human click-based echolocation: Effects of blindness and age, and real-life implications in a 10-week training program. PLoS One 2021; 16:e0252330. [PMID: 34077457 PMCID: PMC8171922 DOI: 10.1371/journal.pone.0252330] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/13/2021] [Indexed: 01/19/2023] Open
Abstract
Understanding the factors that determine if a person can successfully learn a novel sensory skill is essential for understanding how the brain adapts to change, and for providing rehabilitative support for people with sensory loss. We report a training study investigating the effects of blindness and age on the learning of a complex auditory skill: click-based echolocation. Blind and sighted participants of various ages (21-79 yrs; median blind: 45 yrs; median sighted: 26 yrs) trained in 20 sessions over the course of 10 weeks in various practical and virtual navigation tasks. Blind participants also took part in a 3-month follow up survey assessing the effects of the training on their daily life. We found that both sighted and blind people improved considerably on all measures, and in some cases performed comparatively to expert echolocators at the end of training. Somewhat surprisingly, sighted people performed better than those who were blind in some cases, although our analyses suggest that this might be better explained by the younger age (or superior binaural hearing) of the sighted group. Importantly, however, neither age nor blindness was a limiting factor in participants' rate of learning (i.e. their difference in performance from the first to the final session) or in their ability to apply their echolocation skills to novel, untrained tasks. Furthermore, in the follow up survey, all participants who were blind reported improved mobility, and 83% reported better independence and wellbeing. Overall, our results suggest that the ability to learn click-based echolocation is not strongly limited by age or level of vision. This has positive implications for the rehabilitation of people with vision loss or in the early stages of progressive vision loss.
Collapse
Affiliation(s)
- Liam J. Norman
- Department of Psychology, Durham University, Durham, United Kingdom
| | | | | | - Lore Thaler
- Department of Psychology, Durham University, Durham, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Eagleman DM, Vaughn DA. The Defensive Activation Theory: REM Sleep as a Mechanism to Prevent Takeover of the Visual Cortex. Front Neurosci 2021; 15:632853. [PMID: 34093109 PMCID: PMC8176926 DOI: 10.3389/fnins.2021.632853] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Regions of the brain maintain their territory with continuous activity: if activity slows or stops (e.g., because of blindness), the territory tends to be taken over by its neighbors. A surprise in recent years has been the speed of takeover, which is measurable within an hour. These findings lead us to a new hypothesis on the origin of REM sleep. We hypothesize that the circuitry underlying REM sleep serves to amplify the visual system's activity periodically throughout the night, allowing it to defend its territory against takeover from other senses. We find that measures of plasticity across 25 species of primates correlate positively with the proportion of rapid eye movement (REM) sleep. We further find that plasticity and REM sleep increase in lockstep with evolutionary recency to humans. Finally, our hypothesis is consistent with the decrease in REM sleep and parallel decrease in neuroplasticity with aging.
Collapse
Affiliation(s)
- David M. Eagleman
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Don A. Vaughn
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
21
|
Lubinus C, Orpella J, Keitel A, Gudi-Mindermann H, Engel AK, Roeder B, Rimmele JM. Data-Driven Classification of Spectral Profiles Reveals Brain Region-Specific Plasticity in Blindness. Cereb Cortex 2021; 31:2505-2522. [PMID: 33338212 DOI: 10.1093/cercor/bhaa370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 01/22/2023] Open
Abstract
Congenital blindness has been shown to result in behavioral adaptation and neuronal reorganization, but the underlying neuronal mechanisms are largely unknown. Brain rhythms are characteristic for anatomically defined brain regions and provide a putative mechanistic link to cognitive processes. In a novel approach, using magnetoencephalography resting state data of congenitally blind and sighted humans, deprivation-related changes in spectral profiles were mapped to the cortex using clustering and classification procedures. Altered spectral profiles in visual areas suggest changes in visual alpha-gamma band inhibitory-excitatory circuits. Remarkably, spectral profiles were also altered in auditory and right frontal areas showing increased power in theta-to-beta frequency bands in blind compared with sighted individuals, possibly related to adaptive auditory and higher cognitive processing. Moreover, occipital alpha correlated with microstructural white matter properties extending bilaterally across posterior parts of the brain. We provide evidence that visual deprivation selectively modulates spectral profiles, possibly reflecting structural and functional adaptation.
Collapse
Affiliation(s)
- Christina Lubinus
- Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, 60322 Frankfurt am Main, Germany
| | - Joan Orpella
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Anne Keitel
- Psychology, University of Dundee, Dundee DD1 4HN, UK
| | - Helene Gudi-Mindermann
- Biological Psychology and Neuropsychology, University of Hamburg, 20146 Hamburg, Germany.,Department of Social Epidemiology, University of Bremen, 28359 Bremen, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Brigitte Roeder
- Biological Psychology and Neuropsychology, University of Hamburg, 20146 Hamburg, Germany
| | - Johanna M Rimmele
- Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, 60322 Frankfurt am Main, Germany.,Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
22
|
Bridge H, Coullon GSL, Morjaria R, Trossman R, Warnaby CE, Leatherbarrow B, Foster RG, Downes SM. The Effect of Congenital and Acquired Bilateral Anophthalmia on Brain Structure. Neuroophthalmology 2021; 45:75-86. [PMID: 34108778 PMCID: PMC8158038 DOI: 10.1080/01658107.2020.1856143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The aim of this study was to compare the pattern of changes in brain structure resulting from congenital and acquired bilateral anophthalmia. Brain structure was investigated using 3T magnetic resonance imaging (MRI) in Oxford (congenital) or Manchester (acquired). T1-weighted structural and diffusion-weighted scans were acquired from people with anophthalmia and sighted control participants. Differences in grey matter between the groups were quantified using voxel-based morphometry and differences in white matter microstructure using tract-based spatial statistics. Quantification of optic nerve volume and cortical thickness in visual regions was also performed in all groups. The optic nerve was reduced in volume in both anophthalmic populations, but to a greater extent in the congenital group and anophthalmia acquired at an early age. A similar pattern was found for the white matter microstructure throughout the occipitotemporal regions of the brain, suggesting a greater reduction of integrity with increasing duration of anophthalmia. In contrast, grey matter volume changes differed between the two groups, with the acquired anophthalmia group showing a decrease in the calcarine sulcus, corresponding to the area that would have been peripheral primary visual cortex. In contrast, the acquired anophthalmia group showed a decrease in grey matter volume in the calcarine sulcus corresponding to the area that would have been peripheral primary visual cortex. There are both qualitative and quantitative differences in structural brain changes in congenital and acquired anophthalmia, indicating differential effects of development and degeneration.
Collapse
Affiliation(s)
- Holly Bridge
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Gaelle S L Coullon
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rupal Morjaria
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford, UK.,Birmingham Midland Eye Centre, Sandwell & West Birmingham Hospitals NHS Trust, Birmingham, West Midlands, UK
| | - Rebecca Trossman
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Catherine E Warnaby
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | - Russell G Foster
- Nuffield Department of Clinical Neurosciences, Sleep & Circadian Neuroscience Institute (SCNi) and Nuffield Laboratory of Ophthalmology, Oxford, UK
| | - Susan M Downes
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
23
|
Manescu S, Chouinard-Leclaire C, Collignon O, Lepore F, Frasnelli J. Enhanced Odorant Localization Abilities in Congenitally Blind but not in Late-Blind Individuals. Chem Senses 2021; 46:bjaa073. [PMID: 33140091 PMCID: PMC7909301 DOI: 10.1093/chemse/bjaa073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although often considered a nondominant sense for spatial perception, chemosensory perception can be used to localize the source of an event and potentially help us navigate through our environment. Would blind people who lack the dominant spatial sense-vision-develop enhanced spatial chemosensation or suffer from the lack of visual calibration on spatial chemosensory perception? To investigate this question, we tested odorant localization abilities across nostrils in blind people compared to sighted controls and if the time of vision loss onset modulates those abilities. We observed that congenitally blind individuals (10 subjects) outperformed sighted (20 subjects) and late-blind subjects (10 subjects) in a birhinal localization task using mixed olfactory-trigeminal stimuli. This advantage in congenitally blind people was selective to olfactory localization but not observed for odorant detection or identification. We, therefore, showed that congenital blindness but not blindness acquired late in life is linked to enhanced localization of chemosensory stimuli across nostrils, most probably of the trigeminal component. In addition to previous studies highlighting enhanced localization abilities in auditory and tactile modalities, our current results extend such enhanced abilities to chemosensory localization.
Collapse
Affiliation(s)
- Simona Manescu
- Centre de Recherche en Neuropsychologie et Cognition, Département de psychologie, Université de Montréal, Pavillon Marie-Victorin, CP, succursale Centre-Ville, Montréal, Québec, Canada
| | - Christine Chouinard-Leclaire
- Centre de Recherche en Neuropsychologie et Cognition, Département de psychologie, Université de Montréal, Pavillon Marie-Victorin, CP, succursale Centre-Ville, Montréal, Québec, Canada
| | - Olivier Collignon
- Center of Mind/Brain Sciences of University of Trento, Via Delle Regole, Mattarello, Trentino, Italy
- Institutes for Research in Psychology and Neurosciences, University of Louvain, IPSY - Place du Cardinal Mercier, Louvain-la-Neuve, Belgium
| | - Franco Lepore
- Centre de Recherche en Neuropsychologie et Cognition, Département de psychologie, Université de Montréal, Pavillon Marie-Victorin, CP, succursale Centre-Ville, Montréal, Québec, Canada
| | - Johannes Frasnelli
- Centre de Recherche en Neuropsychologie et Cognition, Département de psychologie, Université de Montréal, Pavillon Marie-Victorin, CP, succursale Centre-Ville, Montréal, Québec, Canada
- Centre d’études avancées en médecine du sommeil, Centre de Recherche de l’Hôpital du Sacré-Coeur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l’Île-de-Montréal, Montréal, Québec, Canada
- Department of Anatomy, Université du Québec à Trois-Rivières, boulevard des Forges, Trois-Rivières, Québec, Canada
| |
Collapse
|
24
|
Cognitive and Affective Assessment of Navigation and Mobility Tasks for the Visually Impaired via Electroencephalography and Behavioral Signals. SENSORS 2020; 20:s20205821. [PMID: 33076251 PMCID: PMC7602506 DOI: 10.3390/s20205821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022]
Abstract
This paper presented the assessment of cognitive load (as an effective real-time index of task difficulty) and the level of brain activation during an experiment in which eight visually impaired subjects performed two types of tasks while using the white cane and the Sound of Vision assistive device with three types of sensory input—audio, haptic, and multimodal (audio and haptic simultaneously). The first task was to identify object properties and the second to navigate and avoid obstacles in both the virtual environment and real-world settings. The results showed that the haptic stimuli were less intuitive than the audio ones and that the navigation with the Sound of Vision device increased cognitive load and working memory. Visual cortex asymmetry was lower in the case of multimodal stimulation than in the case of separate stimulation (audio or haptic). There was no correlation between visual cortical activity and the number of collisions during navigation, regardless of the type of navigation or sensory input. The visual cortex was activated when using the device, but only for the late-blind users. For all the subjects, the navigation with the Sound of Vision device induced a low negative valence, in contrast with the white cane navigation.
Collapse
|
25
|
Affiliation(s)
- A. Dwyer
- Genesee Valley Equine Clinic Scottsville New YorkUSA
| |
Collapse
|
26
|
Amadeo MB, Campus C, Gori M. Years of Blindness Lead to "Visualize" Space Through Time. Front Neurosci 2020; 14:812. [PMID: 32848573 PMCID: PMC7418563 DOI: 10.3389/fnins.2020.00812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/10/2020] [Indexed: 11/29/2022] Open
Abstract
Spatial representation has been widely studied in early blindness, whereas research about late blindness is still limited. We recently demonstrated that the early (50-90 ms) event-related potential (ERP) response observed in sighted people during a spatial bisection task, is altered in early blind people and is influenced by the amount of time spent without vision in late blind individuals. Specifically, in late blind people a shorter period of blindness is associated with strong contralateral activation in occipital cortex and good performance during the spatial task-similar to that of sighted people. In contrast, non-lateralized occipital activation and lower performance characterize late blind individuals who have experienced a longer period of blindness-similar to that of early blind people. However, the same early occipital response activated in sighted individuals by spatial cues has been found to be activated by temporal cues in early blind individuals. Here, we investigate whether a similar temporal attraction can explain the neural and behavioral changes observed after many years of blindness in late blind people. An EEG recording was taken during a spatial bisection task where coherent and conflicting spatio-temporal information was presented. In participants with long blindness duration, the early recruitment of both visual and auditory areas is sensitive to temporal instead of spatial coordinates. These findings highlight some limits of neuroplasticity. Perceptual advantages from cross-sensory calibration during development seem to be subsequently lost following years of visual deprivation. This result has important implications for clinical outcomes following late blindness, highlighting the importance of timing in intervention and rehabilitation programs that activate compensatory strategies soon after sensory loss.
Collapse
Affiliation(s)
- Maria Bianca Amadeo
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, Università degli Studi di Genova, Genova, Italy
| | - Claudio Campus
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| | - Monica Gori
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
27
|
Im M, Kim SW. Neurophysiological and medical considerations for better-performing microelectronic retinal prostheses. J Neural Eng 2020; 17:033001. [PMID: 32329755 DOI: 10.1088/1741-2552/ab8ca9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Maesoon Im
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | | |
Collapse
|
28
|
Mowad TG, Willett AE, Mahmoudian M, Lipin M, Heinecke A, Maguire AM, Bennett J, Ashtari M. Compensatory Cross-Modal Plasticity Persists After Sight Restoration. Front Neurosci 2020; 14:291. [PMID: 32477041 PMCID: PMC7235304 DOI: 10.3389/fnins.2020.00291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/13/2020] [Indexed: 11/30/2022] Open
Abstract
Sensory deprivation prompts extensive structural and functional reorganizations of the cortex resulting in the occupation of space for the lost sense by the intact sensory systems. This process, known as cross-modal plasticity, has been widely studied in individuals with vision or hearing loss. However, little is known on the neuroplastic changes in restoring the deprived sense. Some reports consider the cross-modal functionality maladaptive to the return of the original sense, and others view this as a critical process in maintaining the neurons of the deprived sense active and operational. These controversial views have been challenged in both auditory and vision restoration reports for decades. Recently with the approval of Luxturna as the first retinal gene therapy (GT) drug to reverse blindness, there is a renewed interest for the crucial role of cross-modal plasticity on sight restoration. Employing a battery of task and resting state functional magnetic resonance imaging (rsfMRI), in comparison to a group of sighted controls, we tracked the functional changes in response to auditory and visual stimuli and at rest, in a group of patients with biallelic mutations in the RPE65 gene (“RPE65 patients”) before and 3 years after GT. While the sighted controls did not present any evidence for auditory cross-modal plasticity, robust responses to the auditory stimuli were found in occipital cortex of the RPE65 patients overlapping visual responses and significantly elevated 3 years after GT. The rsfMRI results showed significant connectivity between the auditory and visual areas for both groups albeit attenuated in patients at baseline but enhanced 3 years after GT. Taken together, these findings demonstrate that (1) RPE65 patients present with an auditory cross-modal component; (2) visual and non-visual responses of the visual cortex are considerably enhanced after vision restoration; and (3) auditory cross-modal functions did not adversely affect the success of vision restitution. We hypothesize that following GT, to meet the demand for the newly established retinal signals, remaining or dormant visual neurons are revived or unmasked for greater participation. These neurons or a subset of these neurons respond to both the visual and non-visual demands and further strengthen connectivity between the auditory and visual cortices.
Collapse
Affiliation(s)
- Theresa G Mowad
- Department of Ophthalmology, Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Aimee E Willett
- The Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States
| | | | - Mikhail Lipin
- Department of Ophthalmology, Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Armin Heinecke
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Albert M Maguire
- Department of Ophthalmology, Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.,Department of Ophthalmology, F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States.,Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jean Bennett
- Department of Ophthalmology, Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.,Department of Ophthalmology, F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States.,Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Manzar Ashtari
- Department of Ophthalmology, Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.,Department of Ophthalmology, F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States.,Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
29
|
Castaldi E, Lunghi C, Morrone MC. Neuroplasticity in adult human visual cortex. Neurosci Biobehav Rev 2020; 112:542-552. [DOI: 10.1016/j.neubiorev.2020.02.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/30/2019] [Accepted: 02/20/2020] [Indexed: 12/27/2022]
|
30
|
Feldmann M, Beckmann D, Eysel UT, Manahan-Vaughan D. Early Loss of Vision Results in Extensive Reorganization of Plasticity-Related Receptors and Alterations in Hippocampal Function That Extend Through Adulthood. Cereb Cortex 2020; 29:892-905. [PMID: 30535137 PMCID: PMC6319173 DOI: 10.1093/cercor/bhy297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/07/2018] [Indexed: 11/15/2022] Open
Abstract
Although by adulthood cortical structures and their capacity for processing sensory information have become established and stabilized, under conditions of cortical injury, or sensory deprivation, rapid reorganization occurs. Little is known as to the impact of this kind of adaptation on cellular processes related to memory encoding. However, imaging studies in humans suggest that following loss or impairment of a sensory modality, not only cortical but also subcortical structures begin to reorganize. It is likely that these processes are supported by neurotransmitter receptors that enable synaptic and cortical plasticity. Here, we explored to what extent the expression of plasticity-related proteins (GABA-A, GABA-B, GluN1, GluN2A, GluN2B) is altered following early vision loss, and whether this impacts on hippocampal function. We observed that in the period of 2-4 months postnatally in CBA/J-mice that experience hereditary postnatal retinal degeneration, systematic changes of GABA-receptor and NMDA-receptor subunit expression occurred that emerged first in the hippocampus and developed later in the cortex, compared to control mice that had normal vision. Changes were accompanied by significant impairments in hippocampal long-term potentiation and hippocampus-dependent learning. These data indicate that during cortical adaptation to early loss of vision, hippocampal information processing is compromised, and this status impacts on the acquisition of spatial representations.
Collapse
Affiliation(s)
- Mirko Feldmann
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Daniela Beckmann
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Ulf T Eysel
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
31
|
Structural and functional brain reorganisation due to blindness: The special case of bilateral congenital anophthalmia. Neurosci Biobehav Rev 2019; 107:765-774. [PMID: 31626815 DOI: 10.1016/j.neubiorev.2019.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/03/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
Abstract
Investigating the changes in the brain that result from a loss of sensory input has provided significant insight into the considerable capacity of the brain to reorganise. One of the difficulties in studying sensory-deprived populations is that the time and extent of sensory loss vary significantly. In this review, we consider the changes in the human brain associated with complete absence of visual input resulting from bilateral congenital anophthalmia, in which the eyes fail to develop. We describe the functional reorganisation and associated structural and connectivity changes that occur in the brain of those affected by the condition. By considering animal models of this condition, we investigate the changes that may be occurring on a scale that is not captured by human in vivo imaging techniques. Finally, we lay out a model pathway for taking auditory information to the occipital cortex that may be specific to anophthalmia.
Collapse
|
32
|
Shi W, He Y, Li Q, Tang L, Li B, Lin Q, Min Y, Yuan Q, Zhu P, Liang R, Shao Y. Central network changes in patients with advanced monocular blindness: A voxel-based morphometric study. Brain Behav 2019; 9:e01421. [PMID: 31573760 PMCID: PMC6790323 DOI: 10.1002/brb3.1421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE To study the changes in gray matter volume (GMV) in patients with advanced monocular blindness (MB) using voxel-based morphometry (VBM). METHODS Thirty-one patients with advanced MB (25 males and six females) and 31 normal controls (25 males and six females) were enrolled. The t test was applied to determine the differences in GMV, white matter volume (WMV), and volume of cerebrospinal fluid in different regions of the brain. The local characteristics of spontaneous concentrations of brain tissue were evaluated by the VBM method. The effects of blindness duration on differences in the GMV were evaluated by correlation and regression analyses. RESULTS Compared with the control group, the GMV was decreased in the upper right margin, bilateral insular cortex, right cingulate gyrus, left occipital gyrus, and right suboccipital lobe, and negatively correlated with blindness duration in the upper right posterior margin, bilateral insular cortex, and right cingulate cortex. CONCLUSIONS We found that patients with MB showed abnormal WMV and GMV, as evidenced by local changes in the brain. In addition, reduced GMV in specific parts of the brain was associated with the duration of blindness, which may indicate neuropathological mechanisms of visual loss in patients with MB.
Collapse
Affiliation(s)
- Wen‐Qing Shi
- Department of OphthalmologyJiangxi Province Ocular Disease Clinical Research CenterThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yin He
- Department of OphthalmologyJiangxi Province Ocular Disease Clinical Research CenterThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qing‐Hai Li
- Department of OphthalmologyJiangxi Province Ocular Disease Clinical Research CenterThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Li‐Ying Tang
- Department of OphthalmologyXiang'an Hospital of Xiamen UniversityFujian Provincial Key Laboratory of Ophthalmology and Visual ScienceEye Institute of Xiamen UniversityXiamen University School of MedicineXiamenChina
| | - Biao Li
- Department of OphthalmologyJiangxi Province Ocular Disease Clinical Research CenterThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qi Lin
- Department of OphthalmologyJiangxi Province Ocular Disease Clinical Research CenterThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - You‐Lan Min
- Department of OphthalmologyJiangxi Province Ocular Disease Clinical Research CenterThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qing Yuan
- Department of OphthalmologyJiangxi Province Ocular Disease Clinical Research CenterThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Pei‐Wen Zhu
- Department of OphthalmologyJiangxi Province Ocular Disease Clinical Research CenterThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Rong‐Bing Liang
- Department of OphthalmologyJiangxi Province Ocular Disease Clinical Research CenterThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yi Shao
- Department of OphthalmologyJiangxi Province Ocular Disease Clinical Research CenterThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
33
|
Amadeo MB, Störmer VS, Campus C, Gori M. Peripheral sounds elicit stronger activity in contralateral occipital cortex in blind than sighted individuals. Sci Rep 2019; 9:11637. [PMID: 31406158 PMCID: PMC6690873 DOI: 10.1038/s41598-019-48079-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/26/2019] [Indexed: 11/17/2022] Open
Abstract
Previous research has shown that peripheral, task-irrelevant sounds elicit activity in contralateral visual cortex of sighted people, as revealed by a sustained positive deflection in the event-related potential (ERP) over the occipital scalp contralateral to the sound’s location. This Auditory-evoked Contralateral Occipital Positivity (ACOP) appears between 200–450 ms after sound onset, and is present even when the task is entirely auditory and no visual stimuli are presented at all. Here, we investigate whether this cross-modal activation of contralateral visual cortex is influenced by visual experience. To this end, ERPs were recorded in 12 sighted and 12 blind subjects during a unimodal auditory task. Participants listened to a stream of sounds and pressed a button every time they heard a central target tone, while ignoring the peripheral noise bursts. It was found that task-irrelevant noise bursts elicited a larger ACOP in blind compared to sighted participants, indicating for the first time that peripheral sounds can enhance neural activity in visual cortex in a spatially lateralized manner even in visually deprived individuals. Overall, these results suggest that the cross-modal activation of contralateral visual cortex triggered by peripheral sounds does not require any visual input to develop, and is rather enhanced by visual deprivation.
Collapse
Affiliation(s)
- Maria Bianca Amadeo
- U-VIP: Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy. .,Department of Informatics, Bioengineering, Robotics and Systems Engineering, Università degli Studi di Genova, Genova, Italy.
| | - Viola S Störmer
- Department of Psychology and Neuroscience Graduate Program, University of California San Diego, San Diego, USA
| | - Claudio Campus
- U-VIP: Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| | - Monica Gori
- U-VIP: Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
34
|
Hannan CK. Review of Research: Neuroscience and the Impact of Brain Plasticity on Braille Reading. JOURNAL OF VISUAL IMPAIRMENT & BLINDNESS 2019. [DOI: 10.1177/0145482x0610000704] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this systematic review of research, the author analyzes studies of neural cortical activation, brain plasticity, and braille reading. The conclusions regarding the brain's plasticity and ability to reorganize are encouraging for individuals with degenerative eye conditions or late-onset blindness because they indicate that the brain can make new connections that have implications for braille reading, tactile perception, and instruction.
Collapse
Affiliation(s)
- Cheryl Kamei Hannan
- Department of Special Education, Rehabilitation, and Psychology, University of Arizona
| |
Collapse
|
35
|
Christensen JAE, Aubin S, Nielsen T, Ptito M, Kupers R, Jennum P. Rapid eye movements are reduced in blind individuals. J Sleep Res 2019; 28:e12866. [DOI: 10.1111/jsr.12866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/20/2019] [Accepted: 04/01/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Julie A. E. Christensen
- Danish Center for Sleep Medicine Department of Clinical Neurophysiology Rigshospitalet Glostrup Denmark
- Biomedical Engineering Department of Health Technology Technical University of Denmark Kongens Lyngby Denmark
| | - Sébrina Aubin
- Department of Neuroscience University of Montreal Montreal Quebec Canada
- Brain Research and Integrative Neuroscience Laboratory Danish Center for Sleep Medicine Department of Clinical Neurophysiology Rigshospitalet Glostrup Denmark
- Harland Sanders Chair in Visual ScienceSchool of Optometry University of Montreal Montreal Quebec Canada
| | - Tore Nielsen
- Dream and Nightmare Laboratory Center for Advanced Research in Sleep Medicine Department of Psychiatry University of Montreal Montreal Quebec Canada
| | - Maurice Ptito
- Brain Research and Integrative Neuroscience Laboratory Danish Center for Sleep Medicine Department of Clinical Neurophysiology Rigshospitalet Glostrup Denmark
- Harland Sanders Chair in Visual ScienceSchool of Optometry University of Montreal Montreal Quebec Canada
- Laboratory of Neuropsychiatry and Psychiatric Centre Copenhagen University of Copenhagen Copenhagen Denmark
| | - Ron Kupers
- Brain Research and Integrative Neuroscience Laboratory Danish Center for Sleep Medicine Department of Clinical Neurophysiology Rigshospitalet Glostrup Denmark
- Department of Radiology and Biomedical Imaging Yale University New Haven Connecticut USA
| | - Poul Jennum
- Danish Center for Sleep Medicine Department of Clinical Neurophysiology Rigshospitalet Glostrup Denmark
| |
Collapse
|
36
|
Stronger responses in the visual cortex of sighted compared to blind individuals during auditory space representation. Sci Rep 2019; 9:1935. [PMID: 30760758 PMCID: PMC6374481 DOI: 10.1038/s41598-018-37821-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/11/2018] [Indexed: 01/02/2023] Open
Abstract
It has been previously shown that the interaction between vision and audition involves early sensory cortices. However, the functional role of these interactions and their modulation due to sensory impairment is not yet understood. To shed light on the impact of vision on auditory spatial processing, we recorded ERPs and collected psychophysical responses during space and time bisection tasks in sighted and blind participants. They listened to three consecutive sounds and judged whether the second sound was either spatially or temporally further from the first or the third sound. We demonstrate that spatial metric representation of sounds elicits an early response of the visual cortex (P70) which is different between sighted and visually deprived individuals. Indeed, only in sighted and not in blind people P70 is strongly selective for the spatial position of sounds, mimicking many aspects of the visual-evoked C1. These results suggest that early auditory processing associated with the construction of spatial maps is mediated by visual experience. The lack of vision might impair the projection of multi-sensory maps on the retinotopic maps used by the visual cortex.
Collapse
|
37
|
Amadeo MB, Campus C, Gori M. Impact of years of blindness on neural circuits underlying auditory spatial representation. Neuroimage 2019; 191:140-149. [PMID: 30710679 DOI: 10.1016/j.neuroimage.2019.01.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 11/30/2022] Open
Abstract
Early visual deprivation impacts negatively on spatial bisection abilities. Recently, an early (50-90 ms) ERP response, selective for sound position in space, has been observed in the visual cortex of sighted individuals during the spatial but not the temporal bisection task. Here, we clarify the role of vision on spatial bisection abilities and neural correlates by studying late blind individuals. Results highlight that a shorter period of blindness is linked to a stronger contralateral activation in the visual cortex and a better performance during the spatial bisection task. Contrarily, not lateralized visual activation and lower performance are observed in individuals with a longer period of blindness. To conclude, the amount of time spent without vision may gradually impact on neural circuits underlying the construction of spatial representations in late blind participants. These findings suggest a key relationship between visual deprivation and auditory spatial abilities in humans.
Collapse
Affiliation(s)
- Maria Bianca Amadeo
- Unit for Visually Impaired People (U-VIP), Fondazione Istituto Italiano di Tecnologia, Via E. Melen, 83 - 16152, Genova, Italy; Università degli studi di Genova, Department of Informatics, Bioengineering, Robotics and Systems Engineering, Via all'Opera Pia, 13 - 16145, Genova, Italy
| | - Claudio Campus
- Unit for Visually Impaired People (U-VIP), Fondazione Istituto Italiano di Tecnologia, Via E. Melen, 83 - 16152, Genova, Italy
| | - Monica Gori
- Unit for Visually Impaired People (U-VIP), Fondazione Istituto Italiano di Tecnologia, Via E. Melen, 83 - 16152, Genova, Italy.
| |
Collapse
|
38
|
Cuevas I, Plaza P, Rombaux P, Collignon O, De Volder AG, Renier L. Do People who Became Blind Early in Life Develop a Better Sense of Smell? A Psychophysical Study. JOURNAL OF VISUAL IMPAIRMENT & BLINDNESS 2019. [DOI: 10.1177/0145482x1010400607] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using a set of psychophysical tests, we compared the olfactory abilities of 8 persons who became blind early in life and 16 sighted persons in a control group who were matched for age, sex, and handedness. The results indicated that those who became blind early in life developed compensatory perceptual mechanisms in the olfactory domain that involve basic sensory processes, such as the detection of odors.
Collapse
Affiliation(s)
- Isabel Cuevas
- Neural Rehabilitation Engineering Laboratory, Université catholique de Louvain, Avenue Hippocrate, 54, UCL-54.46, B-1200 Brussels, Belgium
| | - Paula Plaza
- Neural Rehabilitation Engineering Laboratory, Université catholique de Louvain, Avenue Hippocrate, 54, UCL-54.46, B-1200 Brussels, Belgium
| | - Phillippe Rombaux
- Department of Otorhinolaryngology, Université catholique de Louvain, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, B-1200 Brussels, Belgium
| | - Olivier Collignon
- Neural Rehabilitation Engineering Laboratory, Universite catholique de Louvain, Avenue Hippocrate, 54, UCL-54.46, B-1200 Brussels, Belgium
| | - Anne G. De Volder
- Neural Rehabilitation Engineering Laboratory, Université catholique de Louvain, Avenue Hippocrate, 54, UCL-54.46, B-1200 Brussels, Belgium
| | - Laurent Renier
- Neural Rehabilitation Engineering Laboratory, Université catholique de Louvain, Avenue Hippocrate, 54, UCL-54.46, B-1200 Brussels, Belgium
| |
Collapse
|
39
|
Lombaert N, Hennes M, Gilissen S, Schevenels G, Aerts L, Vanlaer R, Geenen L, Van Eeckhaut A, Smolders I, Nys J, Arckens L. 5-HTR 2A and 5-HTR 3A but not 5-HTR 1A antagonism impairs the cross-modal reactivation of deprived visual cortex in adulthood. Mol Brain 2018; 11:65. [PMID: 30400993 PMCID: PMC6218970 DOI: 10.1186/s13041-018-0404-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/10/2018] [Indexed: 01/03/2023] Open
Abstract
Visual cortical areas show enhanced tactile responses in blind individuals, resulting in improved behavioral performance. Induction of unilateral vision loss in adult mice, by monocular enucleation (ME), is a validated model for such cross-modal brain plasticity. A delayed whisker-driven take-over of the medial monocular zone of the visual cortex is preceded by so-called unimodal plasticity, involving the potentiation of the spared-eye inputs in the binocular cortical territory. Full reactivation of the sensory-deprived contralateral visual cortex is accomplished by 7 weeks post-injury. Serotonin (5-HT) is known to modulate sensory information processing and integration, but its impact on cortical reorganization after sensory loss, remains largely unexplored. To address this issue, we assessed the involvement of 5-HT in ME-induced cross-modal plasticity and the 5-HT receptor (5-HTR) subtype used. We first focused on establishing the impact of ME on the total 5-HT concentration measured in the visual cortex and in the somatosensory barrel field. Next, the changes in expression as a function of post-ME recovery time of the monoamine transporter 2 (vMAT2), which loads 5-HT into presynaptic vesicles, and of the 5-HTR1A and 5-HTR3A were assessed, in order to link these temporal expression profiles to the different types of cortical plasticity induced by ME. In order to accurately pinpoint which 5-HTR exactly mediates ME-induced cross-modal plasticity, we pharmacologically antagonized the 5-HTR1A, 5-HTR2A and 5-HTR3A subtypes. This study reveals brain region-specific alterations in total 5-HT concentration, time-dependent modulations in vMAT2, 5-HTR1A and 5-HTR3A protein expression and 5-HTR antagonist-specific effects on the post-ME plasticity phenomena. Together, our results confirm a role for 5-HTR1A in the early phase of binocular visual cortex plasticity and suggest an involvement of 5-HTR2A and 5-HTR3A but not 5-HTR1A during the late cross-modal recruitment of the medial monocular visual cortex. These insights contribute to the general understanding of 5-HT function in cortical plasticity and may encourage the search for improved rehabilitation strategies to compensate for sensory loss.
Collapse
Affiliation(s)
- Nathalie Lombaert
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, Box 2467, B-3000, Leuven, Belgium
| | - Maroussia Hennes
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, Box 2467, B-3000, Leuven, Belgium
| | - Sara Gilissen
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, Box 2467, B-3000, Leuven, Belgium
| | - Giel Schevenels
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, Box 2467, B-3000, Leuven, Belgium
| | - Laetitia Aerts
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, Box 2467, B-3000, Leuven, Belgium
| | - Ria Vanlaer
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, Box 2467, B-3000, Leuven, Belgium
| | - Lieve Geenen
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, Box 2467, B-3000, Leuven, Belgium
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Julie Nys
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, Box 2467, B-3000, Leuven, Belgium.,Present Address: Laboratory of Synapse Biology, VIB-KU Leuven Center for Brain and Disease Research, O&N IV, Herestraat 49, box 602, B-3000, Leuven, Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, Box 2467, B-3000, Leuven, Belgium.
| |
Collapse
|
40
|
Manescu S, Poupon D, Ballester J, Abdi H, Valentin D, Lepore F, Frasnelli J. Early-blind Individuals Show Impaired Performance in Wine Odor Categorization. Neuroscience 2018; 390:79-87. [DOI: 10.1016/j.neuroscience.2018.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 08/04/2018] [Accepted: 08/09/2018] [Indexed: 01/06/2023]
|
41
|
Van Ackeren MJ, Barbero FM, Mattioni S, Bottini R, Collignon O. Neuronal populations in the occipital cortex of the blind synchronize to the temporal dynamics of speech. eLife 2018; 7:e31640. [PMID: 29338838 PMCID: PMC5790372 DOI: 10.7554/elife.31640] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/16/2018] [Indexed: 11/13/2022] Open
Abstract
The occipital cortex of early blind individuals (EB) activates during speech processing, challenging the notion of a hard-wired neurobiology of language. But, at what stage of speech processing do occipital regions participate in EB? Here we demonstrate that parieto-occipital regions in EB enhance their synchronization to acoustic fluctuations in human speech in the theta-range (corresponding to syllabic rate), irrespective of speech intelligibility. Crucially, enhanced synchronization to the intelligibility of speech was selectively observed in primary visual cortex in EB, suggesting that this region is at the interface between speech perception and comprehension. Moreover, EB showed overall enhanced functional connectivity between temporal and occipital cortices that are sensitive to speech intelligibility and altered directionality when compared to the sighted group. These findings suggest that the occipital cortex of the blind adopts an architecture that allows the tracking of speech material, and therefore does not fully abstract from the reorganized sensory inputs it receives.
Collapse
Affiliation(s)
| | - Francesca M Barbero
- Institute of research in PsychologyUniversity of LouvainLouvainBelgium
- Institute of NeuroscienceUniversity of LouvainLouvainBelgium
| | | | - Roberto Bottini
- Center for Mind/Brain StudiesUniversity of TrentoTrentoItaly
| | - Olivier Collignon
- Center for Mind/Brain StudiesUniversity of TrentoTrentoItaly
- Institute of research in PsychologyUniversity of LouvainLouvainBelgium
- Institute of NeuroscienceUniversity of LouvainLouvainBelgium
| |
Collapse
|
42
|
Thaler L, Foresteire D. Visual sensory stimulation interferes with people's ability to echolocate object size. Sci Rep 2017; 7:13069. [PMID: 29026115 PMCID: PMC5638915 DOI: 10.1038/s41598-017-12967-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 09/14/2017] [Indexed: 12/03/2022] Open
Abstract
Echolocation is the ability to use sound-echoes to infer spatial information about the environment. People can echolocate for example by making mouth clicks. Previous research suggests that echolocation in blind people activates brain areas that process light in sighted people. Research has also shown that echolocation in blind people may replace vision for calibration of external space. In the current study we investigated if echolocation may also draw on ‘visual’ resources in the sighted brain. To this end, we paired a sensory interference paradigm with an echolocation task. We found that exposure to an uninformative visual stimulus (i.e. white light) while simultaneously echolocating significantly reduced participants’ ability to accurately judge object size. In contrast, a tactile stimulus (i.e. vibration on the skin) did not lead to a significant change in performance (neither in sighted, nor blind echo expert participants). Furthermore, we found that the same visual stimulus did not affect performance in auditory control tasks that required detection of changes in sound intensity, sound frequency or sound location. The results suggest that processing of visual and echo-acoustic information draw on common neural resources.
Collapse
Affiliation(s)
- L Thaler
- Department of Psychology, Durham University, Durham, United Kingdom.
| | - D Foresteire
- Department of Psychology, Durham University, Durham, United Kingdom
| |
Collapse
|
43
|
Amalric M, Denghien I, Dehaene S. On the role of visual experience in mathematical development: Evidence from blind mathematicians. Dev Cogn Neurosci 2017; 30:314-323. [PMID: 29033221 PMCID: PMC5833949 DOI: 10.1016/j.dcn.2017.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 01/29/2023] Open
Abstract
Advanced mathematical reasoning, regardless of domain or difficulty, activates a reproducible set of bilateral brain areas including intraparietal, inferior temporal and dorsal prefrontal cortex. The respective roles of genetics, experience and education in the development of this math-responsive network, however, remain unresolved. Here, we investigate the role of visual experience by studying the exceptional case of three professional mathematicians who were blind from birth (n = 1) or became blind during childhood (n = 2). Subjects were scanned with fMRI while they judged the truth value of spoken mathematical and nonmathematical statements. Blind mathematicians activated the classical network of math-related areas during mathematical reflection, similar to that found in a group of sighted professional mathematicians. Thus, brain networks for advanced mathematical reasoning can develop in the absence of visual experience. Additional activations were found in occipital cortex, even in individuals who became blind during childhood, suggesting that either mental imagery or a more radical repurposing of visual cortex may occur in blind mathematicians.
Collapse
Affiliation(s)
- Marie Amalric
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France; Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 place Jussieu, Paris, France.
| | - Isabelle Denghien
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France; Collège de France, Paris, France.
| |
Collapse
|
44
|
Spatial localization of sound elicits early responses from occipital visual cortex in humans. Sci Rep 2017; 7:10415. [PMID: 28874681 PMCID: PMC5585168 DOI: 10.1038/s41598-017-09142-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/20/2017] [Indexed: 11/08/2022] Open
Abstract
Much evidence points to an interaction between vision and audition at early cortical sites. However, the functional role of these interactions is not yet understood. Here we show an early response of the occipital cortex to sound that it is strongly linked to the spatial localization task performed by the observer. The early occipital response to a sound, usually absent, increased by more than 10-fold when presented during a space localization task, but not during a time localization task. The response amplification was not only specific to the task, but surprisingly also to the position of the stimulus in the two hemifields. We suggest that early occipital processing of sound is linked to the construction of an audio spatial map that may utilize the visual map of the occipital cortex.
Collapse
|
45
|
Adaptive and maladaptive neural compensatory consequences of sensory deprivation-From a phantom percept perspective. Prog Neurobiol 2017; 153:1-17. [PMID: 28408150 DOI: 10.1016/j.pneurobio.2017.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/21/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
Abstract
It is suggested that the brain undergoes plastic changes in order to adapt to changing environmental needs. Sensory deprivation results in decreased input to the brain leading to adaptive or maladaptive changes. Although several theories hypothesize the mechanism of these adaptive and maladaptive changes, the course of action taken by the brain heavily depends on the age of incidence of damage. The growing body of literature on the topic proposes that maladaptive changes in the brain are instrumental in creating phantom percepts, defined as the perception of a sensory experience in the absence of a physical stimulus. The current article reviews the mechanisms of adaptive and maladaptive plasticity in the brain in congenital, early, and late-onset sensory deprivation in conjunction with the phantom percepts in the different sensory domains. We propose that the mechanisms of adaptive and maladaptive plasticity fall under a universal construct of updating hierarchical Bayesian prediction errors. This theory of the Bayesian brain hypothesizes that the brain constantly compares its internal milieu with changing environmental cues and either adjusts its predictions or discards the change, depending on the novelty or salience of the external stimulus. We propose that adaptive plasticity reflects both successful bottom-up compensation and top-down updating of the model while maladaptive plasticity reflects failure in one or both mechanisms, resulting in a constant prediction-error. Finally, we hypothesize that phantom percepts are generated by the brain as a solution to this prediction error and are thus a manifestation of unsuccessful adaptation to sensory deprivation.
Collapse
|
46
|
Sabbah N, Sanda N, Authié CN, Mohand-Saïd S, Sahel JA, Habas C, Amedi A, Safran AB. Reorganization of early visual cortex functional connectivity following selective peripheral and central visual loss. Sci Rep 2017; 7:43223. [PMID: 28233790 PMCID: PMC5324137 DOI: 10.1038/srep43223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/20/2017] [Indexed: 12/27/2022] Open
Abstract
Behavioral alterations emerging after central or peripheral vision loss suggest that cerebral reorganization occurs for both the afferented and deafferented early visual cortex (EVC). We explored the functional reorganization of the central and peripheral EVC following visual field defects specifically affecting central or peripheral vision. Compared to normally sighted, afferented central and peripheral EVC enhance their functional connectivity with areas involved in visual processing, whereas deafferented central and peripheral EVC increase their functional connectivity with more remote regions. The connectivity pattern of afferented EVC suggests adaptive changes that might enhance the visual processing capacity whereas the connectivity pattern of deafferented EVC may reflect the involvement of these regions in high-order mechanisms. Characterizing and understanding the plastic changes induced by these visual defects is essential for any attempt to develop efficient rehabilitation strategies.
Collapse
Affiliation(s)
- Norman Sabbah
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, Paris, F-75012, France.,INSERM, U968, Institut de la Vision, Paris, F-75012, France.,CNRS, UMR 7210, Institut de la Vision, Paris, F-75012, France.,Centre d'investigation clinique, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, F-75012, France
| | - Nicolae Sanda
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, Paris, F-75012, France.,INSERM, U968, Institut de la Vision, Paris, F-75012, France.,CNRS, UMR 7210, Institut de la Vision, Paris, F-75012, France.,Centre d'investigation clinique, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, F-75012, France.,Service de neurologie, Hôpital Foch, Suresnes, France
| | - Colas N Authié
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, Paris, F-75012, France.,INSERM, U968, Institut de la Vision, Paris, F-75012, France.,CNRS, UMR 7210, Institut de la Vision, Paris, F-75012, France.,Centre d'investigation clinique, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, F-75012, France
| | - Saddek Mohand-Saïd
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, Paris, F-75012, France.,INSERM, U968, Institut de la Vision, Paris, F-75012, France.,CNRS, UMR 7210, Institut de la Vision, Paris, F-75012, France.,Centre d'investigation clinique, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, F-75012, France
| | - José-Alain Sahel
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, Paris, F-75012, France.,INSERM, U968, Institut de la Vision, Paris, F-75012, France.,CNRS, UMR 7210, Institut de la Vision, Paris, F-75012, France.,Centre d'investigation clinique, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, F-75012, France.,Institute of Ophthalmology, University College of London, United Kingdom.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, US
| | - Christophe Habas
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, Paris, F-75012, France.,INSERM, U968, Institut de la Vision, Paris, F-75012, France.,CNRS, UMR 7210, Institut de la Vision, Paris, F-75012, France.,Centre de neuroimagerie, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, F-75012, France
| | - Amir Amedi
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, Paris, F-75012, France.,INSERM, U968, Institut de la Vision, Paris, F-75012, France.,CNRS, UMR 7210, Institut de la Vision, Paris, F-75012, France.,Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel.,The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91220, Israel.,The Cognitive Science Program, The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| | - Avinoam B Safran
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, Paris, F-75012, France.,INSERM, U968, Institut de la Vision, Paris, F-75012, France.,CNRS, UMR 7210, Institut de la Vision, Paris, F-75012, France.,Centre d'investigation clinique, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, F-75012, France.,Department of Clinical Neurosciences, Geneva University School of Medicine, Geneva, Switzerland
| |
Collapse
|
47
|
Pelland M, Orban P, Dansereau C, Lepore F, Bellec P, Collignon O. State-dependent modulation of functional connectivity in early blind individuals. Neuroimage 2016; 147:532-541. [PMID: 28011254 DOI: 10.1016/j.neuroimage.2016.12.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/13/2016] [Accepted: 12/18/2016] [Indexed: 12/11/2022] Open
Abstract
Resting-state functional connectivity (RSFC) studies have provided strong evidences that visual deprivation influences the brain's functional architecture. In particular, reduced RSFC coupling between occipital (visual) and temporal (auditory) regions has been reliably observed in early blind individuals (EB) at rest. In contrast, task-dependent activation studies have repeatedly demonstrated enhanced co-activation and connectivity of occipital and temporal regions during auditory processing in EB. To investigate this apparent discrepancy, the functional coupling between temporal and occipital networks at rest was directly compared to that of an auditory task in both EB and sighted controls (SC). Functional brain clusters shared across groups and cognitive states (rest and auditory task) were defined. In EBs, we observed higher occipito-temporal correlations in activity during the task than at rest. The reverse pattern was observed in SC. We also observed higher temporal variability of occipito-temporal RSFC in EB suggesting that occipital regions in this population may play the role of a multiple demand system. Our study reveals how the connectivity profile of sighted and early blind people is differentially influenced by their cognitive state, bridging the gap between previous task-dependent and RSFC studies. Our results also highlight how inferring group-differences in functional brain architecture solely based on resting-state acquisition has to be considered with caution.
Collapse
Affiliation(s)
- Maxime Pelland
- Departement of Psychology, University of Montreal, Montreal, Quebec, Canada; Centre de Recherche en Neuropsychologie et Cognition, University of Montreal, Montreal, QC, Canada.
| | - Pierre Orban
- Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, University of Montreal, Montreal, Quebec, Canada; Department of Psychiatry, University of Montreal, Montreal, Quebec, Canada
| | - Christian Dansereau
- Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, University of Montreal, Montreal, Quebec, Canada; Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec, Canada
| | - Franco Lepore
- Departement of Psychology, University of Montreal, Montreal, Quebec, Canada; Centre de Recherche en Neuropsychologie et Cognition, University of Montreal, Montreal, QC, Canada
| | - Pierre Bellec
- Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, University of Montreal, Montreal, Quebec, Canada; Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec, Canada
| | - Olivier Collignon
- Institute of Psychology (IPSY) and Institute of Neuroscience (IoNS), Université catholique de Louvain, Belgium; CIMeC - Center for Mind/Brain Sciences, University of Trento, via delle Regole 101, Mattarello, TN, Italy.
| |
Collapse
|
48
|
Cuturi LF, Aggius-Vella E, Campus C, Parmiggiani A, Gori M. From science to technology: Orientation and mobility in blind children and adults. Neurosci Biobehav Rev 2016; 71:240-251. [DOI: 10.1016/j.neubiorev.2016.08.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/13/2016] [Accepted: 08/16/2016] [Indexed: 11/27/2022]
|
49
|
Araneda R, Renier LA, Rombaux P, Cuevas I, De Volder AG. Cortical Plasticity and Olfactory Function in Early Blindness. Front Syst Neurosci 2016; 10:75. [PMID: 27625596 PMCID: PMC5003898 DOI: 10.3389/fnsys.2016.00075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/17/2016] [Indexed: 11/13/2022] Open
Abstract
Over the last decade, functional brain imaging has provided insight to the maturation processes and has helped elucidate the pathophysiological mechanisms involved in brain plasticity in the absence of vision. In case of congenital blindness, drastic changes occur within the deafferented “visual” cortex that starts receiving and processing non visual inputs, including olfactory stimuli. This functional reorganization of the occipital cortex gives rise to compensatory perceptual and cognitive mechanisms that help blind persons achieve perceptual tasks, leading to superior olfactory abilities in these subjects. This view receives support from psychophysical testing, volumetric measurements and functional brain imaging studies in humans, which are presented here.
Collapse
Affiliation(s)
- Rodrigo Araneda
- Institute of Neuroscience (IoNS), Université catholique de Louvain Brussels, Belgium
| | - Laurent A Renier
- Institute of Neuroscience (IoNS), Université catholique de Louvain Brussels, Belgium
| | - Philippe Rombaux
- Institute of Neuroscience (IoNS), Université catholique de LouvainBrussels, Belgium; Department of Otorhinolaryngology, Cliniques Universitaires Saint-LucBrussels, Belgium
| | - Isabel Cuevas
- Laboratorio de Neurociencias, Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso Valparaíso, Chile
| | - Anne G De Volder
- Institute of Neuroscience (IoNS), Université catholique de Louvain Brussels, Belgium
| |
Collapse
|
50
|
Thaler L, Goodale MA. Echolocation in humans: an overview. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2016; 7:382-393. [PMID: 27538733 DOI: 10.1002/wcs.1408] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 01/08/2023]
Abstract
Bats and dolphins are known for their ability to use echolocation. They emit bursts of sounds and listen to the echoes that bounce back to detect the objects in their environment. What is not as well-known is that some blind people have learned to do the same thing, making mouth clicks, for example, and using the returning echoes from those clicks to sense obstacles and objects of interest in their surroundings. The current review explores some of the research that has examined human echolocation and the changes that have been observed in the brains of echolocation experts. We also discuss potential applications and assistive technology based on echolocation. Blind echolocation experts can sense small differences in the location of objects, differentiate between objects of various sizes and shapes, and even between objects made of different materials, just by listening to the reflected echoes from mouth clicks. It is clear that echolocation may enable some blind people to do things that are otherwise thought to be impossible without vision, potentially providing them with a high degree of independence in their daily lives and demonstrating that echolocation can serve as an effective mobility strategy in the blind. Neuroimaging has shown that the processing of echoes activates brain regions in blind echolocators that would normally support vision in the sighted brain, and that the patterns of these activations are modulated by the information carried by the echoes. This work is shedding new light on just how plastic the human brain is. WIREs Cogn Sci 2016, 7:382-393. doi: 10.1002/wcs.1408 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Lore Thaler
- Department of Psychology, Durham University, Durham, UK.
| | - Melvyn A Goodale
- The Brain and Mind Institute, Department of Psychology, University of Western Ontario, Ontario, Canada
| |
Collapse
|