1
|
Lissek T. Enhancement of physiology via adaptive transcription. Pflugers Arch 2025; 477:187-199. [PMID: 39482558 PMCID: PMC11761519 DOI: 10.1007/s00424-024-03037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/30/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
The enhancement of complex physiological functions such as cognition and exercise performance in healthy individuals represents a challenging goal. Adaptive transcription programs that are naturally activated in animals to mediate cellular plasticity in response to stimulation can be leveraged to enhance physiological function above wild-type levels in young organisms and counteract complex functional decline in aging. In processes such as learning and memory and exercise-dependent muscle remodeling, a relatively small number of molecules such as certain stimulus-responsive transcription factors and immediate early genes coordinate widespread changes in cellular physiology. Adaptive transcription can be targeted by various methods including pharmaceutical compounds and gene transfer technologies. Important problems for leveraging adaptive transcription programs for physiological enhancement include a better understanding of their dynamical organization, more precise methods to influence the underlying molecular components, and the integration of adaptive transcription into multi-scale physiological enhancement concepts.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Denier N, Grieder M, Jann K, Breit S, Mertse N, Walther S, Soravia LM, Meyer A, Federspiel A, Wiest R, Bracht T. Analyzing fractal dimension in electroconvulsive therapy: Unraveling complexity in structural and functional neuroimaging. Neuroimage 2024; 297:120671. [PMID: 38901774 DOI: 10.1016/j.neuroimage.2024.120671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Numerous studies show that electroconvulsive therapy (ECT) induces hippocampal neuroplasticity, but findings are inconsistent regarding its clinical relevance. This study aims to investigate ECT-induced plasticity of anterior and posterior hippocampi using mathematical complexity measures in neuroimaging, namely Higuchi's fractal dimension (HFD) for fMRI time series and the fractal dimension of cortical morphology (FD-CM). Furthermore, we explore the potential of these complexity measures to predict ECT treatment response. METHODS Twenty patients with a current depressive episode (16 with major depressive disorder and 4 with bipolar disorder) underwent MRI-scans before and after an ECT-series. Twenty healthy controls matched for age and sex were also scanned twice for comparison purposes. Resting-state fMRI data were processed, and HFD was computed for anterior and posterior hippocampi. Group-by-time effects for HFD in anterior and posterior hippocampi were calculated and correlations between HFD changes and improvement in depression severity were examined. For FD-CM analyses, we preprocessed structural MRI with CAT12's surface-based methods. We explored group-by-time effects for FD-CM and the predictive value of baseline HFD and FD-CM for treatment outcome. RESULTS Patients exhibited a significant increase in bilateral hippocampal HFD from baseline to follow-up scans. Right anterior hippocampal HFD increase was associated with reductions in depression severity. We found no group differences and group-by-time effects in FD-CM. After applying a whole-brain regression analysis, we found that baseline FD-CM in the left temporal pole predicted reduction of overall depression severity after ECT. Baseline hippocampal HFD did not predict treatment outcome. CONCLUSION This study suggests that HFD and FD-CM are promising imaging markers to investigate ECT-induced neuroplasticity associated with treatment response.
Collapse
Affiliation(s)
- Niklaus Denier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| | - Matthias Grieder
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Kay Jann
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Sigrid Breit
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Nicolas Mertse
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Leila M Soravia
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Agnes Meyer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland; Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland; Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
3
|
Otsubo K, Sakashita N, Nishimoto Y, Sato Y, Tsutsui T, Kobayashi K, Suzuki K, Segi-Nishida E. Role of desmoplakin in supporting neuronal activity, neurogenic processes, and emotional-related behaviors in the dentate gyrus. Front Neurosci 2024; 18:1418058. [PMID: 39176381 PMCID: PMC11339875 DOI: 10.3389/fnins.2024.1418058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Desmoplakin (Dsp) is a component of desmosomal cell-cell junctions that interacts with the cadherin complex and cytoskeletal intermediate filaments. In addition to its function as an adhesion component, Dsp is involved in various biological processes, such as gene expression, differentiation, and migration. Dsp is specifically expressed in the hippocampal dentate gyrus (DG) in the central nervous system. However, it is unclear how Dsp impacts hippocampal function and its related behaviors. Using an adeno-associated virus knockdown system in mice, we provide evidence that Dsp in the DG maintains hippocampal functions, including neuronal activity and adult neurogenesis, and contributes to anxiolytic-like effects. Dsp protein is mostly localized in mature granule cells in the adult DG. Dsp knockdown in the DG resulted in a lowered expression of an activity-dependent transcription factor FosB, and an increased expression of mature neuronal markers, such as calbindin. In addition, the suppression of Dsp decreases serotonin responsiveness at the DG output mossy fiber synapses and alters adult neurogenic processes in the subgranular zone of the DG. Moreover, DG-specific Dsp knockdown mice showed an increase in anxiety-like behaviors. Taken together, this research uncovers an unexplored function for Dsp in the central nervous system and suggests that Dsp in the DG may function as a regulator to maintain proper neuronal activation and adult neurogenesis, and contribute to the adaptation of emotion-related behavior.
Collapse
Affiliation(s)
- Keisuke Otsubo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Naoko Sakashita
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Yuki Nishimoto
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Yo Sato
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Takehisa Tsutsui
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Katsunori Kobayashi
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kanzo Suzuki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Eri Segi-Nishida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
4
|
Deng ZD, Robins PL, Regenold W, Rohde P, Dannhauer M, Lisanby SH. How electroconvulsive therapy works in the treatment of depression: is it the seizure, the electricity, or both? Neuropsychopharmacology 2024; 49:150-162. [PMID: 37488281 PMCID: PMC10700353 DOI: 10.1038/s41386-023-01677-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
We have known for nearly a century that triggering seizures can treat serious mental illness, but what we do not know is why. Electroconvulsive Therapy (ECT) works faster and better than conventional pharmacological interventions; however, those benefits come with a burden of side effects, most notably memory loss. Disentangling the mechanisms by which ECT exerts rapid therapeutic benefit from the mechanisms driving adverse effects could enable the development of the next generation of seizure therapies that lack the downside of ECT. The latest research suggests that this goal may be attainable because modifications of ECT technique have already yielded improvements in cognitive outcomes without sacrificing efficacy. These modifications involve changes in how the electricity is administered (both where in the brain, and how much), which in turn impacts the characteristics of the resulting seizure. What we do not completely understand is whether it is the changes in the applied electricity, or in the resulting seizure, or both, that are responsible for improved safety. Answering this question may be key to developing the next generation of seizure therapies that lack these adverse side effects, and ushering in novel interventions that are better, faster, and safer than ECT.
Collapse
Affiliation(s)
- Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Pei L Robins
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - William Regenold
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Paul Rohde
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Moritz Dannhauer
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Zhang T, Tang X, Wei Y, Xu L, Hu Y, Cui H, Zeng J, Ye J, Xie Y, Tang Y, Liu H, Chen T, Li C, Liu X, Wang J. Serum angioneurin levels following electroconvulsive therapy for mood disorders. Bipolar Disord 2023; 25:671-682. [PMID: 36871135 DOI: 10.1111/bdi.13317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
OBJECTIVES The efficacy of electroconvulsive therapy (ECT) in treating mood disorders (MDs) is hypothesized to be mediated by the induction of neurotrophic factors (denoted "angioneurins") that trigger neuronal plasticity. This study aimed to assess the effects of ECT on serum angioneurin levels in patients with MD. METHODS A total of 110 patients with MDs including 30 with unipolar depression, 25 with bipolar depression (BD), 55 with bipolar mania (BM), and 50 healthy controls were included in the study. Patients were subdivided into two groups: those who received ECT + medication (12 ECT sessions) and those who received only medication (no-ECT). Depressive and manic symptom assessments and measurements of vascular endothelial growth factor (VEGF), fibroblast growth factor-2, nerve growth factor (NGF), and insulin-like growth factor-1 levels in blood samples were performed at baseline and week 8. RESULTS Patients in the ECT group, specifically those with BD and BM, had significantly increased levels of VEGF compared to their baseline VEGF levels (p = 0.002). No significant changes in angioneurin levels were observed in the no-ECT group. Serum NGF levels were significantly associated with a reduction in depressive symptoms. Angioneurin levels were not associated with manic symptom reduction. CONCLUSIONS This study hints that ECT may increase VEGF levels with angiogenic mechanisms that amplify NGF signaling to promote neurogenesis. It may also contribute to changes in brain function and emotional regulation. However, further animal experiments and clinical validation are needed.
Collapse
Affiliation(s)
- TianHong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - XiaoChen Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - YanYan Wei
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - LiHua Xu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - YeGang Hu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - HuiRu Cui
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - JiaHui Zeng
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - JiaYi Ye
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - YuOu Xie
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - YingYing Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - HaiChun Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Chen
- Big Data Research Lab, University of Waterloo, Waterloo, Ontario, Canada
- Labor and Worklife Program, Harvard University, Cambridge, Massachusetts, USA
| | - ChunBo Li
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - XiaoHua Liu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - JiJun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
- Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, PR China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
6
|
Nelson ED, Maynard KR, Nicholas KR, Tran MN, Divecha HR, Collado-Torres L, Hicks SC, Martinowich K. Activity-regulated gene expression across cell types of the mouse hippocampus. Hippocampus 2023; 33:1009-1027. [PMID: 37226416 PMCID: PMC11129873 DOI: 10.1002/hipo.23548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 05/26/2023]
Abstract
Activity-regulated gene (ARG) expression patterns in the hippocampus (HPC) regulate synaptic plasticity, learning, and memory, and are linked to both risk and treatment responses for many neuropsychiatric disorders. The HPC contains discrete classes of neurons with specialized functions, but cell type-specific activity-regulated transcriptional programs are not well characterized. Here, we used single-nucleus RNA-sequencing (snRNA-seq) in a mouse model of acute electroconvulsive seizures (ECS) to identify cell type-specific molecular signatures associated with induced activity in HPC neurons. We used unsupervised clustering and a priori marker genes to computationally annotate 15,990 high-quality HPC neuronal nuclei from N = 4 mice across all major HPC subregions and neuron types. Activity-induced transcriptomic responses were divergent across neuron populations, with dentate granule cells being particularly responsive to activity. Differential expression analysis identified both upregulated and downregulated cell type-specific gene sets in neurons following ECS. Within these gene sets, we identified enrichment of pathways associated with varying biological processes such as synapse organization, cellular signaling, and transcriptional regulation. Finally, we used matrix factorization to reveal continuous gene expression patterns differentially associated with cell type, ECS, and biological processes. This work provides a rich resource for interrogating activity-regulated transcriptional responses in HPC neurons at single-nuclei resolution in the context of ECS, which can provide biological insight into the roles of defined neuronal subtypes in HPC function.
Collapse
Affiliation(s)
- Erik D. Nelson
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kristen R. Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kyndall R. Nicholas
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Matthew N Tran
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Heena R. Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Stephanie C. Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21205
| |
Collapse
|
7
|
Bioque M, Mac-Dowell KS, Font C, Meseguer A, Macau E, Garcia-Orellana M, Valentí M, Leza JC, Bernardo M. Acute effects of a session of electroconvulsive therapy on brain-derived neurotrophic factor plasma levels. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2023; 16:137-142. [PMID: 32674992 DOI: 10.1016/j.rpsm.2020.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 04/29/2020] [Accepted: 05/22/2020] [Indexed: 11/15/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are neurotrophins that play critical roles in brain neuronal function. Previous studies have established the association between BDNF and NGF signaling and severe mental disorders, but changes in BDNF plasma levels and electroconvulsive therapy (ECT) response are controversial. The aim of his study was to explore the acute effects of a single session of ECT on these neurotrophins signaling. Plasma levels of BDNF and NGF and their tyrosine kinase-type receptors expression in peripheral blood mononuclear cells (PBMCs) were determined before and two hours after a single ECT session in 30 subjects with a severe mental disorder. Two hours after an ECT session we found a statistically significant decrease of BDNF plasma levels (p=0.007). We did not find significant acute effects on NGF plasma levels or receptors expression in PBMCs. We found a significant inverse correlation between the time of convulsion and BDNF plasma levels decrease (r=-0.041, p=0.024). We have identified a decrease in BDNF plasma levels after 2h of a single ECT session. These results indicate the interest for future research in the role of neurotrophins in the response and safety of ECT.
Collapse
Affiliation(s)
- Miquel Bioque
- Barcelona Clínic Schizophrenia Unit, Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en red en salud Mental (CIBERSAM), Departament de Medicina, Universitat de Barcelona, Spain.
| | - Karina S Mac-Dowell
- Department of Pharmacology & Toxicology, Faculty of Medicine, Universidad Complutense de Madrid University, Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN; CIBERSAM, Spain
| | - Cristina Font
- Department of Pharmacology & Toxicology, Faculty of Medicine, Universidad Complutense de Madrid University, Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN; CIBERSAM, Spain
| | - Ana Meseguer
- Barcelona Clínic Schizophrenia Unit, Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona; CIBERSAM, Spain
| | - Elisabet Macau
- Psychiatry Department, Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Marta Garcia-Orellana
- Anesthesiolgy Department, Hospital Clínic de Barcelona, Barcelona; Universitat de Barcelona, Barcelona, Spain
| | - Marc Valentí
- Barcelona Bipolar Disorder Program, Psychatry Department, Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Juan C Leza
- Department of Pharmacology & Toxicology, Faculty of Medicine, Universidad Complutense de Madrid University, Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN; CIBERSAM, Spain.
| | - Miquel Bernardo
- Barcelona Clínic Schizophrenia Unit, Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en red en salud Mental (CIBERSAM), Departament de Medicina, Universitat de Barcelona, Spain
| |
Collapse
|
8
|
Jaggar M, Ghosh S, Janakiraman B, Chatterjee A, Maheshwari M, Dewan V, Hare B, Deb S, Figueiredo D, Duman RS, Vaidya VA. Influence of Chronic Electroconvulsive Seizures on Plasticity-Associated Gene Expression and Perineuronal Nets Within the Hippocampi of Young Adult and Middle-Aged Sprague-Dawley Rats. Int J Neuropsychopharmacol 2023; 26:294-306. [PMID: 36879414 PMCID: PMC10109107 DOI: 10.1093/ijnp/pyad008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Electroconvulsive seizure therapy is often used in both treatment-resistant and geriatric depression. However, preclinical studies identifying targets of chronic electroconvulsive seizure (ECS) are predominantly focused on animal models in young adulthood. Given that putative transcriptional, neurogenic, and neuroplastic mechanisms implicated in the behavioral effects of chronic ECS themselves exhibit age-dependent modulation, it remains unknown whether the molecular and cellular targets of chronic ECS vary with age. METHODS We subjected young adult (2-3 months) and middle-aged (12-13 months), male Sprague Dawley rats to sham or chronic ECS and assessed for despair-like behavior, hippocampal gene expression, hippocampal neurogenesis, and neuroplastic changes in the extracellular matrix, reelin, and perineuronal net numbers. RESULTS Chronic ECS reduced despair-like behavior at both ages, accompanied by overlapping and unique changes in activity-dependent and trophic factor gene expression. Although chronic ECS had a similar impact on quiescent neural progenitor numbers at both ages, the eventual increase in hippocampal progenitor proliferation was substantially higher in young adulthood. We noted a decline in reelin⁺ cell numbers following chronic ECS only in young adulthood. In contrast, an age-invariant, robust dissolution of perineuronal net numbers that encapsulate parvalbumin⁺ neurons in the hippocampus were observed following chronic ECS. CONCLUSION Our findings indicate that age is a key variable in determining the nature of chronic ECS-evoked molecular and cellular changes in the hippocampus. This raises the intriguing possibility that chronic ECS may recruit distinct, as well as overlapping, mechanisms to drive antidepressant-like behavioral changes in an age-dependent manner.
Collapse
Affiliation(s)
- Minal Jaggar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shreya Ghosh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Balaganesh Janakiraman
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ashmita Chatterjee
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Megha Maheshwari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Vani Dewan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Brendan Hare
- Division of Molecular Psychiatry, Department of Psychiatry and Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sukrita Deb
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Dwight Figueiredo
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ronald S Duman
- Division of Molecular Psychiatry, Department of Psychiatry and Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
9
|
Deyama S, Kaneda K. Role of neurotrophic and growth factors in the rapid and sustained antidepressant actions of ketamine. Neuropharmacology 2023; 224:109335. [PMID: 36403852 DOI: 10.1016/j.neuropharm.2022.109335] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
The neurotrophic hypothesis of depression proposes that reduced levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) contribute to neuronal atrophy or loss in the prefrontal cortex (PFC) and hippocampus and impaired hippocampal adult neurogenesis, which are associated with depressive symptoms. Chronic, but acute, treatment with typical monoaminergic antidepressants can at least partially reverse these deficits, in part via induction of BDNF and/or VEGF expression, consistent with their delayed onset of action. Ketamine, an N-methyl-d-aspartate receptor antagonist, exerts rapid and sustained antidepressant effects. Rodent studies have revealed that ketamine rapidly increases BDNF and VEGF release and/or expression in the PFC and hippocampus, which in turn increases the number and function of spine synapses in the PFC and hippocampal neurogenesis. Ketamine also induces the persistent release of insulin-like growth factor 1 (IGF-1) in the PFC of male mice. These neurotrophic effects of ketamine are associated with its rapid and sustained antidepressant effects. In this review, we first provide an overview of the neurotrophic hypothesis of depression and then discuss the role of BDNF, VEGF, IGF-1, and other growth factors (IGF-2 and transforming growth factor-β1) in the antidepressant effects of ketamine and its enantiomers. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| |
Collapse
|
10
|
Murck H, Lehr L, Jezova D. A viewpoint on aldosterone and BMI related brain morphology in relation to treatment outcome in patients with major depression. J Neuroendocrinol 2023; 35:e13219. [PMID: 36539978 DOI: 10.1111/jne.13219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
An abundance of knowledge has been collected describing the involvement of neuroendocrine parameters in major depression. The hypothalamic-pituitary-adrenocortical (HPA) axis regulating cortisol release has been extensively studied; however, attempts to target the HPA axis pharmacologically to treat major depression have failed. This review focuses on the importance of the adrenocortical stress hormone aldosterone, which is released by adrenocorticotropic hormone and angiotensin, and the mineralocorticoid receptor (MR) in depression. Depressed patients, in particular those with atypical depression, have signs of central hyperactivation of the aldosterone sensitive MR, potentially as a consequence of a reactive aldosterone release induced by low blood pressure and as a result of low sensitivity of peripheral MR. This is reflected in reduced heart rate variability, increased salt appetite and sleep changes in this group of patients. In addition, enlarged brain ventricles, compressed corpus callosum and changes of the choroid plexus are associated with increased aldosterone (in relation to cortisol). Furthermore, subjects with these features often show obesity. These characteristics are related to a worse antidepressant treatment outcome. Alterations in choroid plexus function as a consequence of increased aldosterone levels, autonomic dysregulation, metabolic changes and/or inflammation may be involved. The characterization of this regulatory system is in its early days but may identify new targets for therapeutic interventions.
Collapse
Affiliation(s)
- Harald Murck
- Philipps-University Marburg, Marburg, Germany
- Murck-Neuroscience LLC Westfield, Westfield, NJ, USA
| | - Lisa Lehr
- Department of Nephrology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Daniela Jezova
- Slovak Academy of Sciences, Biomedical Research Center, Institute of Experimental Endocrinology, Bratislava, Slovakia
| |
Collapse
|
11
|
Suseelan S, Pinna G. Heterogeneity in major depressive disorder: The need for biomarker-based personalized treatments. Adv Clin Chem 2022; 112:1-67. [PMID: 36642481 DOI: 10.1016/bs.acc.2022.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Major Depressive Disorder (MDD) or depression is a pathological mental condition affecting millions of people worldwide. Identification of objective biological markers of depression can provide for a better diagnostic and intervention criteria; ultimately aiding to reduce its socioeconomic health burden. This review provides a comprehensive insight into the major biomarker candidates that have been implicated in depression neurobiology. The key biomarker categories are covered across all the "omics" levels. At the epigenomic level, DNA-methylation, non-coding RNA and histone-modifications have been discussed in relation to depression. The proteomics system shows great promise with inflammatory markers as well as growth factors and neurobiological alterations within the endocannabinoid system. Characteristic lipids implicated in depression together with the endocrine system are reviewed under the metabolomics section. The chapter also examines the novel biomarkers for depression that have been proposed by studies in the microbiome. Depression affects individuals differentially and explicit biomarkers identified by robust research criteria may pave the way for better diagnosis, intervention, treatment, and prediction of treatment response.
Collapse
Affiliation(s)
- Shayam Suseelan
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; UI Center on Depression and Resilience (UICDR), Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
12
|
Elfving B, Liebenberg N, du Jardin K, Sanchez C, Wegener G, Müller HK. Single dose S-ketamine rescues transcriptional dysregulation of Mtor and Nrp2 in the prefrontal cortex of FSL rats 1 hour but not 14 days post dosing. Eur Neuropsychopharmacol 2022; 65:56-67. [PMID: 36375239 DOI: 10.1016/j.euroneuro.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/20/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022]
Abstract
There is a pressing need to identify biological indicators of major depression to help guide proper diagnosis and optimize treatment. Animal models mimicking aspects of depression constitute essential tools for early-stage exploration of relevant pathways. In this study, we used the Flinders Sensitive and Resistant Line (FSL/FRL) to explore central and peripheral transcriptional changes in vascular endothelial growth factor (VEGF) pathway genes and their temporal regulation after a single dose of S-ketamine (15 mg/kg). We found that S-ketamine induced both rapid (1 hour) and sustained (2 and 14 days) antidepressant-like effects in the FSL rats. Analysis of mRNA expression revealed significant strain effects of Vegf, Vegf164, Vegfr-1, Nrp1, Nrp2, Rictor, and Raptor in the prefrontal cortex (PFC) and of Vegf164, GbetaL, and Tsc1 in the hippocampus (HIP), which indicates suppression of VEGF signaling in the FSL rats compared to FRL rats. This notion was further substantiated by reduced expression of Vegf and Mtor in plasma from FSL rats. In the brain, S-ketamine induced transcriptional changes in the acute phase, not the sustained phase. There were significant treatment effects of S-ketamine on Vegfr-2 in both PFC and HIP and on Vegf and Vegfr-1 in HIP. Moreover, we found that S-ketamine specifically restored reduced levels of Nrp2 and Mtor in the PFC of the FSL rats. In conclusion, this study substantiates the use of the FRL/FSL rats to explore the depressive-like behavior at the transcriptional level of the VEGF pathway genes and study their regulation in response to various treatment paradigms.
Collapse
Affiliation(s)
- Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark.
| | - Nico Liebenberg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Kristian du Jardin
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Connie Sanchez
- External Sourcing and Scientific Excellence, Lun Research USA, Inc., Paramus, NJ, United States of America
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
13
|
Zhao M, Zheng Z, Li C, Wan J, Wang M. Developmental endothelial locus-1 in cardiovascular and metabolic diseases: A promising biomarker and therapeutic target. Front Immunol 2022; 13:1053175. [PMID: 36518760 PMCID: PMC9742254 DOI: 10.3389/fimmu.2022.1053175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular and metabolic diseases (CVMDs) are a leading cause of death worldwide and impose a major socioeconomic burden on individuals and healthcare systems, underscoring the urgent need to develop new drug therapies. Developmental endothelial locus-1 (DEL-1) is a secreted multifunctional domain protein that can bind to integrins and play an important role in the occurrence and development of various diseases. Recently, DEL-1 has attracted increased interest for its pharmacological role in the treatment and/or management of CVMDs. In this review, we present the current knowledge on the predictive and therapeutic role of DEL-1 in a variety of CVMDs, such as atherosclerosis, hypertension, cardiac remodeling, ischemic heart disease, obesity, and insulin resistance. Collectively, DEL-1 is a promising biomarker and therapeutic target for CVMDs.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Chenfei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China,*Correspondence: Menglong Wang, ; Jun Wan,
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China,*Correspondence: Menglong Wang, ; Jun Wan,
| |
Collapse
|
14
|
Cai H, Du R, Yang K, Li W, Wang Z. Association between electroconvulsive therapy and depressive disorder from 2012 to 2021: Bibliometric analysis and global trends. Front Hum Neurosci 2022; 16:1044917. [DOI: 10.3389/fnhum.2022.1044917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
BackgroundDepressive disorder is a chronic mental illness that is vulnerable to relapse, imposes a huge economic burden on society and patients, and is a major global public health problem. Depressive disorders are characterized by depressed mood, decreased energy and interest, and suicidal ideation and behavior in severe cases. They can be treated through pharmacotherapy and psychotherapy or physical treatments such as electroconvulsive therapy (ECT). In patients with suicidal ideation, behavior, or refractory depressive disorder ECT has a faster onset of action and better efficacy than pharmacotherapy. This study used bibliometric and visual analyses to map the current state of global research on ECT for depressive disorder and to predict future research trends in this area.Materials and methodsA literature search was performed for studies on ECT and depressive disorder in the Web of Science Core Collection (WoSCC) database. All studies considered for this paper were published between 2012 and 2021. Bibliometric and co-occurrence analyses were performed using the CiteSpace software.ResultsIn total, 2,184 publications were retrieved. The number of publications on ECT and depressive disorder have been increasing since 2012, with China being a emerging hub with a growing influence in the field. Zafiris J. Daskalakis is the top author in terms of number of publications, and The Journal of ECT is not only the most published journal but also the most co-cited journal in the field. Co-occurrence analysis showed that electroconvulsive therapy, treatment-resistant depression, bipolar disorder, hippocampus, efficacy, and electrode placement are current research hotspots. Molecular biomarkers, neuroimaging predictors, and late-life depression will become research hotspots in the future.ConclusionOur analysis made it possible to observe an important growth of the field since 2012, to identify key scientific actors in this growth and to predict hot topics for future research.
Collapse
|
15
|
Karayağmurlu E, Elboğa G, Şahin ŞK, Karayağmurlu A, Taysı S, Ulusal H, Altındağ A. Effects of electroconvulsive therapy on nitrosative stress and oxidative DNA damage parameters in patients with a depressive episode. Int J Psychiatry Clin Pract 2022; 26:259-268. [PMID: 35073501 DOI: 10.1080/13651501.2021.2019788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Few studies have investigated the relationship between electroconvulsive therapy (ECT) and markers of nitrosative stress and oxidative DNA damage. OBJECTIVE The aim of this study is to examine changes in nitrosative stress and oxidative DNA damage in patients with a depressive episode treated with ECT. METHODS The current study included 48 patients with a depressive episode treated with ECT and 30 healthy control participants. First, the serum nitrosative stress markers of nitric oxide (NO•), nitric oxide synthase (NOS), and peroxynitrite (ONOO-) and the oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) were compared between the study and control groups. These parameters were also compared pre- and post-treatment for the study group. RESULTS NO•, NOS, and ONOO- levels were significantly higher in patients with depressive disorder (DD) than in the control group. NO• and NOS levels significantly decreased in the ECT group after treatment while 8-OHdG levels significantly increased. CONCLUSIONS The study findings suggest that ECT may have reduced nitrosative stress levels while increasing oxidative DNA damage. More research is now needed to better understand the issue.KEY POINTSNitrosative stress levels can increase in patients with depressive disorder.Electroconvulsive therapy may reduce nitrosative stress while increasıng oxidative DNA damage.These results suggest that nitrosative stress plays an important role in the mechanism of action of electroconvulsive therapy.
Collapse
Affiliation(s)
- Elif Karayağmurlu
- Department of Psychiatry, Haseki Research and Training Hospital, Istanbul, Turkey
| | - Gülçin Elboğa
- Department of Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Şengül Kocamer Şahin
- Department of Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ali Karayağmurlu
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Seyithan Taysı
- Department of Biochemisty, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Hasan Ulusal
- Department of Biochemisty, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Abdurrahman Altındağ
- Department of Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
16
|
Sathyanesan M, Newton SS. Antidepressant-like effects of trophic factor receptor signaling. Front Mol Neurosci 2022; 15:958797. [PMID: 36081576 PMCID: PMC9445421 DOI: 10.3389/fnmol.2022.958797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
A significant body of research has demonstrated that antidepressants regulate neurotrophic factors and that neurotrophins themselves are capable of independently producing antidepressant-like effects. While brain derived neurotrophic factor (BDNF) remains the best studied molecule in this context, there are several structurally diverse trophic factors that have shown comparable behavioral effects, including basic fibroblast growth factor (FGF-2), insulin-like growth factor 1 (IGF-1) and vascular endothelial growth factor (VEGF). In this review we discuss the structural and biochemical signaling aspects of these neurotrophic factors with antidepressant activity. We also include a discussion on a cytokine molecule erythropoietin (EPO), widely known and prescribed as a hormone to treat anemia but has recently been shown to function as a neurotrophic factor in the central nervous system (CNS).
Collapse
|
17
|
An X, Wang Y. Electroconvulsive shock increases neurotrophy and neurogenesis: Time course and treatment session effects. Psychiatry Res 2022; 309:114390. [PMID: 35063747 DOI: 10.1016/j.psychres.2022.114390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 10/19/2022]
Abstract
Increasing evidence suggests that hippocampal neurotrophy may be related to the development of major depressive disorders. Neurogenesis, which can be regulated by neurotrophic factors, is also involved in antidepressant efficacy. This paper reviewed literature on neurotrophic signaling and cell proliferation after electroconvulsive shock (ECS) treatment. All articles were from PubMed, Web of Science, and Scopus databases between 2000 and 2020. The keywords used in the literature search are: "ECS," "ECT," "electroconvulsive seizure," "electroconvulsive shock," "electroconvulsive therapy," "neurotrophic factor," "nerve growth factor," "neurotrophins," "neurogenesis," and "cell proliferation." Eighty-two articles were included in the final analysis. It was shown that compared with acute ECS, repeated ECS increased neurotrophin expression in more brain regions at higher levels and was maintained for a longer time. Similarly, ECS increased cell proliferation in a dose- and time-dependent manner. The increase in cell proliferation was positively correlated with the amount of ECS administered and the newly born cells survived for a long time. The effects of ECS in inducing increases in neurotrophin levels and neurogenesis may contribute to brain function changes and antidepressant effects. Future research may focus on optimal sessions of ECT treatment to obtain the best therapeutic effect.
Collapse
Affiliation(s)
- Xianli An
- School of Educational Science, Yangzhou University, Yangzhou, JiangSu Province, China.
| | - Yaqing Wang
- School of Educational Science, Yangzhou University, Yangzhou, JiangSu Province, China
| |
Collapse
|
18
|
Maffioletti E, Carvalho Silva R, Bortolomasi M, Baune BT, Gennarelli M, Minelli A. Molecular Biomarkers of Electroconvulsive Therapy Effects and Clinical Response: Understanding the Present to Shape the Future. Brain Sci 2021; 11:brainsci11091120. [PMID: 34573142 PMCID: PMC8471796 DOI: 10.3390/brainsci11091120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/28/2022] Open
Abstract
Electroconvulsive therapy (ECT) represents an effective intervention for treatment-resistant depression (TRD). One priority of this research field is the clarification of ECT response mechanisms and the identification of biomarkers predicting its outcomes. We propose an overview of the molecular studies on ECT, concerning its course and outcome prediction, including also animal studies on electroconvulsive seizures (ECS), an experimental analogue of ECT. Most of these investigations underlie biological systems related to major depressive disorder (MDD), such as the neurotrophic and inflammatory/immune ones, indicating effects of ECT on these processes. Studies about neurotrophins, like the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF), have shown evidence concerning ECT neurotrophic effects. The inflammatory/immune system has also been studied, suggesting an acute stress reaction following an ECT session. However, at the end of the treatment, ECT produces a reduction in inflammatory-associated biomarkers such as cortisol, TNF-alpha and interleukin 6. Other biological systems, including the monoaminergic and the endocrine, have been sparsely investigated. Despite some promising results, limitations exist. Most of the studies are concentrated on one or few markers and many studies are relatively old, with small sample sizes and methodological biases. Expression studies on gene transcripts and microRNAs are rare and genetic studies are sparse. To date, no conclusive evidence regarding ECT molecular markers has been reached; however, the future may be just around the corner.
Collapse
Affiliation(s)
- Elisabetta Maffioletti
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.M.); (R.C.S.); (M.G.)
| | - Rosana Carvalho Silva
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.M.); (R.C.S.); (M.G.)
| | | | - Bernhard T. Baune
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany;
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Parkville, VIC 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.M.); (R.C.S.); (M.G.)
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.M.); (R.C.S.); (M.G.)
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Correspondence: ; Tel.: +39-030-3717255; Fax: +39-030-3701157
| |
Collapse
|
19
|
Sorri A, Järventausta K, Kampman O, Lehtimäki K, Björkqvist M, Tuohimaa K, Hämäläinen M, Moilanen E, Leinonen E. Electroconvulsive therapy increases temporarily plasma vascular endothelial growth factor in patients with major depressive disorder. Brain Behav 2021; 11:e02001. [PMID: 34342142 PMCID: PMC8413728 DOI: 10.1002/brb3.2001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/05/2020] [Accepted: 12/02/2020] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Vascular endothelial growth factor (VEGF) has been related to the etiology of major depressive disorder (MDD). The findings involving the effects of electroconvulsive therapy (ECT) on the VEGF levels have been conflicting. The aim was to examine the possible changes in the VEGF levels and their associations with clinical outcome in patients with MDD during ECT. METHODS The study comprised 30 patients suffering from MDD. Their plasma VEGF levels were measured at baseline and 2 and 4 hr after the first, fifth, and last ECT session. The severity of depression was quantified by the Montgomery-Asberg Depression Rating Scale (MADRS). RESULTS The VEGF levels increased between the 2-hr and 4-hr measurements during the first (p = .003) and the fifth (p = .017) sessions. The baseline VEGF levels between individual ECT sessions remained unchanged during the ECT series. No correlations were found between the increased VEGF levels and the clinical outcome. CONCLUSIONS Electroconvulsive therapy increased the VEGF levels repeatedly at the same time point in two different ECT sessions. These increases had no association with the response to ECT. Consequently, VEGF may act as a mediator in the mechanism of action of ECT.
Collapse
Affiliation(s)
- Annamari Sorri
- Department of PsychiatryTampere University HospitalTampereFinland
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Kaija Järventausta
- Department of PsychiatryTampere University HospitalTampereFinland
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Olli Kampman
- Department of PsychiatryTampere University HospitalTampereFinland
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Kai Lehtimäki
- Department of Neurosurgery, Neurology and RehabilitationTampere University HospitalTampereFinland
| | - Minna Björkqvist
- Department of PsychiatryTampere University HospitalTampereFinland
| | - Kati Tuohimaa
- Department of PsychiatryTampere University HospitalTampereFinland
| | - Mari Hämäläinen
- The Immunopharmacology Research GroupFaculty of Medicine and Health TechnologyTampere University and Tampere University HospitalTampereFinland
| | - Eeva Moilanen
- The Immunopharmacology Research GroupFaculty of Medicine and Health TechnologyTampere University and Tampere University HospitalTampereFinland
| | - Esa Leinonen
- Department of PsychiatryTampere University HospitalTampereFinland
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| |
Collapse
|
20
|
An evidence update on the protective mechanism of tangeretin against neuroinflammation based on network pharmacology prediction and transcriptomic analysis. Eur J Pharmacol 2021; 906:174094. [PMID: 34087222 DOI: 10.1016/j.ejphar.2021.174094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 01/05/2023]
Abstract
Although the protective effects of tangeretin on neuroinflammation have been proven in cell and animal experiments, few studies explore its underlying molecular mechanism. In this study, we used the network pharmacology method combined with the transcriptome approach to investigate its underlying anti-inflammatory mechanism in human microglial cells. Based on network pharmacology analysis, four putative target proteins and ten potential pathways were identified. Among them, vascular endothelial growth factor A (VEGFA), epidermal growth factor receptor (EGFR) and the related phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), the mitogen-activated protein kinase (MAPK), mechanistic target of rapamycin (mTOR) signaling pathway were well-supported by transcriptome data. Meanwhile, transcriptome analysis supplemented two crucial targets: the insulin receptor (InsR) and insulin-like growth factor-I (IGF-1) receptor. Subsequently, VEGFA, EGFR, IGF-1 receptor, and InsR were further verified on the protein level. Taken together, we assumed that tangeretin could exert protective effects on neuroinflammation by decreasing the expression of VEGFA, EGFR, InsR, and IGF-1 receptor in the PI3K-AKT, MAPK, mTOR signaling pathway. More importantly, it is for the first time to show that the anti-neuroinflammatory effects of tangeretin through VEGFA, EGFR, IGF-1 receptor, InsR, and mTOR signaling pathway. These works offer new insight into the anti-neuroinflammatory functions of tangeretin and propose novel information on further anti-inflammatory mechanism studies.
Collapse
|
21
|
Park MJ, Kim H, Kim EJ, Yook V, Chung IW, Lee SM, Jeon HJ. Recent Updates on Electro-Convulsive Therapy in Patients with Depression. Psychiatry Investig 2021; 18:1-10. [PMID: 33321557 PMCID: PMC7897863 DOI: 10.30773/pi.2020.0350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Electro-convulsive therapy (ECT) has been established as a treatment modality for patients with treatment-resistant depression and with some specific subtypes of depression. This narrative review intends to provide psychiatrists with the latest findings on the use of ECT in depression, devided into total eight sub-topics. METHODS We searched PubMed for English-language articles using combined keywords and tried to analyze journals published from 1995-2020. RESULTS Pharmacotherapy such as antidepressants or maintenance ECT is more effective than a placebo as prevention of recurrence after ECT. The use of ECT in treatment-resistant depression, depressed patients with suicidal risks, elderly depression, bipolar depression, psychotic depression, and depression during pregnancy or postpartum have therapeutic benefits. As possible mechanisms of ECT, the role of neurotransmitters such as serotonin, dopamine, gamma-aminobutyric acid (GABA), and other findings in the field of neurophysiology, neuro-immunology, and neurogenesis are also supported. CONCLUSION ECT is evolving toward reducing cognitive side effects and maximizing therapeutic effects. If robust evidence for ECT through randomized controlled studies are more established and the mechanism of ECT gets further clarified, the scope of its use in the treatment of depression will be more expanded in the future.
Collapse
Affiliation(s)
- Mi Jin Park
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyewon Kim
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun Ji Kim
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Vidal Yook
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - In Won Chung
- Department of Psychiatry and Electroconvulsive Therapy Center, Dongguk University International Hospital, Goyang, Republic of Korea
| | - Sang Min Lee
- Department of Psychiatry, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences & Technology, Department of Medical Device Management & Research, and Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Abstract
Chronic alcohol consumption results in alcohol use disorder (AUD). Interestingly, however, sudden alcohol withdrawal (AW) after chronic alcohol exposure also leads to a devastating series of symptoms, referred to as alcohol withdrawal syndromes. One key feature of AW syndromes is to produce phenotypes that are opposite to AUD. For example, while the brain is characterized by a hypoactive state in the presence of alcohol, AW induces a hyperactive state, which is manifested as seizure expression. In this review, we discuss the idea that hippocampal neurogenesis and neural circuits play a key role in neuroadaptation and establishment of allostatic states in response to alcohol exposure and AW. The intrinsic properties of dentate granule cells (DGCs), and their contribution to the formation of a potent feedback inhibitory loop, endow the dentate gyrus with a "gate" function, which can limit the entry of excessive excitatory signals from the cortex into the hippocampus. We discuss the possibility that alcohol exposure and withdrawal disrupts structural development and circuitry integration of hippocampal newborn neurons, and that this altered neurogenesis impairs the gate function of the hippocampus. Failure of this gate function is expected to alter the ratio of excitatory to inhibitory (E/I) signals in the hippocampus and to induce seizure expression during AW. Recent functional studies have shown that specific activation and inhibition of hippocampal newborn DGCs are both necessary and sufficient for the expression of AW-associated seizures, further supporting the concept that neurogenesis-induced neuroadaptation is a critical target to understand and treat AUD and AW-associated seizures.
Collapse
Affiliation(s)
- Sreetama Basu
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
| | - Hoonkyo Suh
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
23
|
Huang JB, Hsu SP, Pan HY, Chen SD, Chen SF, Lin TK, Liu XP, Li JH, Chen NC, Liou CW, Hsu CY, Chuang HY, Chuang YC. Peroxisome Proliferator-Activated Receptor γ Coactivator 1α Activates Vascular Endothelial Growth Factor That Protects Against Neuronal Cell Death Following Status Epilepticus through PI3K/AKT and MEK/ERK Signaling. Int J Mol Sci 2020; 21:ijms21197247. [PMID: 33008083 PMCID: PMC7583914 DOI: 10.3390/ijms21197247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Status epilepticus may cause molecular and cellular events, leading to hippocampal neuronal cell death. Peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) is an important regulator of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2), also known as fetal liver kinase receptor 1 (Flk-1). Resveratrol is an activator of PGC-1α. It has been suggested to provide neuroprotective effects in epilepsy, stroke, and neurodegenerative diseases. In the present study, we used microinjection of kainic acid into the left hippocampal CA3 region in Sprague Dawley rats to induce bilateral prolonged seizure activity. Upregulating the PGC-1α pathway will increase VEGF/VEGFR2 (Flk-1) signaling and further activate some survival signaling that includes the mitogen activated protein kinase kinase (MEK)/mitogen activated protein kinase (ERK) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways and offer neuroprotection as a consequence of apoptosis in the hippocampal neurons following status epilepticus. Otherwise, downregulation of PGC-1α by siRNA against pgc-1α will inhibit VEGF/VEGFR2 (Flk-1) signaling and suppress pro-survival PI3K/AKT and MEK/ERK pathways that are also accompanied by hippocampal CA3 neuronal cell apoptosis. These results may indicate that the PGC-1α induced VEGF/VEGFR2 pathway may trigger the neuronal survival signaling, and the PI3K/AKT and MEK/ERK signaling pathways. Thus, the axis of PGC-1α/VEGF/VEGFR2 (Flk-1) and the triggering of downstream PI3K/AKT and MEK/ERK signaling could be considered an endogenous neuroprotective effect against apoptosis in the hippocampus following status epilepticus.
Collapse
Affiliation(s)
- Jyun-Bin Huang
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (J.-B.H.); (H.-Y.P.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (S.-D.C.); (S.-F.C.); (T.-K.L.); (N.-C.C.); (C.-W.L.)
| | - Shih-Pin Hsu
- Department of Neurology, E-Da Hospital/School of Medicine, I-Shou University, Kaohsiung 824, Taiwan;
| | - Hsiu-Yung Pan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (J.-B.H.); (H.-Y.P.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (S.-D.C.); (S.-F.C.); (T.-K.L.); (N.-C.C.); (C.-W.L.)
| | - Shang-Der Chen
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (S.-D.C.); (S.-F.C.); (T.-K.L.); (N.-C.C.); (C.-W.L.)
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (X.-P.L.); (J.-H.L.)
| | - Shu-Fang Chen
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (S.-D.C.); (S.-F.C.); (T.-K.L.); (N.-C.C.); (C.-W.L.)
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Tsu-Kung Lin
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (S.-D.C.); (S.-F.C.); (T.-K.L.); (N.-C.C.); (C.-W.L.)
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Xuan-Ping Liu
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (X.-P.L.); (J.-H.L.)
| | - Jie-Hau Li
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (X.-P.L.); (J.-H.L.)
| | - Nai-Ching Chen
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (S.-D.C.); (S.-F.C.); (T.-K.L.); (N.-C.C.); (C.-W.L.)
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chia-Wei Liou
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (S.-D.C.); (S.-F.C.); (T.-K.L.); (N.-C.C.); (C.-W.L.)
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chung-Yao Hsu
- Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Hung-Yi Chuang
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital and School of Public Health, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yao-Chung Chuang
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (S.-D.C.); (S.-F.C.); (T.-K.L.); (N.-C.C.); (C.-W.L.)
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (X.-P.L.); (J.-H.L.)
- Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence:
| |
Collapse
|
24
|
Elahi H, Hong V, Ploski JE. Electroconvulsive Shock Does Not Impair the Reconsolidation of Cued and Contextual Pavlovian Threat Memory. Int J Mol Sci 2020; 21:ijms21197072. [PMID: 32992904 PMCID: PMC7582782 DOI: 10.3390/ijms21197072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Existing memories, when retrieved under certain circumstances, can undergo modification through the protein synthesis-dependent process of reconsolidation. Disruption of this process can lead to the weakening of a memory trace, an approach which is being examined as a potential treatment for disorders characterized by pathological memories, such as Post-Traumatic Stress Disorder. The success of this approach relies upon the ability to robustly attenuate reconsolidation; however, the available literature brings into question the reliability of the various drugs used to achieve such a blockade. The identification of a drug or intervention that can reliably disrupt reconsolidation without requiring intracranial access for administration would be extremely useful. Electroconvulsive shock (ECS) delivered after memory retrieval has been demonstrated in some studies to disrupt memory reconsolidation; however, there exists a paucity of literature characterizing its effects on Pavlovian fear memory. Considering this, we chose to examine ECS as an inexpensive and facile means to impair reconsolidation in rats. Here we show that electroconvulsive seizure induction, when administered after memory retrieval, (immediately, after 30 min, or after 1 h), does not impair the reconsolidation of cued or contextual Pavlovian fear memories. On the contrary, ECS administration immediately after extinction training may modestly impair the consolidation of fear extinction memory.
Collapse
|
25
|
Blues in the Brain and Beyond: Molecular Bases of Major Depressive Disorder and Relative Pharmacological and Non-Pharmacological Treatments. Genes (Basel) 2020; 11:genes11091089. [PMID: 32961910 PMCID: PMC7564223 DOI: 10.3390/genes11091089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the extensive research conducted in recent decades, the molecular mechanisms underlying major depressive disorder (MDD) and relative evidence-based treatments remain unclear. Various hypotheses have been successively proposed, involving different biological systems. This narrative review aims to critically illustrate the main pathogenic hypotheses of MDD, ranging from the historical ones based on the monoaminergic and neurotrophic theories, through the subsequent neurodevelopmental, glutamatergic, GABAergic, inflammatory/immune and endocrine explanations, until the most recent evidence postulating a role for fatty acids and the gut microbiota. Moreover, the molecular effects of established both pharmacological and non-pharmacological approaches for MDD are also reviewed. Overall, the existing literature indicates that the molecular mechanisms described in the context of these different hypotheses, rather than representing alternative ones to each other, are likely to contribute together, often with reciprocal interactions, to the development of MDD and to the effectiveness of treatments, and points at the need for further research efforts in this field.
Collapse
|
26
|
Takeuchi C, Ishikawa M, Sawano T, Shin Y, Mizuta N, Hasegawa S, Tanaka R, Tsuboi Y, Nakatani J, Sugiura H, Yamagata K, Tanaka H. Dendritic Spine Density is Increased in Arcadlin-deleted Mouse Hippocampus. Neuroscience 2020; 442:296-310. [DOI: 10.1016/j.neuroscience.2020.06.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/12/2020] [Accepted: 06/26/2020] [Indexed: 11/28/2022]
|
27
|
Fujiki M, Yee KM, Steward O. Non-invasive High Frequency Repetitive Transcranial Magnetic Stimulation (hfrTMS) Robustly Activates Molecular Pathways Implicated in Neuronal Growth and Synaptic Plasticity in Select Populations of Neurons. Front Neurosci 2020; 14:558. [PMID: 32612497 PMCID: PMC7308563 DOI: 10.3389/fnins.2020.00558] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
Patterns of neuronal activity that induce synaptic plasticity and memory storage activate kinase cascades in neurons that are thought to be part of the mechanism for synaptic modification. One such cascade involves induction of phosphorylation of ribosomal protein S6 in neurons due to synaptic activation of AKT/mTOR and via a different pathway, activation of MAP kinase/ERK1/2. Here, we show that phosphorylation of ribosomal protein S6 can also be strongly activated by high frequency repetitive transcranial magnetic stimulation (hfrTMS). HfrTMS was delivered to lightly anesthetized rats using a stimulation protocol that is a standard for inducing LTP in the perforant path in vivo (trains of 8 pulses at 400 Hz repeated at intervals of 1/10 s). Stimulation produced stimulus-locked motor responses but did not elicit behavioral seizures either during or after stimulation. After as little as 10 min of hfrTMS, immunostaining using phospho-specific antibodies for the phosphorylated form of ribosomal protein S6 (rpS6) revealed robust induction of rpS6 phosphorylation in large numbers of neurons in the cortex, especially the piriform cortex, and also in thalamic relay nuclei. Quantification revealed that the extent of the increased immunostaining depended on the number of trains and stimulus intensity. Of note, immunostaining for the immediate early genes Arc and c-fos revealed strong induction of IEG expression in many of the same populations of neurons throughout the cortex, but not the thalamus. These results indicate that hfrTMS can robustly activate molecular pathways critical for plasticity, which may contribute to the beneficial effects of TMS on recovery following brain and spinal cord injury and symptom amelioration in human psychiatric disorders. These molecular processes may be a useful surrogate marker to allow optimization of TMS parameters for maximal therapeutic benefit.
Collapse
Affiliation(s)
- Minoru Fujiki
- Department of Neurosurgery, School of Medicine, Oita University, Oita, Japan
| | - Kelly Matsudaira Yee
- Reeve-Irvine Research Center, University of California, Irvine, Irvine, CA, United States.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California, Irvine, Irvine, CA, United States.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
28
|
Matsuda T, Nakashima K. Natural and forced neurogenesis in the adult brain: Mechanisms and their possible application to treat neurological disorders. Neurosci Res 2020; 166:1-11. [PMID: 32497571 DOI: 10.1016/j.neures.2020.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/17/2023]
Abstract
Neural stem cells (NSCs) in the adult hippocampus generate new neurons via a process referred to as neurogenesis, supporting cognitive functions. Since altered neurogenesis has been reportedly associated with several diseases such as epilepsy, the molecular basis of NSC activity is an important focus in the study of neurogenesis. Furthermore, facilitation of neurogenesis in the injured brain would be an ideal approach to replenish lost neurons for damage recovery. However, natural neurogenesis by endogenous NSCs in the adult brain is insufficient for complete recovery after severe injury. Recent advances in understanding forced neurogenesis from brain-resident non-neuronal cells by direct reprogramming and clearing hurdles to achieve it have improved the ability to replace damaged neurons in the brain. In this review, we describe molecular mechanisms underlying natural and forced neurogenesis, and discuss future directions for treatments of diseases in the central nervous system.
Collapse
Affiliation(s)
- Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
29
|
Walker WH, Borniger JC, Gaudier-Diaz MM, Hecmarie Meléndez-Fernández O, Pascoe JL, Courtney DeVries A, Nelson RJ. Acute exposure to low-level light at night is sufficient to induce neurological changes and depressive-like behavior. Mol Psychiatry 2020; 25:1080-1093. [PMID: 31138889 PMCID: PMC6881534 DOI: 10.1038/s41380-019-0430-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 04/12/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022]
Abstract
The advent and wide-spread adoption of electric lighting over the past century has profoundly affected the circadian organization of physiology and behavior for many individuals in industrialized nations; electric lighting in homes, work environments, and public areas have extended daytime activities into the evening, thus, increasing night-time exposure to light. Although initially assumed to be innocuous, chronic exposure to light at night (LAN) is now associated with increased incidence of cancer, metabolic disorders, and affective problems in humans. However, little is known about potential acute effects of LAN. To determine whether acute exposure to low-level LAN alters brain function, adult male, and female mice were housed in either light days and dark nights (LD; 14 h of 150 lux:10 h of 0 lux) or light days and low level light at night (LAN; 14 h of 150 lux:10 h of 5 lux). Mice exposed to LAN on three consecutive nights increased depressive-like responses compared to mice housed in dark nights. In addition, female mice exposed to LAN increased central tendency in the open field. LAN was associated with reduced hippocampal vascular endothelial growth factor-A (VEGF-A) in both male and female mice, as well as increased VEGFR1 and interleukin-1β mRNA expression in females, and reduced brain derived neurotrophic factor mRNA in males. Further, LAN significantly altered circadian rhythms (activity and temperature) and circadian gene expression in female and male mice, respectively. Altogether, this study demonstrates that acute exposure to LAN alters brain physiology and can be detrimental to well-being in otherwise healthy individuals.
Collapse
Affiliation(s)
- William H Walker
- Department of Medicine, Division of Oncology/Hematology, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Neuroscience Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Jeremy C Borniger
- Department of Neuroscience Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Monica M Gaudier-Diaz
- Department of Neuroscience Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, 27514, USA
| | - O Hecmarie Meléndez-Fernández
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA
- Department of Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
| | - Jordan L Pascoe
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA
- Department of Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
| | - A Courtney DeVries
- Department of Medicine, Division of Oncology/Hematology, West Virginia University, Morgantown, WV, 26506, USA
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA
- Department of Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
| | - Randy J Nelson
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA
- Department of Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
30
|
Wang J, Jiang Y, Tang Y, Xia M, Curtin A, Li J, Sheng J, Zhang T, Li C, Hui L, Zhu H, Biswal BB, Jia Q, Luo C, Wang J. Altered functional connectivity of the thalamus induced by modified electroconvulsive therapy for schizophrenia. Schizophr Res 2020; 218:209-218. [PMID: 31956007 DOI: 10.1016/j.schres.2019.12.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) has been shown to be effective in schizophrenia (SZ), particularly in drug-refractory cases or when rapid symptom relief is needed. However, its precise mechanisms of action remain largely unclear. To clarify the mechanisms underlying modified electroconvulsive therapy (mECT) for SZ, we conducted a longitudinal cohort study evaluating functional connectivity of the thalamus before and after mECT treatment using sub-regions of thalamus as regions of interest (ROIs). METHODS Twenty-one SZ individuals taking only antipsychotics (DSZ group) for 4 weeks and 21 SZ patients receiving a regular course of mECT combining with antipsychotics (MSZ group) were observed in parallel. All patients underwent magnetic resonance imaging scans at baseline (t1) and follow-up (t2, ~4 weeks) time points. Data were compared to a matched healthy control group (HC group) consisting of 23 persons who were only scanned at baseline. Group differences in changes of thalamic functional connectivity between two SZ groups over time, as well as in functional connectivity among two SZ groups and HC group were assessed. RESULTS Significant interaction of group by time was found in functional connectivity of the right thalamus to right putamen during the course of about 4-week treatment. Post-hoc analysis showed a significantly enhanced functional connectivity of the right thalamus to right putamen in the MSZ group contrasting to the DSZ group. In addition, a decreased and an increased functional connectivity of the thalamus to sensory cortex were observed within the MSZ and DSZ group after 4-week treatment trial, respectively. CONCLUSION Our findings suggest that changes in functional connectivity of the thalamus may be associated with the brain mechanisms of mECT for schizophrenia.
Collapse
Affiliation(s)
- Junjie Wang
- Institute of Mental Health, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu 215137, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Yuchao Jiang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China.
| | - Mengqing Xia
- Institute of Mental Health, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu 215137, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Adrian Curtin
- School of Biomedical Engineering & Health Sciences, Drexel University, Philadelphia, PA 19104, USA; Med-X Institute, Shanghai Jiaotong University, Shanghai 200300, China
| | - Jin Li
- Institute of Mental Health, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu 215137, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Jianhua Sheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, China; Brain Science and Technology Research Center, Shanghai Jiaotong University, Shanghai 200030, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, Shanghai 200030, China
| | - Li Hui
- Institute of Mental Health, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu 215137, China
| | - Hongliang Zhu
- Institute of Mental Health, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu 215137, China
| | - Bharat B Biswal
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Qiufang Jia
- Institute of Mental Health, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu 215137, China.
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, China; Brain Science and Technology Research Center, Shanghai Jiaotong University, Shanghai 200030, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, Shanghai 200030, China
| |
Collapse
|
31
|
Kobayashi K, Mikahara Y, Murata Y, Morita D, Matsuura S, Segi-Nishida E, Suzuki H. Predominant Role of Serotonin at the Hippocampal Mossy Fiber Synapse with Redundant Monoaminergic Modulation. iScience 2020; 23:101025. [PMID: 32283526 PMCID: PMC7155202 DOI: 10.1016/j.isci.2020.101025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/08/2020] [Accepted: 03/25/2020] [Indexed: 12/28/2022] Open
Abstract
The hippocampal mossy fiber (MF) synapse has been implicated in the pathophysiology and treatment of psychiatric disorders. Alterations of dopaminergic and serotonergic modulations at this synapse are candidate mechanisms underlying antidepressant and other related treatments. However, these monoaminergic modulations share the intracellular signaling pathway at the MF synapse, which implies redundancy in their functions. We here show that endogenous monoamines can potentiate MF synaptic transmission in mouse hippocampal slices by activating the serotonin 5-HT4 receptor. Dopamine receptors were not effectively activated by endogenous agonists, suggesting that the dopaminergic modulation is latent. Electroconvulsive treatment enhanced the 5-HT4 receptor-mediated serotonergic synaptic potentiation specifically at the MF synapse, increased the hippocampal serotonin content, and produced an anxiolytic-like behavioral effect in a 5-HT4 receptor-dependent manner. These results suggest that serotonin plays a predominant role in monoaminergic modulations at the MF synapse. Augmentation of this serotonergic modulation may mediate anxiolytic effects of electroconvulsive treatment.
Collapse
Affiliation(s)
- Katsunori Kobayashi
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | - Yasunori Mikahara
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Yuka Murata
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Daiki Morita
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Sumire Matsuura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Eri Segi-Nishida
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
32
|
Ousdal OT, Argyelan M, Narr KL, Abbott C, Wade B, Vandenbulcke M, Urretavizcaya M, Tendolkar I, Takamiya A, Stek ML, Soriano-Mas C, Redlich R, Paulson OB, Oudega ML, Opel N, Nordanskog P, Kishimoto T, Kampe R, Jorgensen A, Hanson LG, Hamilton JP, Espinoza R, Emsell L, van Eijndhoven P, Dols A, Dannlowski U, Cardoner N, Bouckaert F, Anand A, Bartsch H, Kessler U, Oedegaard KJ, Dale AM, Oltedal L. Brain Changes Induced by Electroconvulsive Therapy Are Broadly Distributed. Biol Psychiatry 2020; 87:451-461. [PMID: 31561859 DOI: 10.1016/j.biopsych.2019.07.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is associated with volumetric enlargements of corticolimbic brain regions. However, the pattern of whole-brain structural alterations following ECT remains unresolved. Here, we examined the longitudinal effects of ECT on global and local variations in gray matter, white matter, and ventricle volumes in patients with major depressive disorder as well as predictors of ECT-related clinical response. METHODS Longitudinal magnetic resonance imaging and clinical data from the Global ECT-MRI Research Collaboration (GEMRIC) were used to investigate changes in white matter, gray matter, and ventricle volumes before and after ECT in 328 patients experiencing a major depressive episode. In addition, 95 nondepressed control subjects were scanned twice. We performed a mega-analysis of single subject data from 14 independent GEMRIC sites. RESULTS Volumetric increases occurred in 79 of 84 gray matter regions of interest. In total, the cortical volume increased by mean ± SD of 1.04 ± 1.03% (Cohen's d = 1.01, p < .001) and the subcortical gray matter volume increased by 1.47 ± 1.05% (d = 1.40, p < .001) in patients. The subcortical gray matter increase was negatively associated with total ventricle volume (Spearman's rank correlation ρ = -.44, p < .001), while total white matter volume remained unchanged (d = -0.05, p = .41). The changes were modulated by number of ECTs and mode of electrode placements. However, the gray matter volumetric enlargements were not associated with clinical outcome. CONCLUSIONS The findings suggest that ECT induces gray matter volumetric increases that are broadly distributed. However, gross volumetric increases of specific anatomically defined regions may not serve as feasible biomarkers of clinical response.
Collapse
Affiliation(s)
| | - Miklos Argyelan
- Center for Psychiatric Neuroscience at the Feinstein Institute for Medical Research, New York, New York
| | - Katherine L Narr
- Departments of Neurology, Psychiatry, and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles
| | - Christopher Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Benjamin Wade
- Departments of Neurology, Psychiatry, and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles
| | - Mathieu Vandenbulcke
- Department of Geriatric Psychiatry, University Psychiatric Center Katholieke Universiteit Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mikel Urretavizcaya
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Biomedical Research Institute; Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Carlos III Health Institute, Madrid, Spain
| | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Faculty of Medicine and Landschaftsverband Rheinland Clinic for Psychiatry and Psychotherapy, University of Duisburg-Essen, Duisburg-Essen, Germany
| | - Akihiro Takamiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Center for Psychiatry and Behavioral Science, Komagino Hospital, Tokyo, Japan
| | - Max L Stek
- Geestelijke GezondheidsZorg inGeest Specialized Mental Health Care, Amsterdam, The Netherlands; Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Biomedical Research Institute; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Carlos III Health Institute, Madrid, Spain
| | - Ronny Redlich
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mardien L Oudega
- Geestelijke GezondheidsZorg inGeest Specialized Mental Health Care, Amsterdam, The Netherlands; Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany; Interdisciplinary Centre for Clinical Research (IZKF), University of Muenster, Muenster, Germany
| | - Pia Nordanskog
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Taishiro Kishimoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Robin Kampe
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anders Jorgensen
- Psychiatric Center Copenhagen (Rigshospitalet), Mental Health Services of the Capital Region of Denmark, Copenhagen, Denmark
| | - Lars G Hanson
- Center for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark
| | - J Paul Hamilton
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Randall Espinoza
- Departments of Neurology, Psychiatry, and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles
| | - Louise Emsell
- Department of Geriatric Psychiatry, University Psychiatric Center Katholieke Universiteit Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Annemieke Dols
- Geestelijke GezondheidsZorg inGeest Specialized Mental Health Care, Amsterdam, The Netherlands; Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Narcis Cardoner
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Carlos III Health Institute, Madrid, Spain; Department of Mental Health, University Hospital Parc Taulí-I3PT, Sabadell, Spain
| | - Filip Bouckaert
- Department of Geriatric Psychiatry, University Psychiatric Center Katholieke Universiteit Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Amit Anand
- Cleveland Clinic, Center for Behavioral Health, Cleveland, Ohio
| | - Hauke Bartsch
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, California; Department of Radiology, University of California, San Diego, La Jolla, California
| | - Ute Kessler
- Norwegian Centre for Mental Disorders Research, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ketil J Oedegaard
- Norwegian Centre for Mental Disorders Research, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, California; Department of Radiology, University of California, San Diego, La Jolla, California; Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Leif Oltedal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | |
Collapse
|
33
|
Tanaka H, Sawano T, Konishi N, Harada R, Takeuchi C, Shin Y, Sugiura H, Nakatani J, Fujimoto T, Yamagata K. Serotonin induces Arcadlin in hippocampal neurons. Neurosci Lett 2020; 721:134783. [PMID: 31981722 DOI: 10.1016/j.neulet.2020.134783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/16/2019] [Accepted: 01/21/2020] [Indexed: 01/06/2023]
Abstract
The monoamine hypothesis does not fully explain the delayed onset of recovery after antidepressant treatment or the mechanisms of recovery after electroconvulsive therapy (ECT). The common mechanism that operates both in ECT and monoaminergic treatment presumably involves molecules induced in both of these conditions. A spine density modulator, Arcadlin (Acad), the rat orthologue of human Protocadherin-8 (PCDH8) and of Xenopus and zebrafish Paraxial protocadherin (PAPC), is induced by both electroconvulsive seizure (ECS) and antidepressants; however, its cellular mechanism remains elusive. Here we confirm induction of Arcadlin upon stimulation of an N-methyl-d-aspartate (NMDA) receptor in cultured hippocampal neurons. Stimulation of an NMDA receptor also induced acute (20 min) and delayed (2 h) phosphorylation of the p38 mitogen-activated protein (MAP) kinase; the delayed phosphorylation was not obvious in Acad-/- neurons, suggesting that it depends on Arcadlin induction. Exposure of highly mature cultured hippocampal neurons to 1-10 μM serotonin for 4 h resulted in Arcadlin induction and p38 MAP kinase phosphorylation. Co-application of the NMDA receptor antagonist d-(-)-2-amino-5-phosphonopentanoic acid (APV) completely blocked Arcadlin induction and p38 MAP kinase phosphorylation. Finally, administration of antidepressant fluoxetine in mice for 16 days induced Arcadlin expression in the hippocampus. Our data indicate that the Arcadlin-p38 MAP kinase pathway is a candidate neural network modulator that is activated in hippocampal neurons under the dual regulation of serotonin and glutamate and, hence, may play a role in antidepressant therapies.
Collapse
Affiliation(s)
- Hidekazu Tanaka
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Japan.
| | - Toshinori Sawano
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Japan
| | - Naoko Konishi
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Japan
| | - Risako Harada
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Japan
| | - Chiaki Takeuchi
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Japan
| | - Yuki Shin
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Japan
| | - Hiroko Sugiura
- Synaptic Plasticity Project, Tokyo Metropolitan Institute of Medical Science, Japan
| | - Jin Nakatani
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Japan
| | - Takahiro Fujimoto
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Kanato Yamagata
- Synaptic Plasticity Project, Tokyo Metropolitan Institute of Medical Science, Japan
| |
Collapse
|
34
|
Deyama S, Duman RS. Neurotrophic mechanisms underlying the rapid and sustained antidepressant actions of ketamine. Pharmacol Biochem Behav 2020; 188:172837. [PMID: 31830487 PMCID: PMC6997025 DOI: 10.1016/j.pbb.2019.172837] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022]
Abstract
Clinical and preclinical studies have demonstrated that depression, one of the most common psychiatric illnesses, is associated with reduced levels of neurotrophic factors, including brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF), contributing to neuronal atrophy in the prefrontal cortex (PFC) and hippocampus, and reduced hippocampal adult neurogenesis. Conventional monoaminergic antidepressants can block/reverse, at least partially, these deficits in part via induction of BDNF and/or VEGF, although these drugs have significant limitations, notably a time lag for therapeutic response and low response rates. Recent studies reveal that ketamine, an N-methyl-d-aspartate receptor antagonist produces rapid (within hours) and sustained (up to a week) antidepressant actions in both patients with treatment-resistant depression and rodent models of depression. Rodent studies also demonstrate that ketamine rapidly increases BDNF and VEGF release and/or expression in the medial PFC (mPFC) and hippocampus, leading to increase in the number and function of spine synapses in the mPFC and enhancement of hippocampal neurogenesis. These neurotrophic effects of ketamine are associated with the antidepressant effects of this drug. Together, these findings provide evidence for a neurotrophic mechanism underlying the rapid and sustained antidepressant actions of ketamine and pave the way for the development of rapid and more effective antidepressants with fewer side effects than ketamine.
Collapse
Affiliation(s)
- Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan.
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
35
|
Khan S. IGFBP-2 Signaling in the Brain: From Brain Development to Higher Order Brain Functions. Front Endocrinol (Lausanne) 2019; 10:822. [PMID: 31824433 PMCID: PMC6883226 DOI: 10.3389/fendo.2019.00822] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Insulin-like growth factor-binding protein-2 (IGFBP-2) is a pleiotropic polypeptide that functions as autocrine and/or paracrine growth factors. IGFBP-2 is the most abundant of the IGFBPs in the cerebrospinal fluid (CSF), and developing brain showed the highest expression of IGFBP-2. IGFBP-2 expressed in the hippocampus, cortex, olfactory lobes, cerebellum, and amygdala. IGFBP-2 mRNA expression is seen in meninges, blood vessels, and in small cell-body neurons (interneurons) and astrocytes. The expression pattern of IGFBP-2 is often developmentally regulated and cell-specific. Biological activities of IGFBP-2 which are independent of their abilities to bind to insulin-like growth factors (IGFs) are mediated by the heparin binding domain (HBD). To execute IGF-independent functions, some IGFBPs have shown to bind with their putative receptors or to translocate inside the cells. Thus, IGFBP-2 functions can be mediated both via insulin-like growth factor receptor-1 (IGF-IR) and independent of IGF-Rs. In this review, I suggest that IGFBP-2 is not only involved in the growth, development of the brain but also with the regulation of neuronal plasticity to modulate high-level cognitive operations such as spatial learning and memory and information processing. Hence, IGFBP-2 serves as a neurotrophic factor which acts via metaplastic signaling from embryonic to adult stages.
Collapse
|
36
|
Hippocampal volume change following ECT is mediated by rs699947 in the promotor region of VEGF. Transl Psychiatry 2019; 9:191. [PMID: 31431610 PMCID: PMC6702208 DOI: 10.1038/s41398-019-0530-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/26/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Several studies have shown that electroconvulsive therapy (ECT) results in increased hippocampal volume. It is likely that a multitude of mechanisms including neurogenesis, gliogenesis, synaptogenesis, angiogenesis, and vasculogenesis contribute to this volume increase. Neurotrophins, like vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) seem to play a crucial mediating role in several of these mechanisms. We hypothesized that two regulatory SNPs in the VEGF and BDNF gene influence the changes in hippocampal volume following ECT. We combined genotyping and brain MRI assessment in a sample of older adults suffering from major depressive disorder to test this hypothesis. Our results show an effect of rs699947 (in the promotor region of VEGF) on hippocampal volume changes following ECT. However, we did not find a clear effect of rs6265 (in BDNF). To the best of our knowledge, this is the first study investigating possible genetic mechanisms involved in hippocampal volume change during ECT treatment.
Collapse
|
37
|
Lee JS, Lee Y, André EA, Lee KJ, Nguyen T, Feng Y, Jia N, Harris BT, Burns MP, Pak DTS. Inhibition of Polo-like kinase 2 ameliorates pathogenesis in Alzheimer's disease model mice. PLoS One 2019; 14:e0219691. [PMID: 31306446 PMCID: PMC6629081 DOI: 10.1371/journal.pone.0219691] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder characterized by pathological hallmarks of neurofibrillary tangles and amyloid plaques. The plaques are formed by aggregation and accumulation of amyloid β (Aβ), a cleavage fragment of amyloid precursor protein (APP). Enhanced neuronal activity and seizure events are frequently observed in AD, and elevated synaptic activity promotes Aβ production. However, the mechanisms that link synaptic hyperactivity to APP processing and AD pathogenesis are not well understood. We previously found that Polo-like kinase 2 (Plk2), a homeostatic repressor of neuronal overexcitation, promotes APP β-processing in vitro. Here, we report that Plk2 stimulates Aβ production in vivo, and that Plk2 levels are elevated in a spatiotemporally regulated manner in brains of AD mouse models and human AD patients. Genetic disruption of Plk2 kinase function reduces plaque deposits and activity-dependent Aβ production. Furthermore, pharmacological Plk2 inhibition hinders Aβ formation, synapse loss, and memory decline in an AD mouse model. Thus, Plk2 links synaptic overactivity to APP β-processing, Aβ production, and disease-relevant phenotypes in vivo, suggesting that Plk2 may be a potential target for AD therapeutics.
Collapse
Affiliation(s)
- Ji Soo Lee
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yeunkum Lee
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Emily A. André
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Kea Joo Lee
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Thien Nguyen
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yang Feng
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Nuo Jia
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Brent T. Harris
- Department of Neurology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Mark P. Burns
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Daniel T. S. Pak
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
38
|
Abstract
A theoretical framework is proposed to gain insight into the pathogenesis of major depressive disorder (MDD). Despite being a relatively weak argument, the neurogenesis theory is suggested to compensate for the limitations of the monoamine theory. In the adult hippocampus, neurogenesis is functionally related to regulation of the hypothalamic-pituitary-adrenal (HPA) axis, inflammatory processes, cognitive functions and other aspects that contribute to etiological factors that lead to MDD and promote recovery from MDD. Despite a lack of investigation into neurogenesis and antidepressant action, it is proposed that chronic administration of antidepressant(s) can induce the recruitment and integration of newborn neurons into the dentate gyrus and, ultimately, lead to the remission of MDD. The extant body of literature indicates that the suppression of neurogenesis per se may be associated with an impaired response to antidepressant treatment rather than with the induction of depressive-like behaviors. Moreover, recent studies have shown that increasing the survival rate and incorporation of new neurons can alleviate depressive-like behaviors and promote stress resilience. According to the neurogenic reserve hypothesis, hippocampal neurogenesis supports specific cortical functions, including executive functions, pattern separation and contextual information processing, control over the HPA axis and behavioral coping mechanisms in response to stressful situations. Therefore, hippocampal neurogenesis may be a promising biological indicator of stress resilience and antidepressant response in patients with MDD.
Collapse
Affiliation(s)
- Seon-Cheol Park
- Department of Psychiatry, Inje University Haeundae Paik Hospital, 875, Haeun-daero, Haeundae-gu, Busan, 48108, Republic of Korea.
| |
Collapse
|
39
|
Reduced vascular endothelial growth factor levels in the cerebrospinal fluid in patients with treatment resistant major depression and the effects of electroconvulsive therapy-A pilot study. J Affect Disord 2019; 253:449-453. [PMID: 31103810 DOI: 10.1016/j.jad.2019.04.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/29/2019] [Accepted: 04/17/2019] [Indexed: 01/25/2023]
Abstract
BACKGROUND Several lines of evidence are pointing towards an involvement of the vascular endothelial growth factor (VEGF) in the pathophysiology of depression. There are studies analyzing blood levels of VEGF in patients with depression compared to controls, but a data on cerebrospinal fluid (CSF) levels of VEGF in patients with depression are lacking. METHOD CSF VEGF levels were measured in patients (n = 12) with a severe, treatment-resistant depressive episode before and after the antidepressant treatment by a course of electroconvulsive therapy (ECT) and compared to age- and sex-matched controls (n = 20). RESULTS The patients with depression showed lower mean VEGF levels in the CSF prior to ECT than the controls (p = 0.041). Regarding the patients, CSF VEGF concentration at baseline and after the complete ECT treatment did not differ from each other (p = 0.78). LIMITATIONS Major limitations of this study are the small sample size and that data from corresponding serum levels cannot be provided. Another limitation is that the controls were not completely healthy, as they were recruited from a memory clinic with subjective complaints. The timing of the second sample might have been suboptimal, when taking into account that there might be an on-going phase of re-equilibrating after ECT. CONCLUSIONS CSF VEGF concentrations were lower in a clinical sample of patients with treatment-resistant depression compared with matched controls. Additionally, no change in CSF VEGF levels during a course of ECT could be detected.
Collapse
|
40
|
McWhirt J, Sathyanesan M, Sampath D, Newton SS. Effects of restraint stress on the regulation of hippocampal glutamate receptor and inflammation genes in female C57BL/6 and BALB/c mice. Neurobiol Stress 2019; 10:100169. [PMID: 31193545 PMCID: PMC6535649 DOI: 10.1016/j.ynstr.2019.100169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022] Open
Abstract
The two strains of inbred mice, BALB/c and C57BL/6, are widely used in pre-clinical psychiatry research due to their differences in stress susceptibility. Gene profiling studies in these strains have implicated the inflammation pathway as the main contributor to these differences. We focused our attention on female mice and tested their response to 5- or 10-day exposure to restraint stress. We examined the stress induced changes in the regulation of 11 inflammatory cytokine genes and 12 glutamate receptor genes in the hippocampus of female BALB/c and C57BL/6 mice using quantitative PCR. Elevated proinflammatory cytokine genes include Tumor Necrosis Factor alpha (TNFa), nuclear factor kappa-light-chain-enhancer of activated B cells (NFKB), Interleukin 1 alpha (IL1a), Interleukin 1 receptor (IL1R), Interleukin 10 receptor alpha subunit (IL10Ra), Interleukin 10 receptor beta subunit (IL10Rb), and tumor necrosis factor (TNF) super family members. Our results show that BALB/c and C57BL/6 mice differ in the genes induced in response to stress exposure and the level of gene regulation change. Our results show that the gene regulation in female BALB/c and C57BL/6 mice differs between strains in the genes regulated and the magnitude of the changes.
Collapse
Affiliation(s)
- Joshua McWhirt
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, 57069, USA
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, Sioux Falls VA Healthcare System, Sioux Falls, SD, 57105, USA
| | - Dayalan Sampath
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Samuel S Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, Sioux Falls VA Healthcare System, Sioux Falls, SD, 57105, USA
| |
Collapse
|
41
|
Tiwari NK, Sathyanesan M, Schweinle W, Newton SS. Carbamoylated erythropoietin induces a neurotrophic gene profile in neuronal cells. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:132-141. [PMID: 30017780 PMCID: PMC6267980 DOI: 10.1016/j.pnpbp.2018.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/21/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
Abstract
Erythropoietin (EPO), a cytokine molecule, is best-known for its role in erythropoiesis. Preclinical studies have demonstrated that EPO has robust neuroprotective effects that appear to be independent of erythropoiesis. It is also being clinically tested for the treatment of neuropsychiatric illnesses due to its behavioral actions. A major limitation of EPO is that long-term administration results in excessive red blood cell production and increased blood viscosity. A chemical modification of EPO, carbamoylated erythropoietin (CEPO), reproduces the behavioral response of EPO in animal models but does not stimulate erythropoiesis. The molecular mechanisms involved in the behavioral effects of CEPO are not known. To obtain molecular insight we examined CEPO induced gene expression in neuronal cells. PC-12 cells were treated with CEPO followed by genome-wide microarray analysis. We investigated the functional significance of the gene profile by unbiased bioinformatics analysis. The Ingenuity pathway analysis (IPA) software was employed. The results revealed activation of functions such as neuronal number and long-term potentiation. Regulated signaling cascades included categories such as neurotrophin, CREB, NGF and synaptic long-term potentiation signaling. Some of the regulated genes from these pathways are CAMKII, EGR1, FOS, GRIN1, KIF1B, NOTCH1. We also comparatively examined EPO and CEPO-induced gene expression for a subset of genes in the rat dentate gyrus. The CEPO gene profile shows the induction of genes and signaling cascades that have roles in neurogenesis and memory formation, mechanisms that can produce antidepressant and cognitive function enhancing activity.
Collapse
Affiliation(s)
- Neeraj K. Tiwari
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069;
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States.
| | - William Schweinle
- Physician Assistant Program, School of Health Sciences, University of South Dakota, Vermillion, SD 57069, United States.
| | - Samuel S Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States.
| |
Collapse
|
42
|
Ryan KM, McLoughlin DM. Vascular endothelial growth factor plasma levels in depression and following electroconvulsive therapy. Eur Arch Psychiatry Clin Neurosci 2018; 268:839-848. [PMID: 29968119 DOI: 10.1007/s00406-018-0919-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Both animal and human studies have implicated the neurotrophic and angiogenic mediator vascular endothelial growth factor (VEGF) in depression, with meta-analyses, indicating that protein levels are raised in patients with depression. In line with this, we have previously shown that VEGFA mRNA levels are higher in whole blood from patients with depression compared to controls, in particular in patients with psychotic unipolar depression, and that treatment with electroconvulsive therapy (ECT) alters VEGFA mRNA levels. The aim of the present study was, therefore, to extend this previous work by assessing plasma VEGF protein levels in patients with depression compared to healthy controls, and in patients following treatment with ECT. We found that there was no difference between controls and patients with depression with regard to plasma VEGF (p = 0.59), and that VEGF levels were unaltered by ECT (p = 0.09) after correction for potential covariates. We found no correlation between VEGF protein and mRNA levels. Within the subgroup of patients receiving treatment with bitemporal ECT (n = 34), we identified a moderate negative correlation (ρ = - 0.54, p = 0.001) between the change in VEGF and the change in depression severity following treatment; however, no other association between VEGF and mood, responder/remitter status, polarity of depression, or presence of psychosis were found. Overall, our results indicate that the measurement of VEGF protein is not a useful marker for depression or response to treatment, and suggest that the measurement of VEGFA mRNA may prove more useful.
Collapse
Affiliation(s)
- Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland. .,Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, Dublin 8, Ireland.
| |
Collapse
|
43
|
Wang J, Tang Y, Curtin A, Xia M, Tang X, Zhao Y, Li Y, Qian Z, Sheng J, Zhang T, Jia Y, Li C, Wang J. ECT-induced brain plasticity correlates with positive symptom improvement in schizophrenia by voxel-based morphometry analysis of grey matter. Brain Stimul 2018; 12:319-328. [PMID: 30473477 DOI: 10.1016/j.brs.2018.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is often considered as an augmentation of antipsychotic treatment for schizophrenia in drug-refractory cases. However, the mechanisms underlying the observed therapeutic effects are still not understood. OBJECTIVE We aimed to investigate changes in whole brain grey matter volume (GMV) before and after modified ECT. GMV was determined using voxel-based morphometry (VBM) whole brain analysis. Correlations of brain structural changes with clinical improvement were also investigated. METHODS Twenty-one schizophrenia patients treated with a full course of ECT combined with antipsychotics (ECT group) and 21 schizophrenia patients treated only with antipsychotics (Drug group) were observed in parallel. Magnetic resonance imaging scans were performed at baseline (T1) and follow-up (T2) for each patient. Data were compared to a healthy control group (HC group) of 23 persons who were only scanned at baseline. Demographic data were matched between the three groups. RESULTS Significant interactions of group by time were found within four brain regions: the left parahippocampal gyrus/hippocampus, right parahippocampal gyrus/hippocampus, right temporal_pole_mid/superior temporal gyrus, and right insula. Post-hoc analysis revealed an increase of GMV across all four regions amongst ECT group, but a decrease of GMV within the Drug group. Furthermore, the ECT group showed a significant positive correlation of GMV change in the right parahippocampal gyrus/hippocampus with a reduction of positive subscore in the positive and negative syndrome scale. Both treatment groups did not differ significantly in terms of GMV from the HC group in these regions either at T1 or at T2. CONCLUSION Our findings indicate that ECT may induce brain plasticity as indexed by grey matter volume change during the treatment of schizophrenia via distinct mechanics from those by antipsychotic medications. ECT may ameliorate the positive psychotic symptoms of patients suffering from schizophrenia by preferentially targeting limbic brain areas such as the parahippocampal gyrus/hippocampus.
Collapse
Affiliation(s)
- Junjie Wang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215137, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China.
| | - Adrian Curtin
- School of Biomedical Engineering & Health Sciences, Drexel University, Philadelphia, PA, 19104, USA; Med-X Institute, Shanghai Jiaotong University University, Shanghai, 200300, China
| | - Mengqing Xia
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215137, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Xiaochen Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Yuanqiao Zhao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Yu Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Jianhua Sheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Yuping Jia
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, China; Brain Science and Technology Research Center, Shanghai Jiaotong University, Shanghai, 200030, China; Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, Shanghai, 200030, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, China; Brain Science and Technology Research Center, Shanghai Jiaotong University, Shanghai, 200030, China; Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, Shanghai, 200030, China.
| |
Collapse
|
44
|
Jonckheere J, Deloulme JC, Dall’Igna G, Chauliac N, Pelluet A, Nguon AS, Lentini C, Brocard J, Denarier E, Brugière S, Couté Y, Heinrich C, Porcher C, Holtzmann J, Andrieux A, Suaud-Chagny MF, Gory-Fauré S. Short- and long-term efficacy of electroconvulsive stimulation in animal models of depression: The essential role of neuronal survival. Brain Stimul 2018; 11:1336-1347. [DOI: 10.1016/j.brs.2018.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/12/2018] [Accepted: 08/03/2018] [Indexed: 12/28/2022] Open
|
45
|
Carbamoylated erythropoietin modulates cognitive outcomes of social defeat and differentially regulates gene expression in the dorsal and ventral hippocampus. Transl Psychiatry 2018; 8:113. [PMID: 29884778 PMCID: PMC5993867 DOI: 10.1038/s41398-018-0168-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023] Open
Abstract
Cognitive deficits are widespread in psychiatric disorders and frequently as debilitating as the affective component. Widely prescribed antidepressants for treating depressive disorders have limited efficacy in normalizing cognitive function. Erythropoietin (Epo) has been shown to improve cognitive function in schizophrenia and treatment resistant depressed patients. However, the potent elevation of red blood cell counts by Epo can cause hematological complications in non-anemic patients. We investigated a chemically engineered, posttranslational modification of Epo, carbamoylation, which renders it non-erythropoietic. We conducted mass-spectrometry-based peptide mapping of carbamoylated Epo (Cepo) and tested its ability to improve cognitive function after social defeat stress. Gene expression analysis in discrete brain regions was performed to obtain mechanistic insight of Cepo action. Cepo reversed stress-induced spatial working memory deficits while affecting long-term (24 h) novel object recognition in these rats. Contextual fear conditioning following defeat was enhanced by Cepo, but attenuated in controls. However, Cepo improved fear extinction in all rats compared to vehicle treatment. Cepo induced differential gene expression of BDNF, VGF, Arc, TH. and neuritin in the mPFC and discrete hippocampal subfields, with strongest induction in the dorsal hippocampus. Analysis of gene-brain region-behavior interactions showed that Cepo-induced neurotrophic mechanisms influence cognitive function. Carbamoylated erythropoietin can be developed as a therapeutic neurotrophic agent to treat cognitive dysfunction in neuropsychiatric diseases. Due to its distinct mechanism of action, it is unlikely to cross react with the activity of currently prescribed small molecule drugs and can be used as an add-on biologic drug.
Collapse
|
46
|
Abstract
Traditional pharmacological treatments for depression have a delayed therapeutic onset, ranging from several weeks to months, and there is a high percentage of individuals who never respond to treatment. In contrast, ketamine produces rapid-onset antidepressant, anti-suicidal, and anti-anhedonic actions following a single administration to patients with depression. Proposed mechanisms of the antidepressant action of ketamine include N-methyl-D-aspartate receptor (NMDAR) modulation, gamma aminobutyric acid (GABA)-ergic interneuron disinhibition, and direct actions of its hydroxynorketamine (HNK) metabolites. Downstream actions include activation of the mechanistic target of rapamycin (mTOR), deactivation of glycogen synthase kinase-3 and eukaryotic elongation factor 2 (eEF2), enhanced brain-derived neurotrophic factor (BDNF) signaling, and activation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs). These putative mechanisms of ketamine action are not mutually exclusive and may complement each other to induce potentiation of excitatory synapses in affective-regulating brain circuits, which results in amelioration of depression symptoms. We review these proposed mechanisms of ketamine action in the context of how such mechanisms are informing the development of novel putative rapid-acting antidepressant drugs. Such drugs that have undergone pre-clinical, and in some cases clinical, testing include the muscarinic acetylcholine receptor antagonist scopolamine, GluN2B-NMDAR antagonists (i.e., CP-101,606, MK-0657), (2R,6R)-HNK, NMDAR glycine site modulators (i.e., 4-chlorokynurenine, pro-drug of the glycineB NMDAR antagonist 7-chlorokynurenic acid), NMDAR agonists [i.e., GLYX-13 (rapastinel)], metabotropic glutamate receptor 2/3 (mGluR2/3) antagonists, GABAA receptor modulators, and drugs acting on various serotonin receptor subtypes. These ongoing studies suggest that the future acute treatment of depression will typically occur within hours, rather than months, of treatment initiation.
Collapse
Affiliation(s)
- Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Rm. 934F MSTF, 685 W. Baltimore St., Baltimore, MD, 21201, USA.
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, St. BRB 5-007, 655 W. Baltimore St., Baltimore, MD, 21201, USA, Baltimore, MD, 21201, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Todd D Gould
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Rm. 936 MSTF, 685 W. Baltimore St., Baltimore, MD, 21201, USA
| |
Collapse
|
47
|
Pinna M, Manchia M, Oppo R, Scano F, Pillai G, Loche AP, Salis P, Minnai GP. Clinical and biological predictors of response to electroconvulsive therapy (ECT): a review. Neurosci Lett 2018; 669:32-42. [DOI: 10.1016/j.neulet.2016.10.047] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/24/2016] [Indexed: 01/04/2023]
|
48
|
Nagy C, Vaillancourt K, Turecki G. A role for activity-dependent epigenetics in the development and treatment of major depressive disorder. GENES BRAIN AND BEHAVIOR 2018; 17:e12446. [DOI: 10.1111/gbb.12446] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/17/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022]
Affiliation(s)
- C. Nagy
- McGill Group for Suicide Studies, Department of Psychiatry; McGill University; Montreal Canada
| | - K. Vaillancourt
- McGill Group for Suicide Studies, Department of Psychiatry; McGill University; Montreal Canada
| | - G. Turecki
- McGill Group for Suicide Studies, Department of Psychiatry; McGill University; Montreal Canada
| |
Collapse
|
49
|
Eisinger BE, Zhao X. Identifying molecular mediators of environmentally enhanced neurogenesis. Cell Tissue Res 2018; 371:7-21. [PMID: 29127518 PMCID: PMC5826587 DOI: 10.1007/s00441-017-2718-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023]
Abstract
Adult hippocampal neurogenesis occurs throughout life and supports healthy brain functions. The production of new neurons decreases with age, and deficiencies in adult neurogenesis are associated with neurodevelopmental and degenerative disease. The rate of neurogenesis is dynamically sensitive to an individual's environmental conditions and experiences, and certain stimuli are known robustly to enhance neurogenesis in rodent models, including voluntary exercise, enriched environment, and electroconvulsive shock. In these models, information about an organism's environment and physiological state are relayed to neurogenic cell types within the hippocampus through a series of tissue and cellular interfaces, ultimately eliciting a neurogenic response from neural stem cells and newborn neurons. Therefore, an understanding of the way that novel genes and proteins act in specific cell types within this circuit-level context is of scientific and therapeutic value. Several well-studied neurotrophic factors have been implicated in environmentally enhanced neurogenesis. This review highlights recently discovered, novel molecular mediators of neurogenesis in response to environmental cues and summarizes the contribution of advanced, large-scale gene expression and function assessment technology to past, present, and future efforts aimed at elucidating cell-type-specific molecular mediators of environmentally enhanced neurogenesis.
Collapse
Affiliation(s)
- Brian E Eisinger
- Waisman Center and Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center and Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
50
|
A Look Behind the Curtain: Epilepsy Microarray Consortium. Epilepsy Curr 2017; 17:374-376. [PMID: 29217985 DOI: 10.5698/1535-7597.17.6.374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|