1
|
Vaughn MJ, Yellamelli N, Burger RM, Haas JS. Dopamine receptors D1, D2, and D4 modulate electrical synapses and excitability in the thalamic reticular nucleus. J Neurophysiol 2025; 133:374-387. [PMID: 39706150 DOI: 10.1152/jn.00260.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 12/23/2024] Open
Abstract
The thalamic reticular nucleus (TRN) is a thin shell of gap junction-coupled GABAergic inhibitory neurons that regulate afferent sensory relay of the thalamus. The TRN receives dopaminergic innervation from the midbrain, and it is known to express high concentrations of D1 and D4 receptors. Although dopaminergic modulation of presynaptic inputs to TRN has been described, the direct effect of dopamine on TRN neurons and its electrical synapses is largely unknown. Here, we confirmed D1 and D4 expression and showed that D2 receptors are also expressed in TRN. To characterize how dopamine affects both neuronal excitability and electrical synapse coupling strength in the TRN, we performed dual whole cell patch-clamp recordings of TRN neurons and injected them with 500-ms current pulses to measure input resistance, rheobase, spiking frequency, and coupling conductance. Measurements were taken before and after bath application of dopamine or agonists for either D1, D2, or D4 receptors. Our results show that bath application of dopamine did not consistently modulate excitability or electrical synapse strength. However, application of specific dopamine receptor agonists revealed that activation of D1 and D4 receptors increases input resistance and activation of D2-like receptors lowers maximum tonic spike rate. Notably, D2 and D4 receptors depressed electrical synapses. Together, our results suggest that coactivation of D1, D2, and D4 receptors may result in cross talk due to opposing signaling cascades. Furthermore, we show that selective dopamine receptor engagement has substantial potential to modulate TRN circuitry.NEW & NOTEWORTHY Postsynaptic modulation of TRN neurons by activation of specific DA receptor subtypes has not been previously determined. Our research identifies that a previously unreported D2 receptor is expressed in TRN, and we found that D1, D2, and D4 receptors impose distinct excitability changes on TRN. Furthermore, D2 and D4 receptors depress electrical synapses in TRN, identifying a new substrate for modulation of intra-TRN communication.
Collapse
Affiliation(s)
- Mitchell J Vaughn
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States
| | - Nandini Yellamelli
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States
| | - R Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States
| | - Julie S Haas
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States
| |
Collapse
|
2
|
Russo EE, Zovko LE, Nazari R, Steenland H, Ramsey AJ, Salahpour A. Evaluation and Validation of Commercially Available Dopamine Transporter Antibodies. eNeuro 2023; 10:10/5/ENEURO.0341-22.2023. [PMID: 37142435 PMCID: PMC10162361 DOI: 10.1523/eneuro.0341-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
With a wide variety of dopamine transporter (DAT) antibodies available commercially, it is important to validate which antibodies provide sufficient immunodetection for reproducibility purpose and for accurate analysis of DAT levels and/or location. Commercially available DAT antibodies that are commonly used were tested in western blotting (WB) on wild-type (WT) and DAT-knock-out (DAT-KO) brain tissue and with immunohistology (IH) techniques against coronal slices of unilaterally lesioned 6-OHDA rats, in addition to wild-type and DAT-knock-out mice. DAT-KO mice and unilateral 6-OHDA lesions in rats were used as a negative control for DAT antibody specificity. Antibodies were tested at various concentrations and rated based on signal detection varying from no signal to optimal signal detection. Commonly used antibodies, including AB2231 and PT-22 524-1-AP, did not provide specific DAT signals in WB and IH. Although certain antibodies provided a good DAT signal, such as SC-32258, D6944, and MA5-24796, they also presented nonspecific bands in WB. Many DAT antibodies did not detect the DAT as advertised, and this characterization of DAT antibodies may provide a guide for immunodetection of DAT for molecular studies.
Collapse
Affiliation(s)
- Emma E Russo
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lola E Zovko
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Reza Nazari
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hendrik Steenland
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Amy J Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ali Salahpour
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
3
|
Li C, Saliba NB, Martin H, Losurdo NA, Kolahdouzan K, Siddiqui R, Medeiros D, Li W. Purkinje cell dopaminergic inputs to astrocytes regulate cerebellar-dependent behavior. Nat Commun 2023; 14:1613. [PMID: 36959176 PMCID: PMC10036610 DOI: 10.1038/s41467-023-37319-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/13/2023] [Indexed: 03/25/2023] Open
Abstract
Dopamine has a significant role in motor and cognitive function. The dopaminergic pathways originating from the midbrain have received the most attention; however, the relevance of the cerebellar dopaminergic system is largely undiscovered. Here, we show that the major cerebellar astrocyte type Bergmann glial cells express D1 receptors. Dopamine can be synthesized in Purkinje cells by cytochrome P450 and released in an activity-dependent fashion. We demonstrate that activation of D1 receptors induces membrane depolarization and Ca2+ release from the internal store. These astrocytic activities in turn modify Purkinje cell output by altering its excitatory and inhibitory synaptic input. Lastly, we show that conditional knockout of D1 receptors in Bergmann glial cells results in decreased locomotor activity and impaired social activity. These results contribute to the understanding of the molecular, cellular, and circuit mechanisms underlying dopamine function in the cerebellum, revealing a critical role for the cerebellar dopaminergic system in motor and social behavior.
Collapse
Affiliation(s)
- Chang Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Natalie B Saliba
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hannah Martin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nicole A Losurdo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Neuroscience Program, The University of Utah, Salt Lake City, UT, USA
| | - Kian Kolahdouzan
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Riyan Siddiqui
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Destynie Medeiros
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
5
|
Effects of isoflurane anesthesia on addictive behaviors in rats. Psychopharmacology (Berl) 2022; 239:3621-3632. [PMID: 36109391 DOI: 10.1007/s00213-022-06236-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
RATIONALE Recently, it has been suggested that isoflurane might reduce dopamine release from rat midbrain dopaminergic neurons, the neurobiological substrate implicated in the reinforcing effects of abused drugs and nondrug rewards. However, little is known about effects of isoflurane on neurobehavioral activity associated with chronic exposure to psychoactive substances. OBJECTIVE The present study was designed to investigate the effects of isoflurane on cocaine-reinforced behavior. Using behavioral paradigm in rats, we evaluated the effects of isoflurane on cocaine self-administration under fixed ratio (FR) and progressive ratio (PR) schedules of reinforcement. We also tested the effects of isoflurane on lever responding by nondrug reinforcers (sucrose and food) in drug-naive rats to control for the nonselective effects of isoflurane on cocaine- and nicotine-taking behavior. To further assess the ability of isoflurane to modulate the motivation for taking a drug, we evaluated the effects of isoflurane on nicotine self-administration. Using different groups of rats, the effects of isoflurane on the locomotor activity induced by a single intraperitoneal injection of cocaine (15 mg/kg) were also examined. RESULTS Isoflurane significantly suppressed the self-administration of cocaine and nicotine without affecting food consumption. Unlike food-reinforced responding, responding for sucrose reinforcement was decreased by isoflurane. Isoflurane reduced breaking points under a PR schedule of reinforcement in a dose-dependent manner, indicating its efficacy in decreasing the incentive value of cocaine. Isoflurane also attenuated acute cocaine-induced hyperlocomotion. CONCLUSIONS The results provided evidence that isoflurane decreases cocaine- and nicotine-reinforced responses, while isoflurane effect is not selective for cocaine- and nicotine-maintained responding. These results suggest that isoflurane inhibitions of cocaine- and nicotine-maintenance responses may be related to decreased effects of dopamine, and further investigation will need to elucidate this relationship.
Collapse
|
6
|
Selective Manipulation of G-Protein γ 7 Subunit in Mice Provides New Insights into Striatal Control of Motor Behavior. J Neurosci 2021; 41:9065-9081. [PMID: 34544837 DOI: 10.1523/jneurosci.1211-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 09/11/2021] [Indexed: 01/15/2023] Open
Abstract
Stimulatory coupling of dopamine D1 (D1R) and adenosine A2A receptors (A2AR) to adenylyl cyclase within the striatum is mediated through a specific Gαolfβ2γ7 heterotrimer to ultimately modulate motor behaviors. To dissect the individual roles of the Gαolfβ2γ7 heterotrimer in different populations of medium spiny neurons (MSNs), we produced and characterized conditional mouse models, in which the Gng7 gene was deleted in either the D1R- or A2AR/D2R-expressing MSNs. We show that conditional loss of γ7 disrupts the cell type-specific assembly of the Gαolfβ2γ7 heterotrimer, thereby identifying its circumscribed roles acting downstream of either the D1Rs or A2ARs in coordinating motor behaviors, including in vivo responses to psychostimulants. We reveal that Gαolfβ2γ7/cAMP signal in D1R-MSNs does not impact spontaneous and amphetamine-induced locomotor behaviors in male and female mice, while its loss in A2AR/D2R-MSNs results in a hyperlocomotor phenotype and enhanced locomotor response to amphetamine. Additionally, Gαolfβ2γ7/cAMP signal in either D1R- or A2AR/D2R-expressing MSNs is not required for the activation of PKA signaling by amphetamine. Finally, we show that Gαolfβ2γ7 signaling acting downstream of D1Rs is selectively implicated in the acute locomotor-enhancing effects of morphine. Collectively, these results support the general notion that receptors use specific Gαβγ proteins to direct the fidelity of downstream signaling pathways and to elicit a diverse repertoire of cellular functions. Specifically, these findings highlight the critical role for the γ7 protein in determining the cellular level, and hence, the function of the Gαolfβ2γ7 heterotrimer in several disease states associated with dysfunctional striatal signaling.SIGNIFICANCE STATEMENT Dysfunction or imbalance of cAMP signaling in the striatum has been linked to several neurologic and neuropsychiatric disorders, including Parkinson's disease, dystonia, schizophrenia, and drug addiction. By genetically targeting the γ7 subunit in distinct striatal neuronal subpopulations in mice, we demonstrate that the formation and function of the Gαolfβ2γ7 heterotrimer, which represents the rate-limiting step for cAMP production in the striatum, is selectively disrupted. Furthermore, we reveal cell type-specific roles for Gαolfβ2γ7-mediated cAMP production in the control of spontaneous locomotion as well as behavioral and molecular responses to psychostimulants. Our findings identify the γ7 protein as a novel therapeutic target for disease states associated with dysfunctional striatal cAMP signaling.
Collapse
|
7
|
El Kholy S, Wang K, El-Seedi HR, Al Naggar Y. Dopamine Modulates Drosophila Gut Physiology, Providing New Insights for Future Gastrointestinal Pharmacotherapy. BIOLOGY 2021; 10:biology10100983. [PMID: 34681083 PMCID: PMC8533061 DOI: 10.3390/biology10100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Dopamine has a variety of physiological roles in the gastrointestinal tract (GI) through binding to Drosophila dopamine D1-like receptors (DARs) and/or adrenergic receptors and has been confirmed as one of the enteric neurotransmitters. To gain new insights into what could be a potential future promise for GI pharmacology, we used Drosophila as a model organism to investigate the effects of dopamine on intestinal physiology and gut motility. GAL4/UAS system was utilized to knock down specific dopamine receptors using specialized GAL4 driver lines targeting neurons or enterocytes cells to identify which dopamine receptor controls stomach contractions. DARs (Dop1R1 and Dop1R2) were shown by immunohistochemistry to be strongly expressed in all smooth muscles in both larval and adult flies, which could explain the inhibitory effect of dopamine on GI motility. Adult males' gut peristalsis was significantly inhibited by knocking down dopamine receptors Dop1R1, Dop1R2, and Dop2R, but female flies' gut peristalsis was significantly repressed by knocking down only Dop1R1 and Dop1R2. Our findings also showed that dopamine drives PLC-β translocation from the cytoplasm to the plasma membrane in enterocytes for the first time. Overall, these data revealed the role of dopamine in modulating Drosophila gut physiology, offering us new insights for the future gastrointestinal pharmacotherapy of neurodegenerative diseases associated with dopamine deficiency.
Collapse
Affiliation(s)
- Samar El Kholy
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Correspondence: (K.W.); (Y.A.N.); Tel.: +86-10-62593411 (K.W.); +49-345-55-26503 (Y.A.N.)
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Biomedical Centre, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
- Correspondence: (K.W.); (Y.A.N.); Tel.: +86-10-62593411 (K.W.); +49-345-55-26503 (Y.A.N.)
| |
Collapse
|
8
|
Ethanol inhibition of lateral orbitofrontal cortex neuron excitability is mediated via dopamine D1/D5 receptor-induced release of astrocytic glycine. Neuropharmacology 2021; 192:108600. [PMID: 33965399 DOI: 10.1016/j.neuropharm.2021.108600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/16/2021] [Accepted: 04/30/2021] [Indexed: 01/25/2023]
Abstract
Recent findings from this laboratory demonstrate that ethanol reduces the intrinsic excitability of orbitofrontal cortex (OFC) neurons via activation of strychnine-sensitive glycine receptors. Although the mechanism linking ethanol to the release of glycine is currently unknown, astrocytes are a source of neurotransmitters including glycine and activation of dopamine D1-like receptors has been reported to enhance extracellular levels of glycine via a functional reversal of the astrocytic glycine transporter GlyT1. We recently reported that like ethanol, dopamine or a D1/D5 receptor agonist increases a tonic current in lateral OFC (lOFC) neurons. Therefore, in this study, we used whole-cell patch-clamp electrophysiology to examine whether ethanol inhibition of OFC spiking involves the release of glycine from astrocytes and whether this release is dopamine receptor dependent. Ethanol, applied acutely, decreased spiking of lOFC neurons and this effect was blocked by antagonists of GlyT1, the norepinephrine transporter or D1-like but not D2-like receptors. Ethanol enhanced the tonic current of OFC neurons and occluded the effect of dopamine suggesting that ethanol and dopamine may share a common pathway. Altering astrocyte function by suppressing intracellular astrocytic calcium signaling or blocking the astrocyte-specific Kir4.1 potassium channels reduced but did not completely abolish ethanol inhibition of OFC neuron firing. However, when both astrocytic calcium signaling and Kir4.1 channels were inhibited, ethanol had no effect on firing. Ethanol inhibition was also prevented by inhibitors of phospholipase C and conventional isoforms of protein kinase C (cPKC) previously shown to block D1R-induced GlyT1 reversal and PKC inhibition of Kir4.1 channels. Finally, the membrane potential of OFC astrocytes was depolarized by bath application of a Kir4.1 blocker, a D1 agonist or ethanol and ethanol effect was blocked by a D1 antagonist. Together, these findings suggest that acute ethanol inhibits OFC neuron excitability via a D1 receptor-mediated dysregulation of astrocytic glycine transport.
Collapse
|
9
|
Misganaw D. Heteromerization of dopaminergic receptors in the brain: Pharmacological implications. Pharmacol Res 2021; 170:105600. [PMID: 33836279 DOI: 10.1016/j.phrs.2021.105600] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/17/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022]
Abstract
Dopamine exerts its physiological effects through two subtypes of receptors, i.e. the receptors of the D1 family (D1R and D5R) and the D2 family (D2R, D3R, and D4R), which differ in their pattern of distribution, affinity, and signaling. The D1-like subfamily (D1R and D5R) are coupled to Gαs/olf proteins to activate adenylyl cyclase whereas the D2-like receptors are coupled to Gαi/o subunits and suppress the activity of adenylyl cyclase. Dopamine receptors are capable of forming homodimers, heterodimers, and higher-order oligomeric complexes, resulting in a change in the individual protomers' recognition, signaling, and pharmacology. Heteromerization has the potential to modify the canonical pharmacological features of individual monomeric units such as ligand affinity, activation, signaling, and cellular trafficking through allosteric interactions, reviving the field and introducing a new pharmacological target. Since heteromers are expressed and formed in a tissue-specific manner, they could provide the framework to design selective and effective drug candidates, such as brain-penetrant heterobivalent drugs and interfering peptides, with limited side effects. Therefore, heteromerization could be a promising area of pharmacology research, as it could contribute to the development of novel pharmacological interventions for dopamine dysregulated brain disorders such as addiction, schizophrenia, cognition, Parkinson's disease, and other motor-related disorders. This review is articulated based on the three criteria established by the International Union of Basic and Clinical Pharmacology for GPCR heterodimers (IUPHAR): evidence of co-localization and physical interactions in native or primary tissue, presence of a new physiological and functional property than the individual protomers, and loss of interaction and functional fingerprints upon heterodimer disruption.
Collapse
Affiliation(s)
- Desye Misganaw
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Medicine and Health Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia.
| |
Collapse
|
10
|
Xu X, Fan R, Ruan Y, Xu M, He J, Cao M, Li X, Zhou W, Liu Y. Inhibition of PLCβ1 signaling pathway regulates methamphetamine self-administration and neurotoxicity in rats. Food Chem Toxicol 2021; 149:111970. [PMID: 33421459 DOI: 10.1016/j.fct.2021.111970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022]
Abstract
Studies have shown that the central renin-angiotensin system is involved in neurological disorders. Our previous studies have demonstrated that angiotensin II receptor type 1 (AT1R) in the brain could be a potential target against methamphetamine (METH) use disorder. The present study was designed to investigate the underlying mechanisms of the inhibitory effect of AT1R on various behavioural effects of METH. We first examined the effect of AT1R antagonist, candesartan cilexetil (CAN), on behavioural and neurotoxic effects of METH. Furthermore, we studied the role of phospholipase C beta 1 (PLCβ1) blockade behavioural and neurotoxic effects of METH. The results showed that CAN significantly attenuated METH-induced behavioral disorders and neurotoxicity associated with increased oxidative stress. AT1R and PLCβ1 were significantly upregulated in vivo and in vitro. Inhibition of PLCβ1 effectively alleviated METH-induced neurotoxicity and METH self-administration (SA) by central blockade of the PLCβ1 involved signalling pathway. PLCβ1 blockade significantly decreased the reinforcing and motivation effects of METH. PLCβ1 involved signalling pathway, as well as a more specific role of PLCβ1, involved the inhibitory effects of CAN on METH-induced behavioural dysfunction and neurotoxicity. Collectively, our findings reveal a novel role of PLCβ1 in METH-induced neurotoxicity and METH use disorder.
Collapse
Affiliation(s)
- Xing Xu
- The affiliated Hospital of Medical School, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, PR China; Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China.
| | - Runyue Fan
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Yanqian Ruan
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Mengjie Xu
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Jiajie He
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Mengye Cao
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Xingxing Li
- Ningbo Kangning Hospital, 1 South Zhuangyu Road, Ningbo, Zhejiang, 315201, PR China
| | - Wenhua Zhou
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China; Ningbo Kangning Hospital, 1 South Zhuangyu Road, Ningbo, Zhejiang, 315201, PR China; Ningbo Addiction Research and Treatment Center, 21 Xibei Road, Zhejiang, 315040, PR China
| | - Yu Liu
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China.
| |
Collapse
|
11
|
de Pins B, Montalban E, Vanhoutte P, Giralt A, Girault JA. The non-receptor tyrosine kinase Pyk2 modulates acute locomotor effects of cocaine in D1 receptor-expressing neurons of the nucleus accumbens. Sci Rep 2020; 10:6619. [PMID: 32313025 PMCID: PMC7170924 DOI: 10.1038/s41598-020-63426-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/20/2020] [Indexed: 01/16/2023] Open
Abstract
The striatum is critical for cocaine-induced locomotor responses. Although the role of D1 receptor-expressing neurons is established, underlying molecular pathways are not fully understood. We studied the role of Pyk2, a non-receptor, calcium-dependent protein-tyrosine kinase. The locomotor coordination and basal activity of Pyk2 knock-out mice were not altered and major striatal protein markers were normal. Cocaine injection increased Pyk2 tyrosine phosphorylation in mouse striatum. Pyk2-deficient mice displayed decreased locomotor response to acute cocaine injection. In contrast, locomotor sensitization and conditioned place preference were normal. Cocaine-activated ERK phosphorylation, a signaling pathway essential for these late responses, was unaltered. Conditional deletion of Pyk2 in the nucleus accumbens or in D1 neurons reproduced decreased locomotor response to cocaine, whereas deletion of Pyk2 in the dorsal striatum or in A2A receptor-expressing neurons did not. In mice lacking Pyk2 in D1-neurons locomotor response to D1 agonist SKF-81297, but not to an anticholinergic drug, was blunted. Our results identify Pyk2 as a regulator of acute locomotor responses to psychostimulants. They highlight the role of tyrosine phosphorylation pathways in striatal neurons and suggest that changes in Pyk2 expression or activation may alter specific responses to drugs of abuse, or possibly other behavioral responses linked to dopamine action.
Collapse
Affiliation(s)
- Benoit de Pins
- Inserm UMR-S 1270, Paris, 75005, France
- Sorbonne Université, Faculty of Sciences and Engineering, Paris, 75005, France
- Institut du Fer à Moulin, Paris, 75005, France
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Enrica Montalban
- Inserm UMR-S 1270, Paris, 75005, France
- Sorbonne Université, Faculty of Sciences and Engineering, Paris, 75005, France
- Institut du Fer à Moulin, Paris, 75005, France
- BFA - Unité de Biologie Fonctionnelle et Adaptative - CNRS UMR 8251, Paris University, Paris, 75205, France
| | - Peter Vanhoutte
- Sorbonne Université, Faculty of Sciences and Engineering, Paris, 75005, France
- Inserm UMR-S 1130, Neurosciences Paris Seine, Paris, 75005, France
- CNRS UMR 8246, Paris, 75005, France
| | - Albert Giralt
- Inserm UMR-S 1270, Paris, 75005, France
- Sorbonne Université, Faculty of Sciences and Engineering, Paris, 75005, France
- Institut du Fer à Moulin, Paris, 75005, France
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, Paris, 75005, France.
- Sorbonne Université, Faculty of Sciences and Engineering, Paris, 75005, France.
- Institut du Fer à Moulin, Paris, 75005, France.
| |
Collapse
|
12
|
Mascia P, Wang Q, Brown J, Nesbitt KM, Kennedy RT, Vezina P. Maladaptive consequences of repeated intermittent exposure to uncertainty. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109864. [PMID: 31952958 PMCID: PMC7107980 DOI: 10.1016/j.pnpbp.2020.109864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/28/2022]
Abstract
Recently we reported that nucleus accumbens (NAcc) dopamine (DA) tracks uncertainty during operant responding for non-caloric saccharin. We also showed that repeated intermittent exposure to this uncertainty, like exposure to drugs of abuse, leads to sensitization of the locomotor and NAcc DA effects of amphetamine and promotes the subsequent self-administration of the drug. Here we review these findings together with others showing that NAcc glutamate signaling is similarly affected by uncertainty. Extracellular levels of glutamate in this site also track uncertainty in a task in which nose poking for saccharin on an escalating variable ratio schedule of reinforcement is associated with progressively increasing variance between performance of the operant and payout. Furthermore, sensitized behavioral responding to and for amphetamine following exposure to uncertainty is accompanied by increased levels of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and protein kinase C (PKC) phosphorylation as well as altered protein levels of the transcription factor ∆FosB (increased) and glutamate transporter 1 (GLT1; decreased) in NAcc tissues. Notably, phosphorylation by CaMKII and PKC regulates AMPA receptor trafficking and function in this site, is elevated following psychostimulant exposure, and is necessary for the expression of enhanced drug taking. Increased ∆FosB and decreased GLT1 levels are observed following psychostimulant exposure, are associated with increased drug taking and seeking, and are known to modulate AMPA receptors and extracellular glutamate levels respectively. These adaptations in glutamate transmission as well as those observed with DA following repeated intermittent exposure to uncertainty are similar to those produced by exposure to abused drugs. Together, they point to the recruitment of both DA and glutamate signaling pathways in the NAcc in both drug and behavioral addictions. As uncertainty is central to games of chance, these findings have particular relevance for gambling disorders known to exhibit comorbidity with drug abuse.
Collapse
Affiliation(s)
- Paola Mascia
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, United States
| | - Qiang Wang
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, United States
| | - Jason Brown
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, United States
| | - Kathryn M Nesbitt
- Department of Chemistry, Towson University, Towson, MD, United States
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Paul Vezina
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, United States.
| |
Collapse
|
13
|
Corkrum M, Covelo A, Lines J, Bellocchio L, Pisansky M, Loke K, Quintana R, Rothwell PE, Lujan R, Marsicano G, Martin ED, Thomas MJ, Kofuji P, Araque A. Dopamine-Evoked Synaptic Regulation in the Nucleus Accumbens Requires Astrocyte Activity. Neuron 2020; 105:1036-1047.e5. [PMID: 31954621 DOI: 10.1016/j.neuron.2019.12.026] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/18/2019] [Accepted: 12/20/2019] [Indexed: 01/11/2023]
Abstract
Dopamine is involved in physiological processes like learning and memory, motor control and reward, and pathological conditions such as Parkinson's disease and addiction. In contrast to the extensive studies on neurons, astrocyte involvement in dopaminergic signaling remains largely unknown. Using transgenic mice, optogenetics, and pharmacogenetics, we studied the role of astrocytes on the dopaminergic system. We show that in freely behaving mice, astrocytes in the nucleus accumbens (NAc), a key reward center in the brain, respond with Ca2+ elevations to synaptically released dopamine, a phenomenon enhanced by amphetamine. In brain slices, synaptically released dopamine increases astrocyte Ca2+, stimulates ATP/adenosine release, and depresses excitatory synaptic transmission through activation of presynaptic A1 receptors. Amphetamine depresses neurotransmission through stimulation of astrocytes and the consequent A1 receptor activation. Furthermore, astrocytes modulate the acute behavioral psychomotor effects of amphetamine. Therefore, astrocytes mediate the dopamine- and amphetamine-induced synaptic regulation, revealing a novel cellular pathway in the brain reward system.
Collapse
Affiliation(s)
- Michelle Corkrum
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ana Covelo
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; INSERM, U1215 NeuroCentre Magendie, Bordeaux Cedex 33077, France; University of Bordeaux, Bordeaux 33000, France
| | - Justin Lines
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Bordeaux Cedex 33077, France; University of Bordeaux, Bordeaux 33000, France
| | - Marc Pisansky
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kelvin Loke
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ruth Quintana
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Patrick E Rothwell
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rafael Lujan
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad Castilla-La Mancha, Albacete 02008, Spain
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, Bordeaux Cedex 33077, France; University of Bordeaux, Bordeaux 33000, France
| | | | - Mark J Thomas
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
Nickoloff E, Mackie P, Runner K, Matt S, Khoshbouei H, Gaskill P. Dopamine increases HIV entry into macrophages by increasing calcium release via an alternative signaling pathway. Brain Behav Immun 2019; 82:239-252. [PMID: 31470080 PMCID: PMC6941734 DOI: 10.1016/j.bbi.2019.08.191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Dopaminergic dysfunction has long been connected to the development of HIV infection in the CNS. Our previous data showed that dopamine increases HIV infection in human macrophages by increasing the susceptibility of primary human macrophages to HIV entry through stimulation of both D1-like and D2-like receptors. These data suggest that, in macrophages, both dopamine receptor subtypes may act through a common signaling mechanism. To define better the mechanism(s) underlying this effect, this study examines the specific signaling processes activated by dopamine in primary human monocyte-derived macrophages (hMDM). In addition to confirming that the increase in entry is unique to dopamine, these studies show that dopamine increases HIV entry through a PKA insensitive, Ca2+ dependent pathway. Further examination demonstrated that dopamine can signal through a previously defined, non-canonical pathway in human macrophages. This pathway involves both Ca2+ release and PKC phosphorylation, and these data show that dopamine mediates both of these effects and that both were partially inhibited by the Gq/11 specific inhibitor YM-254890. Studies have shown that Gq/11 preferentially couples to the D1-like receptor D5, indicating an important role of the D1-like receptors in mediating these effects. These data indicate a role for Ca2+ flux in the HIV entry process, and suggest a distinct signaling mechanism mediating some of the effects of dopamine in macrophages. Together, the data indicate that targeting this alternative dopamine signaling pathway might provide new therapeutic options for individuals with elevated CNS dopamine suffering from NeuroHIV.
Collapse
Affiliation(s)
- E.A. Nickoloff
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - P. Mackie
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611
| | - K. Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - S.M. Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - H. Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611,Department of Psychiatry, University of Florida, Gainesville, FL, 32611
| | - P.J. Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| |
Collapse
|
15
|
Gross JD, Kaski SW, Schroer AB, Wix KA, Siderovski DP, Setola V. Regulator of G protein signaling-12 modulates the dopamine transporter in ventral striatum and locomotor responses to psychostimulants. J Psychopharmacol 2018; 32:191-203. [PMID: 29364035 PMCID: PMC5942192 DOI: 10.1177/0269881117742100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Regulators of G protein signaling are proteins that accelerate the termination of effector stimulation after G protein-coupled receptor activation. Many regulators of G protein signaling proteins are highly expressed in the brain and therefore considered potential drug discovery targets for central nervous system pathologies; for example, here we show that RGS12 is highly expressed in microdissected mouse ventral striatum. Given a role for the ventral striatum in psychostimulant-induced locomotor activity, we tested whether Rgs12 genetic ablation affected behavioral responses to amphetamine and cocaine. RGS12 loss significantly decreased hyperlocomotion to lower doses of both amphetamine and cocaine; however, other outcomes of administration (sensitization and conditioned place preference) were unaffected, suggesting that RGS12 does not function in support of the rewarding properties of these psychostimulants. To test whether observed response changes upon RGS12 loss were caused by changes to dopamine transporter expression and/or function, we prepared crude membranes from the brains of wild-type and RGS12-null mice and measured dopamine transporter-selective [3H]WIN 35428 binding, revealing an increase in dopamine transporter levels in the ventral-but not dorsal-striatum of RGS12-null mice. To address dopamine transporter function, we prepared striatal synaptosomes and measured [3H]dopamine uptake. Consistent with increased [3H]WIN 35428 binding, dopamine transporter-specific [3H]dopamine uptake in RGS12-null ventral striatal synaptosomes was found to be increased. Decreased amphetamine-induced locomotor activity and increased [3H]WIN 35428 binding were recapitulated with an independent RGS12-null mouse strain. Thus, we propose that RGS12 regulates dopamine transporter expression and function in the ventral striatum, affecting amphetamine- and cocaine-induced increases in dopamine levels that specifically elicit acute hyperlocomotor responses.
Collapse
Affiliation(s)
- Joshua D Gross
- Department of Physiology, Pharmacology and Neuroscience, West Virginia School of Medicine, Morgantown, USA
| | - Shane W Kaski
- Department of Physiology, Pharmacology and Neuroscience, West Virginia School of Medicine, Morgantown, USA
| | - Adam B Schroer
- Department of Physiology, Pharmacology and Neuroscience, West Virginia School of Medicine, Morgantown, USA
| | - Kimberley A Wix
- Department of Physiology, Pharmacology and Neuroscience, West Virginia School of Medicine, Morgantown, USA
| | - David P Siderovski
- Department of Physiology, Pharmacology and Neuroscience, West Virginia School of Medicine, Morgantown, USA
| | - Vincent Setola
- Department of Physiology, Pharmacology and Neuroscience, West Virginia School of Medicine, Morgantown, USA,Department of Behavioral Medicine and Psychiatry, West Virginia School of Medicine, Morgantown, USA
| |
Collapse
|
16
|
Rampino A, Marakhovskaia A, Soares-Silva T, Torretta S, Veneziani F, Beaulieu JM. Antipsychotic Drug Responsiveness and Dopamine Receptor Signaling; Old Players and New Prospects. Front Psychiatry 2018; 9:702. [PMID: 30687136 PMCID: PMC6338030 DOI: 10.3389/fpsyt.2018.00702] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/03/2018] [Indexed: 12/27/2022] Open
Abstract
Antipsychotic drugs targeting dopamine neurotransmission are still the principal mean of therapeutic intervention for schizophrenia. However, about one third of people do not respond to dopaminergic antipsychotics. Genome wide association studies (GWAS), have shown that multiple genetic factors play a role in schizophrenia pathophysiology. Most of these schizophrenia risk variants are not related to dopamine or antipsychotic drugs mechanism of action. Genetic factors have also been implicated in defining response to antipsychotic medication. In contrast to disease risk, variation of genes coding for molecular targets of antipsychotics have been associated with treatment response. Among genes implicated, those involved in dopamine signaling mediated by D2-class dopamine receptor, including DRD2 itself and its molecular effectors, have been implicated as key genetic predictors of response to treatments. Studies have also reported that genetic variation in genes coding for proteins that cross-talk with DRD2 at the molecular level, such as AKT1, GSK3B, Beta-catenin, and PPP2R2B are associated with response to antipsychotics. In this review we discuss the relative contribution to antipsychotic drug responsiveness of candidate genes and GWAS identified genes encoding proteins involved in dopamine responses. We also suggest that in addition of these older players, a deeper investigation of new GWAS identified schizophrenia risk genes such as FXR1 can provide new prospects that are not clearly engaged in dopamine function while being targeted by dopamine-associated signaling molecules. Overall, further examination of genes proximally or distally related to signaling mechanisms engaged by medications and associated with disease risk and/or treatment responsiveness may uncover an interface between genes involved in disease causation with those affecting disease remediation. Such a nexus would provide realistic targets for therapy and further the development of genetically personalized approaches for schizophrenia.
Collapse
Affiliation(s)
- Antonio Rampino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy.,Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | | | - Tiago Soares-Silva
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Silvia Torretta
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Federica Veneziani
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Jean Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Stanic J, Mellone M, Napolitano F, Racca C, Zianni E, Minocci D, Ghiglieri V, Thiolat ML, Li Q, Longhi A, De Rosa A, Picconi B, Bezard E, Calabresi P, Di Luca M, Usiello A, Gardoni F. Rabphilin 3A: A novel target for the treatment of levodopa-induced dyskinesias. Neurobiol Dis 2017; 108:54-64. [PMID: 28823933 DOI: 10.1016/j.nbd.2017.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/19/2017] [Accepted: 08/16/2017] [Indexed: 11/26/2022] Open
Abstract
N-methyl-d-aspartate receptor (NMDAR) subunit composition strictly commands receptor function and pharmacological responses. Changes in NMDAR subunit composition have been documented in brain disorders such as Parkinson's disease (PD) and levodopa (L-DOPA)-induced dyskinesias (LIDs), where an increase of NMDAR GluN2A/GluN2B subunit ratio at striatal synapses has been observed. A therapeutic approach aimed at rebalancing NMDAR synaptic composition represents a valuable strategy for PD and LIDs. To this, the comprehension of the molecular mechanisms regulating the synaptic localization of different NMDAR subtypes is required. We have recently demonstrated that Rabphilin 3A (Rph3A) is a new binding partner of NMDARs containing the GluN2A subunit and that it plays a crucial function in the synaptic stabilization of these receptors. Considering that protein-protein interactions govern the synaptic retention of NMDARs, the purpose of this work was to analyse the role of Rph3A and Rph3A/NMDAR complex in PD and LIDs, and to modulate Rph3A/GluN2A interaction to counteract the aberrant motor behaviour associated to chronic L-DOPA administration. Thus, an array of biochemical, immunohistochemical and pharmacological tools together with electron microscopy were applied in this study. Here we found that Rph3A is localized at the striatal postsynaptic density where it interacts with GluN2A. Notably, Rph3A expression at the synapse and its interaction with GluN2A-containing NMDARs were increased in parkinsonian rats displaying a dyskinetic profile. Acute treatment of dyskinetic animals with a cell-permeable peptide able to interfere with Rph3A/GluN2A binding significantly reduced their abnormal motor behaviour. Altogether, our findings indicate that Rph3A activity is linked to the aberrant synaptic localization of GluN2A-expressing NMDARs characterizing LIDs. Thus, we suggest that Rph3A/GluN2A complex could represent an innovative therapeutic target for those pathological conditions where NMDAR composition is significantly altered.
Collapse
Affiliation(s)
- Jennifer Stanic
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milano, Italy
| | - Manuela Mellone
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milano, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania, Luigi Vanvitelli, Caserta, Italy
| | - Francesco Napolitano
- Ceinge Biotecnologie Avanzate, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Claudia Racca
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Elisa Zianni
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milano, Italy
| | - Daiana Minocci
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milano, Italy
| | - Veronica Ghiglieri
- Laboratorio di Neurofisiologia, Fondazione Santa Lucia, IRCCS, 00143 Roma, Italy; Department of Philosophy, Human, Social and Educational Sciences, University of Perugia, Perugia, Italy
| | - Marie-Laure Thiolat
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Qin Li
- Motac Neuroscience Ltd, Manchester, United Kingdom; Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China
| | - Annalisa Longhi
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milano, Italy
| | | | - Barbara Picconi
- Laboratorio di Neurofisiologia, Fondazione Santa Lucia, IRCCS, 00143 Roma, Italy
| | - Erwan Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, United Kingdom; Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China
| | - Paolo Calabresi
- Laboratorio di Neurofisiologia, Fondazione Santa Lucia, IRCCS, 00143 Roma, Italy; Clinica Neurologica, Università degli studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06156 Perugia, Italy
| | - Monica Di Luca
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milano, Italy
| | - Alessandro Usiello
- Ceinge Biotecnologie Avanzate, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania, Luigi Vanvitelli, Caserta, Italy
| | - Fabrizio Gardoni
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milano, Italy.
| |
Collapse
|
18
|
Thanos PK, Hamilton J, O'Rourke JR, Napoli A, Febo M, Volkow ND, Blum K, Gold M. Dopamine D2 gene expression interacts with environmental enrichment to impact lifespan and behavior. Oncotarget 2017; 7:19111-23. [PMID: 26992232 PMCID: PMC4991369 DOI: 10.18632/oncotarget.8088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/23/2016] [Indexed: 12/22/2022] Open
Abstract
Aging produces cellular, molecular, and behavioral changes affecting many areas of the brain. The dopamine (DA) system is known to be vulnerable to the effects of aging, which regulate behavioral functions such as locomotor activity, body weight, and reward and cognition. In particular, age-related DA D2 receptor (D2R) changes have been of particular interest given its relationship with addiction and other rewarding behavioral properties. Male and female wild-type (Drd2 +/+), heterozygous (Drd2 +/−) and knockout (Drd2 −/−) mice were reared post-weaning in either an enriched environment (EE) or a deprived environment (DE). Over the course of their lifespan, body weight and locomotor activity was assessed. While an EE was generally found to be correlated with longer lifespan, these increases were only found in mice with normal or decreased expression of the D2 gene. Drd2 +/+ EE mice lived nearly 16% longer than their DE counterparts. Drd2 +/+ and Drd2 +/− EE mice lived 22% and 21% longer than Drd2 −/− EE mice, respectively. Moreover, both body weight and locomotor activity were moderated by environmental factors. In addition, EE mice show greater behavioral variability between genotypes compared to DE mice with respect to body weight and locomotor activity.
Collapse
Affiliation(s)
- Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Joseph R O'Rourke
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Anthony Napoli
- Department of Psychology, Suffolk Community College, Riverhead, NY, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | | | - Kenneth Blum
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Mark Gold
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Effect of ketamine administration, alone and in combination with E-6837, on climbing behavior. Behav Pharmacol 2017; 27:485-8. [PMID: 27035065 DOI: 10.1097/fbp.0000000000000235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Some types of schizophrenia have been associated with repetitive movements lacking specific purpose, also known as stereotyped behavior. Dopamine agonists (D2) and noncompetitive N-methyl-D-aspartate receptor antagonists (e.g. ketamine) have been administered in rodent models to induce stereotyped behavior that resembles some motor symptoms of schizophrenia. Recently, a relationship has been found between 5-HT6 receptors (5-HT6Rs) and dopaminergic activity. The present study evaluates the effect of ketamine (5 and 10 mg/kg), alone and in combination with the 5-HT6R agonist E-6837, on the climbing behavior of male mice. Ketamine was administered with an acute (1 day) and subchronic (5 day) scheme. Later, these doses and schemes were combined with an acute scheme of E-6837 (5 and 10 mg/kg). With both the acute and the subchronic schemes, ketamine increased climbing behavior at a dose of 10 mg/kg, and this effect was reversed by E-6837 (at 5 and 10 mg/kg). The present results suggest that there is an interaction between N-methyl-D-aspartate and 5-HT6 receptors in the regulation of climbing behavior. Further research is necessary to provide more evidence on this interaction.
Collapse
|
20
|
Abstract
BACKGROUND HIV-1 infection and drug abuse are frequently co-morbid and their association greatly increases the severity of HIV-1-induced neuropathology. While nucleus accumbens (NAcc) function is severely perturbed by drugs of abuse, little is known about how HIV-1 infection affects NAcc. METHODS We used calcium and voltage imaging to investigate the effect of HIV-1 trans-activator of transcription (Tat) on rat NAcc. Based on previous neuronal studies, we hypothesized that Tat modulates intracellular Ca2+ homeostasis of NAcc neurons. RESULTS We provide evidence that Tat triggers a Ca2+ signaling cascade in NAcc medium spiny neurons (MSN) expressing D1-like dopamine receptors leading to neuronal depolarization. Firstly, Tat induced inositol 1,4,5-trisphsophate (IP3) receptor-mediated Ca2+ release from endoplasmic reticulum, followed by Ca2+ and Na+ influx via transient receptor potential canonical channels. The influx of cations depolarizes the membrane promoting additional Ca2+ entry through voltage-gated P/Q-type Ca2+ channels and opening of tetrodotoxin-sensitive Na+ channels. By activating this mechanism, Tat elicits a feed-forward depolarization increasing the excitability of D1-phosphatidylinositol-linked NAcc MSN. We previously found that cocaine targets NAcc neurons directly (independent of the inhibition of dopamine transporter) only when IP3-generating mechanisms are concomitantly initiated. When tested here, cocaine produced a dose-dependent potentiation of the effect of Tat on cytosolic Ca2+. CONCLUSION We describe for the first time a HIV-1 Tat-triggered Ca2+ signaling in MSN of NAcc involving TRPC and depolarization and a potentiation of the effect of Tat by cocaine, which may be relevant for the reward axis in cocaine-abusing HIV-1-positive patients.
Collapse
|
21
|
Jiang D, Zhuang J, Peng W, Lu Y, Liu H, Zhao Q, Chi C, Li X, Zhu G, Xu X, Yan C, Xu Y, Ge J, Pang J. Phospholipase Cγ1 Mediates Intima Formation Through Akt-Notch1 Signaling Independent of the Phospholipase Activity. J Am Heart Assoc 2017; 6:JAHA.117.005537. [PMID: 28698260 PMCID: PMC5586285 DOI: 10.1161/jaha.117.005537] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Vascular smooth muscle cell proliferation, migration, and dedifferentiation are critical for vascular diseases. Recently, it was demonstrated that Notch receptors have opposing effects on intima formation after vessel injury. Therefore, it is important to investigate the specific regulatory pathways that activate the different Notch receptors. Methods and Results There was a time‐ and dose‐dependent activation of Notch1 by angiotensin II and platelet‐derived growth factor in vascular smooth muscle cells. When phospholipase Cγ1 (PLCγ1) expression was reduced by small interfering RNA, Notch1 activation and Hey2 expression (Notch target gene) induced by angiotensin II or platelet‐derived growth factor were remarkably inhibited, while Notch2 degradation was not affected. Mechanistically, we observed an association of PLCγ1 and Akt, which increased after angiotensin II or platelet‐derived growth factor stimulation. PLCγ1 knockdown significantly inhibited Akt activation. Importantly, PLCγ1 phospholipase site mutation (no phospholipase activity) did not affect Akt activation. Furthermore, PLCγ1 depletion inhibited platelet‐derived growth factor–induced vascular smooth muscle cell proliferation, migration, and dedifferentiation, while it increased apoptosis. In vivo, PLCγ1 and control small interfering RNA were delivered periadventitially in pluronic gel and complete carotid artery ligation was performed. Morphometric analysis 21 days after ligation demonstrated that PLCγ1 small interfering RNA robustly attenuated intima area and intima/media ratio compared with the control group. Conclusions PLCγ1‐Akt–mediated Notch1 signaling is crucial for intima formation. This effect is attributable to PLCγ1‐Akt interaction but not PLCγ1 phospholipase activity. Specific inhibition of the PLCγ1 and Akt interaction will be a promising therapeutic strategy for preventing vascular remodeling.
Collapse
Affiliation(s)
- Dongyang Jiang
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianhui Zhuang
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenhui Peng
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuyan Lu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Liu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhao
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Chi
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiankai Li
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guofu Zhu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangbin Xu
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Chen Yan
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Yawei Xu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinjiang Pang
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China .,Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
22
|
Perreault ML, Hasbi A, Shen MYF, Fan T, Navarro G, Fletcher PJ, Franco R, Lanciego JL, George SR. Disruption of a dopamine receptor complex amplifies the actions of cocaine. Eur Neuropsychopharmacol 2016; 26:1366-1377. [PMID: 27480020 DOI: 10.1016/j.euroneuro.2016.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/04/2016] [Accepted: 07/13/2016] [Indexed: 11/27/2022]
Abstract
Cocaine-induced increases in dopamine signaling in nucleus accumbens (NAc) play a significant role in cocaine seeking behavior. The majority of cocaine addiction research has focused on neuroanatomically segregated dopamine D1 and D2 receptor-expressing neurons, yet an involvement for those NAc neurons coexpressing D1 and D2 receptors in cocaine addiction has never been explored. In situ proximity ligation assay, confocal fluorescence resonance energy transfer and coimmunoprecipitation were used to show native D1 and D2 receptors formed a heteromeric complex in D1/D2 receptor-coexpressing neurons in rat and non-human primate NAc. D1-D2 heteromer expression was lower in NAc of adolescent rats compared to their adult counterparts. Functional disruption of the dopamine D1-D2 receptor heteromer, using a peptide targeting the site of interaction between the D1 and D2 receptor, induced conditioned place preference and increased NAc expression of ∆FosB. D1-D2 heteromer disruption also resulted in the promotion, exacerbation and acceleration of the locomotor activating and incentive motivational effects of cocaine in the self-administration paradigm. These findings support a model for tonic inhibition of basal and cocaine-induced reward processes by the D1-D2 heteromer thus highlighting its potential value as a novel target for drug discovery in cocaine addiction. Given that adolescents show increased drug abuse susceptibility, an involvement for reduced D1-D2 heteromer function in the heightened sensitivity to the rewarding effects of cocaine in adolescence is also implicated.
Collapse
Affiliation(s)
- Melissa L Perreault
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ahmed Hasbi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Maurice Y F Shen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Theresa Fan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Paul J Fletcher
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Rafael Franco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; CIBERNED, Centro de Investigación en Red. Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - José L Lanciego
- CIBERNED, Centro de Investigación en Red. Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain; Department of Neurosciences, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Susan R George
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Gurevich EV, Gainetdinov RR, Gurevich VV. G protein-coupled receptor kinases as regulators of dopamine receptor functions. Pharmacol Res 2016; 111:1-16. [PMID: 27178731 PMCID: PMC5079267 DOI: 10.1016/j.phrs.2016.05.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 02/08/2023]
Abstract
Actions of the neurotransmitter dopamine in the brain are mediated by dopamine receptors that belong to the superfamily of G protein-coupled receptors (GPCRs). Mammals have five dopamine receptor subtypes, D1 through D5. D1 and D5 couple to Gs/olf and activate adenylyl cyclase, whereas D2, D3, and D4 couple to Gi/o and inhibit it. Most GPCRs upon activation by an agonist are phosphorylated by GPCR kinases (GRKs). The GRK phosphorylation makes receptors high-affinity binding partners for arrestin proteins. Arrestin binding to active phosphorylated receptors stops further G protein activation and promotes receptor internalization, recycling or degradation, thereby regulating their signaling and trafficking. Four non- visual GRKs are expressed in striatal neurons. Here we describe known effects of individual GRKs on dopamine receptors in cell culture and in the two in vivo models of dopamine-mediated signaling: behavioral response to psychostimulants and L-DOPA- induced dyskinesia. Dyskinesia, associated with dopamine super-sensitivity of striatal neurons, is a debilitating side effect of L-DOPA therapy in Parkinson's disease. In vivo, GRK subtypes show greater receptor specificity than in vitro or in cultured cells. Overexpression, knockdown, and knockout of individual GRKs, particularly GRK2 and GRK6, have differential effects on signaling of dopamine receptor subtypes in the brain. Furthermore, deletion of GRK isoforms in select striatal neuronal types differentially affects psychostimulant-induced behaviors. In addition, anti-dyskinetic effect of GRK3 does not require its kinase activity: it is mediated by the binding of its RGS-like domain to Gαq/11, which suppresses Gq/11 signaling. The data demonstrate that the dopamine signaling in defined neuronal types in vivo is regulated by specific and finely orchestrated actions of GRK isoforms.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37221, USA.
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia; Skolkovo Institute of Science and Technology, Skolkovo, 143025, Moscow, Russia
| | | |
Collapse
|
24
|
The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases. J Aging Res 2016; 2016:5081021. [PMID: 27597899 PMCID: PMC5002468 DOI: 10.1155/2016/5081021] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022] Open
Abstract
The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.
Collapse
|
25
|
Bilodeau J, Schwendt M. Post-cocaine changes in regulator of G-protein signaling (RGS) proteins in the dorsal striatum: Relevance for cocaine-seeking and protein kinase C-mediated phosphorylation. Synapse 2016; 70:432-40. [PMID: 27261631 DOI: 10.1002/syn.21917] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/19/2016] [Accepted: 06/01/2016] [Indexed: 12/27/2022]
Abstract
Persistent cocaine-induced neuroadaptations within the cortico-striatal circuitry might be related to elevated risk of relapse observed in human addicts even after months or years of drug-free abstinence. Identification of these neuroadaptations may lead development of novel, neurobiologically-based treatments of relapse. In the current study, 12 adult male Sprague-Dawley rats self-administered cocaine (or received yoked-saline) for two weeks followed by three weeks of home-cage abstinence. At this point, we analyzed expression of proteins involved in regulation of Gαi- and Gαq-protein signaling in the dorsal striatum (dSTR). Animals abstinent from chronic cocaine showed decreased expression of regulator of G-protein signaling 2 (RGS2) and RGS4, as well as upregulation of RGS9. These data, together with the increased ratio of Gαq-to-Gαi proteins indicated, "sensitized" Gαq signaling in the dSTR of abstinent cocaine animals. To evaluate activation of Gαq signaling during relapse, another group of abstinent cocaine animals (and yoked saline controls, 22 rats together) was reintroduced to the cocaine context and PKC-mediated phosphorylation in the dSTR was analyzed. Re-exposure to the cocaine context triggered cocaine seeking and increase in phosphorylation of cellular PKC substrates, including phospho-ERK and phospho-CREB. In conclusion, this study demonstrates persistent dysregulation of RGS proteins in the dSTR of abstinent cocaine animals that may produce an imbalance in local Gαq-to-Gαi signaling. This imbalance might be related to augmented PKC-mediated phosphorylation during relapse to cocaine-seeking. Future studies will address whether selective targeting of RGS proteins in the dSTR can be utilized to suppress PKC-mediated phosphorylation and relapse to cocaine-seeking.
Collapse
Affiliation(s)
- Jenna Bilodeau
- Psychology Department, University of Florida, Gainesville, Florida 32611-2250
| | - Marek Schwendt
- Psychology Department, University of Florida, Gainesville, Florida 32611-2250
| |
Collapse
|
26
|
García-Pardo MP, Roger-Sanchez C, Rodríguez-Arias M, Miñarro J, Aguilar MA. Pharmacological modulation of protein kinases as a new approach to treat addiction to cocaine and opiates. Eur J Pharmacol 2016; 781:10-24. [DOI: 10.1016/j.ejphar.2016.03.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022]
|
27
|
Gurevich EV, Gainetdinov RR, Gurevich VV. Regulation of Dopamine-Dependent Behaviors by G Protein-Coupled Receptor Kinases. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3798-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Yasui Y, Su TP. Potential Molecular Mechanisms on the Role of the Sigma-1 Receptor in the Action of Cocaine and Methamphetamine. ACTA ACUST UNITED AC 2016; 5. [PMID: 27088037 DOI: 10.4303/jdar/235970] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum membrane protein that involves a wide range of physiological functions. The Sig-1R has been shown to bind psychostimulants including cocaine and methamphetamine (METH) and thus has been implicated in the actions of those psychostimulants. For example, it has been demonstrated that the Sig-1R antagonists mitigate certain behavioral and cellular effects of psychostimulants including hyperactivity and neurotoxicity. Thus, the Sig-1R has become a potential therapeutic target of medication development against drug abuse that differs from traditional monoamine-related strategies. In this review, we will focus on the molecular mechanisms of the Sig-1R and discuss in such a manner with a hope to further understand or unveil unexplored relations between the Sig-1R and the actions of cocaine and METH, particularly in the context of cellular biological relevance.
Collapse
Affiliation(s)
- Yuko Yasui
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, Maryland 21224
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, Maryland 21224
| |
Collapse
|
29
|
Thompson JL, Yang J, Lau B, Liu S, Baimel C, Kerr LE, Liu F, Borgland SL. Age-Dependent D1-D2 Receptor Coactivation in the Lateral Orbitofrontal Cortex Potentiates NMDA Receptors and Facilitates Cognitive Flexibility. Cereb Cortex 2015; 26:4524-4539. [PMID: 26405054 DOI: 10.1093/cercor/bhv222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The orbitofrontal cortex (OFC) integrates information about the environment to guide decision-making. Glutamatergic synaptic transmission mediated through N-methyl-d-aspartate receptors is required for optimal functioning of the OFC. Additionally, abnormal dopamine signaling in this region has been implicated in impulsive behavior and poor cognitive flexibility. Yet, despite the high prevalence of psychostimulants prescribed for attention deficit/hyperactivity disorder, there is little information on how dopamine modulates synaptic transmission in the juvenile or the adult OFC. Using whole-cell patch-clamp recordings in OFC pyramidal neurons, we demonstrated that while dopamine or selective D2-like receptor (D2R) agonists suppress excitatory synaptic transmission of juvenile or adult lateral OFC neurons; in juvenile lateral OFC neurons, higher concentrations of dopamine can target dopamine receptors that couple to a phospholipase C (PLC) signaling pathway to enhance excitatory synaptic transmission. Interfering with the formation of a putative D1R-D2R interaction blocked the potentiation of excitatory synaptic transmission. Furthermore, targeting the putative D1R-D2R complex with a biased agonist, SKF83959, not only enhanced excitatory synaptic transmission in a PLC-dependent manner, but also improved the performance of juvenile rats on a reversal-learning task. Our results demonstrate that dopamine signaling in the lateral OFC differs between juveniles and adults, through potential crosstalk between dopamine receptor subtypes.
Collapse
Affiliation(s)
- Jennifer L Thompson
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Jinhui Yang
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Benjamin Lau
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Shuai Liu
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Corey Baimel
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Lauren E Kerr
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Fang Liu
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | |
Collapse
|
30
|
Abstract
The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors.
Collapse
|
31
|
In vivo veritas, the next frontier for functionally selective GPCR ligands. Methods 2015; 92:64-71. [PMID: 26320830 DOI: 10.1016/j.ymeth.2015.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/22/2015] [Accepted: 08/24/2015] [Indexed: 01/11/2023] Open
Abstract
The realization that G-protein coupled receptors (GPCR) engage several cell signaling mechanisms simultaneously has led to a multiplication of research aimed at developing biased ligands exerting a selective action on subsets of responses downstream of a given receptor. Several tools have been developed to identify such ligands using recombinant cell systems. However the validation of biased ligand activity in animal models remains a serious challenge. Here we present a general strategy that can be used to validate biased ligand activity in vivo and supports it as a strategy for further drug development. In doing so, we placed special attention on strategies allowing to discriminate between G-protein and beta-arrestin mediated mechanisms. We also underscore differences between in vitro and in vivo systems and suggest avenues for tool development to streamline the translation of biased ligands development to pre-clinical animal models.
Collapse
|
32
|
Barr JL, Deliu E, Brailoiu GC, Zhao P, Yan G, Abood ME, Unterwald EM, Brailoiu E. Mechanisms of activation of nucleus accumbens neurons by cocaine via sigma-1 receptor-inositol 1,4,5-trisphosphate-transient receptor potential canonical channel pathways. Cell Calcium 2015; 58:196-207. [PMID: 26077147 PMCID: PMC4501893 DOI: 10.1016/j.ceca.2015.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/05/2015] [Accepted: 05/17/2015] [Indexed: 01/22/2023]
Abstract
Cocaine promotes addictive behavior primarily by blocking the dopamine transporter, thus increasing dopamine transmission in the nucleus accumbens (nAcc); however, additional mechanisms are continually emerging. Sigma-1 receptors (σ1Rs) are known targets for cocaine, yet the mechanisms underlying σ1R-mediated effects of cocaine are incompletely understood. The present study examined direct effects of cocaine on dissociated nAcc neurons expressing phosphatidylinositol-linked D1 receptors. Endoplasmic reticulum-located σ1Rs and inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) were targeted using intracellular microinjection. IP3 microinjection robustly elevated intracellular Ca(2+) concentration, [Ca(2+)]i. While cocaine alone was devoid of an effect, the IP3-induced response was σ1R-dependently enhanced by cocaine co-injection. Likewise, cocaine augmented the [Ca(2+)]i increase elicited by extracellularly applying an IP3-generating molecule (ATP), via σ1Rs. The cocaine-induced enhancement of the IP3/ATP-mediated Ca(2+) elevation occurred at pharmacologically relevant concentrations and was mediated by transient receptor potential canonical channels (TRPC). IP3 microinjection elicited a slight, transient depolarization, further converted to a greatly enhanced, prolonged response, by cocaine co-injection. The cocaine-triggered augmentation was σ1R-dependent, TRPC-mediated and contingent on [Ca(2+)]i elevation. ATP-induced depolarization was similarly enhanced by cocaine. Thus, we identify a novel mechanism by which cocaine promotes activation of D1-expressing nAcc neurons: enhancement of IP3R-mediated responses via σ1R activation at the endoplasmic reticulum, resulting in augmented Ca(2+) release and amplified depolarization due to subsequent stimulation of TRPC. In vivo, intra-accumbal blockade of σ1R or TRPC significantly diminished cocaine-induced hyperlocomotion and locomotor sensitization, endorsing a physio-pathological significance of the pathway identified in vitro.
Collapse
Affiliation(s)
- Jeffrey L Barr
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Elena Deliu
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, PA 19107, USA
| | - Pingwei Zhao
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Guang Yan
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, PA 19107, USA
| | - Mary E Abood
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Ellen M Unterwald
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
33
|
Ponce G, Quiñones-Lombraña A, Martín-Palanco NG, Rubio-Solsona E, Jiménez-Arriero MÁ, Palomo T, Hoenicka J. The Addiction-Related Gene Ankk1 is Oppositely Regulated by D1R- and D2R-Like Dopamine Receptors. Neurotox Res 2015; 29:345-50. [PMID: 26194616 DOI: 10.1007/s12640-015-9545-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/02/2015] [Accepted: 07/08/2015] [Indexed: 11/24/2022]
Abstract
The ankyrin repeat and kinase domain containing 1 (ANKK1) TaqIA polymorphism has been extensively studied as a marker of the gene for dopamine receptor D2 (DRD2) in addictions and other dopamine-associated traits. In vitro mRNA and protein studies have shown a potential connection between ANKK1 and the dopaminergic system functioning. Here, we have investigated whether Ankk1 expression in the brain is regulated by treatment with dopaminergic agonists. We used quantitative RT-PCR of total brain and Western blots of specific brain areas to study Ankk1 in murine brain after dopaminergic treatments. We found that Ankk1 mRNA was upregulated after activation of D1R-like dopamine receptors with SKF38393 (2.660 ± 1.035-fold; t: 4.066, df: 11, P = 0.002) and apomorphine (2.043 ± 0.595-fold; t: 3.782, df: 8, P = 0.005). The D2R-like agonist quinelorane has no effect upon Ankk1 mRNA (1.004 ± 0.580-fold; t: 0.015, df: 10, P = 0.9885). In contrast, mice treatment with the D2R-like agonists 7-OH-DPAT and aripiprazole caused a significant Ankk1 mRNA downregulation (0.606 ± 0.057-fold; t: 2.786, df: 10, P = 0.02 and 0.588 ± 0.130-fold; t: 2.394, df: 11, P = 0.036, respectively). With respect the Ankk1 proteins profile, no effects were found after SKF38393 (t: 0.54, df: 2, P = 0.643) and Quinelorane (t: 0.286, df: 8, P = 0.782) treatments. In contrast, the D2R-like agonist 7-OH-DPAT (±) caused a significant increment of Ankk1 in the striatum (t: 2.718, df: 7; P = 0.03) when compared to the prefrontal cortex. The activation of D1R-like and D2-R-like leads to opposite transcriptional regulation of Ankk1 by specific pathways.
Collapse
Affiliation(s)
- Guillermo Ponce
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario, Avda. Andalucía s/n, 28041, Madrid, Spain.,Red de Trastornos Adictivos (RTA), Madrid, Spain
| | - Adolfo Quiñones-Lombraña
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario, Avda. Andalucía s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Noelia Guerra Martín-Palanco
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario, Avda. Andalucía s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Estrella Rubio-Solsona
- Program of Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Miguel Ángel Jiménez-Arriero
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario, Avda. Andalucía s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Tomás Palomo
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario, Avda. Andalucía s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Janet Hoenicka
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario, Avda. Andalucía s/n, 28041, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain. .,Program of Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
| |
Collapse
|
34
|
Ahmed MR, Bychkov E, Li L, Gurevich VV, Gurevich EV. GRK3 suppresses L-DOPA-induced dyskinesia in the rat model of Parkinson's disease via its RGS homology domain. Sci Rep 2015; 5:10920. [PMID: 26043205 PMCID: PMC4455246 DOI: 10.1038/srep10920] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/11/2015] [Indexed: 12/31/2022] Open
Abstract
Degeneration of dopaminergic neurons causes Parkinson's disease. Dopamine replacement therapy with L-DOPA is the best available treatment. However, patients develop L-DOPA-induced dyskinesia (LID). In the hemiparkinsonian rat, chronic L-DOPA increases rotations and abnormal involuntary movements modeling LID, via supersensitive dopamine receptors. Dopamine receptors are controlled by G protein-coupled receptor kinases (GRKs). Here we demonstrate that LID is attenuated by overexpression of GRK3 in the striatum, whereas knockdown of GRK3 by microRNA exacerbated it. Kinase-dead GRK3 and its separated RGS homology domain (RH) suppressed sensitization to L-DOPA, whereas GRK3 with disabled RH did not. RH alleviated LID without compromising anti-akinetic effect of L-DOPA. RH binds striatal Gq. GRK3, kinase-dead GRK3, and RH inhibited accumulation of ∆FosB, a marker of LID. RH-dead mutant was ineffective, whereas GRK3 knockdown exacerbated ∆FosB accumulation. Our findings reveal a novel mechanism of GRK3 control of the dopamine receptor signaling and the role of Gq in LID.
Collapse
Affiliation(s)
- Mohamed R. Ahmed
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Evgeny Bychkov
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Lingyong Li
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | | | | |
Collapse
|
35
|
Graham DL, Buendia MA, Chapman MA, Durai HH, Stanwood GD. Deletion of Gαq in the telencephalon alters specific neurobehavioral outcomes. Synapse 2015; 69:434-45. [PMID: 25963901 DOI: 10.1002/syn.21830] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 02/04/2023]
Abstract
G(αq) -coupled receptors are ubiquitously expressed throughout the brain and body, and it has been shown that these receptors and associated signaling cascades are involved in a number of functional outputs, including motor function and learning and memory. Genetic alterations to G(αq) have been implicated in neurodevelopmental disorders such as Sturge-Weber syndrome. Some of these associated disease outcomes have been modeled in laboratory animals, but as G(αq) is expressed in all cell types, it is difficult to differentiate the underlying circuitry or causative neuronal population. To begin to address neuronal cell type diversity in G(αq) function, we utilized a conditional knockout mouse whereby G(αq) was eliminated from telencephalic glutamatergic neurons. Unlike the global G(αq) knockout mouse, we found that these conditional knockout mice were not physically different from control mice, nor did they exhibit any gross motor abnormalities. However, similarly to the constitutive knockout animal, G(αq) conditional knockout mice demonstrated apparent deficits in spatial working memory. Loss of G(αq) from glutamatergic neurons also produced enhanced sensitivity to cocaine-induced locomotion, suggesting that cortical G(αq) signaling may limit behavioral responses to psychostimulants. Screening for a variety of markers of forebrain neuronal architecture revealed no obvious differences in the conditional knockouts, suggesting that the loss of G(αq) in telencephalic excitatory neurons does not result in major alterations in brain structure or neuronal differentiation. Taken together, our results define specific modulation of spatial working memory and psychostimulant responses through disruptions in G(αq) signaling within cerebral cortical glutamatergic neurons.
Collapse
Affiliation(s)
- Devon L Graham
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, 32303
| | - Matthew A Buendia
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | - Michelle A Chapman
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | - Heather H Durai
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | - Gregg D Stanwood
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, 32303
| |
Collapse
|
36
|
PKA-dependent phosphorylation of ribosomal protein S6 does not correlate with translation efficiency in striatonigral and striatopallidal medium-sized spiny neurons. J Neurosci 2015; 35:4113-30. [PMID: 25762659 DOI: 10.1523/jneurosci.3288-14.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ribosomal protein S6 (rpS6), a component of the 40S ribosomal subunit, is phosphorylated on several residues in response to numerous stimuli. Although commonly used as a marker for neuronal activity, its upstream mechanisms of regulation are poorly studied and its role in protein synthesis remains largely debated. Here, we demonstrate that the psychostimulant d-amphetamine (d-amph) markedly increases rpS6 phosphorylation at Ser235/236 sites in both crude and synaptoneurosomal preparations of the mouse striatum. This effect occurs selectively in D1R-expressing medium-sized spiny neurons (MSNs) and requires the cAMP/PKA/DARPP-32/PP-1 cascade, whereas it is independent of mTORC1/p70S6K, PKC, and ERK signaling. By developing a novel assay to label nascent peptidic chains, we show that the rpS6 phosphorylation induced in striatonigral MSNs by d-amph, as well as in striatopallidal MSNs by the antipsychotic haloperidol or in both subtypes by papaverine, is not correlated with the translation of global or 5' terminal oligopyrimidine tract mRNAs. Together, these results provide novel mechanistic insights into the in vivo regulation of the post-translational modification of rpS6 in the striatum and point out the lack of a relationship between PKA-dependent rpS6 phosphorylation and translation efficiency.
Collapse
|
37
|
Rioult-Pedotti MS, Pekanovic A, Atiemo CO, Marshall J, Luft AR. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation. PLoS One 2015; 10:e0124986. [PMID: 25938462 PMCID: PMC4418826 DOI: 10.1371/journal.pone.0124986] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/04/2015] [Indexed: 01/11/2023] Open
Abstract
Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease.
Collapse
Affiliation(s)
- Mengia-Seraina Rioult-Pedotti
- Clinical Neurorehabilitation, Department of Neurology, University of Zurich, Zurich, Switzerland
- Rehabilitation Initiative and Technology Center Zurich (RITZ), Zurich, Switzerland
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| | - Ana Pekanovic
- Clinical Neurorehabilitation, Department of Neurology, University of Zurich, Zurich, Switzerland
- Rehabilitation Initiative and Technology Center Zurich (RITZ), Zurich, Switzerland
| | - Clement Osei Atiemo
- Clinical Neurorehabilitation, Department of Neurology, University of Zurich, Zurich, Switzerland
- Rehabilitation Initiative and Technology Center Zurich (RITZ), Zurich, Switzerland
| | - John Marshall
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, United States of America
| | - Andreas Rüdiger Luft
- Clinical Neurorehabilitation, Department of Neurology, University of Zurich, Zurich, Switzerland
- Rehabilitation Initiative and Technology Center Zurich (RITZ), Zurich, Switzerland
- Division of Vascular Neurology and Neurorehabilitation, Department of Neurology, University Hospital Zürich, Zurich, Switzerland
| |
Collapse
|
38
|
Smith LN, Bachus SE, McDonald CG, Smith RF. Role of the D3 dopamine receptor in nicotine sensitization. Behav Brain Res 2015; 289:92-104. [PMID: 25907750 DOI: 10.1016/j.bbr.2015.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/06/2015] [Accepted: 04/13/2015] [Indexed: 11/29/2022]
Abstract
Adolescent cigarette use is associated with reduced quitting success and continued smoking in adulthood. Interestingly, polymorphisms of the dopamine D3 receptor (DRD3) gene have been associated with smoking behavior, and the receptor is expressed in an age- and brain region-dependent manner that suggests relevance to addiction. Here, we investigate the possible role of dopamine-related receptors, including DRD3 and an intriguing splice variant known as D3nf, in nicotine-induced sensitization. In adolescent and adult male rats, we examined (1) alterations occurring in dopamine receptor-related mRNAs (DRD1, DRD2, DRD3 and D3nf) at two time points during a sensitizing regimen of nicotine and (2) whether DRD3 antagonism either during the initial treatment (induction) or at a later challenge exposure (expression) is able to block nicotine sensitization. Nicotine-induced changes were seen for DRD3 and D3nf mRNAs in the nucleus accumbens shell early in repeated exposure in both age groups. DRD3 antagonism only blocked the induction of sensitization in adolescents and did not block the expression of sensitization in either age group. Adolescents and adults showed opposite DRD1 mRNA responses to nicotine treatment, while no age- and nicotine-related changes in DRD2 mRNA were observed. These data reveal important age-dependent regulation of DRD1- and DRD3-related mRNAs during the course of nicotine exposure. Furthermore, they highlight a requirement for DRD3 signaling in the development of adolescent nicotine sensitization, suggesting it may represent an appropriate target in the prevention of nicotine dependence initiated at this age.
Collapse
Affiliation(s)
- Laura N Smith
- George Mason University, Department of Psychology, MSN 3F5, 4400 University Drive, Fairfax, VA 22030, USA.
| | - Susan E Bachus
- George Mason University, Department of Psychology, MSN 3F5, 4400 University Drive, Fairfax, VA 22030, USA
| | - Craig G McDonald
- George Mason University, Department of Psychology, MSN 3F5, 4400 University Drive, Fairfax, VA 22030, USA
| | - Robert F Smith
- George Mason University, Department of Psychology, MSN 3F5, 4400 University Drive, Fairfax, VA 22030, USA
| |
Collapse
|
39
|
Reply to Konsolaki and Skaliora: Habituation, hyperlocomotion, and "genuine hyperlocomotion". Proc Natl Acad Sci U S A 2015; 112:E5. [PMID: 25540419 DOI: 10.1073/pnas.1417574112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Xie YF, Zhou F. TRPC3 channel mediates excitation of striatal cholinergic interneurons. Neurol Sci 2014; 35:1757-1761. [PMID: 24844791 DOI: 10.1007/s10072-014-1827-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/08/2014] [Indexed: 11/29/2022]
Abstract
Striatal cholinergic interneurons exhibit tonic firing and more positive membrane potentials, however, the mechanism is unclear. In the present study, we found that intracellular perfusion of TRPC3 antibody induced outward current in striatal cholinergic interneurons identified by electrophysiological characteristics. The TRPC3 channel blocker flufenamic acid induced hyperpolarization, and reduced firing rate and outward current which was similar to the effect of TRPC3 channel antibody. Furthermore, by using single-cell RT-PCR we confirmed the co-existence of TRPC3 channel and D5 receptor mRNA in striatal cholinergic interneurons identified by electrophysiological characteristics and expression of choline acetyltransferase (Chat) mRNA. These results implied that the TRPC3 channel is involved in modulating the depolarization of cholinergic interneurons.
Collapse
Affiliation(s)
- Yu-Feng Xie
- Department of Pharmacology, Health Science Center, University of Tennessee, Memphis, USA,
| | | |
Collapse
|
41
|
Lee SM, Yang Y, Mailman RB. Dopamine D1 receptor signaling: does GαQ-phospholipase C actually play a role? J Pharmacol Exp Ther 2014; 351:9-17. [PMID: 25052835 PMCID: PMC4165024 DOI: 10.1124/jpet.114.214411] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/21/2014] [Indexed: 12/19/2022] Open
Abstract
Despite numerous studies showing therapeutic potential, no central dopamine D1 receptor ligand has ever been approved, because of potential limitations, such as hypotension, seizures, and tolerance. Functional selectivity has been widely recognized as providing a potential mechanism to develop novel therapeutics from existing targets, and a highly biased, functionally selective D1 ligand might overcome some of the past limitations. SKF-83959 [6-chloro-3-methyl-1-(m-tolyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepine-7,8-diol] is reported to be a highly biased D1 ligand, having full agonism at D1-mediated activation of phospholipase C (PLC) signaling (via GαQ) and antagonism at D1-mediated adenylate cyclase signaling (via GαOLF/S). For this reason, numerous studies have used this compound to elucidate the physiologic role of D1-PLC signaling, including a novel molecular mechanism (GαQ-PLC activation via D1-D2 heterodimers). There is, however, contradictory literature that suggests that SKF-83959 is actually a partial agonist at both D1-mediated adenylate cyclase and β-arrestin recruitment. Moreover, the D1-mediated PLC stimulation has also been questioned. This Minireview examines 30 years of relevant literature and proposes that the data strongly favor alternate hypotheses: first, that SKF-83959 is a typical D1 partial agonist; and second, that the reported activation of PLC by SKF-83959 and related benzazepines likely is due to off-target effects, not actions at D1 receptors. If these hypotheses are supported by future studies, it would suggest that caution should be used regarding the role of PLC and downstream pathways in D1 signaling.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Dopamine Agonists/pharmacology
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Humans
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Signal Transduction
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Sang-Min Lee
- Departments of Pharmacology (S.-M.L., Y.Y., R.B.M.) and Neurology (Y.Y., R.B.M.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Yang Yang
- Departments of Pharmacology (S.-M.L., Y.Y., R.B.M.) and Neurology (Y.Y., R.B.M.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Richard B Mailman
- Departments of Pharmacology (S.-M.L., Y.Y., R.B.M.) and Neurology (Y.Y., R.B.M.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
42
|
Mechanisms of dopamine D1 receptor-mediated ERK1/2 activation in the parkinsonian striatum and their modulation by metabotropic glutamate receptor type 5. J Neurosci 2014; 34:4728-40. [PMID: 24672017 DOI: 10.1523/jneurosci.2702-13.2014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In animal models of Parkinson's disease, striatal overactivation of ERK1/2 via dopamine (DA) D1 receptors is the hallmark of a supersensitive molecular response associated with dyskinetic behaviors. Here we investigate the pathways involved in D1 receptor-dependent ERK1/2 activation using acute striatal slices from rodents with unilateral 6-hydroxydopamine (6-OHDA) lesions. Application of the dopamine D1-like receptor agonist SKF38393 induced ERK1/2 phosphorylation and downstream signaling in the DA-denervated but not the intact striatum. This response was mediated through a canonical D1R/PKA/MEK1/2 pathway and independent of ionotropic glutamate receptors but blocked by antagonists of L-type calcium channels. Coapplication of an antagonist of metabotropic glutamate receptor type 5 (mGluR5) or its downstream signaling molecules (PLC, PKC, IP3 receptors) markedly attenuated SKF38393-induced ERK1/2 activation. The role of striatal mGluR5 in D1-dependent ERK1/2 activation was confirmed in vivo in 6-OHDA-lesioned animals treated systemically with SKF38393. In one experiment, local infusion of the mGluR5 antagonist MTEP in the DA-denervated rat striatum attenuated the activation of ERK1/2 signaling by SKF38393. In another experiment, 6-OHDA lesions were applied to transgenic mice with a cell-specific knockdown of mGluR5 in D1 receptor-expressing neurons. These mice showed a blunted striatal ERK1/2 activation in response to SFK38393 treatment. Our results reveal that D1-dependent ERK1/2 activation in the DA-denervated striatum depends on a complex interaction between PKA- and Ca(2+)-dependent signaling pathways that is critically modulated by striatal mGluR5.
Collapse
|