1
|
Mazi AR, Karakoc Y, Demirtas C, Aykin U, Yildirim M. Extracellular Matrix Alterations Due to Early-Life Adversity: Implications for Auditory Learning in Male Sprague-Dawley Rats. Mol Neurobiol 2025; 62:6490-6502. [PMID: 39812993 PMCID: PMC11953085 DOI: 10.1007/s12035-025-04690-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
This study aimed to investigate the impact of early childhood chronic stress on the development of the brain extracellular matrix (ECM) and how alterations in the ECM following early-life adversity (ELA) affect auditory learning and cognitive flexibility. ELA was induced through a combination of maternal separation and neonatal isolation in male Sprague-Dawley rats, and the success of the ELA model was assessed behaviorally and biochemically. A cortex-dependent go/no-go task with two phases was used to determine the impact of ELA on auditory learning and cognitive flexibility. The effects of the ECM on cognition were tested via the enzymatic removal of the ECM. The molecular structure of the adult ECM was examined via immunohistochemistry. ELA impaired initial auditory learning but did not significantly affect cognitive flexibility. Hyase injection into the auditory cortex (ACx) restored initial learning. ELA rats display a reduced perineural net (PNN) and parvalbumin + cell density. Our findings reveal that ELA induces significant alterations in the ECM within the ACx, accompanied by impaired initial auditory learning. Although PNN density is already lower in ELA rats, degrading the ECM facilitates the repair of auditory learning. A reduced PNN number in ELA rats fails to enhance learning unless supplemented with Hyase injection.
Collapse
Affiliation(s)
- Aise Rumeysa Mazi
- Department of Biophysics, Hamidiye Faculty of Medicine, University of Health Sciences, Selimiye Mah. Tibbiye Cad. No:38, 34668, Uskudar, Istanbul, Turkey.
| | - Yunus Karakoc
- Department of Biophysics, Hamidiye Faculty of Medicine, University of Health Sciences, Selimiye Mah. Tibbiye Cad. No:38, 34668, Uskudar, Istanbul, Turkey
| | - Cumaali Demirtas
- Department of Physiology, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Ugur Aykin
- Department of Physiology, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Mehmet Yildirim
- Department of Physiology, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
2
|
Hodebourg R, Scofield MD, Kalivas PW, Kuhn BN. Nonneuronal contributions to synaptic function. Neuron 2025:S0896-6273(25)00260-0. [PMID: 40311612 DOI: 10.1016/j.neuron.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/09/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025]
Abstract
Synapses are elegantly integrated signaling hubs containing the canonical synaptic elements, neuronal pre- and postsynapses, along with other components of the neuropil, including perisynaptic astroglia and extracellular matrix proteins, as well as microglia and oligodendrocytes. Signaling within these multipartite hubs is essential for synaptic function and is often disrupted in neuropsychiatric disorders. We review data that have refined our understanding of how environmental stimuli shape signaling and synaptic plasticity within synapses. We propose working models that integrate what is known about how different cell types within the perisynaptic neuropil regulate synaptic functions and dysfunctions that are elicited by addictive drugs. While these working models integrate existing findings, they are constrained by a need for new technology. Accordingly, we propose directions for improving reagents and experimental approaches to better probe how signaling between cell types within perisynaptic ecosystems creates the synaptic plasticity necessary to establish and maintain adaptive and maladaptive behaviors.
Collapse
Affiliation(s)
- Ritchy Hodebourg
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Anesthesiology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC 29401, USA.
| | - Brittany N Kuhn
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
3
|
Egorova D, Kerever A, Inada M, Itoh Y, Arikawa-Hirasawa E, Miyata S. Microglial depletion increases aggrecan and hyaluronan levels in the diffuse and aggregated extracellular matrix of the mouse brain. Sci Rep 2025; 15:9376. [PMID: 40102604 PMCID: PMC11920245 DOI: 10.1038/s41598-025-94224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
The extracellular matrix (ECM) in the brain can be divided into aggregated ECM, such as perineuronal nets (PNNs) around neurons, and diffuse ECM, which is present throughout the brain parenchyma. Both aggregated and diffuse ECM restrict synaptic plasticity and stabilize neural circuits in the adult brain. Hyaluronan (HA) acts as a scaffold for the brain ECM, and multiple proteoglycans, such as aggrecan, bind to HA to form a macromolecular complex. Recent evidence suggests that microglia, the resident immune cells of the brain, play a crucial role in ECM homeostasis. However, it remains unclear how microglia influence the molecular composition of the ECM. Using a tissue-clearing technique and histochemical analysis, we found that microglial depletion increased the staining intensity of aggrecan and HA in both PNNs and diffuse ECM. Biochemical analyses further confirmed the accumulation of the aggrecan core protein and HA following microglial depletion. Our findings highlight the essential role of microglia in regulating the ECM composition and provide new insights into the mechanisms by which microglia influence neuronal function.
Collapse
Affiliation(s)
- Diana Egorova
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Aurelien Kerever
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Masaki Inada
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo, 184-8588, Japan
| | - Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Shinji Miyata
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
4
|
Zhang J, Yang CQ, Liu ZQ, Wu SP, Li ZG, Zhang LM, Fan HW, Guo ZY, Man HY, Li X, Lu YM, Zhu LQ, Liu D. Cpeb1 remodels cell type-specific translational program to promote fear extinction. SCIENCE ADVANCES 2025; 11:eadr8687. [PMID: 39792668 PMCID: PMC11721575 DOI: 10.1126/sciadv.adr8687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Protein translation is crucial for fear extinction, a process vital for adaptive behavior and mental health, yet the underlying cell-specific mechanisms remain elusive. Using a Tet-On 3G genetic approach, we achieved precise temporal control over protein translation in the infralimbic medial prefrontal cortex (IL) during fear extinction. In addition, our results reveal that the disruption of cytoplasmic polyadenylation element binding protein 1 (Cpeb1) leads to notable alterations in cell type-specific translational programs, thereby affecting fear extinction. Specifically, Cpeb1 deficiency in neurons activates the translation of heterochromatin protein 1 binding protein 3, which enhances microRNA networks, whereas in microglia, it suppresses the translation of chemokine receptor 1 (Cx3cr1), resulting in an aged-like microglial phenotype. These coordinated alterations impair spine formation and plasticity. Our study highlights the critical role of cell type-specific protein translation in fear extinction and provides an insight into therapeutic targets for disorders with extinction deficits.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chun-Qing Yang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhi-Qiang Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shi-Ping Wu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zu-Guang Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Luo-Man Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China
| | - Hong-Wei Fan
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi-Yuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, Hubei 430030, China
| | - You-Ming Lu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
5
|
Wang H, Feng N, Liu C, Xie Y, Zhou Z, Zhao H, Xiao G, Yang D. Inhibition of CSPG-PTPσ Activates Autophagy Flux and Lysosome Fusion, Aids Axon and Synaptic Reorganization in Spinal Cord Injury. Mol Neurobiol 2025; 62:773-785. [PMID: 38900368 DOI: 10.1007/s12035-024-04304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/02/2024] [Indexed: 06/21/2024]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) and proteoglycan receptor protein tyrosine phosphatase σ (PTPσ) play a critical role in the pathology of spinal cord injury (SCI). CSPGs can be induced by autophagy inhibition in astrocyte. However, CSPG's impact on autophagy and its role in SCI is still unknown. We investigate intracellular sigma peptide (ISP) targeting PTPσ, its effects on autophagy, and synaptic reorganization in SCI. We found that ISP increased the level of autophagosome marker LC3B-II/I and decreased autophagosome degradation marker p62 in SCI, suggesting activated autophagy flux. ISP restored autophagosome-lysosome fusion-related protein syntaxin 17 (STX17) and lysosome-associated membrane protein 2 (LAMP2), indicating activated autophagosome-lysosome fusion. ISP increased pre-synaptic marker synaptophysin (SYN) and postsynaptic density protein-95 (PSD-95) expression and improved excitatory synapse marker vesicular glutamate transporter 1 (VGLUT1) and SYN in SCI, suggesting improved synaptic reorganization. ISP promoted axon marker neurofilament and growth-related GAP-43 expression in SCI. ISP rescued a preserved number of motor neurons and improved neurobehavioral recovery after SCI. Our study extended the CSPG-PTPσ inhibition role in activating autophagy flux, axon and synaptic reorganization, and functional recovery in SCI.
Collapse
Affiliation(s)
- Hongyu Wang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China.
- Shenzhen Key Laboratory of Reconstruction of Structure and Function in Sports System, Guangdong Province, Shenzhen, 518000, China.
- Department of Geriatrics, Guangdong Province, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical College of Jinan University, Shenzhen, 518000, China.
- Department of Orthopedic Surgery, Shenzhen People's Hospital, Guangdong Province, Shenzhen, 518000, China.
| | - Naibo Feng
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Reconstruction of Structure and Function in Sports System, Guangdong Province, Shenzhen, 518000, China
| | - Chungeng Liu
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Reconstruction of Structure and Function in Sports System, Guangdong Province, Shenzhen, 518000, China
| | - Yongheng Xie
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Reconstruction of Structure and Function in Sports System, Guangdong Province, Shenzhen, 518000, China
| | - Zipeng Zhou
- Department of Orthopedic Surgery, First Affiliated Hospital of Jinzhou Medical University, Liaoning Province, Jinzhou, 121000, China
| | - Haosen Zhao
- Third Affiliated Hospital of Jinzhou Medical University, Liaoning Province, Jinzhou, 121000, China
| | - Guozhi Xiao
- Department of Biochemistry, Shenzhen Key Laboratory of Cell Microenvironment, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dazhi Yang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China.
- Shenzhen Key Laboratory of Reconstruction of Structure and Function in Sports System, Guangdong Province, Shenzhen, 518000, China.
- Department of Geriatrics, Guangdong Province, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical College of Jinan University, Shenzhen, 518000, China.
- Department of Orthopedic Surgery, Shenzhen People's Hospital, Guangdong Province, Shenzhen, 518000, China.
| |
Collapse
|
6
|
Normoyle KP, Lillis KP, Egawa K, McNally MA, Paulchakrabarti M, Coudhury BP, Lau L, Shiu FH, Staley KJ. Displacement of extracellular chloride by immobile anionic constituents of the brain's extracellular matrix. J Physiol 2025; 603:353-378. [PMID: 39621449 PMCID: PMC11747837 DOI: 10.1113/jp285463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/01/2024] [Indexed: 01/19/2025] Open
Abstract
GABA is the primary inhibitory neurotransmitter. Membrane currents evoked by GABAA receptor activation have uniquely small driving forces: their reversal potential (EGABA) is very close to the resting membrane potential. As a consequence, GABAA currents can flow in either direction, depending on both the membrane potential and the local intra and extracellular concentrations of the primary permeant ion, chloride (Cl). Local cytoplasmic Cl concentrations vary widely because of displacement of mobile Cl ions by relatively immobile anions. Here, we use new reporters of extracellular chloride (Cl- o) to demonstrate that Cl is displaced in the extracellular space by high and spatially heterogenous concentrations of immobile anions including sulfated glycosaminoglycans (sGAGs). Cl- o varies widely, and the mean Cl- o is only half the canonical concentration (i.e. the Cl concentration in the cerebrospinal fluid). These unexpectedly low and heterogenous Cl- o domains provide a mechanism to link the varied but highly stable distribution of sGAGs and other immobile anions in the brain's extracellular space to neuronal signal processing via the effects on the amplitude and direction of GABAA transmembrane Cl currents. KEY POINTS: Extracellular chloride concentrations in the brain were measured using a new chloride-sensitive organic fluorophore and two-photon fluorescence lifetime imaging. In vivo, the extracellular chloride concentration was spatially heterogenous and only half of the cerebrospinal fluid chloride concentration Stable displacement of extracellular chloride by immobile extracellular anions was responsible for the low extracellular chloride concentration The changes in extracellular chloride were of sufficient magnitude to alter the conductance and reversal potential of GABAA chloride currents The stability of the extracellular matrix, the impact of the component immobile anions, including sulfated glycosaminoglycans on extracellular chloride concentrations, and the consequent effect on GABAA signalling suggests a previously unappreciated mechanism for modulating GABAA signalling.
Collapse
Affiliation(s)
- Kieran P Normoyle
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kyle P Lillis
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kiyoshi Egawa
- Department of Medicine, Hokaiddo University, Sapporo, Hokaiddo, Japan
| | - Melanie A McNally
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Biswa P Coudhury
- GlycoAnalytics Core, University of California San Diego, La Jolla, CA, USA
| | - Lauren Lau
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Fu Hung Shiu
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kevin J Staley
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Jabłońska J, Wiera G, Mozrzymas JW. Extracellular matrix integrity regulates GABAergic plasticity in the hippocampus. Matrix Biol 2024; 134:184-196. [PMID: 39491759 DOI: 10.1016/j.matbio.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/18/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
The brain's extracellular matrix (ECM) is crucial for neural circuit functionality, synaptic plasticity, and learning. While the role of the ECM in excitatory synapses has been extensively studied, its influence on inhibitory synapses, particularly on GABAergic long-term plasticity, remains poorly understood. This study aims to elucidate the effects of ECM components on inhibitory synaptic transmission and plasticity in the hippocampal CA1 region. We focus on the roles of chondroitin sulfate proteoglycans (CSPGs) and hyaluronic acid in modulating inhibitory postsynaptic currents (IPSCs) at two distinct inhibitory synapses formed by somatostatin (SST)-positive and parvalbumin (PV)-positive interneurons onto pyramidal cells (PCs). Using optogenetic stimulation in brain slices, we observed that acute degradation of ECM constituents by hyaluronidase or chondroitinase-ABC did not affect basal inhibitory synaptic transmission. However, short-term plasticity, particularly burst-induced depression, was enhanced at PV→PC synapses following enzymatic treatments. Long-term plasticity experiments demonstrated that CSPGs are essential for NMDA-induced iLTP at SST→PC synapses, whereas the digestion of hyaluronic acid by hyaluronidase impaired iLTP at PV→PC synapses. This indicates a synapse-specific role of CSPGs and hyaluronic acid in regulating GABAergic plasticity. Additionally, we report the presence of cryptic GABAergic plasticity at PV→PC synapses induced by prolonged NMDA application, which became evident after CSPG digestion and was absent under control conditions. Our results underscore the differential impact of ECM degradation on inhibitory synaptic plasticity, highlighting the synapse-specific interplay between ECM components and specific GABAergic synapses. This offers new perspectives in studies on learning and critical period timing.
Collapse
Affiliation(s)
- Jadwiga Jabłońska
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 3a Chalubinskiego Str., 50-368 Wroclaw, Poland
| | - Grzegorz Wiera
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 3a Chalubinskiego Str., 50-368 Wroclaw, Poland.
| | - Jerzy W Mozrzymas
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 3a Chalubinskiego Str., 50-368 Wroclaw, Poland.
| |
Collapse
|
8
|
Cangalaya C, Sun W, Stoyanov S, Dunay IR, Dityatev A. Integrity of neural extracellular matrix is required for microglia-mediated synaptic remodeling. Glia 2024; 72:1874-1892. [PMID: 38946065 DOI: 10.1002/glia.24588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
Microglia continuously remodel synapses, which are embedded in the extracellular matrix (ECM). However, the mechanisms, which govern this process remain elusive. To investigate the influence of the neural ECM in synaptic remodeling by microglia, we disrupted ECM integrity by injection of chondroitinase ABC (ChABC) into the retrosplenial cortex of healthy adult mice. Using in vivo two-photon microscopy we found that ChABC treatment increased microglial branching complexity and ECM phagocytic capacity and decreased spine elimination rate under basal conditions. Moreover, ECM attenuation largely prevented synaptic remodeling following synaptic stress induced by photodamage of single synaptic elements. These changes were associated with less stable and smaller microglial contacts at the synaptic damage sites, diminished deposition of calreticulin and complement proteins C1q and C3 at synapses and impaired expression of microglial CR3 receptor. Thus, our findings provide novel insights into the function of the neural ECM in deposition of complement proteins and synaptic remodeling by microglia.
Collapse
Affiliation(s)
- Carla Cangalaya
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Weilun Sun
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Stoyan Stoyanov
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
9
|
Chelini G, Mirzapourdelavar H, Durning P, Baidoe-Ansah D, Sethi MK, O'Donovan SM, Klengel T, Balasco L, Berciu C, Boyer-Boiteau A, McCullumsmith R, Ressler KJ, Zaia J, Bozzi Y, Dityatev A, Berretta S. Focal clusters of peri-synaptic matrix contribute to activity-dependent plasticity and memory in mice. Cell Rep 2024; 43:114112. [PMID: 38676925 PMCID: PMC11251421 DOI: 10.1016/j.celrep.2024.114112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/09/2023] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
Recent findings show that effective integration of novel information in the brain requires coordinated processes of homo- and heterosynaptic plasticity. In this work, we hypothesize that activity-dependent remodeling of the peri-synaptic extracellular matrix (ECM) contributes to these processes. We show that clusters of the peri-synaptic ECM, recognized by CS56 antibody, emerge in response to sensory stimuli, showing temporal and spatial coincidence with dendritic spine plasticity. Using CS56 co-immunoprecipitation of synaptosomal proteins, we identify several molecules involved in Ca2+ signaling, vesicle cycling, and AMPA-receptor exocytosis, thus suggesting a role in long-term potentiation (LTP). Finally, we show that, in the CA1 hippocampal region, the attenuation of CS56 glycoepitopes, through the depletion of versican as one of its main carriers, impairs LTP and object location memory in mice. These findings show that activity-dependent remodeling of the peri-synaptic ECM regulates the induction and consolidation of LTP, contributing to hippocampal-dependent memory.
Collapse
Affiliation(s)
- Gabriele Chelini
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Center for Mind/Brain Sciences, University of Trento, Rovereto 38068 Trento, Italy
| | - Hadi Mirzapourdelavar
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, Magdeburg 39120 Saxony-Anhalt, Germany
| | - Peter Durning
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - David Baidoe-Ansah
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, Magdeburg 39120 Saxony-Anhalt, Germany
| | - Manveen K Sethi
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Sinead M O'Donovan
- Cognitive Disorders Research Laboratory, University of Toledo, Toledo, OH 43606, USA
| | - Torsten Klengel
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Translational Molecular Genomics Laboratory, Mclean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Luigi Balasco
- Center for Mind/Brain Sciences, University of Trento, Rovereto 38068 Trento, Italy
| | - Cristina Berciu
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - Anne Boyer-Boiteau
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - Robert McCullumsmith
- Cognitive Disorders Research Laboratory, University of Toledo, Toledo, OH 43606, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA; Neurobiology of Fear Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, MA 02118, USA; Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Yuri Bozzi
- Center for Mind/Brain Sciences, University of Trento, Rovereto 38068 Trento, Italy; CNR Neuroscience Institute Pisa, 56124 Pisa, Italy
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, Magdeburg 39120 Saxony-Anhalt, Germany; Medical Faculty, Otto von Guericke University, Magdeburg 39106 Saxony-Anhalt, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg 39106 Saxony-Anhalt, Germany
| | - Sabina Berretta
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
10
|
Paveliev M, Egorchev AA, Musin F, Lipachev N, Melnikova A, Gimadutdinov RM, Kashipov AR, Molotkov D, Chickrin DE, Aganov AV. Perineuronal Net Microscopy: From Brain Pathology to Artificial Intelligence. Int J Mol Sci 2024; 25:4227. [PMID: 38673819 PMCID: PMC11049984 DOI: 10.3390/ijms25084227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Perineuronal nets (PNN) are a special highly structured type of extracellular matrix encapsulating synapses on large populations of CNS neurons. PNN undergo structural changes in schizophrenia, epilepsy, Alzheimer's disease, stroke, post-traumatic conditions, and some other brain disorders. The functional role of the PNN microstructure in brain pathologies has remained largely unstudied until recently. Here, we review recent research implicating PNN microstructural changes in schizophrenia and other disorders. We further concentrate on high-resolution studies of the PNN mesh units surrounding synaptic boutons to elucidate fine structural details behind the mutual functional regulation between the ECM and the synaptic terminal. We also review some updates regarding PNN as a potential pharmacological target. Artificial intelligence (AI)-based methods are now arriving as a new tool that may have the potential to grasp the brain's complexity through a wide range of organization levels-from synaptic molecular events to large scale tissue rearrangements and the whole-brain connectome function. This scope matches exactly the complex role of PNN in brain physiology and pathology processes, and the first AI-assisted PNN microscopy studies have been reported. To that end, we report here on a machine learning-assisted tool for PNN mesh contour tracing.
Collapse
Affiliation(s)
- Mikhail Paveliev
- Neuroscience Center, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Anton A. Egorchev
- Institute of Computational Mathematics and Information Technologies, Kazan Federal University, Kremlyovskaya 35, Kazan 420008, Tatarstan, Russia; (A.A.E.); (F.M.); (R.M.G.)
| | - Foat Musin
- Institute of Computational Mathematics and Information Technologies, Kazan Federal University, Kremlyovskaya 35, Kazan 420008, Tatarstan, Russia; (A.A.E.); (F.M.); (R.M.G.)
| | - Nikita Lipachev
- Institute of Physics, Kazan Federal University, Kremlyovskaya 16a, Kazan 420008, Tatarstan, Russia; (N.L.); (A.V.A.)
| | - Anastasiia Melnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Karl Marx 74, Kazan 420015, Tatarstan, Russia;
| | - Rustem M. Gimadutdinov
- Institute of Computational Mathematics and Information Technologies, Kazan Federal University, Kremlyovskaya 35, Kazan 420008, Tatarstan, Russia; (A.A.E.); (F.M.); (R.M.G.)
| | - Aidar R. Kashipov
- Institute of Artificial Intelligence, Robotics and Systems Engineering, Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Tatarstan, Russia; (A.R.K.); (D.E.C.)
| | - Dmitry Molotkov
- Biomedicum Imaging Unit, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland;
| | - Dmitry E. Chickrin
- Institute of Artificial Intelligence, Robotics and Systems Engineering, Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Tatarstan, Russia; (A.R.K.); (D.E.C.)
| | - Albert V. Aganov
- Institute of Physics, Kazan Federal University, Kremlyovskaya 16a, Kazan 420008, Tatarstan, Russia; (N.L.); (A.V.A.)
| |
Collapse
|
11
|
Hu G, Chen A, Ye J, Liu Q, Wang J, Fan C, Wang X, Huang M, Dai M, Shi X, Gu Y. A developmental critical period for ocular dominance plasticity of binocular neurons in mouse superior colliculus. Cell Rep 2024; 43:113667. [PMID: 38184852 DOI: 10.1016/j.celrep.2023.113667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/29/2023] [Accepted: 12/25/2023] [Indexed: 01/09/2024] Open
Abstract
Detecting visual features in the environment is crucial for animals' survival. The superior colliculus (SC) is implicated in motion detection and processing, whereas how the SC integrates visual inputs from the two eyes remains unclear. Using in vivo electrophysiology, we show that mouse SC contains many binocular neurons that display robust ocular dominance (OD) plasticity in a critical period during early development, which is similar to, but not dependent on, the primary visual cortex. NR2A- and NR2B-containing N-methyl-D-aspartate (NMDA) receptors play an essential role in the regulation of SC plasticity. Blocking NMDA receptors can largely prevent the impairment of predatory hunting caused by monocular deprivation, indicating that maintaining the binocularity of SC neurons is required for efficient hunting behavior. Together, our studies reveal the existence and function of OD plasticity in SC, which broadens our understanding of the development of subcortical visual circuitry relating to motion detection and predatory hunting.
Collapse
Affiliation(s)
- Guanglei Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; School of Life Sciences, Westlake University, Hangzhou 310000, China
| | - Ailin Chen
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Jingjing Ye
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China; Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Qiong Liu
- School of Life Sciences, Westlake University, Hangzhou 310000, China
| | - Jiafeng Wang
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Cunxiu Fan
- Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Huangjiahuayuan Road, Shanghai 201803, China
| | - Xiaoqing Wang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mengqi Huang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Menghan Dai
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xuefeng Shi
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China; Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Institute of Ophthalmology, Nankai University, Tianjin 300020, China.
| | - Yu Gu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
12
|
Wang H, Zhao X, Wen J, Wang C, Zhang X, Ren X, Zhang J, Li H, Muhatai G, Qu L. Comparative population genomics analysis uncovers genomic footprints and genes influencing body weight trait in Chinese indigenous chicken. Poult Sci 2023; 102:103031. [PMID: 37716235 PMCID: PMC10511812 DOI: 10.1016/j.psj.2023.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 09/18/2023] Open
Abstract
Body weight of chicken is a typical quantitative trait, which shows phenotypic variations due to selective breeding. Despite some QTL loci have been obtained, the body weight of native chicken breeds in different geographic regions varies greatly, its genetic basis remains unresolved questions. To address this issue, we analyzed 117 Chinese indigenous chickens from 10 breeds (Huiyang Bearded, Xinhua, Hotan Black, Baicheng You, Liyang, Yunyang Da, Jining Bairi, Lindian, Beijing You, Tibetan). We applied fixation index (FST) analysis to find selected genomic regions and genes associated with body weight traits. Our study suggests that NELL1, XYLT1, and NCAPG/LCORL genes are strongly selected in the body weight trait of Chinese indigenous chicken breeds. In addition, the IL1RAPL1 gene was strongly selected in large body weight chickens, while the PCDH17 and CADM2 genes were strongly selected in small body weight chickens. This result suggests that the patterns of genetic variation of native chicken and commercial chicken, and/or distinct local chicken breeds may follow different evolutionary mechanisms.
Collapse
Affiliation(s)
- Huie Wang
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Xiurong Zhao
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junhui Wen
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chengqian Wang
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Xinye Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xufang Ren
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinxin Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China
| | - Gemingguli Muhatai
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Lujiang Qu
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar 843300, China; State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Egorova D, Nomura Y, Miyata S. Impact of hyaluronan size on localization and solubility of the extracellular matrix in the mouse brain. Glycobiology 2023; 33:615-625. [PMID: 36924076 DOI: 10.1093/glycob/cwad022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Hyaluronan (HA) is a central component of the extracellular matrix (ECM) in the brain and plays a pivotal role in neural development and plasticity. Brain HA exists in 2 distinct forms of the ECM: the diffuse ECM, which is soluble in saline and detergents, and the condensed ECM, which forms aggregates, such as perineuronal nets (PNNs). Although the physiological functions of HA significantly differ depending on its size, size differences in HA have not yet been examined in the 2 ECM types, which is partly because of the lack of methods to rapidly and accurately measure the molecular weight (MW) of HA. In this study, we established a simple method to simultaneously assess the MW of HA in multiple crude biological samples. HA was purified through single-step precipitation from tissue extracts using biotinylated HA-binding protein and streptavidin-coupled magnetic beads, followed by separation on gel electrophoresis. By applying this method to HA in the mouse brain, we revealed that the condensed ECM contained higher MW HA than the diffuse ECM. Higher MW HA and lower MW HA exhibited different spatial distributions: the former was confined to PNNs, whereas the latter was widely present throughout the brain. Furthermore, the limited degradation of HA showed that only higher MW HA was required to form an insoluble HA-aggrecan complex. The present study demonstrated that the MW of HA in the brain strongly correlates with the localization and solubility of the ECM it forms.
Collapse
Affiliation(s)
- Diana Egorova
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Yoshihiro Nomura
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Shinji Miyata
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
14
|
John U, Patro N, Patro IK. Astrogliosis and associated CSPG upregulation adversely affect dendritogenesis, spinogenesis and synaptic activity in the cerebellum of a double-hit rat model of protein malnutrition (PMN) and lipopolysaccharide (LPS) induced bacterial infection. J Chem Neuroanat 2023; 131:102286. [PMID: 37169039 DOI: 10.1016/j.jchemneu.2023.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The extracellular matrix (ECM) plays a vital role in growth, guidance and survival of neurons in the central nervous system (CNS). The chondroitin sulphate proteoglycans (CSPGs) are a type of ECM proteins that are crucial for CNS homeostasis. The major goal of this study was to uncover the effects of astroglial activation and associated intensified expression of CSPGs on dendritogenesis, spinogenesis as well as on synaptic activity in cerebellum following protein malnutrition (PMN) and lipopolysaccharide (LPS) induced bacterial infection. Female Wistar albino rats (3 months old) were switched to control (20% protein) or low protein (LP, 8% protein) diet for 15 days followed by breeding. A set of pups born to control/LP mothers and maintained on respective diets throughout the experimental period constituted the control and LP groups, while a separate set of both control and LP group pups exposed to bacterial infection by a single intraperitoneal injection of LPS (0.3 mg/ kg body weight) on postnatal day-9 (P-9) constituted control+LPS and LP+LPS groups respectively. The consequences of astrogliosis induced CSPG upregulation on cerebellar cytoarchitecture and synaptic activity were studied using standard immunohistochemical and histological tools on P-21 and 6 months of age. The results revealed reactive astrogliosis and associated CSPG upregulation in a double-hit model of PMN and LPS induced bacterial infection resulted in disrupted dendritogenesis, reduced postsynaptic density protein (PSD-95) levels and a deleterious impact on normal spine growth. Such alterations frequently have the potential to cause synaptic dysregulation and inhibition of plasticity both during development as well as adulthood. At the light of our results, we can envision that upregulation of CSPGs in PMN and LPS co-challenged individuals might emerge as an important modulator of brain circuitry and a major causative factor for many neurological disorders.
Collapse
Affiliation(s)
- Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
| | - Ishan K Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India.
| |
Collapse
|
15
|
Mykins M, Layo-Carris D, Dunn LR, Skinner DW, McBryar AH, Perez S, Shultz TR, Willems A, Lau BYB, Hong T, Krishnan K. Wild-type MECP2 expression coincides with age-dependent sensory phenotypes in a female mouse model for Rett syndrome. J Neurosci Res 2023; 101:1236-1258. [PMID: 37026482 PMCID: PMC10332853 DOI: 10.1002/jnr.25190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/07/2023] [Accepted: 03/12/2023] [Indexed: 04/08/2023]
Abstract
Rett syndrome is characterized by an early period of typical development and then, regression of learned motor and speech skills in girls. Loss of MECP2 protein is thought to cause Rett syndrome phenotypes. The specific underlying mechanisms from typical developmental trajectory to regression features throughout life are unclear. Lack of established timelines to study the molecular, cellular, and behavioral features of regression in female mouse models is a major contributing factor. Due to random X-chromosome inactivation, female patients with Rett syndrome and female mouse models for Rett syndrome (Mecp2Heterozygous , Het) express a functional copy of wild-type MECP2 protein in approximately half of all cells. As MECP2 expression is regulated during early postnatal development and experience, we characterized the expression of wild-type MECP2 in the primary somatosensory cortex of female Het mice. Here, we report increased MECP2 levels in non-parvalbumin-positive neurons of 6-week-old adolescent Het relative to age-matched wild-type controls, while also displaying typical levels of perineuronal net expression in the barrel field subregion of the primary somatosensory cortex, mild tactile sensory perception deficits, and efficient pup retrieval behavior. In contrast, 12-week-old adult Het express MECP2 at levels similar to age-matched wild-type mice, show increased perineuronal net expression in the cortex, and display significant tactile sensory perception deficits. Thus, we have identified a set of behavioral metrics and the cellular substrates to study regression during a specific time in the female Het mouse model, which coincides with changes in wild-type MECP2 expression. We speculate that the precocious increase in MECP2 expression within specific cell types of adolescent Het may provide compensatory benefits at the behavioral level, while the inability to further increase MECP2 levels leads to regressive behavioral phenotypes over time.
Collapse
Affiliation(s)
- Michael Mykins
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Dana Layo-Carris
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Logan Reid Dunn
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - David Wilson Skinner
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Alexandra Hart McBryar
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Sarah Perez
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Trinity Rose Shultz
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Andrew Willems
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Billy You Bun Lau
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Keerthi Krishnan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
16
|
Rike WA, Stern S. Proteins and Transcriptional Dysregulation of the Brain Extracellular Matrix in Parkinson's Disease: A Systematic Review. Int J Mol Sci 2023; 24:ijms24087435. [PMID: 37108598 PMCID: PMC10138539 DOI: 10.3390/ijms24087435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The extracellular matrix (ECM) of the brain is a dynamic structure made up of a vast network of bioactive macromolecules that modulate cellular events. Structural, organizational, and functional changes in these macromolecules due to genetic variation or environmental stressors are thought to affect cellular functions and may result in disease. However, most mechanistic studies to date usually focus on the cellular aspects of diseases and pay less attention to the relevance of the processes governing the dynamic nature of the extracellular matrix in disease pathogenesis. Thus, due to the ECM's diversified biological roles, increasing interest in its involvement in disease, and the lack of sufficient compiled evidence regarding its relationship with Parkinson's disease (PD) pathology, we aimed to compile the existing evidence to boost the current knowledge on the area and provide refined guidance for the future research. Here, in this review, we gathered postmortem brain tissue and induced pluripotent stem cell (iPSC)-related studies from PubMed and Google Scholar to identify, summarize and describe common macromolecular alterations in the expression of brain ECM components in Parkinson's disease (PD). A literature search was conducted up until 10 February 2023. The overall hits from the database and manual search for proteomic and transcriptome studies were 1243 and 1041 articles, respectively. Following a full-text review, 10 articles from proteomic and 24 from transcriptomic studies were found to be eligible for inclusion. According to proteomic studies, proteins such as collagens, fibronectin, annexins, and tenascins were recognized to be differentially expressed in Parkinson's disease. Transcriptomic studies displayed dysregulated pathways including ECM-receptor interaction, focal adhesion, and cell adhesion molecules in Parkinson's disease. A limited number of relevant studies were accessed from our search, indicating that much work remains to be carried out to better understand the roles of the ECM in neurodegeneration and Parkinson's disease. However, we believe that our review will elicit focused primary studies and thus support the ongoing efforts of the discovery and development of diagnostic biomarkers as well as therapeutic agents for Parkinson's disease.
Collapse
Affiliation(s)
- Wote Amelo Rike
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
17
|
Tewari BP, Woo AM, Prim CE, Chaunsali L, Kimbrough IF, Engel K, Browning JL, Campbell SL, Sontheimer H. Perineuronal nets support astrocytic ion and glutamate homeostasis at tripartite synapses. RESEARCH SQUARE 2023:rs.3.rs-2501039. [PMID: 36778342 PMCID: PMC9915772 DOI: 10.21203/rs.3.rs-2501039/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Perineuronal nets (PNNs) are dense, negatively charged extracellular matrices that cover the cell body of fast-spiking inhibitory neurons. Synapses can be embedded and stabilized by PNNs believed to prevent synaptic plasticity. We find that in cortical fast-spiking interneurons synaptic terminals localize to perforations in the PNNs, 95% of which contain either excitatory or inhibitory synapses or both. The majority of terminals also colocalize with astrocytic processes expressing Kir4.1 as well as glutamate (Glu) and GABA transporters, hence can be considered tripartite synapses. In the adult brain, degradation of PNNs does not alter axonal terminals but causes expansion of astrocytic coverage of the neuronal somata. However, loss of PNNs impairs astrocytic transmitter and K+ uptake and causes spillage of synaptic Glu into the extrasynaptic space. This data suggests a hitherto unrecognized role of PNNs, to synergize with astrocytes to contain synaptically released signals.
Collapse
Affiliation(s)
- Bhanu P. Tewari
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - AnnaLin M. Woo
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Courtney E. Prim
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Lata Chaunsali
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ian F. Kimbrough
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kaliroi Engel
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | | | | | - Harald Sontheimer
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
18
|
Extracellular matrix and synapse formation. Biosci Rep 2023; 43:232259. [PMID: 36503961 PMCID: PMC9829651 DOI: 10.1042/bsr20212411] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) is a complex molecular network distributed throughout the extracellular space of different tissues as well as the neuronal system. Previous studies have identified various ECM components that play important roles in neuronal maturation and signal transduction. ECM components are reported to be involved in neurogenesis, neuronal migration, and axonal growth by interacting or binding to specific receptors. In addition, the ECM is found to regulate synapse formation, the stability of the synaptic structure, and synaptic plasticity. Here, we mainly reviewed the effects of various ECM components on synapse formation and briefly described the related diseases caused by the abnormality of several ECM components.
Collapse
|
19
|
Mueller-Buehl C, Wegrzyn D, Bauch J, Faissner A. Regulation of the E/I-balance by the neural matrisome. Front Mol Neurosci 2023; 16:1102334. [PMID: 37143468 PMCID: PMC10151766 DOI: 10.3389/fnmol.2023.1102334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
In the mammalian cortex a proper excitatory/inhibitory (E/I) balance is fundamental for cognitive functions. Especially γ-aminobutyric acid (GABA)-releasing interneurons regulate the activity of excitatory projection neurons which form the second main class of neurons in the cortex. During development, the maturation of fast-spiking parvalbumin-expressing interneurons goes along with the formation of net-like structures covering their soma and proximal dendrites. These so-called perineuronal nets (PNNs) represent a specialized form of the extracellular matrix (ECM, also designated as matrisome) that stabilize structural synapses but prevent the formation of new connections. Consequently, PNNs are highly involved in the regulation of the synaptic balance. Previous studies revealed that the formation of perineuronal nets is accompanied by an establishment of mature neuronal circuits and by a closure of critical windows of synaptic plasticity. Furthermore, it has been shown that PNNs differentially impinge the integrity of excitatory and inhibitory synapses. In various neurological and neuropsychiatric disorders alterations of PNNs were described and aroused more attention in the last years. The following review gives an update about the role of PNNs for the maturation of parvalbumin-expressing interneurons and summarizes recent findings about the impact of PNNs in different neurological and neuropsychiatric disorders like schizophrenia or epilepsy. A targeted manipulation of PNNs might provide an interesting new possibility to indirectly modulate the synaptic balance and the E/I ratio in pathological conditions.
Collapse
|
20
|
Chemistry and Function of Glycosaminoglycans in the Nervous System. ADVANCES IN NEUROBIOLOGY 2023; 29:117-162. [DOI: 10.1007/978-3-031-12390-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Righes Marafiga J, Calcagnotto ME. Electrophysiology of Dendritic Spines: Information Processing, Dynamic Compartmentalization, and Synaptic Plasticity. ADVANCES IN NEUROBIOLOGY 2023; 34:103-141. [PMID: 37962795 DOI: 10.1007/978-3-031-36159-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
For many years, synaptic transmission was considered as information transfer between presynaptic neuron and postsynaptic cell. At the synaptic level, it was thought that dendritic arbors were only receiving and integrating all information flow sent along to the soma, while axons were primarily responsible for point-to-point information transfer. However, it is important to highlight that dendritic spines play a crucial role as postsynaptic components in central nervous system (CNS) synapses, not only integrating and filtering signals to the soma but also facilitating diverse connections with axons from many different sources. The majority of excitatory connections from presynaptic axonal terminals occurs on postsynaptic spines, although a subset of GABAergic synapses also targets spine heads. Several studies have shown the vast heterogeneous morphological, biochemical, and functional features of dendritic spines related to synaptic processing. In this chapter (adding to the relevant data on the biophysics of spines described in Chap. 1 of this book), we address the up-to-date functional dendritic characteristics assessed through electrophysiological approaches, including backpropagating action potentials (bAPs) and synaptic potentials mediated in dendritic and spine compartmentalization, as well as describing the temporal and spatial dynamics of glutamate receptors in the spines related to synaptic plasticity.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Maria Elisa Calcagnotto
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
22
|
Li S, Liu H, Qian Y, Jiang L, Liu S, Liu Y, Liu C, Gu X. IL-33/ST2 axis promotes remodeling of the extracellular matrix and drives protective microglial responses in the mouse model of perioperative neurocognitive disorders. Int Immunopharmacol 2023; 114:109479. [PMID: 36446234 DOI: 10.1016/j.intimp.2022.109479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/05/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Anesthesia and surgery induce cognitive impairment via uncertain mechanisms. Increasing evidence has suggested that microglial activity mediated by IL-33 /ST2 plays a critical role in immune regulation and inflammatory responses. Yet, the implications for microglia activity mediated by IL-33 in perioperative neurocognitive disorders (PND) are not well established. We showed that IL-33 and ST2 were downregulated in the hippocampus after anesthesia and surgery, and the expression of aggrecan, remodeling by microglia, was upregulated. Meanwhile, the expression of pro-inflammatory cytokines (IL-6 and IL-1β) and M1-like microglia marker (iNOS) increased, and the expression of M2-like microglia marker (CD206) decreased. Notably, the administration of IL-33 attenuated neuroinflammation and shifted the polarization of microglia in the hippocampus after anesthesia and surgery. Furthermore, IL-33 treatment rescued the increase of aggrecan, loss of dendritic spines, and impairment of LTP, improving cognitive performance. In conclusion, our study suggests that microglia activity mediated by IL-33/ST2 plays a vital role in cognitive impairments after anesthesia and surgery, which may serve as a therapeutic target for PND.
Collapse
Affiliation(s)
- Shuming Li
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Huan Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yue Qian
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Linhao Jiang
- Medical School, Nanjing University, Nanjing, China
| | - Shuai Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yanling Liu
- Medical School, Southeast University, Nanjing, China
| | - Cihang Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
23
|
Costa G, Ribeiro FF, Sebastião AM, Muir EM, Vaz SH. Bridging the gap of axonal regeneration in the central nervous system: A state of the art review on central axonal regeneration. Front Neurosci 2022; 16:1003145. [PMID: 36440273 PMCID: PMC9682039 DOI: 10.3389/fnins.2022.1003145] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/19/2022] [Indexed: 08/26/2023] Open
Abstract
Neuronal regeneration in the central nervous system (CNS) is an important field of research with relevance to all types of neuronal injuries, including neurodegenerative diseases. The glial scar is a result of the astrocyte response to CNS injury. It is made up of many components creating a complex environment in which astrocytes play various key roles. The glial scar is heterogeneous, diverse and its composition depends upon the injury type and location. The heterogeneity of the glial scar observed in different situations of CNS damage and the consequent implications for axon regeneration have not been reviewed in depth. The gap in this knowledge will be addressed in this review which will also focus on our current understanding of central axonal regeneration and the molecular mechanisms involved. The multifactorial context of CNS regeneration is discussed, and we review newly identified roles for components previously thought to solely play an inhibitory role in central regeneration: astrocytes and p75NTR and discuss their potential and relevance for deciding therapeutic interventions. The article ends with a comprehensive review of promising new therapeutic targets identified for axonal regeneration in CNS and a discussion of novel ways of looking at therapeutic interventions for several brain diseases and injuries.
Collapse
Affiliation(s)
- Gonçalo Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Filipa F. Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M. Sebastião
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Elizabeth M. Muir
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Sandra H. Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
24
|
Tewari BP, Chaunsali L, Prim CE, Sontheimer H. A glial perspective on the extracellular matrix and perineuronal net remodeling in the central nervous system. Front Cell Neurosci 2022; 16:1022754. [PMID: 36339816 PMCID: PMC9630365 DOI: 10.3389/fncel.2022.1022754] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
A structural scaffold embedding brain cells and vasculature is known as extracellular matrix (ECM). The physical appearance of ECM in the central nervous system (CNS) ranges from a diffused, homogeneous, amorphous, and nearly omnipresent matrix to highly organized distinct morphologies such as basement membranes and perineuronal nets (PNNs). ECM changes its composition and organization during development, adulthood, aging, and in several CNS pathologies. This spatiotemporal dynamic nature of the ECM and PNNs brings a unique versatility to their functions spanning from neurogenesis, cell migration and differentiation, axonal growth, and pathfinding cues, etc., in the developing brain, to stabilizing synapses, neuromodulation, and being an active partner of tetrapartite synapses in the adult brain. The malleability of ECM and PNNs is governed by both intrinsic and extrinsic factors. Glial cells are among the major extrinsic factors that facilitate the remodeling of ECM and PNN, thereby acting as key regulators of diverse functions of ECM and PNN in health and diseases. In this review, we discuss recent advances in our understanding of PNNs and how glial cells are central to ECM and PNN remodeling in normal and pathological states of the CNS.
Collapse
|
25
|
Lépine M, Douceau S, Devienne G, Prunotto P, Lenoir S, Regnauld C, Pouettre E, Piquet J, Lebouvier L, Hommet Y, Maubert E, Agin V, Lambolez B, Cauli B, Ali C, Vivien D. Parvalbumin interneuron-derived tissue-type plasminogen activator shapes perineuronal net structure. BMC Biol 2022; 20:218. [PMID: 36199089 PMCID: PMC9535866 DOI: 10.1186/s12915-022-01419-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background Perineuronal nets (PNNs) are specialized extracellular matrix structures mainly found around fast-spiking parvalbumin (FS-PV) interneurons. In the adult, their degradation alters FS-PV-driven functions, such as brain plasticity and memory, and altered PNN structures have been found in neurodevelopmental and central nervous system disorders such as Alzheimer’s disease, leading to interest in identifying targets able to modify or participate in PNN metabolism. The serine protease tissue-type plasminogen activator (tPA) plays multifaceted roles in brain pathophysiology. However, its cellular expression profile in the brain remains unclear and a possible role in matrix plasticity through PNN remodeling has never been investigated. Result By combining a GFP reporter approach, immunohistology, electrophysiology, and single-cell RT-PCR, we discovered that cortical FS-PV interneurons are a source of tPA in vivo. We found that mice specifically lacking tPA in FS-PV interneurons display denser PNNs in the somatosensory cortex, suggesting a role for tPA from FS-PV interneurons in PNN remodeling. In vitro analyses in primary cultures of mouse interneurons also showed that tPA converts plasminogen into active plasmin, which in turn, directly degrades aggrecan, a major structural chondroitin sulfate proteoglycan (CSPG) in PNNs. Conclusions We demonstrate that tPA released from FS-PV interneurons in the central nervous system reduces PNN density through CSPG degradation. The discovery of this tPA-dependent PNN remodeling opens interesting insights into the control of brain plasticity. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01419-8.
Collapse
Affiliation(s)
- Matthieu Lépine
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Sara Douceau
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Gabrielle Devienne
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université UM119, CNRS UMR8246, INSERM U1130, 75005, Paris, France
| | - Paul Prunotto
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Sophie Lenoir
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Caroline Regnauld
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Elsa Pouettre
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Juliette Piquet
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université UM119, CNRS UMR8246, INSERM U1130, 75005, Paris, France
| | - Laurent Lebouvier
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Yannick Hommet
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Eric Maubert
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Véronique Agin
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Bertrand Lambolez
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université UM119, CNRS UMR8246, INSERM U1130, 75005, Paris, France
| | - Bruno Cauli
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université UM119, CNRS UMR8246, INSERM U1130, 75005, Paris, France
| | - Carine Ali
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France.
| | - Denis Vivien
- Department of clinical research, CHU de Caen Normandie, Caen, France
| |
Collapse
|
26
|
Fawcett JW, Fyhn M, Jendelova P, Kwok JCF, Ruzicka J, Sorg BA. The extracellular matrix and perineuronal nets in memory. Mol Psychiatry 2022; 27:3192-3203. [PMID: 35760878 PMCID: PMC9708575 DOI: 10.1038/s41380-022-01634-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023]
Abstract
All components of the CNS are surrounded by a diffuse extracellular matrix (ECM) containing chondroitin sulphate proteoglycans (CSPGs), heparan sulphate proteoglycans (HSPGs), hyaluronan, various glycoproteins including tenascins and thrombospondin, and many other molecules that are secreted into the ECM and bind to ECM components. In addition, some neurons, particularly inhibitory GABAergic parvalbumin-positive (PV) interneurons, are surrounded by a more condensed cartilage-like ECM called perineuronal nets (PNNs). PNNs surround the soma and proximal dendrites as net-like structures that surround the synapses. Attention has focused on the role of PNNs in the control of plasticity, but it is now clear that PNNs also play an important part in the modulation of memory. In this review we summarize the role of the ECM, particularly the PNNs, in the control of various types of memory and their participation in memory pathology. PNNs are now being considered as a target for the treatment of impaired memory. There are many potential treatment targets in PNNs, mainly through modulation of the sulphation, binding, and production of the various CSPGs that they contain or through digestion of their sulphated glycosaminoglycans.
Collapse
Affiliation(s)
- James W Fawcett
- John van Geest Centre for Brain Repair, Department Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic.
| | - Marianne Fyhn
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Pavla Jendelova
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
| | - Jessica C F Kwok
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jiri Ruzicka
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
| | - Barbara A Sorg
- Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| |
Collapse
|
27
|
Wiera G, Brzdąk P, Lech AM, Lebida K, Jabłońska J, Gmerek P, Mozrzymas JW. Integrins Bidirectionally Regulate the Efficacy of Inhibitory Synaptic Transmission and Control GABAergic Plasticity. J Neurosci 2022; 42:5830-5842. [PMID: 35701161 PMCID: PMC9337602 DOI: 10.1523/jneurosci.1458-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 01/29/2023] Open
Abstract
For many decades, synaptic plasticity was believed to be restricted to excitatory transmission. However, in recent years, this view started to change, and now it is recognized that GABAergic synapses show distinct forms of activity-dependent long-term plasticity, but the underlying mechanisms remain obscure. Herein, we asked whether signaling mediated by β1 or β3 subunit-containing integrins might be involved in regulating the efficacy of GABAergic synapses, including the NMDA receptor-dependent inhibitory long-term potentiation (iLTP) in the hippocampus. We found that activation of β3 integrin with fibrinogen induced a stable depression, whereas inhibition of β1 integrin potentiated GABAergic synapses at CA1 pyramidal neurons in male mice. Additionally, compounds that interfere with the interaction of β1 or β3 integrins with extracellular matrix blocked the induction of NMDA-iLTP. In conclusion, we provide the first evidence that integrins are key players in regulating the endogenous modulatory mechanisms of GABAergic inhibition and plasticity in the hippocampus.SIGNIFICANCE STATEMENT Epilepsy, schizophrenia, and anxiety are just a few medical conditions associated with dysfunctional inhibitory synaptic transmission. GABAergic synapses are known for their extraordinary susceptibility to modulation by endogenous factors and exogenous pharmacological agents. We describe here that integrins, adhesion proteins, play a key role in the modulation of inhibitory synaptic transmission. Specifically, we show that interference with integrin-dependent adhesion results in a variety of effects on the amplitude and frequency of GABAergic mIPSCs. Activation of β3 subunit-containing integrins induces inhibitory long-term depression, whereas the inhibition of β1 subunit-containing integrins induces iLTP. Our results unveil an important mechanism controlling synaptic inhibition, which opens new avenues into the usage of integrin-aimed pharmaceuticals as modulators of GABAergic synapses.
Collapse
Affiliation(s)
- Grzegorz Wiera
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Patrycja Brzdąk
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Anna Maria Lech
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, 50-335 Wroclaw, Poland
| | - Katarzyna Lebida
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Jadwiga Jabłońska
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Przemysław Gmerek
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, 50-335 Wroclaw, Poland
| | - Jerzy W Mozrzymas
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
28
|
Abstract
Mounting evidence indicates that microglia, which are the resident immune cells of the brain, play critical roles in a diverse array of neurodevelopmental processes required for proper brain maturation and function. This evidence has ultimately led to growing speculation that microglial dysfunction may play a role in neurodevelopmental disorder (NDD) pathoetiology. In this review, we first provide an overview of how microglia mechanistically contribute to the sculpting of the developing brain and neuronal circuits. To provide an example of how disruption of microglial biology impacts NDD development, we also highlight emerging evidence that has linked microglial dysregulation to autism spectrum disorder pathogenesis. In recent years, there has been increasing interest in how the gut microbiome shapes microglial biology. In the last section of this review, we put a spotlight on this burgeoning area of microglial research and discuss how microbiota-dependent modulation of microglial biology is currently thought to influence NDD progression.
Collapse
Affiliation(s)
- John R Lukens
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA;
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia, USA
| | - Ukpong B Eyo
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA;
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
29
|
Yang Y, Liu JJ. Structural LTP: Signal transduction, actin cytoskeleton reorganization, and membrane remodeling of dendritic spines. Curr Opin Neurobiol 2022; 74:102534. [DOI: 10.1016/j.conb.2022.102534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 01/05/2023]
|
30
|
Parker SE, Bellingham MC, Woodruff TM. Complement drives circuit modulation in the adult brain. Prog Neurobiol 2022; 214:102282. [DOI: 10.1016/j.pneurobio.2022.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/24/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
|
31
|
Chelyshev YA, Kabdesh IM, Mukhamedshina YO. Extracellular Matrix in Neural Plasticity and Regeneration. Cell Mol Neurobiol 2022; 42:647-664. [PMID: 33128689 PMCID: PMC11441266 DOI: 10.1007/s10571-020-00986-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022]
Abstract
The extracellular matrix (ECM) is a fundamental component of biological tissues. The ECM in the central nervous system (CNS) is unique in both composition and function. Functions such as learning, memory, synaptogenesis, and plasticity are regulated by numerous ECM molecules. The neural ECM acts as a non-specific physical barrier that modulates neuronal plasticity and axon regeneration. There are two specialized types of ECM in the CNS, diffuse perisynaptic ECM and condensed ECM, which selectively surround the perikaryon and initial part of dendritic trees in subtypes of neurons, forming perineuronal nets. This review presents the current knowledge about the role of important neuronal ECM molecules in maintaining the basic functions of a neuron, including electrogenesis and the ability to form neural circuits. The review mainly focuses on the role of ECM components that participate in the control of key events such as cell survival, axonal growth, and synaptic remodeling. Particular attention is drawn to the numerous molecular partners of the main ECM components. These regulatory molecules are integrated into the cell membrane or disposed into the matrix itself in solid or soluble form. The interaction of the main matrix components with molecular partners seems essential in molecular mechanisms controlling neuronal functions. Special attention is paid to the chondroitin sulfate proteoglycan 4, type 1 transmembrane protein, neural-glial antigen 2 (NG2/CSPG4), whose cleaved extracellular domain is such a molecular partner that it not only acts directly on neural and vascular cells, but also exerts its influence indirectly by binding to resident ECM molecules.
Collapse
Affiliation(s)
- Yurii A Chelyshev
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Ilyas M Kabdesh
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlevskaya St 18, Kazan, Tatarstan, Russia, 420008
| | - Yana O Mukhamedshina
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia.
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlevskaya St 18, Kazan, Tatarstan, Russia, 420008.
| |
Collapse
|
32
|
Dankovich TM, Rizzoli SO. Extracellular Matrix Recycling as a Novel Plasticity Mechanism With a Potential Role in Disease. Front Cell Neurosci 2022; 16:854897. [PMID: 35431813 PMCID: PMC9008140 DOI: 10.3389/fncel.2022.854897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
The extracellular matrix (ECM) stabilizes neural circuits and synapses in the healthy brain, while also retaining the ability to be remodeled, to allow synapses to be plastic. A well-described mechanism for ECM remodeling is through the regulated secretion of proteolytic enzymes at the synapse, together with the synthesis of new ECM molecules. The importance of this process is evidenced by the large number of brain disorders that are associated with a dysregulation of ECM-cleaving protease activity. While most of the brain ECM molecules are indeed stable for remarkable time periods, evidence in other cell types, as cancer cells, suggests that at least a proportion of the ECM molecules may be endocytosed regularly, and could even be recycled back to the ECM. In this review, we discuss the involvement of such a mechanism in the brain, under physiological activity conditions and in relation to synapse and brain disease.
Collapse
Affiliation(s)
- Tal M. Dankovich
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
- *Correspondence: Tal M. Dankovich,
| | - Silvio O. Rizzoli
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center & Multiscale Bioimaging Excellence Center, Göttingen, Germany
- Silvio O. Rizzoli,
| |
Collapse
|
33
|
Dankovich TM, Rizzoli SO. The Synaptic Extracellular Matrix: Long-Lived, Stable, and Still Remarkably Dynamic. Front Synaptic Neurosci 2022; 14:854956. [PMID: 35350469 PMCID: PMC8957932 DOI: 10.3389/fnsyn.2022.854956] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 01/09/2023] Open
Abstract
In the adult brain, synapses are tightly enwrapped by lattices of the extracellular matrix that consist of extremely long-lived molecules. These lattices are deemed to stabilize synapses, restrict the reorganization of their transmission machinery, and prevent them from undergoing structural or morphological changes. At the same time, they are expected to retain some degree of flexibility to permit occasional events of synaptic plasticity. The recent understanding that structural changes to synapses are significantly more frequent than previously assumed (occurring even on a timescale of minutes) has called for a mechanism that allows continual and energy-efficient remodeling of the extracellular matrix (ECM) at synapses. Here, we review recent evidence for such a process based on the constitutive recycling of synaptic ECM molecules. We discuss the key characteristics of this mechanism, focusing on its roles in mediating synaptic transmission and plasticity, and speculate on additional potential functions in neuronal signaling.
Collapse
Affiliation(s)
- Tal M. Dankovich
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Göttingen, Germany
- International Max Planck Research School for Neuroscience, Göttingen, Germany
- *Correspondence: Tal M. Dankovich Silvio O. Rizzoli
| | - Silvio O. Rizzoli
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center & Multiscale Bioimaging Excellence Center, Göttingen, Germany
- *Correspondence: Tal M. Dankovich Silvio O. Rizzoli
| |
Collapse
|
34
|
Chen CC, Brumberg JC. Sensory Experience as a Regulator of Structural Plasticity in the Developing Whisker-to-Barrel System. Front Cell Neurosci 2022; 15:770453. [PMID: 35002626 PMCID: PMC8739903 DOI: 10.3389/fncel.2021.770453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
Cellular structures provide the physical foundation for the functionality of the nervous system, and their developmental trajectory can be influenced by the characteristics of the external environment that an organism interacts with. Historical and recent works have determined that sensory experiences, particularly during developmental critical periods, are crucial for information processing in the brain, which in turn profoundly influence neuronal and non-neuronal cortical structures that subsequently impact the animals' behavioral and cognitive outputs. In this review, we focus on how altering sensory experience influences normal/healthy development of the central nervous system, particularly focusing on the cerebral cortex using the rodent whisker-to-barrel system as an illustrative model. A better understanding of structural plasticity, encompassing multiple aspects such as neuronal, glial, and extra-cellular domains, provides a more integrative view allowing for a deeper appreciation of how all aspects of the brain work together as a whole.
Collapse
Affiliation(s)
- Chia-Chien Chen
- Department of Psychology, Queens College City University of New York, Flushing, NY, United States.,Department of Neuroscience, Duke Kunshan University, Suzhou, China
| | - Joshua C Brumberg
- Department of Psychology, Queens College City University of New York, Flushing, NY, United States.,The Biology (Neuroscience) and Psychology (Behavioral and Cognitive Neuroscience) PhD Programs, The Graduate Center, The City University of New York, New York, NY, United States
| |
Collapse
|
35
|
Crapser JD, Arreola MA, Tsourmas KI, Green KN. Microglia as hackers of the matrix: sculpting synapses and the extracellular space. Cell Mol Immunol 2021; 18:2472-2488. [PMID: 34413489 PMCID: PMC8546068 DOI: 10.1038/s41423-021-00751-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023] Open
Abstract
Microglia shape the synaptic environment in health and disease, but synapses do not exist in a vacuum. Instead, pre- and postsynaptic terminals are surrounded by extracellular matrix (ECM), which together with glia comprise the four elements of the contemporary tetrapartite synapse model. While research in this area is still just beginning, accumulating evidence points toward a novel role for microglia in regulating the ECM during normal brain homeostasis, and such processes may, in turn, become dysfunctional in disease. As it relates to synapses, microglia are reported to modify the perisynaptic matrix, which is the diffuse matrix that surrounds dendritic and axonal terminals, as well as perineuronal nets (PNNs), specialized reticular formations of compact ECM that enwrap neuronal subsets and stabilize proximal synapses. The interconnected relationship between synapses and the ECM in which they are embedded suggests that alterations in one structure necessarily affect the dynamics of the other, and microglia may need to sculpt the matrix to modify the synapses within. Here, we provide an overview of the microglial regulation of synapses, perisynaptic matrix, and PNNs, propose candidate mechanisms by which these structures may be modified, and present the implications of such modifications in normal brain homeostasis and in disease.
Collapse
Affiliation(s)
- Joshua D. Crapser
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| | - Miguel A. Arreola
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| | - Kate I. Tsourmas
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| | - Kim N. Green
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| |
Collapse
|
36
|
Type IIa RPTPs and Glycans: Roles in Axon Regeneration and Synaptogenesis. Int J Mol Sci 2021; 22:ijms22115524. [PMID: 34073798 PMCID: PMC8197235 DOI: 10.3390/ijms22115524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Type IIa receptor tyrosine phosphatases (RPTPs) play pivotal roles in neuronal network formation. It is emerging that the interactions of RPTPs with glycans, i.e., chondroitin sulfate (CS) and heparan sulfate (HS), are critical for their functions. We highlight here the significance of these interactions in axon regeneration and synaptogenesis. For example, PTPσ, a member of type IIa RPTPs, on axon terminals is monomerized and activated by the extracellular CS deposited in neural injuries, dephosphorylates cortactin, disrupts autophagy flux, and consequently inhibits axon regeneration. In contrast, HS induces PTPσ oligomerization, suppresses PTPσ phosphatase activity, and promotes axon regeneration. PTPσ also serves as an organizer of excitatory synapses. PTPσ and neurexin bind one another on presynapses and further bind to postsynaptic leucine-rich repeat transmembrane protein 4 (LRRTM4). Neurexin is now known as a heparan sulfate proteoglycan (HSPG), and its HS is essential for the binding between these three molecules. Another HSPG, glypican 4, binds to presynaptic PTPσ and postsynaptic LRRTM4 in an HS-dependent manner. Type IIa RPTPs are also involved in the formation of excitatory and inhibitory synapses by heterophilic binding to a variety of postsynaptic partners. We also discuss the important issue of possible mechanisms coordinating axon extension and synapse formation.
Collapse
|
37
|
Wingert JC, Sorg BA. Impact of Perineuronal Nets on Electrophysiology of Parvalbumin Interneurons, Principal Neurons, and Brain Oscillations: A Review. Front Synaptic Neurosci 2021; 13:673210. [PMID: 34040511 PMCID: PMC8141737 DOI: 10.3389/fnsyn.2021.673210] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
Perineuronal nets (PNNs) are specialized extracellular matrix structures that surround specific neurons in the brain and spinal cord, appear during critical periods of development, and restrict plasticity during adulthood. Removal of PNNs can reinstate juvenile-like plasticity or, in cases of PNN removal during early developmental stages, PNN removal extends the critical plasticity period. PNNs surround mainly parvalbumin (PV)-containing, fast-spiking GABAergic interneurons in several brain regions. These inhibitory interneurons profoundly inhibit the network of surrounding neurons via their elaborate contacts with local pyramidal neurons, and they are key contributors to gamma oscillations generated across several brain regions. Among other functions, these gamma oscillations regulate plasticity associated with learning, decision making, attention, cognitive flexibility, and working memory. The detailed mechanisms by which PNN removal increases plasticity are only beginning to be understood. Here, we review the impact of PNN removal on several electrophysiological features of their underlying PV interneurons and nearby pyramidal neurons, including changes in intrinsic and synaptic membrane properties, brain oscillations, and how these changes may alter the integration of memory-related information. Additionally, we review how PNN removal affects plasticity-associated phenomena such as long-term potentiation (LTP), long-term depression (LTD), and paired-pulse ratio (PPR). The results are discussed in the context of the role of PV interneurons in circuit function and how PNN removal alters this function.
Collapse
Affiliation(s)
- Jereme C Wingert
- Program in Neuroscience, Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, United States
| | - Barbara A Sorg
- Program in Neuroscience, Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, United States
| |
Collapse
|
38
|
Postnatal Fluoxetine Treatment Alters Perineuronal Net Formation and Maintenance in the Hippocampus. eNeuro 2021; 8:ENEURO.0424-20.2021. [PMID: 33622703 PMCID: PMC8046023 DOI: 10.1523/eneuro.0424-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/20/2023] Open
Abstract
Elevation of serotonin via postnatal fluoxetine (PNFlx) treatment during critical temporal windows is hypothesized to perturb the development of limbic circuits thus establishing a substratum for persistent disruption of mood-related behavior. We examined the impact of PNFlx treatment on the formation and maintenance of perineuronal nets (PNNs), extracellular matrix (ECM) structures that deposit primarily around inhibitory interneurons, and mark the closure of critical period plasticity. PNFlx treatment evoked a significant decline in PNN number, with a robust reduction in PNNs deposited around parvalbumin (PV) interneurons, within the CA1 and CA3 hippocampal subfields at postnatal day (P)21 in Sprague Dawley rat pups. While the reduction in CA1 subfield PNN number was still observed in adulthood, we observed no change in colocalization of PV-positive interneurons with PNNs in the hippocampi of adult PNFlx animals. PNFlx treatment did not alter hippocampal PV, calretinin (CalR), or Reelin-positive neuron numbers in PNFlx animals at P21 or in adulthood. We did observe a small, but significant increase in somatostatin (SST)-positive interneurons in the DG subfield of PNFlx-treated animals in adulthood. This was accompanied by altered GABA-A receptor subunit composition, increased dendritic complexity of apical dendrites of CA1 pyramidal neurons, and enhanced neuronal activation revealed by increased c-Fos-positive cell numbers within hippocampi of PNFlx-treated animals in adulthood. These results indicate that PNFlx treatment alters the formation of PNNs within the hippocampus, raising the possibility of a disruption of excitation-inhibition (E/I) balance within this key limbic brain region.
Collapse
|
39
|
Dembitskaya Y, Gavrilov N, Kraev I, Doronin M, Tang Y, Li L, Semyanov A. Attenuation of the extracellular matrix increases the number of synapses but suppresses synaptic plasticity through upregulation of SK channels. Cell Calcium 2021; 96:102406. [PMID: 33848733 DOI: 10.1016/j.ceca.2021.102406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 01/01/2023]
Abstract
The effect of brain extracellular matrix (ECM) on synaptic plasticity remains controversial. Here, we show that targeted enzymatic attenuation with chondroitinase ABC (ChABC) of ECM triggers the appearance of new glutamatergic synapses on hippocampal pyramidal neurons, thereby increasing the amplitude of field EPSPs while decreasing both the mean miniature EPSC amplitude and AMPA/NMDA ratio. Although the increased proportion of 'unpotentiated' synapses caused by ECM attenuation should promote long-term potentiation (LTP), surprisingly, LTP was suppressed. The upregulation of small conductance Ca2+-activated K+ (SK) channels decreased the excitability of pyramidal neurons, thereby suppressing LTP. A blockade of SK channels restored cell excitability and enhanced LTP; this enhancement was abolished by a blockade of Rho-associated protein kinase (ROCK), which is involved in the maturation of dendritic spines. Thus, targeting ECM elicits the appearance of new synapses, which can have potential applications in regenerative medicine. However, this process is compensated for by a reduction in postsynaptic neuron excitability, preventing network overexcitation at the expense of synaptic plasticity.
Collapse
Affiliation(s)
- Yulia Dembitskaya
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow, 117997, Russia
| | - Nikolay Gavrilov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK
| | - Maxim Doronin
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow, 117997, Russia
| | - Yong Tang
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Li
- Department of Physiology, Jiaxing University College of Medicine, Zhejiang, 314033 China
| | - Alexey Semyanov
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow, 117997, Russia; Department of Physiology, Jiaxing University College of Medicine, Zhejiang, 314033 China; Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Str 19с1, Moscow, 119146, Russia.
| |
Collapse
|
40
|
An Extracellular Perspective on CNS Maturation: Perineuronal Nets and the Control of Plasticity. Int J Mol Sci 2021; 22:ijms22052434. [PMID: 33670945 PMCID: PMC7957817 DOI: 10.3390/ijms22052434] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
During restricted time windows of postnatal life, called critical periods, neural circuits are highly plastic and are shaped by environmental stimuli. In several mammalian brain areas, from the cerebral cortex to the hippocampus and amygdala, the closure of the critical period is dependent on the formation of perineuronal nets. Perineuronal nets are a condensed form of an extracellular matrix, which surrounds the soma and proximal dendrites of subsets of neurons, enwrapping synaptic terminals. Experimentally disrupting perineuronal nets in adult animals induces the reactivation of critical period plasticity, pointing to a role of the perineuronal net as a molecular brake on plasticity as the critical period closes. Interestingly, in the adult brain, the expression of perineuronal nets is remarkably dynamic, changing its plasticity-associated conditions, including memory processes. In this review, we aimed to address how perineuronal nets contribute to the maturation of brain circuits and the regulation of adult brain plasticity and memory processes in physiological and pathological conditions.
Collapse
|
41
|
Heckman EL, Doe CQ. Establishment and Maintenance of Neural Circuit Architecture. J Neurosci 2021; 41:1119-1129. [PMID: 33568445 PMCID: PMC7888231 DOI: 10.1523/jneurosci.1143-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/29/2020] [Accepted: 12/09/2020] [Indexed: 02/03/2023] Open
Abstract
The ability to sense the world, process information, and navigate the environment depends on the assembly and continuous function of neural circuits in the brain. Within the past two decades, new technologies have rapidly advanced our understanding of how neural circuits are wired during development and how they are stably maintained, often for years. Electron microscopy reconstructions of model organism connectomes have provided a map of the stereotyped (and variable) connections in the brain; advanced light microscopy techniques have enabled direct observation of the cellular dynamics that underlie circuit construction and maintenance; transcriptomic and proteomic surveys of both developing and mature neurons have provided insights into the molecular and genetic programs governing circuit establishment and maintenance; and advanced genetic techniques have allowed for high-throughput discovery of wiring regulators. These tools have empowered scientists to rapidly generate and test hypotheses about how circuits establish and maintain connectivity. Thus, the set of principles governing circuit formation and maintenance have been expanded. These principles are discussed in this review.
Collapse
Affiliation(s)
- Emily L Heckman
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon 97403
| | - Chris Q Doe
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
42
|
Mencio CP, Hussein RK, Yu P, Geller HM. The Role of Chondroitin Sulfate Proteoglycans in Nervous System Development. J Histochem Cytochem 2021; 69:61-80. [PMID: 32936033 PMCID: PMC7780190 DOI: 10.1369/0022155420959147] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
The orderly development of the nervous system is characterized by phases of cell proliferation and differentiation, neural migration, axonal outgrowth and synapse formation, and stabilization. Each of these processes is a result of the modulation of genetic programs by extracellular cues. In particular, chondroitin sulfate proteoglycans (CSPGs) have been found to be involved in almost every aspect of this well-orchestrated yet delicate process. The evidence of their involvement is complex, often contradictory, and lacking in mechanistic clarity; however, it remains obvious that CSPGs are key cogs in building a functional brain. This review focuses on current knowledge of the role of CSPGs in each of the major stages of neural development with emphasis on areas requiring further investigation.
Collapse
Affiliation(s)
- Caitlin P Mencio
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Rowan K Hussein
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, China
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| |
Collapse
|
43
|
Abstract
Proteases comprise a variety of enzymes defined by their ability to catalytically hydrolyze the peptide bonds of other proteins, resulting in protein lysis. Cathepsins, specifically, encompass a class of at least twenty proteases with potent endopeptidase activity. They are located subcellularly in lysosomes, organelles responsible for the cell’s degradative and autophagic processes, and are vital for normal lysosomal function. Although cathepsins are involved in a multitude of cell signaling activities, this chapter will focus on the role of cathepsins (with a special emphasis on Cathepsin B) in neuronal plasticity. We will broadly define what is known about regulation of cathepsins in the central nervous system and compare this with their dysregulation after injury or disease. Importantly, we will delineate what is currently known about the role of cathepsins in axon regeneration and plasticity after spinal cord injury. It is well established that normal cathepsin activity is integral to the function of lysosomes. Without normal lysosomal function, autophagy and other homeostatic cellular processes become dysregulated resulting in axon dystrophy. Furthermore, controlled activation of cathepsins at specialized neuronal structures such as axonal growth cones and dendritic spines have been positively implicated in their plasticity. This chapter will end with a perspective on the consequences of cathepsin dysregulation versus controlled, localized regulation to clarify how cathepsins can contribute to both neuronal plasticity and neurodegeneration.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
44
|
Wahis J, Hennes M, Arckens L, Holt MG. Star power: the emerging role of astrocytes as neuronal partners during cortical plasticity. Curr Opin Neurobiol 2020; 67:174-182. [PMID: 33360483 PMCID: PMC8202513 DOI: 10.1016/j.conb.2020.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
Abstract
Plasticity is a fundamental property of neuronal circuits, allowing them to adapt to alterations in activation. Generally speaking, plasticity has been viewed from a 'neuron-centric' perspective, with changes in circuit function attributed to alterations in neuronal excitability, synaptic strength or neuronal connectivity. However, it is now clear that glial cells, in particular astrocytes, are key regulators of neuronal plasticity. This article reviews recent progress made in understanding astrocyte function and attempts to summarize these functions into a coherent framework that positions astrocytes as central players in the plasticity process.
Collapse
Affiliation(s)
- Jérôme Wahis
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Maroussia Hennes
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium; Leuven Brain Institute, Leuven, Belgium.
| | - Matthew G Holt
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
45
|
Al’joboori YD, Edgerton VR, Ichiyama RM. Effects of Rehabilitation on Perineural Nets and Synaptic Plasticity Following Spinal Cord Transection. Brain Sci 2020; 10:brainsci10110824. [PMID: 33172143 PMCID: PMC7694754 DOI: 10.3390/brainsci10110824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023] Open
Abstract
Epidural electrical stimulation (ES) of the lumbar spinal cord combined with daily locomotor training has been demonstrated to enhance stepping ability after complete spinal transection in rodents and clinically complete spinal injuries in humans. Although functional gain is observed, plasticity mechanisms associated with such recovery remain mostly unclear. Here, we investigated how ES and locomotor training affected expression of chondroitin sulfate proteoglycans (CSPG), perineuronal nets (PNN), and synaptic plasticity on spinal motoneurons. To test this, adult rats received a complete spinal transection (T9-T10) followed by daily locomotor training performed under ES with administration of quipazine (a serotonin (5-HT) agonist) starting 7 days post-injury (dpi). Excitatory and inhibitory synaptic changes were examined at 7, 21, and 67 dpi in addition to PNN and CSPG expression. The total amount of CSPG expression significantly increased with time after injury, with no effect of training. An interesting finding was that γ-motoneurons did not express PNNs, whereas α-motoneurons demonstrated well-defined PNNs. This remarkable difference is reflected in the greater extent of synaptic changes observed in γ-motoneurons compared to α-motoneurons. A medium negative correlation between CSPG expression and changes in putative synapses around α-motoneurons was found, but no correlation was identified for γ-motoneurons. These results suggest that modulation of γ-motoneuron activity is an important mechanism associated with functional recovery induced by locomotor training under ES after a complete spinal transection.
Collapse
Affiliation(s)
- Yazi D. Al’joboori
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - V. Reggie Edgerton
- Physiological Science, Neurobiology and Brain Research Institute, University of California, Los Angeles, CA 90095, USA;
| | - Ronaldo M. Ichiyama
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK;
- Correspondence: ; Tel.: +44-113-343-4291
| |
Collapse
|
46
|
Araki T, Ikegaya Y, Koyama R. The effects of microglia‐ and astrocyte‐derived factors on neurogenesis in health and disease. Eur J Neurosci 2020; 54:5880-5901. [PMID: 32920880 PMCID: PMC8451940 DOI: 10.1111/ejn.14969] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022]
Abstract
Hippocampal neurogenesis continues throughout life and has been suggested to play an essential role in maintaining spatial cognitive function under physiological conditions. An increasing amount of evidence has indicated that adult neurogenesis is tightly controlled by environmental conditions in the neurogenic niche, which consists of multiple types of cells including microglia and astrocytes. Microglia maintain the environment of neurogenic niche through their phagocytic capacity and interaction with neurons via fractalkine‐CX3CR1 signaling. In addition, microglia release growth factors such as brain‐derived neurotrophic factor (BDNF) and cytokines such as tumor necrosis factor (TNF)‐α to support the development of adult born neurons. Astrocytes also manipulate neurogenesis by releasing various soluble factors including adenosine triphosphate and lactate. Whereas, under pathological conditions such as Alzheimer's disease, depression, and epilepsy, microglia and astrocytes play a leading role in inflammation and are involved in attenuating the normal process of neurogenesis. The modulation of glial functions on neurogenesis in these brain diseases are attracting attention as a new therapeutic target. This review describes how these glial cells play a role in adult hippocampal neurogenesis in both health and disease, especially focusing glia‐derived factors.
Collapse
Affiliation(s)
- Tasuku Araki
- Laboratory of Chemical Pharmacology Graduate School of Pharmaceutical Sciences The University of Tokyo Tokyo Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology Graduate School of Pharmaceutical Sciences The University of Tokyo Tokyo Japan
- Center for Information and Neural Networks Suita City Osaka Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology Graduate School of Pharmaceutical Sciences The University of Tokyo Tokyo Japan
| |
Collapse
|
47
|
Yang X. Chondroitin sulfate proteoglycans: key modulators of neuronal plasticity, long-term memory, neurodegenerative, and psychiatric disorders. Rev Neurosci 2020; 31:555-568. [PMID: 32126020 DOI: 10.1515/revneuro-2019-0117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/02/2020] [Indexed: 12/19/2022]
Abstract
The chondroitin sulfate proteoglycans (CSPGs) are large groups of heterogenous proteoglycans that are mainly expressed by reactive astrocytes in the central nervous system (CNS). They share similar core proteins and are post-transcriptionally modified by chondroitin sulfate glycosaminoglycans. CSPGs are the major components of the perineuronal nets (PNN) that regulate the opening and closure of the critical period. Mounting reports have documented the crucial roles of CSPGs in restricting neuronal plasticity, axonal growth, and pathfinding during development as well as axonal regeneration after CNS injury. Moreover, CSPGs and PNNs modulate long-term memory, which impairments frequently happened in several neurodegenerative and psychiatric disorders. This review will shortly introduce the expression patterns of CSPGs during development and after injury, the PNNs constitutions, the roles of CSPGs and PNNs in axonal regrowth, discuss the most recently identified roles of CSPGs and PNNs in mediating long-term memory and their correlation with brain disorders, and finally, propose a short perspective of future investigations. Hopefully, further explorations may validate the therapeutic potentials of PNNs and CSPGs.
Collapse
Affiliation(s)
- Xin Yang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, P.R. China
| |
Collapse
|
48
|
Warren PM, Andrews MR, Smith M, Bartus K, Bradbury EJ, Verhaagen J, Fawcett JW, Kwok JCF. Secretion of a mammalian chondroitinase ABC aids glial integration at PNS/CNS boundaries. Sci Rep 2020; 10:11262. [PMID: 32647242 PMCID: PMC7347606 DOI: 10.1038/s41598-020-67526-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Schwann cell grafts support axonal growth following spinal cord injury, but a boundary forms between the implanted cells and host astrocytes. Axons are reluctant to exit the graft tissue in large part due to the surrounding inhibitory environment containing chondroitin sulphate proteoglycans (CSPGs). We use a lentiviral chondroitinase ABC, capable of being secreted from mammalian cells (mChABC), to examine the repercussions of CSPG digestion upon Schwann cell behaviour in vitro. We show that mChABC transduced Schwann cells robustly secrete substantial quantities of the enzyme causing large-scale CSPG digestion, facilitating the migration and adhesion of Schwann cells on inhibitory aggrecan and astrocytic substrates. Importantly, we show that secretion of the engineered enzyme can aid the intermingling of cells at the Schwann cell-astrocyte boundary, enabling growth of neurites over the putative graft/host interface. These data were echoed in vivo. This study demonstrates the profound effect of the enzyme on cellular motility, growth and migration. This provides a cellular mechanism for mChABC induced functional and behavioural recovery shown in in vivo studies. Importantly, we provide in vitro evidence that mChABC gene therapy is equally or more effective at producing these effects as a one-time application of commercially available ChABC.
Collapse
Affiliation(s)
- Philippa M Warren
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK. .,Wolfson Centre for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK. .,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 0PY, UK.
| | - Melissa R Andrews
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK.,Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Marc Smith
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Katalin Bartus
- Wolfson Centre for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK
| | - Elizabeth J Bradbury
- Wolfson Centre for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK
| | - Joost Verhaagen
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - James W Fawcett
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK.,Centre for Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Jessica C F Kwok
- Centre for Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
49
|
Nguyen PT, Dorman LC, Pan S, Vainchtein ID, Han RT, Nakao-Inoue H, Taloma SE, Barron JJ, Molofsky AB, Kheirbek MA, Molofsky AV. Microglial Remodeling of the Extracellular Matrix Promotes Synapse Plasticity. Cell 2020; 182:388-403.e15. [PMID: 32615087 DOI: 10.1016/j.cell.2020.05.050] [Citation(s) in RCA: 378] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/20/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022]
Abstract
Synapse remodeling is essential to encode experiences into neuronal circuits. Here, we define a molecular interaction between neurons and microglia that drives experience-dependent synapse remodeling in the hippocampus. We find that the cytokine interleukin-33 (IL-33) is expressed by adult hippocampal neurons in an experience-dependent manner and defines a neuronal subset primed for synaptic plasticity. Loss of neuronal IL-33 or the microglial IL-33 receptor leads to impaired spine plasticity, reduced newborn neuron integration, and diminished precision of remote fear memories. Memory precision and neuronal IL-33 are decreased in aged mice, and IL-33 gain of function mitigates age-related decreases in spine plasticity. We find that neuronal IL-33 instructs microglial engulfment of the extracellular matrix (ECM) and that its loss leads to impaired ECM engulfment and a concomitant accumulation of ECM proteins in contact with synapses. These data define a cellular mechanism through which microglia regulate experience-dependent synapse remodeling and promote memory consolidation.
Collapse
Affiliation(s)
- Phi T Nguyen
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Leah C Dorman
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Simon Pan
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Ilia D Vainchtein
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rafael T Han
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Hiromi Nakao-Inoue
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sunrae E Taloma
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jerika J Barron
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Mazen A Kheirbek
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Anna V Molofsky
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
50
|
Bartholome O, de la Brassinne Bonardeaux O, Neirinckx V, Rogister B. A Composite Sketch of Fast-Spiking Parvalbumin-Positive Neurons. Cereb Cortex Commun 2020; 1:tgaa026. [PMID: 34296100 PMCID: PMC8153048 DOI: 10.1093/texcom/tgaa026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 01/28/2023] Open
Abstract
Parvalbumin-positive neurons are inhibitory neurons that release GABA and are mostly represented by fast-spiking basket or chandelier cells. They constitute a minor neuronal population, yet their peculiar profiles allow them to react quickly to any event in the brain under normal or pathological conditions. In this review, we will summarize the current knowledge about the fundamentals of fast-spiking parvalbumin-positive neurons, focusing on their morphology and specific channel/protein content. Next, we will explore their development, maturation, and migration in the brain. Finally, we will unravel their potential contribution to the physiopathology of epilepsy.
Collapse
Affiliation(s)
| | | | | | - Bernard Rogister
- GIGA-Neurosciences, University of Liege, 4000 Liège, Belgium
- Neurology Department, CHU, Academic Hospital, University of Liege, 4000 Liège, Belgium
| |
Collapse
|