1
|
Ratna DD, Francis TC. Extrinsic and intrinsic control of striatal cholinergic interneuron activity. Front Mol Neurosci 2025; 18:1528419. [PMID: 40018010 PMCID: PMC11865219 DOI: 10.3389/fnmol.2025.1528419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
The striatum is an integrated component of the basal ganglia responsible for associative learning and response. Besides the presence of the most abundant γ-aminobutyric acid (GABA-ergic) medium spiny neurons (MSNs), the striatum also contains distributed populations of cholinergic interneurons (ChIs), which bidirectionally communicate with many of these neuronal subtypes. Despite their sparse distribution, ChIs provide the largest source of acetylcholine (ACh) to striatal cells, have a prominent level of arborization and activity, and are potent modulators of striatal output and play prominent roles in plasticity underlying associative learning and reinforcement. Deviations from this tonic activity, including phasic bursts or pauses caused by region-selective excitatory input, neuromodulator, or neuropeptide release can exert strong influences on intrinsic activity and synaptic plasticity via diverse receptor signaling. Recent studies and new tools have allowed improved identification of factors driving or suppressing cholinergic activity, including peptides. This review aims to outline our current understanding of factors that control tonic and phasic ChI activity, specifically focusing on how neuromodulators and neuropeptides interact to facilitate or suppress phasic ChI responses underlying learning and plasticity.
Collapse
Affiliation(s)
| | - Tanner Chase Francis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
2
|
Huang Z, Chen R, Ho M, Xie X, Gangal H, Wang X, Wang J. Dynamic responses of striatal cholinergic interneurons control behavioral flexibility. SCIENCE ADVANCES 2024; 10:eadn2446. [PMID: 39693433 DOI: 10.1126/sciadv.adn2446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
Striatal cholinergic interneurons (CINs) are key to regulating behavioral flexibility, involving both extinguishing learned actions and adopting new ones. However, the mechanisms driving these processes remain elusive. In this study, we initially demonstrate that chronic alcohol consumption disrupts the burst-pause dynamics of CINs and impairs behavioral flexibility. We next aimed to elucidate the mechanisms by which CIN dynamics control behavioral flexibility. We found that extinction learning enhances acetylcholine (ACh) release and that mimicking this enhancement through optogenetic induction of CIN burst firing accelerates the extinction process. In addition, we demonstrate that disrupting CIN pauses via continuous optogenetic stimulation reversibly impairs the updating of goal-directed behaviors. Overall, we demonstrate that CIN burst firing, which increases ACh release, promotes extinction learning, aiding the extinguishment of learned behaviors. Conversely, CIN firing pauses, which lead to ACh dips, are crucial for reversal learning, facilitating the adaptation of new actions. These findings shed light on how CIN dynamics regulate behavioral flexibility.
Collapse
Affiliation(s)
- Zhenbo Huang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Matthew Ho
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Himanshu Gangal
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| |
Collapse
|
3
|
Li H, Chen Z, Tan Y, Luo H, Lu C, Gao C, Shen X, Cai F, Hu J, Chen S. Enhancing striatal acetylcholine facilitates dopamine release and striatal output in parkinsonian mice. Cell Biosci 2024; 14:146. [PMID: 39627827 PMCID: PMC11616140 DOI: 10.1186/s13578-024-01328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND L-DOPA has been considered the first-line therapy for treating Parkinson's disease (PD) via restoring striatal dopamine (DA) to normalize the activity of local spiny projection neurons (SPNs) in the direct (dSPNs) pathway and the indirect (iSPNs) pathway. While the changes in striatal acetylcholine (ACh) induced by increasing DA have been extensively discussed, their validity remains controversial. Inhibition of striatal cholinergic signaling attenuates PD motor deficits. Interestingly, enhancing striatal ACh triggers local DA release, suggesting the pro-kinetic effects of ACh in movement control. Here, we investigated the in-vivo dynamics of ACh in the dorsolateral striatum (DLS) of the 6-OHDA-lesioned mouse model after L-DOPA administration, as well as its underlying mechanism, and to explore its modulatory role and mechanism in parkinsonian symptoms. RESULTS Using in vivo fiber photometry recordings with genetically encoded fluorescent DA or ACh indicator, we found L-DOPA selectively decreased DLS ACh levels in parkinsonian conditions. DA inhibited ACh release via dopamine D2 receptors and dSPNs-mediated activation of type-A γ-aminobutyric acid receptors on cholinergic interneurons. Restoring DLS ACh levels during L-DOPA treatment induced additional DA release by activating nicotinic acetylcholine receptors, thereby promoting the activity of dSPNs and iSPNs. Enhancing DLS ACh facilitated L-DOPA-induced turning behavior but not dyskinesia in parkinsonian mice. CONCLUSIONS Our results demonstrated that enhancing striatal ACh facilitated the effect of L-DOPA by modulating DA tone. It may challenge the classical hypothesis of a purely competitive interaction between dopaminergic and cholinergic neuromodulation in improving PD motor deficits. Modulating ACh levels within the dopaminergic system may improve striatal DA availability in PD patients.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Lab for Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, ShanghaiTech University, Shanghai, China
| | - Ziluo Chen
- Lab for Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, ShanghaiTech University, Shanghai, China
| | - Yuyan Tan
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huoqing Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chen Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chao Gao
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Shen
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Cai
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
4
|
Stedehouder J, Roberts BM, Raina S, Bossi S, Liu AKL, Doig NM, McGerty K, Magill PJ, Parkkinen L, Cragg SJ. Rapid modulation of striatal cholinergic interneurons and dopamine release by satellite astrocytes. Nat Commun 2024; 15:10017. [PMID: 39562551 PMCID: PMC11577008 DOI: 10.1038/s41467-024-54253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
Astrocytes are increasingly appreciated to possess underestimated and important roles in modulating neuronal circuits. Astrocytes in striatum can regulate dopamine transmission by governing the extracellular tone of axonal neuromodulators, including GABA and adenosine. However, here we reveal that striatal astrocytes occupy a cell type-specific anatomical and functional relationship with cholinergic interneurons (ChIs), through which they rapidly excite ChIs and govern dopamine release via nicotinic acetylcholine receptors on subsecond timescales. We identify that ChI somata are in unexpectedly close proximity to astrocyte somata, in mouse and human, forming a "soma-to-soma" satellite-like configuration not typically observed for other striatal neurons. We find that transient depolarization of astrocytes in mouse striatum reversibly regulates ChI excitability by decreasing extracellular calcium. These findings reveal a privileged satellite astrocyte-interneuron interaction for striatal ChIs operating on subsecond timescales via regulation of extracellular calcium dynamics to shape downstream striatal circuit activity and dopamine signaling.
Collapse
Affiliation(s)
- Jeffrey Stedehouder
- Centre for Cellular and Molecular Neurobiology, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
| | - Bradley M Roberts
- Centre for Cellular and Molecular Neurobiology, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
| | - Shinil Raina
- Centre for Cellular and Molecular Neurobiology, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Simon Bossi
- Centre for Cellular and Molecular Neurobiology, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alan King Lun Liu
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Natalie M Doig
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QT, UK
| | - Kevin McGerty
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| | - Peter J Magill
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QT, UK
| | - Laura Parkkinen
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Stephanie J Cragg
- Centre for Cellular and Molecular Neurobiology, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
5
|
Duhne M, Mohebi A, Kim K, Pelattini L, Berke JD. A mismatch between striatal cholinergic pauses and dopaminergic reward prediction errors. Proc Natl Acad Sci U S A 2024; 121:e2410828121. [PMID: 39365823 PMCID: PMC11474027 DOI: 10.1073/pnas.2410828121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/23/2024] [Indexed: 10/06/2024] Open
Abstract
Striatal acetylcholine and dopamine critically regulate movement, motivation, and reward-related learning. Pauses in cholinergic interneuron (CIN) firing are thought to coincide with dopamine pulses encoding reward prediction errors (RPE) to jointly enable synaptic plasticity. Here, we examine the firing of identified CINs during reward-guided decision-making in freely moving rats and compare this firing to dopamine release. Relationships between CINs, dopamine, and behavior varied strongly by subregion. In the dorsal-lateral striatum, a Go! cue evoked burst-pause CIN spiking, followed by a brief dopamine pulse that was unrelated to RPE. In the dorsal-medial striatum, this cue evoked only a CIN pause, that was curtailed by a movement-selective rebound in firing. Finally, in the ventral striatum, a reward cue evoked RPE-coding increases in both dopamine and CIN firing, without a consistent pause. Our results demonstrate a spatial and temporal dissociation between CIN pauses and dopamine RPE signals and will inform future models of striatal information processing under both normal and pathological conditions.
Collapse
Affiliation(s)
- Mariana Duhne
- Department of Neurology, University of California, San Francisco, CA94158
| | - Ali Mohebi
- Department of Neurology, University of California, San Francisco, CA94158
| | - Kyoungjun Kim
- Department of Neurology, University of California, San Francisco, CA94158
| | - Lilian Pelattini
- Department of Neurology, University of California, San Francisco, CA94158
| | - Joshua D. Berke
- Department of Neurology, University of California, San Francisco, CA94158
- Department of Psychiatry and Behavioral Science, University of California, San Francisco, CA94107
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA94158
- Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| |
Collapse
|
6
|
Abbondanza A, Urushadze A, Alves-Barboza AR, Janickova H. Expression and function of nicotinic acetylcholine receptors in specific neuronal populations: Focus on striatal and prefrontal circuits. Pharmacol Res 2024; 204:107190. [PMID: 38704107 DOI: 10.1016/j.phrs.2024.107190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/06/2024]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely expressed in the central nervous system and play an important role in the control of neural functions including neuronal activity, transmitter release and synaptic plasticity. Although the common subtypes of nAChRs are abundantly expressed throughout the brain, their expression in different brain regions and by individual neuronal types is not homogeneous or incidental. In recent years, several studies have emerged showing that particular subtypes of nAChRs are expressed by specific neuronal populations in which they have major influence on the activity of local circuits and behavior. It has been demonstrated that even nAChRs expressed by relatively rare neuronal types can induce significant changes in behavior and contribute to pathological processes. Depending on the identity and connectivity of the particular nAChRs-expressing neuronal populations, the activation of nAChRs can have distinct or even opposing effects on local neuronal signaling. In this review, we will summarize the available literature describing the expression of individual nicotinic subunits by different neuronal types in two crucial brain regions, the striatum and the prefrontal cortex. The review will also briefly discuss nicotinic expression in non-neuronal, glial cells, as they cannot be ignored as potential targets of nAChRs-modulating drugs. The final section will discuss options that could allow us to target nAChRs in a neuronal-type-specific manner, not only in the experimental field, but also eventually in clinical practice.
Collapse
Affiliation(s)
- Alice Abbondanza
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Anna Urushadze
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Amanda Rosanna Alves-Barboza
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Helena Janickova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic.
| |
Collapse
|
7
|
Matityahu L, Gilin N, Sarpong GA, Atamna Y, Tiroshi L, Tritsch NX, Wickens JR, Goldberg JA. Acetylcholine waves and dopamine release in the striatum. Nat Commun 2023; 14:6852. [PMID: 37891198 PMCID: PMC10611775 DOI: 10.1038/s41467-023-42311-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Striatal dopamine encodes reward, with recent work showing that dopamine release occurs in spatiotemporal waves. However, the mechanism of dopamine waves is unknown. Here we report that acetylcholine release in mouse striatum also exhibits wave activity, and that the spatial scale of striatal dopamine release is extended by nicotinic acetylcholine receptors. Based on these findings, and on our demonstration that single cholinergic interneurons can induce dopamine release, we hypothesized that the local reciprocal interaction between cholinergic interneurons and dopamine axons suffices to drive endogenous traveling waves. We show that the morphological and physiological properties of cholinergic interneuron - dopamine axon interactions can be modeled as a reaction-diffusion system that gives rise to traveling waves. Analytically-tractable versions of the model show that the structure and the nature of propagation of acetylcholine and dopamine traveling waves depend on their coupling, and that traveling waves can give rise to empirically observed correlations between these signals. Thus, our study provides evidence for striatal acetylcholine waves in vivo, and proposes a testable theoretical framework that predicts that the observed dopamine and acetylcholine waves are strongly coupled phenomena.
Collapse
Affiliation(s)
- Lior Matityahu
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Naomi Gilin
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Gideon A Sarpong
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yara Atamna
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Lior Tiroshi
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Nicolas X Tritsch
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Jeffery R Wickens
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Joshua A Goldberg
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel.
| |
Collapse
|
8
|
Lozovaya N, Eftekhari S, Hammond C. The early excitatory action of striatal cholinergic-GABAergic microcircuits conditions the subsequent GABA inhibitory shift. Commun Biol 2023; 6:723. [PMID: 37452171 PMCID: PMC10349145 DOI: 10.1038/s42003-023-05068-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Cholinergic interneurons of the striatum play a role in action selection and associative learning by activating local GABAergic inhibitory microcircuits. We investigated whether cholinergic-GABAergic microcircuits function differently and fulfill a different role during early postnatal development, when GABAA actions are not inhibitory and mice pups do not walk. We focused our study mainly on dual cholinergic/GABAergic interneurons (CGINs). We report that morphological and intrinsic electrophysiological properties of CGINs rapidly develop during the first post-natal week. At this stage, CGINs are excited by the activation of GABAA receptors or GABAergic synaptic inputs, respond to cortical stimulation by a long excitation and are linked by polysynaptic excitations. All these excitations are replaced by inhibitions at P12-P15. Early chronic treatment with the NKCC1 antagonist bumetanide to evoke premature GABAergic inhibitions from P4 to P8, prevented the GABA polarity shift and corticostriatal pause response at control postnatal days. We propose that early excitatory cholinergic-GABAergic microcircuits are instrumental in the maturation of GABAergic inhibition.
Collapse
|
9
|
Gangal H, Xie X, Huang Z, Cheng Y, Wang X, Lu J, Zhuang X, Essoh A, Huang Y, Chen R, Smith LN, Smith RJ, Wang J. Drug reinforcement impairs cognitive flexibility by inhibiting striatal cholinergic neurons. Nat Commun 2023; 14:3886. [PMID: 37391566 PMCID: PMC10313783 DOI: 10.1038/s41467-023-39623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Addictive substance use impairs cognitive flexibility, with unclear underlying mechanisms. The reinforcement of substance use is mediated by the striatal direct-pathway medium spiny neurons (dMSNs) that project to the substantia nigra pars reticulata (SNr). Cognitive flexibility is mediated by striatal cholinergic interneurons (CINs), which receive extensive striatal inhibition. Here, we hypothesized that increased dMSN activity induced by substance use inhibits CINs, reducing cognitive flexibility. We found that cocaine administration in rodents caused long-lasting potentiation of local inhibitory dMSN-to-CIN transmission and decreased CIN firing in the dorsomedial striatum (DMS), a brain region critical for cognitive flexibility. Moreover, chemogenetic and time-locked optogenetic inhibition of DMS CINs suppressed flexibility of goal-directed behavior in instrumental reversal learning tasks. Notably, rabies-mediated tracing and physiological studies showed that SNr-projecting dMSNs, which mediate reinforcement, sent axonal collaterals to inhibit DMS CINs, which mediate flexibility. Our findings demonstrate that the local inhibitory dMSN-to-CIN circuit mediates the reinforcement-induced deficits in cognitive flexibility.
Collapse
Affiliation(s)
- Himanshu Gangal
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Zhenbo Huang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Yifeng Cheng
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Jiayi Lu
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Xiaowen Zhuang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Amanda Essoh
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Yufei Huang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA
| | - Laura N Smith
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Rachel J Smith
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA.
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
10
|
Kocaturk S, Guven EB, Shah F, Tepper JM, Assous M. Cholinergic control of striatal GABAergic microcircuits. Cell Rep 2022; 41:111531. [DOI: 10.1016/j.celrep.2022.111531] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 09/01/2022] [Accepted: 09/29/2022] [Indexed: 11/03/2022] Open
|
11
|
Padilla-Orozco M, Duhne M, Fuentes-Serrano A, Ortega A, Galarraga E, Bargas J, Lara-González E. Synaptic determinants of cholinergic interneurons hyperactivity during parkinsonism. Front Synaptic Neurosci 2022; 14:945816. [PMID: 36147730 PMCID: PMC9485566 DOI: 10.3389/fnsyn.2022.945816] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease is a neurodegenerative ailment generated by the loss of dopamine in the basal ganglia, mainly in the striatum. The disease courses with increased striatal levels of acetylcholine, disrupting the balance among these modulatory transmitters. These modifications disturb the excitatory and inhibitory balance in the striatal circuitry, as reflected in the activity of projection striatal neurons. In addition, changes in the firing pattern of striatal tonically active interneurons during the disease, including cholinergic interneurons (CINs), are being searched. Dopamine-depleted striatal circuits exhibit pathological hyperactivity as compared to controls. One aim of this study was to show how striatal CINs contribute to this hyperactivity. A second aim was to show the contribution of extrinsic synaptic inputs to striatal CINs hyperactivity. Electrophysiological and calcium imaging recordings in Cre-mice allowed us to evaluate the activity of dozens of identified CINs with single-cell resolution in ex vivo brain slices. CINs show hyperactivity with bursts and silences in the dopamine-depleted striatum. We confirmed that the intrinsic differences between the activity of control and dopamine-depleted CINs are one source of their hyperactivity. We also show that a great part of this hyperactivity and firing pattern change is a product of extrinsic synaptic inputs, targeting CINs. Both glutamatergic and GABAergic inputs are essential to sustain hyperactivity. In addition, cholinergic transmission through nicotinic receptors also participates, suggesting that the joint activity of CINs drives the phenomenon; since striatal CINs express nicotinic receptors, not expressed in striatal projection neurons. Therefore, CINs hyperactivity is the result of changes in intrinsic properties and excitatory and inhibitory inputs, in addition to the modification of local circuitry due to cholinergic nicotinic transmission. We conclude that CINs are the main drivers of the pathological hyperactivity present in the striatum that is depleted of dopamine, and this is, in part, a result of extrinsic synaptic inputs. These results show that CINs may be a main therapeutic target to treat Parkinson’s disease by intervening in their synaptic inputs.
Collapse
Affiliation(s)
- Montserrat Padilla-Orozco
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Duhne
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Alejandra Fuentes-Serrano
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aidán Ortega
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elvira Galarraga
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Bargas
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: José Bargas,
| | - Esther Lara-González
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Esther Lara-González,
| |
Collapse
|
12
|
Tokarska A, Silberberg G. GABAergic interneurons expressing the α2 nicotinic receptor subunit are functionally integrated in the striatal microcircuit. Cell Rep 2022; 39:110842. [PMID: 35613598 DOI: 10.1016/j.celrep.2022.110842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/08/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
The interactions between the striatal cholinergic and GABAergic systems are crucial in shaping reward-related behavior and reinforcement learning; however, the synaptic pathways mediating them are largely unknown. Here, we use Chrna2-Cre mice to characterize striatal interneurons (INs) expressing the nicotinic α2 receptor subunit. Using triple patch-clamp recordings combined with optogenetic stimulations, we characterize the electrophysiological, morphological, and synaptic properties of striatal Chrna2-INs. Striatal Chrna2-INs have diverse electrophysiological properties, distinct from their counterparts in other brain regions, including the hippocampus and neocortex. Unlike in other regions, most striatal Chrna2-INs are fast-spiking INs expressing parvalbumin. Striatal Chrna2-INs are intricately integrated in the striatal microcircuit, forming inhibitory synaptic connections with striatal projection neurons and INs, including other Chrna2-INs. They receive excitatory inputs from primary motor cortex mediated by both AMPA and NMDA receptors. A subpopulation of Chrna2-INs responds to nicotinic input, suggesting reciprocal interactions between this GABAergic interneuron population and striatal cholinergic synapses.
Collapse
Affiliation(s)
- Anna Tokarska
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
13
|
Morgenstern NA, Isidro AF, Israely I, Costa RM. Pyramidal tract neurons drive amplification of excitatory inputs to striatum through cholinergic interneurons. SCIENCE ADVANCES 2022; 8:eabh4315. [PMID: 35138902 PMCID: PMC8827762 DOI: 10.1126/sciadv.abh4315] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/15/2021] [Indexed: 05/07/2023]
Abstract
Corticostriatal connectivity is central for many cognitive and motor processes, such as reinforcement or action initiation and invigoration. The cortical input to the striatum arises from two main cortical populations: intratelencephalic (IT) and pyramidal tract (PT) neurons. We report a previously unknown excitatory circuit, supported by a polysynaptic motif from PT neurons to cholinergic interneurons (ChIs) to glutamate-releasing axons, which runs in parallel to the canonical monosynaptic corticostriatal connection. This motif conveys a delayed second phase of excitation to striatal spiny projection neurons, through an acetylcholine-dependent glutamate release mechanism mediated by α4-containing nicotinic receptors, resulting in biphasic corticostriatal signals. These biphasic signals are a hallmark of PT, but not IT, corticostriatal inputs, due to a stronger relative input from PT neurons to ChIs. These results describe a previously unidentified circuit mechanism by which PT activity amplifies excitatory inputs to the striatum, with potential implications for behavior, plasticity, and learning.
Collapse
Affiliation(s)
| | - Ana Filipa Isidro
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - Inbal Israely
- Departments of Pathology and Cell Biology, and Neuroscience, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10027, USA
| | - Rui M. Costa
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
- Departments of Neuroscience and Neurology, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
14
|
Kljakic O, Janíčková H, Skirzewski M, Reichelt A, Memar S, El Mestikawy S, Li Y, Saksida LM, Bussey TJ, Prado VF, Prado MAM. Functional dissociation of behavioral effects from acetylcholine and glutamate released from cholinergic striatal interneurons. FASEB J 2022; 36:e22135. [PMID: 35032355 PMCID: PMC9303754 DOI: 10.1096/fj.202101425r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022]
Abstract
In the striatum, cholinergic interneurons (CINs) have the ability to release both acetylcholine and glutamate, due to the expression of the vesicular acetylcholine transporter (VAChT) and the vesicular glutamate transporter 3 (VGLUT3). However, the relationship these neurotransmitters have in the regulation of behavior is not fully understood. Here we used reward‐based touchscreen tests in mice to assess the individual and combined contributions of acetylcholine/glutamate co‐transmission in behavior. We found that reduced levels of the VAChT from CINs negatively impacted dopamine signalling in response to reward, and disrupted complex responses in a sequential chain of events. In contrast, diminished VGLUT3 levels had somewhat opposite effects. When mutant mice were treated with haloperidol in a cue‐based task, the drug did not affect the performance of VAChT mutant mice, whereas VGLUT3 mutant mice were highly sensitive to haloperidol. In mice where both vesicular transporters were deleted from CINs, we observed altered reward‐evoked dopaminergic signalling and behavioral deficits that resemble, but were worse, than those in mice with specific loss of VAChT alone. These results demonstrate that the ability to secrete two different neurotransmitters allows CINs to exert complex modulation of a wide range of behaviors.
Collapse
Affiliation(s)
- Ornela Kljakic
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Helena Janíčková
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Miguel Skirzewski
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Amy Reichelt
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Sara Memar
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Salah El Mestikawy
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada.,INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, Paris, France
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Lisa M Saksida
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Timothy J Bussey
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Vania F Prado
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
15
|
Sippy T, Chaimowitz C, Crochet S, Petersen CCH. Cell Type-Specific Membrane Potential Changes in Dorsolateral Striatum Accompanying Reward-Based Sensorimotor Learning. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab049. [PMID: 35330797 PMCID: PMC8788857 DOI: 10.1093/function/zqab049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/07/2023]
Abstract
The striatum integrates sensorimotor and motivational signals, likely playing a key role in reward-based learning of goal-directed behavior. However, cell type-specific mechanisms underlying reinforcement learning remain to be precisely determined. Here, we investigated changes in membrane potential dynamics of dorsolateral striatal neurons comparing naïve mice and expert mice trained to lick a reward spout in response to whisker deflection. We recorded from three distinct cell types: (i) direct pathway striatonigral neurons, which express type 1 dopamine receptors; (ii) indirect pathway striatopallidal neurons, which express type 2 dopamine receptors; and (iii) tonically active, putative cholinergic, striatal neurons. Task learning was accompanied by cell type-specific changes in the membrane potential dynamics evoked by the whisker deflection and licking in successfully-performed trials. Both striatonigral and striatopallidal types of striatal projection neurons showed enhanced task-related depolarization across learning. Striatonigral neurons showed a prominent increase in a short latency sensory-evoked depolarization in expert compared to naïve mice. In contrast, the putative cholinergic striatal neurons developed a hyperpolarizing response across learning, driving a pause in their firing. Our results reveal cell type-specific changes in striatal membrane potential dynamics across the learning of a simple goal-directed sensorimotor transformation, helpful for furthering the understanding of the various potential roles of different basal ganglia circuits.
Collapse
Affiliation(s)
| | - Corryn Chaimowitz
- Department of Psychiatry and Physiology and Neuroscience, New York University Langone Medical Center, New York, NY 10016, USA
| | | | | |
Collapse
|
16
|
Wills L, Kenny PJ. Addiction-related neuroadaptations following chronic nicotine exposure. J Neurochem 2021; 157:1652-1673. [PMID: 33742685 DOI: 10.1111/jnc.15356] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
The addiction-relevant molecular, cellular, and behavioral actions of nicotine are derived from its stimulatory effects on neuronal nicotinic acetylcholine receptors (nAChRs) in the central nervous system. nAChRs expressed by dopamine-containing neurons in the ventral midbrain, most notably in the ventral tegmental area (VTA), contribute to the reward-enhancing properties of nicotine that motivate the use of tobacco products. nAChRs are also expressed by neurons in brain circuits that regulate aversion. In particular, nAChRs expressed by neurons in the medial habenula (mHb) and the interpeduncular nucleus (IPn) to which the mHb almost exclusively projects regulate the "set-point" for nicotine aversion and control nicotine intake. Different nAChR subtypes are expressed in brain reward and aversion circuits and nicotine intake is titrated to maximally engage reward-enhancing nAChRs while minimizing the recruitment of aversion-promoting nAChRs. With repeated exposure to nicotine, reward- and aversion-related nAChRs and the brain circuits in which they are expressed undergo adaptations that influence whether tobacco use will transition from occasional to habitual. Genetic variation that influences the sensitivity of addiction-relevant brain circuits to the actions of nicotine also influence the propensity to develop habitual tobacco use. Here, we review some of the key advances in our understanding of the mechanisms by which nicotine acts on brain reward and aversion circuits and the adaptations that occur in these circuits that may drive addiction to nicotine-containing tobacco products.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| |
Collapse
|
17
|
Poppi LA, Ho-Nguyen KT, Shi A, Daut CT, Tischfield MA. Recurrent Implication of Striatal Cholinergic Interneurons in a Range of Neurodevelopmental, Neurodegenerative, and Neuropsychiatric Disorders. Cells 2021; 10:907. [PMID: 33920757 PMCID: PMC8071147 DOI: 10.3390/cells10040907] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Cholinergic interneurons are "gatekeepers" for striatal circuitry and play pivotal roles in attention, goal-directed actions, habit formation, and behavioral flexibility. Accordingly, perturbations to striatal cholinergic interneurons have been associated with many neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. The role of acetylcholine in many of these disorders is well known, but the use of drugs targeting cholinergic systems fell out of favor due to adverse side effects and the introduction of other broadly acting compounds. However, in response to recent findings, re-examining the mechanisms of cholinergic interneuron dysfunction may reveal key insights into underlying pathogeneses. Here, we provide an update on striatal cholinergic interneuron function, connectivity, and their putative involvement in several disorders. In doing so, we aim to spotlight recurring physiological themes, circuits, and mechanisms that can be investigated in future studies using new tools and approaches.
Collapse
Affiliation(s)
- Lauren A. Poppi
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Tourette International Collaborative (TIC) Genetics Study, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Khue Tu Ho-Nguyen
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Anna Shi
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Cynthia T. Daut
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Max A. Tischfield
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Tourette International Collaborative (TIC) Genetics Study, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
18
|
Assous M. Striatal cholinergic transmission. Focus on nicotinic receptors' influence in striatal circuits. Eur J Neurosci 2021; 53:2421-2442. [PMID: 33529401 PMCID: PMC8161166 DOI: 10.1111/ejn.15135] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
The critical role of acetylcholine (ACh) in the basal ganglia is evident from the effect of cholinergic agents in patients suffering from several related neurological disorders, such as Parkinson's disease, Tourette syndrome, or dystonia. The striatum possesses the highest density of ACh markers in the basal ganglia underlying the importance of ACh in this structure. Striatal cholinergic interneurons (CINs) are responsible for the bulk of striatal ACh, although extrinsic cholinergic afferents from brainstem structures may also play a role. CINs are tonically active, and synchronized pause in their activity occurs following the presentation of salient stimuli during behavioral conditioning. However, the synaptic mechanisms involved are not fully understood in this physiological response. ACh modulates striatal circuits by acting on muscarinic and nicotinic receptors existing in several combinations both presynaptically and postsynaptically. While the effects of ACh in the striatum through muscarinic receptors have received particular attention, nicotinic receptors function has been less studied. Here, after briefly reviewing relevant results regarding muscarinic receptors expression and function, I will focus on striatal nicotinic receptor expressed presynaptically on glutamatergic and dopaminergic afferents and postsynaptically on diverse striatal interneurons populations. I will also review recent evidence suggesting the involvement of different GABAergic sources in two distinct nicotinic-receptor-mediated striatal circuits: the disynaptic inhibition of striatal projection neurons and the recurrent inhibition among CINs. A better understanding of striatal nicotinic receptors expression and function may help to develop targeted pharmacological interventions to treat brain disorders such as Parkinson's disease, Tourette syndrome, dystonia, or nicotine addiction.
Collapse
Affiliation(s)
- Maxime Assous
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
19
|
Suzuki E, Momiyama T. M1 muscarinic acetylcholine receptor-mediated inhibition of GABA release from striatal medium spiny neurons onto cholinergic interneurons. Eur J Neurosci 2020; 53:796-813. [PMID: 33270289 DOI: 10.1111/ejn.15074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 11/26/2022]
Abstract
Acetylcholine (ACh) modulates neurotransmitter release in the central nervous system. Although GABAergic transmission onto the striatal cholinergic interneurons (ChIN) is modulated by dopamine receptors, cholinergic modulation of the same synapse is still unknown. In the present study, modulatory roles of ACh in the GABAergic transmission from striatal medium spiny neurons (MSNs) onto ChIN were investigated using optogenetics and whole-cell patch-clamp technique in juvenile and young-adult mice brain slices. GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) were evoked by focal electrical- or blue-light stimulation. Bath application of carbachol, a muscarinic ACh receptor agonist, suppressed the amplitude of IPSCs in a concentration-dependent manner in both age groups. A choline esterase inhibitor, physostigmine, also suppressed the amplitude of IPSCs. In the presence of a membrane permeable M1 muscarine receptor antagonist, pirenzepine, carbachol-induced suppression of IPSCs was antagonized, whereas a M2 muscarine receptor antagonist, a M4 receptor antagonist, or a membrane impermeable M1 receptor antagonist did not antagonize carbachol-induced suppression of IPSCs. Retrograde cannabinoid cascade via cannabinoid receptor 1 was not involved in carbachol-induced inhibition. Furthermore, carbachol did not affect amplitude of inward currents induced by puff application of GABA, whereas coefficient of variation of IPSCs was significantly increased by carbachol. These results suggest that activation of presynaptic M1 muscarine receptors located on the GABAergic terminals including intracellular organelle of MSNs inhibits GABA release onto ChIN.
Collapse
Affiliation(s)
- Etsuko Suzuki
- Department of Pharmacology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Toshihiko Momiyama
- Department of Pharmacology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| |
Collapse
|
20
|
Dorst MC, Tokarska A, Zhou M, Lee K, Stagkourakis S, Broberger C, Masmanidis S, Silberberg G. Polysynaptic inhibition between striatal cholinergic interneurons shapes their network activity patterns in a dopamine-dependent manner. Nat Commun 2020; 11:5113. [PMID: 33037215 PMCID: PMC7547109 DOI: 10.1038/s41467-020-18882-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Striatal activity is dynamically modulated by acetylcholine and dopamine, both of which are essential for basal ganglia function. Synchronized pauses in the activity of striatal cholinergic interneurons (ChINs) are correlated with elevated activity of midbrain dopaminergic neurons, whereas synchronous firing of ChINs induces local release of dopamine. The mechanisms underlying ChIN synchronization and its interplay with dopamine release are not fully understood. Here we show that polysynaptic inhibition between ChINs is a robust network motif and instrumental in shaping the network activity of ChINs. Action potentials in ChINs evoke large inhibitory responses in multiple neighboring ChINs, strong enough to suppress their tonic activity. Using a combination of optogenetics and chemogenetics we show the involvement of striatal tyrosine hydroxylase-expressing interneurons in mediating this inhibition. Inhibition between ChINs is attenuated by dopaminergic midbrain afferents acting presynaptically on D2 receptors. Our results present a novel form of interaction between striatal dopamine and acetylcholine dynamics.
Collapse
Affiliation(s)
- Matthijs C Dorst
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Anna Tokarska
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Ming Zhou
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Kwang Lee
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Stefanos Stagkourakis
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
- Division of Biology and Biological Engineering 156-29, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Christian Broberger
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Sotiris Masmanidis
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
21
|
Tubert C, Murer MG. What’s wrong with the striatal cholinergic interneurons in Parkinson’s disease? Focus on intrinsic excitability. Eur J Neurosci 2020; 53:2100-2116. [DOI: 10.1111/ejn.14742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Cecilia Tubert
- Instituto de Fisiología y Biofísica “Bernardo Houssay”, (IFIBIO‐Houssay) Grupo de Neurociencia de Sistemas Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Mario Gustavo Murer
- Instituto de Fisiología y Biofísica “Bernardo Houssay”, (IFIBIO‐Houssay) Grupo de Neurociencia de Sistemas Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| |
Collapse
|
22
|
Hjorth JJJ, Kozlov A, Carannante I, Frost Nylén J, Lindroos R, Johansson Y, Tokarska A, Dorst MC, Suryanarayana SM, Silberberg G, Hellgren Kotaleski J, Grillner S. The microcircuits of striatum in silico. Proc Natl Acad Sci U S A 2020; 117:9554-9565. [PMID: 32321828 PMCID: PMC7197017 DOI: 10.1073/pnas.2000671117] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The basal ganglia play an important role in decision making and selection of action primarily based on input from cortex, thalamus, and the dopamine system. Their main input structure, striatum, is central to this process. It consists of two types of projection neurons, together representing 95% of the neurons, and 5% of interneurons, among which are the cholinergic, fast-spiking, and low threshold-spiking subtypes. The membrane properties, soma-dendritic shape, and intrastriatal and extrastriatal synaptic interactions of these neurons are quite well described in the mouse, and therefore they can be simulated in sufficient detail to capture their intrinsic properties, as well as the connectivity. We focus on simulation at the striatal cellular/microcircuit level, in which the molecular/subcellular and systems levels meet. We present a nearly full-scale model of the mouse striatum using available data on synaptic connectivity, cellular morphology, and electrophysiological properties to create a microcircuit mimicking the real network. A striatal volume is populated with reconstructed neuronal morphologies with appropriate cell densities, and then we connect neurons together based on appositions between neurites as possible synapses and constrain them further with available connectivity data. Moreover, we simulate a subset of the striatum involving 10,000 neurons, with input from cortex, thalamus, and the dopamine system, as a proof of principle. Simulation at this biological scale should serve as an invaluable tool to understand the mode of operation of this complex structure. This platform will be updated with new data and expanded to simulate the entire striatum.
Collapse
Affiliation(s)
- J J Johannes Hjorth
- Science for Life Laboratory, School of Electrical Engeneering and Computer Science, Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Alexander Kozlov
- Science for Life Laboratory, School of Electrical Engeneering and Computer Science, Royal Institute of Technology, SE-10044 Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-17165 Stockholm
| | - Ilaria Carannante
- Science for Life Laboratory, School of Electrical Engeneering and Computer Science, Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | | | - Robert Lindroos
- Department of Neuroscience, Karolinska Institutet, SE-17165 Stockholm
| | - Yvonne Johansson
- Department of Neuroscience, Karolinska Institutet, SE-17165 Stockholm
| | - Anna Tokarska
- Department of Neuroscience, Karolinska Institutet, SE-17165 Stockholm
| | - Matthijs C Dorst
- Department of Neuroscience, Karolinska Institutet, SE-17165 Stockholm
| | | | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, SE-17165 Stockholm
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Electrical Engeneering and Computer Science, Royal Institute of Technology, SE-10044 Stockholm, Sweden;
- Department of Neuroscience, Karolinska Institutet, SE-17165 Stockholm
| | - Sten Grillner
- Department of Neuroscience, Karolinska Institutet, SE-17165 Stockholm
| |
Collapse
|
23
|
Cholinergic midbrain afferents modulate striatal circuits and shape encoding of action strategies. Nat Commun 2020; 11:1739. [PMID: 32269213 PMCID: PMC7142106 DOI: 10.1038/s41467-020-15514-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Assimilation of novel strategies into a consolidated action repertoire is a crucial function for behavioral adaptation and cognitive flexibility. Acetylcholine in the striatum plays a pivotal role in such adaptation, and its release has been causally associated with the activity of cholinergic interneurons. Here we show that the midbrain, a previously unknown source of acetylcholine in the striatum, is a major contributor to cholinergic transmission in the striatal complex. Neurons of the pedunculopontine and laterodorsal tegmental nuclei synapse with striatal cholinergic interneurons and give rise to excitatory responses. Furthermore, they produce uniform inhibition of spiny projection neurons. Inhibition of acetylcholine release from midbrain terminals in the striatum impairs the association of contingencies and the formation of habits in an instrumental task, and mimics the effects observed following inhibition of acetylcholine release from striatal cholinergic interneurons. These results suggest the existence of two hierarchically-organized modes of cholinergic transmission in the striatum, where cholinergic interneurons are modulated by cholinergic neurons of the midbrain.
Collapse
|
24
|
Abstract
Motor control in the striatum is an orchestra played by various neuronal populations. Loss of harmony due to dopamine deficiency is considered the primary pathological cause of the symptoms of Parkinson’s disease (PD). Recent progress in experimental approaches has enabled us to examine the striatal circuitry in a much more comprehensive manner, not only reshaping our understanding of striatal functions in movement regulation but also leading to new opportunities for the development of therapeutic strategies for treating PD. In addition to dopaminergic innervation, giant aspiny cholinergic interneurons (ChIs) within the striatum have long been recognized as a critical node for balancing dopamine signaling and regulating movement. With the roles of ChIs in motor control further uncovered and more specific manipulations available, striatal ChIs and their corresponding receptors are emerging as new promising therapeutic targets for PD. This review summarizes recent progress in functional studies of striatal circuitry and discusses the translational implications of these new findings for the treatment of PD.
Collapse
|
25
|
Balleine BW. The Meaning of Behavior: Discriminating Reflex and Volition in the Brain. Neuron 2020; 104:47-62. [PMID: 31600515 DOI: 10.1016/j.neuron.2019.09.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/20/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
Abstract
The ability to establish behaviorally what psychological capacity an animal is deploying-to discern accurately what an animal is doing-is key to functional analyses of the brain. Our current understanding of these capacities suggests, however, that this task is complex; there is evidence that multiple capacities are engaged simultaneously and contribute independently to the control of behavior. As such, establishing the contribution of a cell, circuit, or neural system to any one function requires careful dissection of that role from its influence on other functions and, therefore, the careful selection and design of behavioral tasks fit for that purpose. Here I describe recent research that has sought to utilize behavioral tools to investigate the neural bases of instrumental conditioning, particularly the circuits and systems supporting the capacity for goal-directed action, as opposed to conditioned reflexes and habits, and how these sources of action control interact to generate adaptive behavior.
Collapse
|
26
|
Mallet N, Leblois A, Maurice N, Beurrier C. Striatal Cholinergic Interneurons: How to Elucidate Their Function in Health and Disease. Front Pharmacol 2019; 10:1488. [PMID: 31920670 PMCID: PMC6923719 DOI: 10.3389/fphar.2019.01488] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Striatal cholinergic interneurons (CINs) are the main source of acetylcholine in the striatum and are believed to play an important role in basal ganglia physiology and pathophysiology. The role of CINs in striatal function is known mostly from extracellular recordings of tonically active striatal neurons in monkeys, which are believed to correspond to CINs. Because these neurons transiently respond to motivationally cues with brief pauses, flanked by bursts of increased activity, they are classically viewed as key players in reward-related learning. However, CIN modulatory function within the striatal network has been mainly inferred from the action of acetylcholine agonists/antagonists or through CIN activation. These manipulations are far from recapitulating CIN activity in response to behaviorally-relevant stimuli. New technical tools such as optogenetics allow researchers to specifically manipulate this sparse neuronal population and to mimic their typical pause response. For example, it is now possible to investigate how short inhibition of CIN activity shapes striatal properties. Here, we review the most recent literature and show how these new techniques have brought considerable insights into the functional role of CINs in normal and pathological states, raising several interesting and novel questions. To continue moving forward, it is crucial to determine in detail CIN activity changes during behavior, particularly in rodents. We will also discuss how computational approaches combined with optogenetics will contribute to further our understanding of the CIN role in striatal circuits.
Collapse
Affiliation(s)
- Nicolas Mallet
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS UMR 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Arthur Leblois
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS UMR 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | | | | |
Collapse
|
27
|
Abudukeyoumu N, Hernandez-Flores T, Garcia-Munoz M, Arbuthnott GW. Cholinergic modulation of striatal microcircuits. Eur J Neurosci 2018; 49:604-622. [PMID: 29797362 PMCID: PMC6587740 DOI: 10.1111/ejn.13949] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre‐ and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine‐mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included.
Collapse
Affiliation(s)
| | | | | | - Gordon W Arbuthnott
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
28
|
Tepper JM, Koós T, Ibanez-Sandoval O, Tecuapetla F, Faust TW, Assous M. Heterogeneity and Diversity of Striatal GABAergic Interneurons: Update 2018. Front Neuroanat 2018; 12:91. [PMID: 30467465 PMCID: PMC6235948 DOI: 10.3389/fnana.2018.00091] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Our original review, “Heterogeneity and Diversity of Striatal GABAergic Interneurons,” to which this is an invited update, was published in December, 2010 in Frontiers is Neuroanatomy. In that article, we reviewed several decades’ worth of anatomical and electrophysiological data on striatal parvalbumin (PV)-, neuropeptide Y (NPY)- and calretinin(CR)-expressing GABAergic interneurons from many laboratories including our own. In addition, we reported on a recently discovered novel tyrosine hydroxylase (TH) expressing GABAergic interneuron class first revealed in transgenic TH EGFP reporter mouse line. In this review, we report on further advances in the understanding of the functional properties of previously reported striatal GABAergic interneurons and their synaptic connections. With the application of new transgenic fluorescent reporter and Cre-driver/reporter lines, plus optogenetic, chemogenetic and viral transduction methods, several additional subtypes of novel striatal GABAergic interneurons have been discovered, as well as the synaptic networks in which they are embedded. These findings make it clear that previous hypotheses in which striatal GABAergic interneurons modulate and/or control the firing of spiny neurons principally by simple feedforward and/or feedback inhibition are at best incomplete. A more accurate picture is one in which there are highly selective and specific afferent inputs, synaptic connections between different interneuron subtypes and spiny neurons and among different GABAergic interneurons that result in the formation of functional networks and ensembles of spiny neurons.
Collapse
Affiliation(s)
- James M Tepper
- Center For Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Tibor Koós
- Center For Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Osvaldo Ibanez-Sandoval
- Center For Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Fatuel Tecuapetla
- Center For Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Thomas W Faust
- Center For Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Maxime Assous
- Center For Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| |
Collapse
|
29
|
Plotkin JL, Goldberg JA. Thinking Outside the Box (and Arrow): Current Themes in Striatal Dysfunction in Movement Disorders. Neuroscientist 2018; 25:359-379. [PMID: 30379121 PMCID: PMC6529282 DOI: 10.1177/1073858418807887] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The basal ganglia are an intricately connected assembly of subcortical nuclei, forming the core of an adaptive network connecting cortical and thalamic circuits. For nearly three decades, researchers and medical practitioners have conceptualized how the basal ganglia circuit works, and how its pathology underlies motor disorders such as Parkinson's and Huntington's diseases, using what is often referred to as the "box-and-arrow model": a circuit diagram showing the broad strokes of basal ganglia connectivity and the pathological increases and decreases in the weights of specific connections that occur in disease. While this model still has great utility and has led to groundbreaking strategies to treat motor disorders, our evolving knowledge of basal ganglia function has made it clear that this classic model has several shortcomings that severely limit its predictive and descriptive abilities. In this review, we will focus on the striatum, the main input nucleus of the basal ganglia. We describe recent advances in our understanding of the rich microcircuitry and plastic capabilities of the striatum, factors not captured by the original box-and-arrow model, and provide examples of how such advances inform our current understanding of the circuit pathologies underlying motor disorders.
Collapse
Affiliation(s)
- Joshua L Plotkin
- Department of Neurobiology and Behavior, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | - Joshua A Goldberg
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
30
|
Bordia T, Perez XA. Cholinergic control of striatal neurons to modulate L-dopa-induced dyskinesias. Eur J Neurosci 2018; 49:859-868. [PMID: 29923650 DOI: 10.1111/ejn.14048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/28/2022]
Abstract
L-dopa induced dyskinesias (LIDs) are a disabling motor complication of L-dopa therapy for Parkinson's disease (PD) management. Treatment options remain limited and the underlying network mechanisms remain unclear due to a complex pathophysiology. What is well-known, however, is that aberrant striatal signaling plays a key role in LIDs development. Here, we discuss the specific contribution of striatal cholinergic interneurons (ChIs) and GABAergic medium spiny projection neurons (MSNs) with a particular focus on how cholinergic signaling may integrate multiple striatal systems to modulate LIDs expression. Enhanced ChI transmission, altered MSN activity and the associated abnormal downstream signaling responses that arise with nigrostriatal damage are well known to contribute to LIDs development. In fact, enhancing M4 muscarinic receptor activity, a receptor favorably expressed on D1 dopamine receptor-expressing MSNs dampens their activity to attenuate LIDs. Likewise, ChI activation via thalamostriatal neurons is shown to interrupt cortical signaling to enhance D2 dopamine receptor-expressing MSN activity via M1 muscarinic receptors, which may interrupt ongoing motor activity. Notably, numerous preclinical studies also show that reducing nicotinic cholinergic receptor activity decreases LIDs. Taken together, these studies indicate the importance of cholinergic control of striatal neuronal activity and point to muscarinic and nicotinic receptors as significant pharmacological targets for alleviating LIDs in PD patients.
Collapse
Affiliation(s)
- Tanuja Bordia
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA
| | - Xiomara A Perez
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA
| |
Collapse
|
31
|
Tanimura A, Pancani T, Lim SAO, Tubert C, Melendez AE, Shen W, Surmeier DJ. Striatal cholinergic interneurons and Parkinson's disease. Eur J Neurosci 2018; 47:1148-1158. [PMID: 28677242 PMCID: PMC6074051 DOI: 10.1111/ejn.13638] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 11/27/2022]
Abstract
Giant, aspiny cholinergic interneurons (ChIs) have long been known to be key nodes in the striatal circuitry controlling goal-directed actions and habits. In recent years, new experimental approaches, like optogenetics and monosynaptic rabies virus mapping, have expanded our understanding of how ChIs contribute to the striatal activity underlying action selection and the interplay of dopaminergic and cholinergic signaling. These approaches also have begun to reveal how ChI function is distorted in disease states affecting the basal ganglia, like Parkinson's disease (PD). This review gives a brief overview of our current understanding of the functional role played by ChIs in striatal physiology and how this changes in PD. The translational implications of these discoveries, as well as the gaps that remain to be bridged, are discussed as well.
Collapse
Affiliation(s)
- Asami Tanimura
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Tristano Pancani
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sean Austin O Lim
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Cecilia Tubert
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Alexandra E Melendez
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Weixing Shen
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Dalton James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
32
|
Klug JR, Engelhardt MD, Cadman CN, Li H, Smith JB, Ayala S, Williams EW, Hoffman H, Jin X. Differential inputs to striatal cholinergic and parvalbumin interneurons imply functional distinctions. eLife 2018; 7:35657. [PMID: 29714166 PMCID: PMC5929909 DOI: 10.7554/elife.35657] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/18/2018] [Indexed: 11/13/2022] Open
Abstract
Striatal cholinergic (ChAT) and parvalbumin (PV) interneurons exert powerful influences on striatal function in health and disease, yet little is known about the organization of their inputs. Here using rabies tracing, electrophysiology and genetic tools, we compare the whole-brain inputs to these two types of striatal interneurons and dissect their functional connectivity in mice. ChAT interneurons receive a substantial cortical input from associative regions of cortex, such as the orbitofrontal cortex. Amongst subcortical inputs, a previously unknown inhibitory thalamic reticular nucleus input to striatal PV interneurons is identified. Additionally, the external segment of the globus pallidus targets striatal ChAT interneurons, which is sufficient to inhibit tonic ChAT interneuron firing. Finally, we describe a novel excitatory pathway from the pedunculopontine nucleus that innervates ChAT interneurons. These results establish the brain-wide direct inputs of two major types of striatal interneurons and allude to distinct roles in regulating striatal activity and controlling behavior.
Collapse
Affiliation(s)
- Jason R Klug
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Max D Engelhardt
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Cara N Cadman
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Hao Li
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Jared B Smith
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Sarah Ayala
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Elora W Williams
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Hilary Hoffman
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Xin Jin
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| |
Collapse
|
33
|
Assous M, Tepper JM. Excitatory extrinsic afferents to striatal interneurons and interactions with striatal microcircuitry. Eur J Neurosci 2018; 49:593-603. [PMID: 29480942 DOI: 10.1111/ejn.13881] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 01/24/2023]
Abstract
The striatum constitutes the main input structure of the basal ganglia and receives two major excitatory glutamatergic inputs, from the cortex and the thalamus. Excitatory cortico- and thalamostriatal connections innervate the principal neurons of the striatum, the spiny projection neurons (SPNs), which constitute the main cellular input as well as the only output of the striatum. In addition, corticostriatal and thalamostriatal inputs also innervate striatal interneurons. Some of these inputs have been very well studied, for example the thalamic innervation of cholinergic interneurons and the cortical innervation of striatal fast-spiking interneurons, but inputs to most other GABAergic interneurons remain largely unstudied, due in part to the relatively recent identification and characterization of many of these interneurons. In this review, we will discuss and reconcile some older as well as more recent data on the extrinsic excitatory inputs to striatal interneurons. We propose that the traditional feed-forward inhibitory model of the cortical input to the fast-spiking interneuron then inhibiting the SPN, often assumed to be the prototype of the main functional organization of striatal interneurons, is incomplete. We provide evidence that the extrinsic innervation of striatal interneurons is not uniform but shows great cell-type specificity. In addition, we will review data showing that striatal interneurons are themselves interconnected in a highly cell-type-specific manner. These data suggest that the impact of the extrinsic inputs on striatal activity critically depends on synaptic interactions within interneuronal circuitry.
Collapse
Affiliation(s)
- Maxime Assous
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, 197 University Avenue, Newark, NJ, 07102, USA
| | - James M Tepper
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, 197 University Avenue, Newark, NJ, 07102, USA
| |
Collapse
|
34
|
Lindroos R, Dorst MC, Du K, Filipović M, Keller D, Ketzef M, Kozlov AK, Kumar A, Lindahl M, Nair AG, Pérez-Fernández J, Grillner S, Silberberg G, Hellgren Kotaleski J. Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales-Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2. Front Neural Circuits 2018; 12:3. [PMID: 29467627 PMCID: PMC5808142 DOI: 10.3389/fncir.2018.00003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
The basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output nuclei control targets in the brainstem. Striatal function depends on the balance between the direct pathway medium spiny neurons (D1-MSNs) that express D1 dopamine receptors and the indirect pathway MSNs that express D2 dopamine receptors. The striatal microstructure is also divided into striosomes and matrix compartments, based on the differential expression of several proteins. Dopaminergic afferents from the midbrain and local cholinergic interneurons play crucial roles for basal ganglia function, and striatal signaling via the striosomes in turn regulates the midbrain dopaminergic system directly and via the lateral habenula. Consequently, abnormal functions of the basal ganglia neuromodulatory system underlie many neurological and psychiatric disorders. Neuromodulation acts on multiple structural levels, ranging from the subcellular level to behavior, both in health and disease. For example, neuromodulation affects membrane excitability and controls synaptic plasticity and thus learning in the basal ganglia. However, it is not clear on what time scales these different effects are implemented. Phosphorylation of ion channels and the resulting membrane effects are typically studied over minutes while it has been shown that neuromodulation can affect behavior within a few hundred milliseconds. So how do these seemingly contradictory effects fit together? Here we first briefly review neuromodulation of the basal ganglia, with a focus on dopamine. We furthermore use biophysically detailed multi-compartmental models to integrate experimental data regarding dopaminergic effects on individual membrane conductances with the aim to explain the resulting cellular level dopaminergic effects. In particular we predict dopaminergic effects on Kv4.2 in D1-MSNs. Finally, we also explore dynamical aspects of the onset of neuromodulation effects in multi-scale computational models combining biochemical signaling cascades and multi-compartmental neuron models.
Collapse
Affiliation(s)
- Robert Lindroos
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Matthijs C. Dorst
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Kai Du
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Marko Filipović
- Bernstein Center Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Keller
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Maya Ketzef
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Alexander K. Kozlov
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Arvind Kumar
- Bernstein Center Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
- Department Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mikael Lindahl
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Anu G. Nair
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Juan Pérez-Fernández
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Sten Grillner
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Gilad Silberberg
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Jeanette Hellgren Kotaleski
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| |
Collapse
|
35
|
Lénárd L, László K, Kertes E, Ollmann T, Péczely L, Kovács A, Kállai V, Zagorácz O, Gálosi R, Karádi Z. Substance P and neurotensin in the limbic system: Their roles in reinforcement and memory consolidation. Neurosci Biobehav Rev 2018; 85:1-20. [DOI: 10.1016/j.neubiorev.2017.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/24/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022]
|
36
|
Zhang YF, Cragg SJ. Pauses in Striatal Cholinergic Interneurons: What is Revealed by Their Common Themes and Variations? Front Syst Neurosci 2017; 11:80. [PMID: 29163075 PMCID: PMC5670143 DOI: 10.3389/fnsys.2017.00080] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/10/2017] [Indexed: 11/13/2022] Open
Abstract
Striatal cholinergic interneurons, the so-called tonically active neurons (TANs), pause their firing in response to sensory cues and rewards during classical conditioning and instrumental tasks. The respective pause responses observed can demonstrate many commonalities, such as constant latency and duration, synchronous occurrence in a population of cells, and coincidence with phasic activities of midbrain dopamine neurons (DANs) that signal reward predictions and errors. Pauses can however also show divergent properties. Pause latencies and durations can differ in a given TAN between appetitive vs. aversive outcomes in classical conditioning, initial excitation can be present or absent, and a second pause can variably follow a rebound. Despite more than 20 years of study, the functions of these pause responses are still elusive. Our understanding of pause function is hindered by an incomplete understanding of how pauses are generated. In this mini-review article, we compare pause types, as well as current key hypotheses for inputs underlying pauses that include dopamine-induced inhibition through D2-receptors, a GABA input from ventral tegmental area, and a prolonged afterhyperpolarization induced by excitatory input from the cortex or from the thalamus. We review how each of these mechanisms alone explains some but not all aspects of pause responses. These mechanisms might need to operate in specific but variable sets of sequences to generate a full range of pause responses. Alternatively, these mechanisms might operate in conjunction with an underlying control mechanism within cholinergic interneurons which could potentially provide a framework to generate the common themes and variations seen amongst pause responses.
Collapse
Affiliation(s)
- Yan-Feng Zhang
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Oxford Parkinson's Disease Centre, University of Oxford, Oxford, United Kingdom
| | - Stephanie J Cragg
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Oxford Parkinson's Disease Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Burke DA, Rotstein HG, Alvarez VA. Striatal Local Circuitry: A New Framework for Lateral Inhibition. Neuron 2017; 96:267-284. [PMID: 29024654 DOI: 10.1016/j.neuron.2017.09.019] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/09/2017] [Accepted: 09/12/2017] [Indexed: 12/01/2022]
Abstract
This Perspective will examine the organization of intrastriatal circuitry, review recent findings in this area, and discuss how the pattern of connectivity between striatal neurons might give rise to the behaviorally observed synergism between the direct/indirect pathway neurons. The emphasis of this Perspective is on the underappreciated role of lateral inhibition between striatal projection cells in controlling neuronal firing and shaping the output of this circuit. We review some classic studies in combination with more recent anatomical and functional findings to lay out a framework for an updated model of the intrastriatal lateral inhibition, where we explore its contribution to the formation of functional units of processing and the integration and filtering of inputs to generate motor patterns and learned behaviors.
Collapse
Affiliation(s)
- Dennis A Burke
- Laboratory on Neurobiology of Compulsive Behaviors, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA; Department of Neuroscience, Brown University, Providence, Providence, RI 02912, USA
| | - Horacio G Rotstein
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ 07102, USA; Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA; Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
38
|
Neostriatal GABAergic Interneurons Mediate Cholinergic Inhibition of Spiny Projection Neurons. J Neurosci 2017; 36:9505-11. [PMID: 27605623 DOI: 10.1523/jneurosci.0466-16.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/05/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Synchronous optogenetic activation of striatal cholinergic interneurons ex vivo produces a disynaptic inhibition of spiny projection neurons composed of biophysically distinct GABAAfast and GABAAslow components. This has been shown to be due, at least in part, to activation of nicotinic receptors on GABAergic NPY-neurogliaform interneurons that monosynaptically inhibit striatal spiny projection neurons. Recently, it has been proposed that a significant proportion of this inhibition is actually mediated by activation of presynaptic nicotinic receptors on nigrostriatal terminals that evoke GABA release from the terminals of the dopaminergic nigrostriatal pathway. To disambiguate these the two mechanisms, we crossed mice in which channelrhodopsin is endogenously expressed in cholinergic neurons with Htr3a-Cre mice, in which Cre is selectively targeted to several populations of striatal GABAergic interneurons, including the striatal NPY-neurogliaform interneuron. Htr3a-Cre mice were then virally transduced to express halorhodopsin to allow activation of channelrhodopsin and halorhodopsin, individually or simultaneously. Thus we were able to optogenetically disconnect the interneuron-spiny projection neuron (SPN) cell circuit on a trial-by-trial basis. As expected, optogenetic activation of cholinergic interneurons produced inhibitory currents in SPNs. During simultaneous inhibition of GABAergic interneurons with halorhodopsin, we observed a large, sometimes near complete reduction in both fast and slow components of the cholinergic-evoked inhibition, and a delay in IPSC latency. This demonstrates that the majority of cholinergic-evoked striatal GABAergic inhibition is derived from GABAergic interneurons. These results also reinforce the notion that a semiautonomous circuit of striatal GABAergic interneurons is responsible for transmitting behaviorally relevant cholinergic signals to spiny projection neurons. SIGNIFICANCE STATEMENT The circuitry between neurons of the striatum has been recently described to be far more complex than originally imagined. One example of this phenomenon is that striatal cholinergic interneurons have been shown to provide intrinsic nicotinic excitation of local GABAergic interneurons, which then inhibit the projection neurons of the striatum. As deficits of cholinergic interneurons are reported in patients with Tourette syndrome, the normal functions of these interneurons are of great interest. Whether this novel route of nicotinic input constitutes a major output of cholinergic interneurons remains unknown. The study addressed this question using excitatory and inhibitory optogenetic technology, so that cholinergic interneurons could be selectively activated and GABAergic interneurons selectively inhibited to determine the causal relationship in this circuit.
Collapse
|
39
|
Shivkumar S, Muralidharan V, Chakravarthy VS. A Biologically Plausible Architecture of the Striatum to Solve Context-Dependent Reinforcement Learning Tasks. Front Neural Circuits 2017; 11:45. [PMID: 28680395 PMCID: PMC5478699 DOI: 10.3389/fncir.2017.00045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/08/2017] [Indexed: 11/13/2022] Open
Abstract
Basal ganglia circuit is an important subcortical system of the brain thought to be responsible for reward-based learning. Striatum, the largest nucleus of the basal ganglia, serves as an input port that maps cortical information. Microanatomical studies show that the striatum is a mosaic of specialized input-output structures called striosomes and regions of the surrounding matrix called the matrisomes. We have developed a computational model of the striatum using layered self-organizing maps to capture the center-surround structure seen experimentally and explain its functional significance. We believe that these structural components could build representations of state and action spaces in different environments. The striatum model is then integrated with other components of basal ganglia, making it capable of solving reinforcement learning tasks. We have proposed a biologically plausible mechanism of action-based learning where the striosome biases the matrisome activity toward a preferred action. Several studies indicate that the striatum is critical in solving context dependent problems. We build on this hypothesis and the proposed model exploits the modularity of the striatum to efficiently solve such tasks.
Collapse
Affiliation(s)
- Sabyasachi Shivkumar
- Computational Neuroscience Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology MadrasChennai, India
| | - Vignesh Muralidharan
- Computational Neuroscience Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology MadrasChennai, India
| | - V Srinivasa Chakravarthy
- Computational Neuroscience Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology MadrasChennai, India
| |
Collapse
|
40
|
Kljakic O, Janickova H, Prado VF, Prado MAM. Cholinergic/glutamatergic co-transmission in striatal cholinergic interneurons: new mechanisms regulating striatal computation. J Neurochem 2017; 142 Suppl 2:90-102. [PMID: 28421605 DOI: 10.1111/jnc.14003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 01/22/2023]
Abstract
It is well established that neurons secrete neuropeptides and ATP with classical neurotransmitters; however, certain neuronal populations are also capable of releasing two classical neurotransmitters by a process named co-transmission. Although there has been progress in our understanding of the molecular mechanism underlying co-transmission, the individual regulation of neurotransmitter secretion and the functional significance of this neuronal 'bilingualism' is still unknown. Striatal cholinergic interneurons (CINs) have been shown to secrete glutamate (Glu) in addition to acetylcholine (ACh) and are recognized for their role in the regulation of striatal circuits and behavior. Our review highlights the recent research into identifying mechanisms that regulate the secretion and function of Glu and ACh released by CINs and the roles these neurons play in regulating dopamine secretion and striatal activity. In particular, we focus on how the transporters for ACh (VAChT) and Glu (VGLUT3) influence the storage of neurotransmitters in CINs. We further discuss how these individual neurotransmitters regulate striatal computation and distinct aspects of behavior that are regulated by the striatum. We suggest that understanding the distinct and complementary functional roles of these two neurotransmitters may prove beneficial in the development of therapies for Parkinson's disease and addiction. Overall, understanding how Glu and ACh secreted by CINs impacts striatal activity may provide insight into how different populations of 'bilingual' neurons are able to develop sophisticated regulation of their targets by interacting with multiple receptors but also by regulating each other's vesicular storage. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Ornela Kljakic
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Helena Janickova
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Vania F Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
41
|
Crittenden JR, Lacey CJ, Weng FJ, Garrison CE, Gibson DJ, Lin Y, Graybiel AM. Striatal Cholinergic Interneurons Modulate Spike-Timing in Striosomes and Matrix by an Amphetamine-Sensitive Mechanism. Front Neuroanat 2017; 11:20. [PMID: 28377698 PMCID: PMC5359318 DOI: 10.3389/fnana.2017.00020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/06/2017] [Indexed: 11/24/2022] Open
Abstract
The striatum is key for action-selection and the motivation to move. Dopamine and acetylcholine release sites are enriched in the striatum and are cross-regulated, possibly to achieve optimal behavior. Drugs of abuse, which promote abnormally high dopamine release, disrupt normal action-selection and drive restricted, repetitive behaviors (stereotypies). Stereotypies occur in a variety of disorders including obsessive-compulsive disorder, autism, schizophrenia and Huntington's disease, as well as in addictive states. The severity of drug-induced stereotypy is correlated with induction of c-Fos expression in striosomes, a striatal compartment that is related to the limbic system and that directly projects to dopamine-producing neurons of the substantia nigra. These characteristics of striosomes contrast with the properties of the extra-striosomal matrix, which has strong sensorimotor and associative circuit inputs and outputs. Disruption of acetylcholine signaling in the striatum blocks the striosome-predominant c-Fos expression pattern induced by drugs of abuse and alters drug-induced stereotypy. The activity of striatal cholinergic interneurons is associated with behaviors related to sensory cues, and cortical inputs to striosomes can bias action-selection in the face of conflicting cues. The neurons and neuropil of striosomes and matrix neurons have observably separate distributions, both at the input level in the striatum and at the output level in the substantia nigra. Notably, cholinergic axons readily cross compartment borders, providing a potential route for local cross-compartment communication to maintain a balance between striosomal and matrix activity. We show here, by slice electrophysiology in transgenic mice, that repetitive evoked firing patterns in striosomal and matrix striatal projection neurons (SPNs) are interrupted by optogenetic activation of cholinergic interneurons either by the addition or the deletion of spikes. We demonstrate that this cholinergic modulation of projection neurons is blocked in brain slices taken from mice exposed to amphetamine and engaged in amphetamine-induced stereotypy, and lacking responsiveness to salient cues. Our findings support a model whereby activity in striosomes is normally under strong regulation by cholinergic interneurons, favoring behavioral flexibility, but that in animals with drug-induced stereotypy, this cholinergic signaling breaks down, resulting in differential modulation of striosomal activity and an inability to bias action-selection according to relevant sensory cues.
Collapse
Affiliation(s)
- Jill R Crittenden
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Carolyn J Lacey
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Feng-Ju Weng
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Catherine E Garrison
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Daniel J Gibson
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Yingxi Lin
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Ann M Graybiel
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| |
Collapse
|
42
|
Mamaligas AA, Ford CP. Spontaneous Synaptic Activation of Muscarinic Receptors by Striatal Cholinergic Neuron Firing. Neuron 2016; 91:574-86. [PMID: 27373830 DOI: 10.1016/j.neuron.2016.06.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/09/2016] [Accepted: 06/07/2016] [Indexed: 01/03/2023]
Abstract
Cholinergic interneurons (CHIs) play a major role in motor and learning functions of the striatum. As acetylcholine does not directly evoke postsynaptic events at most striatal synapses, it remains unclear how postsynaptic cholinergic receptors encode the firing patterns of CHIs in the striatum. To examine the dynamics of acetylcholine release, we used optogenetics and paired recordings from CHIs and medium spiny neurons (MSNs) virally overexpressing G-protein-activated inwardly rectifying potassium (GIRK) channels. Due to the efficient coupling between endogenous muscarinic receptors and GIRK channels, we found that firing of individual CHIs resulted in monosynaptic spontaneous inhibitory post-synaptic currents (IPSCs) in MSNs. Paired CHI-MSN recordings revealed that the high probability of acetylcholine release at these synapses allowed muscarinic receptors to faithfully encode physiological activity patterns from individual CHIs without failure. These results indicate that muscarinic receptors in striatal output neurons reliably decode CHI firing.
Collapse
Affiliation(s)
- Aphroditi A Mamaligas
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA
| | - Christopher P Ford
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| |
Collapse
|
43
|
Inoue R, Suzuki T, Nishimura K, Miura M. Nicotinic acetylcholine receptor-mediated GABAergic inputs to cholinergic interneurons in the striosomes and the matrix compartments of the mouse striatum. Neuropharmacology 2016; 105:318-328. [DOI: 10.1016/j.neuropharm.2016.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/30/2015] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
|
44
|
|
45
|
Blomeley CP, Cains S, Bracci E. Dual Nitrergic/Cholinergic Control of Short-Term Plasticity of Corticostriatal Inputs to Striatal Projection Neurons. Front Cell Neurosci 2015; 9:453. [PMID: 26635532 PMCID: PMC4655244 DOI: 10.3389/fncel.2015.00453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/04/2015] [Indexed: 01/07/2023] Open
Abstract
The ability of nitric oxide and acetylcholine to modulate the short-term plasticity of corticostriatal inputs was investigated using current-clamp recordings in BAC mouse brain slices. Glutamatergic responses were evoked by stimulation of corpus callosum in D1 and D2 dopamine receptor-expressing medium spiny neurons (D1-MSNs and D2-MSN, respectively). Paired-pulse stimulation (50 ms intervals) evoked depressing or facilitating responses in subgroups of both D1-MSNs and D2 MSNs. In both neuronal types, glutamatergic responses of cells that displayed paired-pulse depression were not significantly affected by the nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP; 100 μM). Conversely, in D1-MSNs and D2-MSNs that displayed paired-pulse facilitation, SNAP did not affect the first evoked response, but significantly reduced the amplitude of the second evoked EPSP, converting paired-pulse facilitation into paired-pulse depression. SNAP also strongly excited cholinergic interneurons and increased their cortical glutamatergic responses acting through a presynaptic mechanism. The effects of SNAP on glutamatergic response of D1-MSNs and D2-MSN were mediated by acetylcholine. The broad-spectrum muscarinic receptor antagonist atropine (25 μM) did not affect paired-pulse ratios and did not prevent the effects of SNAP. Conversely, the broad-spectrum nicotinic receptor antagonist tubocurarine (10 μM) fully mimicked and occluded the effects of SNAP. We concluded that phasic acetylcholine release mediates feedforward facilitation in MSNs through activation of nicotinic receptors on glutamatergic terminals and that nitric oxide, while increasing cholinergic interneurons' firing, functionally impairs their ability to modulate glutamatergic inputs of MSNs. These results show that nitrergic and cholinergic transmission control the short-term plasticity of glutamatergic inputs in the striatum and reveal a novel cellular mechanism underlying paired-pulse facilitation in this area.
Collapse
Affiliation(s)
- Craig P Blomeley
- Mill Hill Laboratory, The Francis Crick Institute The Ridgeway, London, UK
| | - Sarah Cains
- Mill Hill Laboratory, The Francis Crick Institute The Ridgeway, London, UK
| | - Enrico Bracci
- Department of Psychology, The University of Sheffield Sheffield, UK
| |
Collapse
|
46
|
Girasole AE, Nelson AB. Probing striatal microcircuitry to understand the functional role of cholinergic interneurons. Mov Disord 2015; 30:1306-18. [PMID: 26227561 DOI: 10.1002/mds.26340] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/12/2015] [Accepted: 06/21/2015] [Indexed: 12/23/2022] Open
Affiliation(s)
- Allison E Girasole
- Department of Neurology, University of California, San Francisco, USA.,Neuroscience Graduate Program, University of California, San Francisco, USA
| | - Alexandra B Nelson
- Department of Neurology, University of California, San Francisco, USA.,Neuroscience Graduate Program, University of California, San Francisco, USA
| |
Collapse
|
47
|
Dopaminergic Regulation of Striatal Interneurons in Reward and Addiction: Focus on Alcohol. Neural Plast 2015; 2015:814567. [PMID: 26246915 PMCID: PMC4515529 DOI: 10.1155/2015/814567] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/09/2015] [Indexed: 12/13/2022] Open
Abstract
Corticobasal ganglia networks coursing through the striatum are key structures for reward-guided behaviors. The ventral striatum (nucleus accumbens (nAc)) and its reciprocal connection with the ventral tegmental area (VTA) represent a primary component of the reward system, but reward-guided learning also involves the dorsal striatum and dopaminergic inputs from the substantia nigra. The majority of neurons in the striatum (>90%) are GABAergic medium spiny neurons (MSNs), but both the input to and the output from these neurons are dynamically controlled by striatal interneurons. Dopamine is a key neurotransmitter in reward and reward-guided learning, and the physiological activity of GABAergic and cholinergic interneurons is regulated by dopaminergic transmission in a complex manner. Here we review the role of striatal interneurons in modulating striatal output during drug reward, with special emphasis on alcohol.
Collapse
|
48
|
Faust TW, Assous M, Shah F, Tepper JM, Koós T. Novel fast adapting interneurons mediate cholinergic-induced fast GABAA inhibitory postsynaptic currents in striatal spiny neurons. Eur J Neurosci 2015; 42:1764-74. [PMID: 25865337 DOI: 10.1111/ejn.12915] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/29/2015] [Accepted: 04/07/2015] [Indexed: 11/30/2022]
Abstract
Previous work suggests that neostriatal cholinergic interneurons control the activity of several classes of GABAergic interneurons through fast nicotinic receptor-mediated synaptic inputs. Although indirect evidence has suggested the existence of several classes of interneurons controlled by this mechanism, only one such cell type, the neuropeptide-Y-expressing neurogliaform neuron, has been identified to date. Here we tested the hypothesis that in addition to the neurogliaform neurons that elicit slow GABAergic inhibitory responses, another interneuron type exists in the striatum that receives strong nicotinic cholinergic input and elicits conventional fast GABAergic synaptic responses in projection neurons. We obtained in vitro slice recordings from double transgenic mice in which Channelrhodopsin-2 was natively expressed in cholinergic neurons and a population of serotonin receptor-3a-Cre-expressing GABAergic interneurons were visualized with tdTomato. We show that among the targeted GABAergic interneurons a novel type of interneuron, termed the fast-adapting interneuron, can be identified that is distinct from previously known interneurons based on immunocytochemical and electrophysiological criteria. We show using optogenetic activation of cholinergic inputs that fast-adapting interneurons receive a powerful supra-threshold nicotinic cholinergic input in vitro. Moreover, fast adapting neurons are densely connected to projection neurons and elicit fast, GABAA receptor-mediated inhibitory postsynaptic current responses. The nicotinic receptor-mediated activation of fast-adapting interneurons may constitute an important mechanism through which cholinergic interneurons control the activity of projection neurons and perhaps the plasticity of their synaptic inputs when animals encounter reinforcing or otherwise salient stimuli.
Collapse
Affiliation(s)
- Thomas W Faust
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, 197 University Avenue, Newark, NJ, 07102, USA
| | - Maxime Assous
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, 197 University Avenue, Newark, NJ, 07102, USA
| | - Fulva Shah
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, 197 University Avenue, Newark, NJ, 07102, USA
| | - James M Tepper
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, 197 University Avenue, Newark, NJ, 07102, USA
| | - Tibor Koós
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, 197 University Avenue, Newark, NJ, 07102, USA
| |
Collapse
|
49
|
Ibáñez-Sandoval O, Xenias HS, Tepper JM, Koós T. Dopaminergic and cholinergic modulation of striatal tyrosine hydroxylase interneurons. Neuropharmacology 2015; 95:468-76. [PMID: 25908399 DOI: 10.1016/j.neuropharm.2015.03.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 03/17/2015] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
The recent electrophysiological characterization of TH-expressing GABAergic interneurons (THINs) in the neostriatum revealed an unexpected degree of diversity of interneurons in this brain area (Ibáñez-Sandoval et al., 2010, Unal et al., 2011, 2015). Despite being relatively few in number, THINs may play a significant role in transmitting and distributing extra- and intrastriatal neuromodulatory signals in the striatal circuitry. Here we investigated the dopaminergic and cholinergic regulation of THINs in vitro. We found that the dominant effect of dopamine was a dramatic enhancement of the ability of THINs to generate long-lasting depolarizing plateau potentials (PPs). Interestingly, the same effect could also be elicited by amphetamine-induced release of endogenous dopamine suggesting that THINs may exhibit similar responses to changes in extracellular dopamine concentration in vivo. The enhancement of PPs in THINs is perhaps the most pronounced effect of dopamine on the intrinsic excitability of neostriatal neurons described to date. Further, we demonstrate that all subtypes of THINSs tested also express nicotinic cholinergic receptors. All THIS responded, albeit differentially, with depolarization, PPs and spiking to brief application of nicotinic agonists. Powerful modulation of the nonlinear integrative properties of THINs by dopamine and the direct depolarization of these neurons by acetylcholine may play important roles in mediating the effects of these neuromodulators in the neostriatum with potentially important implications for understanding the mechanisms of neuropsychiatric disorders affecting the basal ganglia.
Collapse
Affiliation(s)
- Osvaldo Ibáñez-Sandoval
- Center for Molecular and Behavioral Neuroscience, Rutgers The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA
| | - Harry S Xenias
- Center for Molecular and Behavioral Neuroscience, Rutgers The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA
| | - James M Tepper
- Center for Molecular and Behavioral Neuroscience, Rutgers The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA.
| | - Tibor Koós
- Center for Molecular and Behavioral Neuroscience, Rutgers The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA.
| |
Collapse
|
50
|
Gonzales KK, Smith Y. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 2015; 1349:1-45. [PMID: 25876458 DOI: 10.1111/nyas.12762] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Striatal cholinergic interneurons (ChIs) are central for the processing and reinforcement of reward-related behaviors that are negatively affected in states of altered dopamine transmission, such as in Parkinson's disease or drug addiction. Nevertheless, the development of therapeutic interventions directed at ChIs has been hampered by our limited knowledge of the diverse anatomical and functional characteristics of these neurons in the dorsal and ventral striatum, combined with the lack of pharmacological tools to modulate specific cholinergic receptor subtypes. This review highlights some of the key morphological, synaptic, and functional differences between ChIs of different striatal regions and across species. It also provides an overview of our current knowledge of the cellular localization and function of cholinergic receptor subtypes. The future use of high-resolution anatomical and functional tools to study the synaptic microcircuitry of brain networks, along with the development of specific cholinergic receptor drugs, should help further elucidate the role of striatal ChIs and permit efficient targeting of cholinergic systems in various brain disorders, including Parkinson's disease and addiction.
Collapse
Affiliation(s)
- Kalynda K Gonzales
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|