1
|
Park H, Ryu H, Zhang S, Rhee J, Chung C. Mu-opioid receptor activation in the habenula modulates synaptic transmission and depression-like behaviors. Neurobiol Dis 2024; 198:106543. [PMID: 38821376 DOI: 10.1016/j.nbd.2024.106543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024] Open
Abstract
Opioid system dysregulation in response to stress is known to lead to psychiatric disorders including major depression. Among three different types of opioid receptors, the mu-type receptors (mORs) are highly expressed in the habenula complex, however, the action of mORs in this area and its interaction with stress exposure is largely unknown. Therefore, we investigated the roles of mORs in the habenula using male rats of an acute learned helplessness (aLH) model. First, we found that mOR activation decreased both excitatory and inhibitory synaptic transmission onto the lateral habenula (LHb). Intriguingly, this mOR-induced synaptic depression was reduced in an animal model of depression compared to that of controls. In naïve animals, we found an unexpected interaction between mORs and the endocannabinoid (eCB) signaling occurring in the LHb, which mediates presynaptic alteration occurring with mOR activation. However, we did not observe presynaptic alteration by mOR activation after stress exposure. Moreover, selective mOR activation in the habenula before, but not after, stress exposure effectively reduced helpless behaviors compared to aLH animals. Our observations are consistent with clinical reports suggesting the involvement of mOR signaling in depression, and additionally reveal a critical time window of mOR action in the habenula for ameliorating helplessness symptoms.
Collapse
Affiliation(s)
- Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Hakyun Ryu
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Seungjae Zhang
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeehae Rhee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
2
|
Milella MS, D'Ottavio G, De Pirro S, Barra M, Caprioli D, Badiani A. Heroin and its metabolites: relevance to heroin use disorder. Transl Psychiatry 2023; 13:120. [PMID: 37031205 PMCID: PMC10082801 DOI: 10.1038/s41398-023-02406-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/10/2023] Open
Abstract
Heroin is an opioid agonist commonly abused for its rewarding effects. Since its synthesis at the end of the nineteenth century, its popularity as a recreational drug has ebbed and flowed. In the last three decades, heroin use has increased again, and yet the pharmacology of heroin is still poorly understood. After entering the body, heroin is rapidly deacetylated to 6-monoacetylmorphine (6-MAM), which is then deacetylated to morphine. Thus, drug addiction literature has long settled on the notion that heroin is little more than a pro-drug. In contrast to these former views, we will argue for a more complex interplay among heroin and its active metabolites: 6-MAM, morphine, and morphine-6-glucuronide (M6G). In particular, we propose that the complex temporal pattern of heroin effects results from the sequential, only partially overlapping, actions not only of 6-MAM, morphine, and M6G, but also of heroin per se, which, therefore, should not be seen as a mere brain-delivery system for its active metabolites. We will first review the literature concerning the pharmacokinetics and pharmacodynamics of heroin and its metabolites, then examine their neural and behavioral effects, and finally discuss the possible implications of these data for a better understanding of opioid reward and heroin addiction. By so doing we hope to highlight research topics to be investigated by future clinical and pre-clinical studies.
Collapse
Affiliation(s)
- Michele Stanislaw Milella
- Toxicology Unit, Policlinico Umberto I University Hospital, Rome, Italy.
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| | - Ginevra D'Ottavio
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Silvana De Pirro
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Norwegian Centre for Addiction Research (SERAF), Faculty of Medicine, University of Oslo, Oslo, Norway
- Sussex Addiction and Intervention Centre (SARIC), School of Psychology, University of Sussex, Brighton, UK
| | | | - Daniele Caprioli
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Aldo Badiani
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
- Sussex Addiction and Intervention Centre (SARIC), School of Psychology, University of Sussex, Brighton, UK.
- Fondazione Villa Maraini, Rome, Italy.
| |
Collapse
|
3
|
Gabel F, Hovhannisyan V, Andry V, Goumon Y. Central metabolism as a potential origin of sex differences in morphine antinociception but not induction of antinociceptive tolerance in mice. Br J Pharmacol 2023; 180:843-861. [PMID: 34986502 DOI: 10.1111/bph.15792] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 12/07/2021] [Accepted: 12/28/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE In rodents, morphine antinociception is influenced by sex. However, conflicting results have been reported regarding the interaction between sex and morphine antinociceptive tolerance. Morphine is metabolised in the liver and brain into morphine-3-glucuronide (M3G). Sex differences in morphine metabolism and differential metabolic adaptations during tolerance development might contribute to behavioural discrepancies. This article investigates the differences in peripheral and central morphine metabolism after acute and chronic morphine treatment in male and female mice. EXPERIMENTAL APPROACH Sex differences in morphine antinociception and tolerance were assessed using the tail-immersion test. After acute and chronic morphine treatment, morphine and M3G metabolic kinetics in the blood were evaluated using LC-MS/MS. They were also quantified in several CNS regions. Finally, the blood-brain barrier (BBB) permeability of M3G was assessed in male and female mice. KEY RESULTS This study demonstrated that female mice showed weaker morphine antinociception and faster induction of tolerance than males. Additionally, female mice showed higher levels of M3G in the blood and in several pain-related CNS regions than male mice, whereas lower levels of morphine were observed in these regions. M3G brain/blood ratios after injection of M3G indicated no sex differences in M3G BBB permeability, and these ratios were lower than those obtained after injection of morphine. CONCLUSION These differences are attributable mainly to morphine central metabolism, which differed between males and females in pain-related CNS regions, consistent with weaker morphine antinociceptive effects in females. However, the role of morphine metabolism in antinociceptive tolerance seemed limited. LINKED ARTICLES This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Florian Gabel
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Volodya Hovhannisyan
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Virginie Andry
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France.,SMPMS-INCI, Mass Spectrometry Facilities of the CNRS UPR3212, CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Yannick Goumon
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France.,SMPMS-INCI, Mass Spectrometry Facilities of the CNRS UPR3212, CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Coutens B, Ingram SL. Key differences in regulation of opioid receptors localized to presynaptic terminals compared to somas: Relevance for novel therapeutics. Neuropharmacology 2023; 226:109408. [PMID: 36584882 PMCID: PMC9898207 DOI: 10.1016/j.neuropharm.2022.109408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/05/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Opioid receptors are G protein-coupled receptors (GPCRs) that regulate activity within peripheral, subcortical and cortical circuits involved in pain, reward, and aversion processing. Opioid receptors are expressed in both presynaptic terminals where they inhibit neurotransmitter release and postsynaptic locations where they act to hyperpolarize neurons and reduce activity. Agonist activation of postsynaptic receptors at the plasma membrane signal via ion channels or cytoplasmic second messengers. Agonist binding initiates regulatory processes that include phosphorylation by G protein receptor kinases (GRKs) and recruitment of beta-arrestins that desensitize and internalize the receptors. Opioid receptors also couple to effectors from endosomes activating intracellular enzymes and kinases. In contrast to postsynaptic opioid receptors, receptors localized to presynaptic terminals are resistant to desensitization such that there is no loss of signaling in the continuous presence of opioids over the same time scale. Thus, the balance of opioid signaling in circuits expressing pre- and postsynaptic opioid receptors is shifted toward inhibition of presynaptic neurotransmitter release during continuous opioid exposure. The functional implication of this shift is not often acknowledged in behavioral studies. This review covers what is currently understood about regulation of opioid/nociceptin receptors, with an emphasis on opioid receptor signaling in pain and reward circuits. Importantly, the review covers regulation of presynaptic receptors and the critical gaps in understanding this area, as well as the opportunities to further understand opioid signaling in brain circuits. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Basile Coutens
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Susan L Ingram
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
5
|
A Neuropharmacological Model to Explain Buprenorphine Induction Challenges. Ann Emerg Med 2022; 80:509-524. [DOI: 10.1016/j.annemergmed.2022.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
|
6
|
Adhikary S, Williams JT. Cellular Tolerance Induced by Chronic Opioids in the Central Nervous System. Front Syst Neurosci 2022; 16:937126. [PMID: 35837149 PMCID: PMC9273719 DOI: 10.3389/fnsys.2022.937126] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/08/2022] [Indexed: 01/21/2023] Open
Abstract
Opioids are powerful analgesics that elicit acute antinociceptive effects through their action the mu opioid receptor (MOR). However opioids are ineffective for chronic pain management, in part because continuous activation of MORs induces adaptive changes at the receptor level and downstream signaling molecules. These adaptations include a decrease in receptor-effector coupling and changes to second messenger systems that can counteract the persistent activation of MORs by opioid agonists. Homeostatic regulation of MORs and downstream signaling cascades are viewed as precursors to developing tolerance. However, despite numerous studies identifying crucial mechanisms that contribute to opioid tolerance, no single regulatory mechanism that governs tolerance in at the cellular and systems level has been identified. Opioid tolerance is a multifaceted process that involves both individual neurons that contain MORs and neuronal circuits that undergo adaptations following continuous MOR activation. The most proximal event is the agonist/receptor interaction leading to acute cellular actions. This review discusses our understanding of mechanisms that mediate cellular tolerance after chronic opioid treatment that, in part, is mediated by agonist/receptor interaction acutely.
Collapse
|
7
|
Adhikary S, Koita O, Lebowitz JJ, Birdsong WT, Williams JT. Agonist-Specific Regulation of G Protein-Coupled Receptors after Chronic Opioid Treatment. Mol Pharmacol 2022; 101:300-308. [PMID: 35193934 PMCID: PMC9092468 DOI: 10.1124/molpharm.121.000453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/16/2022] [Indexed: 01/21/2023] Open
Abstract
Chronic treatment of animals with morphine results in a long lasting cellular tolerance in the locus coeruleus and alters the kinase dependent desensitization of opioid and nonopioid G protein-coupled receptors (GPCRs). This study examined the development of tolerance and altered regulation of kinase activity after chronic treatment of animals with clinically relevant opioids that differ in efficacy at the µ-opioid receptors (MOR). In slices from oxycodone treated animals, no tolerance to opioids was observed when measuring the MOR induced increase in potassium conductance, but the G protein receptor kinase 2/3 blocker, compound 101, no longer inhibited desensitization of somatostatin (SST) receptors. Chronic fentanyl treatment induced a rightward shift in the concentration response to [Met5]enkephalin, but there was no change in the kinase regulation of desensitization of the SST receptor. When total phosphorylation deficient MORs that block desensitization, internalization, and tolerance were virally expressed, chronic treatment with fentanyl resulted in the altered kinase regulation of SST receptors. The results suggest that sustained opioid receptor signaling initiates the process that results in altered kinase regulation of not only opioid receptors, but also other GPCRs. This study highlights two very distinct downstream adaptive processes that are specifically regulated by an agonist dependent mechanism. SIGNIFICANCE STATEMENT: Persistent signaling of MORs results in altered kinase regulation of nonopioid GPCRs after chronic treatment with morphine and oxycodone. Profound tolerance develops after chronic treatment with fentanyl without affecting kinase regulation. The homeostatic change in the kinase regulation of nonopioid GPCRs could account for the systems level in vivo development of tolerance that is seen with opioid agonists, such as morphine and oxycodone, that develop more rapidly than the tolerance induced by efficacious agonists, such as fentanyl and etorphine.
Collapse
Affiliation(s)
- Sweta Adhikary
- Vollum Institute, Oregon Health and Science University, Portland, Oregon (S.A., O.K., J.J.L., J.T.W.) and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.)
| | - Omar Koita
- Vollum Institute, Oregon Health and Science University, Portland, Oregon (S.A., O.K., J.J.L., J.T.W.) and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.)
| | - Joseph J Lebowitz
- Vollum Institute, Oregon Health and Science University, Portland, Oregon (S.A., O.K., J.J.L., J.T.W.) and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.)
| | - William T Birdsong
- Vollum Institute, Oregon Health and Science University, Portland, Oregon (S.A., O.K., J.J.L., J.T.W.) and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.)
| | - John T Williams
- Vollum Institute, Oregon Health and Science University, Portland, Oregon (S.A., O.K., J.J.L., J.T.W.) and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.)
| |
Collapse
|
8
|
Pharmacological and genetic manipulations at the µ-opioid receptor reveal arrestin-3 engagement limits analgesic tolerance and does not exacerbate respiratory depression in mice. Neuropsychopharmacology 2021; 46:2241-2249. [PMID: 34257415 PMCID: PMC8581001 DOI: 10.1038/s41386-021-01054-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/01/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023]
Abstract
Opioid drugs are widely used analgesics that activate the G protein-coupled µ-opioid receptor, whose endogenous neuropeptide agonists, endorphins and enkephalins, are potent pain relievers. The therapeutic utility of opioid drugs is hindered by development of tolerance to the analgesic effects, requiring dose escalation for persistent pain control and leading to overdose and fatal respiratory distress. The prevailing hypothesis is that the intended analgesic effects of opioid drugs are mediated by µ-opioid receptor signaling to G protein, while the side-effects of respiratory depression and analgesic tolerance are caused by engagement of the receptor with the arrestin-3 protein. Consequently, opioid drug development has focused exclusively on identifying agonists devoid of arrestin-3 engagement. Here, we challenge the prevailing hypothesis with a panel of six clinically relevant opioid drugs and mice of three distinct genotypes with varying abilities to promote morphine-mediated arrestin-3 engagement. With this genetic and pharmacological approach, we demonstrate that arrestin-3 recruitment does not impact respiratory depression, and effective arrestin-3 engagement reduces, rather than exacerbates, the development of analgesic tolerance. These studies suggest that future development of safer opioids should focus on identifying opioid ligands that recruit both G protein and arrestin-3, thereby mimicking the signaling profile of most endogenous µ-opioid receptor agonists.
Collapse
|
9
|
Jullié D, Gondin AB, von Zastrow M, Canals M. Opioid Pharmacology under the Microscope. Mol Pharmacol 2020; 98:425-432. [PMID: 32198210 PMCID: PMC7562971 DOI: 10.1124/mol.119.119321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
The powerful analgesic effects of opioid drugs have captivated the interest of physicians and scientists for millennia, and the ability of opioid drugs to produce serious undesired effects has been recognized for a similar period of time (Kieffer and Evans, 2009). Many of these develop progressively with prolonged or repeated drug use and then persist, motivating particular interest in understanding how opioid drugs initiate adaptive or maladaptive modifications in neural function or regulation. Exciting advances have been made over the past several years in elucidating drug-induced changes at molecular, cellular, and physiologic scales of analysis. The present review will highlight some recent cellular studies that we believe bridge across scales and will focus on optical imaging approaches that put opioid drug action "under the microscope." SIGNIFICANCE STATEMENT: Opioid receptors are major pharmacological targets, but their signaling at the cellular level results from a complex interplay between pharmacology, regulation, subcellular localization, and membrane trafficking. This minireview discusses recent advances in understanding the cellular biology of opioid receptors, emphasizing particular topics discussed at the 50th anniversary of the International Narcotics Research Conference. Our goal is to highlight distinct signaling and regulatory properties emerging from the cellular biology of opioid receptors and discuss potential relevance to therapeutics.
Collapse
Affiliation(s)
- Damien Jullié
- Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California (D.J., M.v.Z.); Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia (A.B.G.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (M.C.); and Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom (M.C.)
| | - Arisbel B Gondin
- Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California (D.J., M.v.Z.); Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia (A.B.G.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (M.C.); and Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom (M.C.)
| | - Mark von Zastrow
- Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California (D.J., M.v.Z.); Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia (A.B.G.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (M.C.); and Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom (M.C.)
| | - Meritxell Canals
- Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California (D.J., M.v.Z.); Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia (A.B.G.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (M.C.); and Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom (M.C.)
| |
Collapse
|
10
|
Birdsong WT, Williams JT. Recent Progress in Opioid Research from an Electrophysiological Perspective. Mol Pharmacol 2020; 98:401-409. [PMID: 32198208 PMCID: PMC7562972 DOI: 10.1124/mol.119.119040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Electrophysiological approaches provide powerful tools to further our understanding of how different opioids affect signaling through opioid receptors; how opioid receptors modulate circuitry involved in processes such as pain, respiration, addiction, and feeding; and how receptor signaling and circuits are altered by physiologic challenges, such as injury, stress, and chronic opioid treatment. The use of genetic manipulations to alter or remove μ-opioid receptors (MORs) with anatomic and cell type specificity and the ability to activate or inhibit specific circuits through opto- or chemogenetic approaches are being used in combination with electrophysiological, pharmacological, and systems-level physiology experiments to expand our understanding of the beneficial and maladaptive roles of opioids and opioid receptor signaling. New approaches for studying endogenous opioid peptide signaling and release and the dynamics of these systems in response to chronic opioid use, pain, and stress will add another layer to our understanding of the intricacies of opioid modulation of brain circuits. This understanding may lead to new targets or approaches for drug development or treatment regimens that may affect both acute and long-term effects of manipulating the activity of circuits involved in opioid-mediated physiology and behaviors. This review will discuss recent advancements in our understanding of the role of phosphorylation in regulating MOR signaling, as well as our understanding of circuits and signaling pathways mediating physiologic behaviors such as respiratory control, and discuss how electrophysiological tools combined with new technologies have and will continue to advance the field of opioid research. SIGNIFICANCE STATEMENT: This review discusses recent advancements in our understanding of μ-opioid receptor (MOR) function and regulation and the role of electrophysiological approaches combined with new technologies in pushing the field of opioid research forward. This covers regulation of MOR at the receptor level, adaptations induced by chronic opioid treatment, sites of action of MOR modulation of specific brain circuits, and the role of the endogenous opioid system in driving physiology and behavior through modulation of these brain circuits.
Collapse
Affiliation(s)
- William T Birdsong
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.) and Vollum Institute, Oregon Health & Science University, Portland, Oregon (J.T.W.)
| | - John T Williams
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.) and Vollum Institute, Oregon Health & Science University, Portland, Oregon (J.T.W.)
| |
Collapse
|
11
|
Leff ER, Arttamangkul S, Williams JT. Chronic Treatment with Morphine Disrupts Acute Kinase-Dependent Desensitization of GPCRs. Mol Pharmacol 2020; 98:497-507. [PMID: 32362586 PMCID: PMC7562982 DOI: 10.1124/mol.119.119362] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/24/2020] [Indexed: 11/22/2022] Open
Abstract
Based on studies using mutations of the µ-opioid receptor (MOR), phosphorylation of multiple sites on the C-terminus has been recognized as a critical step underlying acute desensitization and the development of cellular tolerance. The aim of this study is to explore which kinases mediate desensitization of MOR in brain slices from drug-naïve and morphine-treated animals. Whole-cell recordings from locus coeruleus neurons were made, and the agonist-induced increase in potassium conductance was measured. In slices from naïve animals, pharmacological inhibition of G-protein receptor kinase (GRK2/3) with compound 101 blocked acute desensitization. Following chronic treatment with morphine, compound 101 was less effective at blocking acute desensitization. Compound 101 blocked receptor internalization in tissue from both naïve and morphine-treated animals, suggesting that GRK2/3 remained active. Kinase inhibitors aimed at blocking protein kinase C and c-Jun N-terminal kinase had no effect on desensitization in tissue taken from naïve animals. However, in slices taken from morphine-treated animals, the combination of these blockers along with compound 101 was required to block acute desensitization. Acute desensitization of the potassium conductance induced by the somatostatin receptor was also blocked by compound 101 in slices from naïve but not morphine-treated animals. As was observed with MOR, it was necessary to use the combination of kinase inhibitors to block desensitization of the somatostatin receptor in slices from morphine-treated animals. The results show that chronic treatment with morphine results in a surprising and heterologous adaptation in kinase-dependent desensitization. SIGNIFICANCE STATEMENT: The results show that chronic treatment with morphine induced heterologous adaptations in kinase regulation of G protein coupled receptor (GPCR) desensitization. Although the canonical mechanism for acute desensitization through phosphorylation by G protein-coupled receptor kinase is supported in tissue taken from naïve animals, following chronic treatment with morphine, the acute kinase-dependent desensitization of GPCRs is disrupted such that additional kinases, including protein kinase C and c-Jun N-terminal kinase, contribute to desensitization.
Collapse
Affiliation(s)
- Emily R Leff
- Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | | | - John T Williams
- Vollum Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
12
|
Chakrabarti S, Liu NJ, Gintzler AR. Phosphorylation of unique C-terminal sites of the mu-opioid receptor variants 1B2 and 1C1 influences their Gs association following chronic morphine. J Neurochem 2019; 152:449-467. [PMID: 31479519 DOI: 10.1111/jnc.14863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/14/2019] [Accepted: 08/11/2019] [Indexed: 11/27/2022]
Abstract
We recently demonstrated in rat spinal cord that a regimen of escalating doses of systemic morphine, analogous to regimens used clinically for chronic pain management, selectively up-regulates the mu-opioid receptor (MOR) splice variants MOR-1B2 and MOR-1C1 mRNA and functional protein. This study investigated the potential relevance of up-regulating MOR-1B2 and MOR-1C1 to the ability of chronic morphine to shift MOR signaling from predominantly Gi /Go inhibitory to Gs stimulatory. Specifically, we tested the hypotheses that chronic morphine induces phosphorylation of carboxyl terminal sites unique to MOR-1B2 and MOR-1C1, and that this phosphorylation is causally related to augmented association of these variants with Gs α. Hypotheses were validated by (i) abolition of the chronic morphine-induced increment in MOR-1C1 and MOR-1B2 association with Gs α by inhibitors of protein kinase A and Casein kinase 2, respectively; (ii) failure of chronic morphine to augment MOR variant Gs α interactions in Chinese hamster ovary cells transiently transfected with either rat MOR-1C1 or MOR-1B2 in which targeted protein kinase A and Casein kinase 2 serine phosphorylation sites, respectively, were mutated to alanine; (iii) abrogation of chronic morphine-induced augmented MOR Gs α association in spinal cord of male rats following intrathecal administration of dicer substrate small interfering RNAs targeting MOR-1B2/MOR-1C1 mRNA. The ability of chronic morphine to not only up-regulate-specific MOR variants but also their carboxyl terminal phosphorylation and consequent augmented association with Gs α may represent a novel component of opioid tolerance mechanisms, suggesting novel potential targets for tolerance abatement.
Collapse
Affiliation(s)
- Sumita Chakrabarti
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York, USA
| | - Nai-Jiang Liu
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York, USA
| | - Alan R Gintzler
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York, USA
| |
Collapse
|
13
|
Arttamangkul S, Leff ER, Koita O, Birdsong WT, Williams JT. Separation of Acute Desensitization and Long-Term Tolerance of µ-Opioid Receptors Is Determined by the Degree of C-Terminal Phosphorylation. Mol Pharmacol 2019; 96:505-514. [PMID: 31383769 PMCID: PMC6750191 DOI: 10.1124/mol.119.117358] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/02/2019] [Indexed: 01/22/2023] Open
Abstract
Phosphorylation of sites on the C terminus of the μ-opioid receptor (MOR) results in the induction of acute desensitization that is thought to be a precursor for the development of long-term tolerance. Alanine mutations of all 11 phosphorylation sites on the C terminus of MORs almost completely abolished desensitization and one measure of tolerance in locus coeruleus neurons when these phosphorylation-deficient MORs were virally expressed in MOR knockout rats. In the present work, we identified specific residues that underlie acute desensitization, receptor internalization, and tolerance and examined four MOR variants with different alanine or glutamate mutations in the C terminus. Alanine mutations in the sequence between amino acids 375 and 379 (STANT-3A) and the sequence between amino acids 363 and 394 having four additional alanine substitutions (STANT + 7A) reduced desensitization and two measures of long-term tolerance. After chronic morphine treatment, alanine mutations in the sequence between 354 and 357 (TSST-4A) blocked one measure of long-term tolerance (increased acute desensitization and slowed recovery from desensitization) but did not change a second (decreased sensitivity to morphine). With the expression of receptors having glutamate substitutions in the TSST sequence (TSST-4E), an increase in acute desensitization was present after chronic morphine treatment, but the sensitivity to morphine was not changed. The results show that all 11 phosphorylation sites contribute, in varying degrees, to acute desensitization and long-term tolerance. That acute desensitization and tolerance are not necessarily linked illustrates the complexity of events that are triggered by chronic treatment with morphine. SIGNIFICANCE STATEMENT: In this work, we showed that the degree of phosphorylation on the C terminus of the μ-opioid receptor alters acute desensitization and internalization, and in measures of long-term tolerance to morphine. The primary conclusion is that the degree of phosphorylation on the 11 possible sites of the C terminus has different roles for expression of the multiple adaptive mechanisms that follow acute and long-term agonist activation. Although the idea that acute desensitization and tolerance are intimately linked is generally supported, these results indicate that disruption of one phosphorylation cassette of the C terminus TSST (354-357) distinguishes the two processes.
Collapse
Affiliation(s)
| | - Emily R Leff
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Omar Koita
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | | | - John T Williams
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
14
|
Devereaux AL, Mercer SL, Cunningham CW. DARK Classics in Chemical Neuroscience: Morphine. ACS Chem Neurosci 2018; 9:2395-2407. [PMID: 29757600 DOI: 10.1021/acschemneuro.8b00150] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
As the major psychoactive agent in opium and direct precursor for heroin, morphine is a historically critical molecule in chemical neuroscience. A structurally complex phenanthrene alkaloid produced by Papaver somniferum, morphine has fascinated chemists seeking to disentangle pharmacologically beneficial analgesic effects from addiction, tolerance, and dependence liabilities. In this review, we will detail the history of morphine, from the first extraction and isolation by Sertürner in 1804 to the illicit use of morphine and proliferation of opioid use and abuse disorders currently ravaging the United States. Morphine is a molecule of great cultural relevance, as the agent that single-handedly transformed our understanding of pharmacognosy, receptor dynamics, and substance abuse and dependence disorders.
Collapse
Affiliation(s)
- Andrea L. Devereaux
- Department of Pharmaceutical Sciences, School of Pharmacy, Concordia University Wisconsin, Mequon, Wisconsin 53097, United States
| | - Susan L. Mercer
- Department of Pharmaceutical Sciences, College of Pharmacy, Lipscomb University, Nashville, Tennessee 37204, United States
| | - Christopher W. Cunningham
- Department of Pharmaceutical Sciences, School of Pharmacy, Concordia University Wisconsin, Mequon, Wisconsin 53097, United States
| |
Collapse
|
15
|
Koshimizu TA, Honda K, Nagaoka-Uozumi S, Ichimura A, Kimura I, Nakaya M, Sakai N, Shibata K, Ushijima K, Fujimura A, Hirasawa A, Kurose H, Tsujimoto G, Tanoue A, Takano Y. Complex formation between the vasopressin 1b receptor, β-arrestin-2, and the μ-opioid receptor underlies morphine tolerance. Nat Neurosci 2018; 21:820-833. [DOI: 10.1038/s41593-018-0144-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 02/16/2018] [Indexed: 01/06/2023]
|
16
|
Arttamangkul S, Heinz DA, Bunzow JR, Song X, Williams JT. Cellular tolerance at the µ-opioid receptor is phosphorylation dependent. eLife 2018; 7:34989. [PMID: 29589831 PMCID: PMC5873894 DOI: 10.7554/elife.34989] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
Phosphorylation of the μ-opioid receptor (MOR) is known as a key step in desensitization and internalization but the role in the development of long-term tolerance at the cellular level is not known. Viral expression of wild type (exWT) and mutant MORs, where all phosphorylation sites on the C-terminus (Total Phosphorylation Deficient (TPD)) were mutated to alanine, were examined in locus coeruleus neurons in a MOR knockout rat. Both receptors activated potassium conductance similar to endogenous receptors in wild type animals. The exWT receptors, like endogenous receptors, acutely desensitized, internalized and, after chronic morphine treatment, displayed signs of tolerance. However, TPD receptors did not desensitize or internalize with agonist treatment. In addition the TPD receptors did not develop cellular tolerance following chronic morphine treatment. Thus C-terminal phosphorylation is necessary for the expression of acute desensitization, trafficking and one sign of long-term tolerance to morphine at the cellular level.
Collapse
Affiliation(s)
- Seksiri Arttamangkul
- The Vollum Institute, Oregon Health and Science University, Oregon, United States
| | - Daniel A Heinz
- The Vollum Institute, Oregon Health and Science University, Oregon, United States
| | - James R Bunzow
- The Vollum Institute, Oregon Health and Science University, Oregon, United States
| | - Xianqiang Song
- The Vollum Institute, Oregon Health and Science University, Oregon, United States
| | - John T Williams
- The Vollum Institute, Oregon Health and Science University, Oregon, United States
| |
Collapse
|
17
|
Levitt ES, Williams JT. Desensitization and Tolerance of Mu Opioid Receptors on Pontine Kölliker-Fuse Neurons. Mol Pharmacol 2018; 93:8-13. [PMID: 29097440 PMCID: PMC5708089 DOI: 10.1124/mol.117.109603] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
Acute desensitization of mu opioid receptors is thought to be an initial step in the development of tolerance to opioids. Given the resistance of the respiratory system to develop tolerance, desensitization of neurons in the Kölliker-Fuse (KF), a key area in the respiratory circuit, was examined. The activation of G protein-coupled inwardly rectifying potassium current was measured using whole-cell voltage-clamp recordings from KF and locus coeruleus (LC) neurons contained in acute rat brain slices. A saturating concentration of the opioid agonist [Met5]-enkephalin (ME) caused significantly less desensitization in KF neurons compared with LC neurons. In contrast to LC, desensitization in KF neurons was not enhanced by activation of protein kinase C or in slices from morphine-treated rats. Cellular tolerance to ME and morphine was also lacking in KF neurons from morphine-treated rats. The lack of cellular tolerance in KF neurons correlates with the relative lack of tolerance to the respiratory depressant effect of opioids.
Collapse
Affiliation(s)
- Erica S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida (E.S.L.) and Vollum Institute, Oregon Health and Science University, Portland, Oregon (J.T.W.)
| | - John T Williams
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida (E.S.L.) and Vollum Institute, Oregon Health and Science University, Portland, Oregon (J.T.W.)
| |
Collapse
|
18
|
Medrano MC, Santamarta MT, Pablos P, Aira Z, Buesa I, Azkue JJ, Mendiguren A, Pineda J. Characterization of functional μ opioid receptor turnover in rat locus coeruleus: an electrophysiological and immunocytochemical study. Br J Pharmacol 2017; 174:2758-2772. [PMID: 28589556 DOI: 10.1111/bph.13901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Regulation of μ receptor dynamics such as its trafficking is a possible mechanism underlying opioid tolerance that contributes to inefficient recycling of opioid responses. We aimed to characterize the functional turnover of μ receptors in the noradrenergic nucleus locus coeruleus (LC). EXPERIMENTAL APPROACH We measured opioid effect by single-unit extracellular recordings of LC neurons from rat brain slices. Immunocytochemical techniques were used to evaluate μ receptor trafficking. KEY RESULTS After near-complete, irreversible μ receptor inactivation with β-funaltrexamine (β-FNA), opioid effect spontaneously recovered in a rapid and efficacious manner. In contrast, α2 -adrenoceptor-mediated effect hardly recovered after receptor inactivation with the irreversible antagonist EEDQ. When the recovery of opioid effect was tested after various inactivating time schedules, we found that the longer the β-FNA pre-exposure, the less efficient and slower the functional μ receptor turnover became. Interestingly, μ receptor turnover was slower when β-FNA challenge was repeated in the same cell, indicating constitutive μ receptor recycling by trafficking from a depletable pool. Double immunocytochemistry confirmed the constitutive nature of μ receptor trafficking from a cytoplasmic compartment. The μ receptor turnover was slowed down when LC neuron calcium- or firing-dependent processes were prevented or vesicular protein trafficking was blocked by a low temperature or transport inhibitor. CONCLUSIONS AND IMPLICATIONS Constitutive trafficking of μ receptors from a depletable intracellular pool (endosome) may account for its rapid and efficient functional turnover in the LC. A finely-tuned regulation of μ receptor trafficking and endosomes could explain neuroadaptive plasticity to opioids in the LC.
Collapse
Affiliation(s)
- María Carmen Medrano
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - María Teresa Santamarta
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Patricia Pablos
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Zigor Aira
- Department of Neuroscience, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Itsaso Buesa
- Department of Neuroscience, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Jon Jatsu Azkue
- Department of Neuroscience, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Aitziber Mendiguren
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Joseba Pineda
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| |
Collapse
|
19
|
Mohammad Ahmadi Soleimani S, Azizi H, Pachenari N, Mirnajafi-Zadeh J, Semnanian S. Enhancement of μ-opioid receptor desensitization by orexin-A in rat locus coeruleus neurons. Neuropeptides 2017; 63:28-36. [PMID: 28385341 DOI: 10.1016/j.npep.2017.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/05/2017] [Accepted: 03/22/2017] [Indexed: 11/16/2022]
Abstract
Opioids have always been used in clinical practice for pain management. However, development of tolerance to their effects following long term administration, seriously restricts further clinical use of these drugs. In this regard, μ-opioid receptor (MOR) desensitization, as an initial step in development of opioid tolerance, is of particular significance. Previous studies support the involvement of orexinergic system in development of opioid tolerance. Locus coeruleus (LC) nucleus has been shown to modulate pain and development of tolerance. Opioid receptors (particularly μ) are densely expressed within the LC. Moreover, it receives widespread orexinergic inputs and orexin type 1 receptors (OX1Rs) are also highly expressed in this brain region. In the present study, the effect of orexin-A (OXA) on met-enkephalin (ME)-induced MOR desensitization was investigated in locus coeruleus neurons of male Wistar rats (2-3weeks of age). ME (30μM), as a potent MOR agonist, was applied for 10min and the outward K+ current was recorded using whole cell patch clamp recording. The percentage of decrease in ME-induced K+ current was considered as the degree of MOR desensitization. Results indicated that OXA (100nM) enhances ME-induced MOR desensitization via affecting OX1Rs in rat locus coeruleus neurons and this effect is mediated by a protein kinase C dependent mechanism within the LC. The activity of orexinergic system might potentiate the signaling pathways underlying opioid-induced receptor desensitization.
Collapse
Affiliation(s)
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Narges Pachenari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
20
|
El-Hamid Mohamed Elwy A, Tabl G. Impact of tramadol and morphine abuse on the activities of acetylcholine esterase, Na+/K+-ATPase and related parameters in cerebral cortices of male adult rats. Electron Physician 2017; 9:4027-4034. [PMID: 28461881 PMCID: PMC5407239 DOI: 10.19082/4027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/13/2017] [Indexed: 01/19/2023] Open
Abstract
Objective To determine the effect of the most commonly abused drugs (tramadol and morphine), on acetylcholine esterase (AChE), Na+/K+-ATPase activities and related parameters, Na+ and K+ as biomarkers of neurotoxicity. Methods Tramadol - as a weak μ opioid receptor agonist- and morphine - as opiate analgesic drugs, were chosen for the present study. Four series of experimental animals were conducted for either tramadol or morphine: control series; repeated single equal doses (therapeutic dose) series; cumulative increasing doses series and delay (withdrawal) series (96 hours withdrawal period after last administration), at time period intervals 7, 14 and 21 days. Acetylcholine esterase (AChE), Na+/K+-ATPase activities and related parameters, Na+ and K+ were measured in cerebral cortices of experimental rats. Results Acetylcholine esterase (AChE) activity in the brain cerebral cortex increased after the administration of therapeutic repeated doses of either tramadol (20 mg/kg b.w.) or morphine (4 mg/kg b.w.) in different groups. The daily intraperitoneal injection of cumulative increasing dose levels of either tramadol 20, 40 and 80 mg/kg or morphine 4, 8 and 12 mg/kg revealed a significant increase in the mean of acetylcholine esterase activities. The withdrawal groups of either tramadol or morphine showed significant decreases in their levels. Na+/K+ ATPase activity in the brain cerebral cortex of either repeated therapeutic doses of tramadol (20 mg/kg) or morphine repeated therapeutic doses (4 mg/kg) for 21 consecutive days at different intervals 7, 14 and 21 days, induced a significant decrease in the levels of Na+/K+-ATPase in all groups. Withdrawal groups showed a significant decrease in Na+/K+-ATPase level. Furthermore, the daily intraperitoneal injection of cumulative increasing dose levels of either tramadol (20, 40 and 80 mg/kg b.w.) or morphine (4, 8 and 12 mg/kg b.w.) induced significant decreases in Na+/K+-ATPase levels in all studied groups. Regarding Na+ and K+, concentrations of either repeated therapeutic doses or cumulative increasing doses at different time intervals, showed different fluctuations in their levels. Conclusion The recorded data suggest that both drugs exert potent effects on AChE and Na+/K+-ATPase activities which could contribute to cerebral cortex malfunction including, memory deficits and the decline in cognitive function observed in chronic users.
Collapse
Affiliation(s)
- Abd El-Hamid Mohamed Elwy
- Ph.D., Assistant Professor, Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Tanta University, Tanta city-Gharbia Governorate- Egypt
| | - Ghada Tabl
- Ph.D., Zoology Department, Faculty of Science, Tanta University, Tanta city-Gharbia Governorate-Egypt
| |
Collapse
|
21
|
Bowman SL, Soohoo AL, Shiwarski DJ, Schulz S, Pradhan AA, Puthenveedu MA. Cell-autonomous regulation of Mu-opioid receptor recycling by substance P. Cell Rep 2015; 10:1925-36. [PMID: 25801029 PMCID: PMC4494997 DOI: 10.1016/j.celrep.2015.02.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 10/31/2014] [Accepted: 02/18/2015] [Indexed: 10/26/2022] Open
Abstract
How neurons coordinate and reprogram multiple neurotransmitter signals is an area of broad interest. Here, we show that substance P (SP), a neuropeptide associated with inflammatory pain, reprograms opioid receptor recycling and signaling. SP, through activation of the neurokinin 1 (NK1R) receptor, increases the post-endocytic recycling of the mu-opioid receptor (MOR) in trigeminal ganglion (TG) neurons in an agonist-selective manner. SP-mediated protein kinase C (PKC) activation is both required and sufficient for increasing recycling of exogenous and endogenous MOR in TG neurons. The target of this cross-regulation is MOR itself, given that mutation of either of two PKC phosphorylation sites on MOR abolishes the SP-induced increase in recycling and resensitization. Furthermore, SP enhances the resensitization of fentanyl-induced, but not morphine-induced, antinociception in mice. Our results define a physiological pathway that cross-regulates opioid receptor recycling via direct modification of MOR and suggest a mode of homeostatic interaction between the pain and analgesic systems.
Collapse
|
22
|
Bowman SL, Puthenveedu MA. Postendocytic Sorting of Adrenergic and Opioid Receptors: New Mechanisms and Functions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:189-206. [PMID: 26055059 DOI: 10.1016/bs.pmbts.2015.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endocytic pathway tightly regulates the activity of G protein-coupled receptors (GPCRs). Much of our understanding of this relationship between GPCR endocytic trafficking and signaling comes from studies done on catecholamine and opioid receptors. After ligand-induced endocytosis, a key sorting step in the endosome determines whether receptors are recycled back to the cell surface, leading to recovery of signaling, or are degraded in the lysosome, leading to desensitization. Recycling of GPCRs, unlike that of many other proteins, is an active process driven by specific sequences on the receptor and proteins that interact with this sequence. Recent data suggest that sequence-dependent recycling plays complex roles in regulating both the timing and location of GPCR signaling. This chapter will describe our current understanding of the mechanisms regulating GPCR sorting in the endosome and discuss emerging ideas on their role in GPCR signaling, focusing on adrenergic and opioid receptors as prototypes.
Collapse
Affiliation(s)
- Shanna L Bowman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
23
|
Macey TA, Bobeck EN, Suchland KL, Morgan MM, Ingram SL. Change in functional selectivity of morphine with the development of antinociceptive tolerance. Br J Pharmacol 2014; 172:549-61. [PMID: 24666417 DOI: 10.1111/bph.12703] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Opioids, such as morphine, are the most effective treatment for pain but their efficacy is diminished with the development of tolerance following repeated administration. Recently, we found that morphine activated ERK in opioid-tolerant but not in naïve rats, suggesting that morphine activation of μ-opioid receptors is altered following repeated morphine administration. Here, we have tested the hypothesis that μ-opioid receptor activation of ERK in the ventrolateral periaqueductal gray (vlPAG) is dependent on dynamin, a protein implicated in receptor endocytosis. EXPERIMENTAL APPROACH Rats were made tolerant to repeated microinjections of morphine into the vlPAG. The effects of dynamin on ERK activation and antinociception were assessed by microinjecting myristoylated dominant-negative dynamin peptide (Dyn-DN) or a scrambled control peptide into the vlPAG. Microinjection of a fluorescent dermorphin analogue (DERM-A594) into the vlPAG was used to monitor μ-opioid receptor internalization. KEY RESULTS Morphine did not activate ERK and Dyn-DN administration had no effect on morphine-induced antinociception in saline-pretreated rats. In contrast, morphine-induced ERK activation in morphine-pretreated rats that was blocked by Dyn-DN administration. Dyn-DN also inhibited morphine antinociception. Finally, morphine reduced DERM-A594 internalization only in morphine-tolerant rats indicating that μ-opioid receptors were internalized and unavailable to bind DERM-A594. CONCLUSIONS AND IMPLICATIONS Repeated morphine administration increased μ-opioid receptor activation of ERK signalling via a dynamin-dependent mechanism. These results demonstrate that the balance of agonist signalling to G-protein and dynamin-dependent pathways is altered, effectively changing the functional selectivity of the agonist-receptor complex. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- T A Macey
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | | | | | | | | |
Collapse
|
24
|
Li G, Ma F, Gu Y, Huang LYM. Analgesic tolerance of opioid agonists in mutant mu-opioid receptors expressed in sensory neurons following intrathecal plasmid gene delivery. Mol Pain 2013; 9:63. [PMID: 24304623 PMCID: PMC3906983 DOI: 10.1186/1744-8069-9-63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 11/22/2013] [Indexed: 11/12/2022] Open
Abstract
Background Phosphorylation sites in the C-terminus of mu-opioid receptors (MORs) are known to play critical roles in the receptor functions. Our understanding of their participation in opioid analgesia is mostly based on studies of opioid effects on mutant receptors expressed in in vitro preparations, including cell lines, isolated neurons and brain slices. The behavioral consequences of the mutation have not been fully explored due to the complexity in studies of mutant receptors in vivo. To facilitate the determination of the contribution of phosphorylation sites in MOR to opioid-induced analgesic behaviors, we expressed mutant and wild-type human MORs (hMORs) in sensory dorsal root ganglion (DRG) neurons, a major site for nociceptive (pain) signaling and determined morphine- and the full MOR agonist, DAMGO,-induced effects on heat-induced hyperalgesic behaviors and potassium current (IK) desensitization in these rats. Findings A mutant hMOR DNA with the putative phosphorylation threonine site at position 394 replaced by an alanine (T394A), i.e., hMOR-T, or a plasmid containing wild type hMOR (as a positive control) was intrathecally delivered. The plasmid containing GFP or saline was used as the negative control. To limit the expression of exogenous DNA to neurons of DRGs, a neuron-specific promoter was included in the plasmid. Following a plasmid injection, hMOR-T or hMOR receptors were expressed in small and medium DRG neurons. Compared with saline or GFP rats, the analgesic potency of morphine was increased to a similar extent in hMOR-T and hMOR rats. Morphine induced minimum IK desensitization in both rat groups. In contrast, DAMGO increased analgesic potency and elicited IK desensitization to a significantly less extent in hMOR-T than in hMOR rats. The development and extent of acute and chronic tolerance induced by repeated morphine or DAMGO applications were not altered by the T394A mutation. Conclusions These results indicate that phosphorylation of T394 plays a critical role in determining the potency of DAMGO-induced analgesia and IK desensitization, but has limited effect on morphine-induced responses. On the other hand, the mutation contributes minimally to both DAMGO- and morphine-induced behavioral tolerance. Furthermore, the study shows that plasmid gene delivery of mutant receptors to DRG neurons is a useful strategy to explore nociceptive behavioral consequences of the mutation.
Collapse
Affiliation(s)
- Guangwen Li
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1069, USA.
| | | | | | | |
Collapse
|
25
|
Torres-Sanchez S, Alba-Delgado C, Llorca-Torralba M, Mico JA, Berrocoso E. Effect of tapentadol on neurons in the locus coeruleus. Neuropharmacology 2013; 72:250-8. [DOI: 10.1016/j.neuropharm.2013.04.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 04/04/2013] [Accepted: 04/24/2013] [Indexed: 11/17/2022]
|
26
|
Yan H, Yu LC. Influences of calcitonin gene-related peptide on mu opioid receptors in nucleus accumbens neurons of rats. Neuropeptides 2013; 47:125-31. [PMID: 23211530 DOI: 10.1016/j.npep.2012.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 09/01/2012] [Accepted: 10/29/2012] [Indexed: 01/14/2023]
Abstract
The Mu opioid receptor (MOR) has been shown to participate in the analgesic effect of the calcitonin gene-related peptide (CGRP) in the nucleus accumbens (NAc) of adult rats. However, it is not clear whether and how CGRP regulates the MOR at the molecular levels. In the present study, it is found that the level of MORs on the cell membrane of NAc neurons was increased twice more than the control level following CGRP treatment (1μM, 30min), which is a phenomenon that was blocked by the peptidergic antagonist CGRP8-37. No direct physical interaction was observed between MORs and CGRP receptors, and neither brefeldin A nor dynosore preincubation affected such effects of CGRP. However, addition of 20μM monensin 1h before CGRP treatment significantly blocked the action of CGRP on surface MORs. In living animals, microinjection of CGRP (1nmol in 1μl) into the NAc partially restored morphine antinociception in morphine-tolerant rats, and the effect of CGRP on surface MORs extended beyond normal NAc neurons to chronic morphine-treated NAc neurons. To conclude, these results demonstrate that CGRP can act on MORs and increase the number of surface MORs in NAc neurons, partially explaining the involvement of opioid receptors in CGRP-induced antinociception in the rat NAc.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Biotinylation
- Blotting, Western
- Calcitonin Gene-Related Peptide/pharmacology
- Catheterization
- Cells, Cultured
- Drug Tolerance
- Hot Temperature
- Immunoprecipitation
- Male
- Microinjections
- Microscopy, Confocal
- Microscopy, Fluorescence
- Morphine/pharmacology
- Neurons/drug effects
- Nucleus Accumbens/cytology
- Nucleus Accumbens/drug effects
- Rats
- Rats, Sprague-Dawley
- Reaction Time
- Receptors, Calcitonin Gene-Related Peptide/biosynthesis
- Receptors, Calcitonin Gene-Related Peptide/genetics
- Receptors, Opioid, mu/drug effects
- Stereotaxic Techniques
Collapse
Affiliation(s)
- Hailiang Yan
- Neurobiology Laboratory and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, PR China
| | | |
Collapse
|
27
|
Doll C, Pöll F, Peuker K, Loktev A, Glück L, Schulz S. Deciphering µ-opioid receptor phosphorylation and dephosphorylation in HEK293 cells. Br J Pharmacol 2013; 167:1259-70. [PMID: 22725608 DOI: 10.1111/j.1476-5381.2012.02080.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE The molecular basis of agonist-selective signalling at the µ-opioid receptor is poorly understood. We have recently shown that full agonists such as [D-Ala(2)-MePhe(4)-Gly-ol]enkephalin (DAMGO) stimulate the phosphorylation of a number of carboxyl-terminal phosphate acceptor sites including threonine 370 (Thr(370)) and serine 375 (Ser(375)), and that is followed by a robust receptor internalization. In contrast, morphine promotes a selective phosphorylation of Ser(375) without causing rapid receptor internalization. EXPERIMENTAL APPROACH Here, we identify kinases and phosphatases that mediate agonist-dependent phosphorylation and dephosphorylation of the µ-opioid receptor using a combination of phosphosite-specific antibodies and siRNA knock-down screening in HEK293 cells. KEY RESULTS We found that DAMGO-driven phosphorylation of Thr(370) and Ser(375) was preferentially catalysed by G-protein-coupled receptor kinases (GRKs) 2 and 3, whereas morphine-driven Ser(375) phosphorylation was preferentially catalysed by GRK5. On the functional level, inhibition of GRK expression resulted in enhanced µ-opioid receptor signalling and reduced receptor internalization. Analysis of GRK5-deficient mice revealed that GRK5 selectively contributes to morphine-induced Ser(375) phosphorylation in brain tissue. We also identified protein phosphatase 1γ as a µ-opioid receptor phosphatase that catalysed Thr(370) and Ser(375) dephosphorylation at or near the plasma membrane within minutes after agonist removal, which in turn facilitates receptor recycling. CONCLUSIONS AND IMPLICATIONS Together, the morphine-activated µ-opioid receptor is a good substrate for phosphorylation by GRK5 but a poor substrate for GRK2/3. GRK5 phosphorylates µ-opioid receptors selectively on Ser(375), which is not sufficient to drive significant receptor internalization.
Collapse
Affiliation(s)
- Christian Doll
- Institute of Pharmacology and Toxicology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, Koch T, Evans CJ, Christie MJ. Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev 2013; 65:223-54. [PMID: 23321159 PMCID: PMC3565916 DOI: 10.1124/pr.112.005942] [Citation(s) in RCA: 618] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Morphine and related µ-opioid receptor (MOR) agonists remain among the most effective drugs known for acute relief of severe pain. A major problem in treating painful conditions is that tolerance limits the long-term utility of opioid agonists. Considerable effort has been expended on developing an understanding of the molecular and cellular processes that underlie acute MOR signaling, short-term receptor regulation, and the progression of events that lead to tolerance for different MOR agonists. Although great progress has been made in the past decade, many points of contention and controversy cloud the realization of this progress. This review attempts to clarify some confusion by clearly defining terms, such as desensitization and tolerance, and addressing optimal pharmacological analyses for discerning relative importance of these cellular mechanisms. Cellular and molecular mechanisms regulating MOR function by phosphorylation relative to receptor desensitization and endocytosis are comprehensively reviewed, with an emphasis on agonist-biased regulation and areas where knowledge is lacking or controversial. The implications of these mechanisms for understanding the substantial contribution of MOR signaling to opioid tolerance are then considered in detail. While some functional MOR regulatory mechanisms contributing to tolerance are clearly understood, there are large gaps in understanding the molecular processes responsible for loss of MOR function after chronic exposure to opioids. Further elucidation of the cellular mechanisms that are regulated by opioids will be necessary for the successful development of MOR-based approaches to new pain therapeutics that limit the development of tolerance.
Collapse
Affiliation(s)
- John T Williams
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Levitt ES, Williams JT. Morphine desensitization and cellular tolerance are distinguished in rat locus ceruleus neurons. Mol Pharmacol 2012; 82:983-92. [PMID: 22914548 PMCID: PMC3477235 DOI: 10.1124/mol.112.081547] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/22/2012] [Indexed: 01/18/2023] Open
Abstract
μ-Opioid receptor desensitization is considered an initial step in the development of tolerance. Curiously, the commonly used opioid morphine produces robust tolerance but minimal acute desensitization. This study was designed to test the hypothesis that desensitization is indeed present in morphine-treated animals and is distinguished from cellular tolerance by time course of recovery and mechanism. To induce tolerance, rats were treated with continuously released morphine for 1 week. Morphine-mediated activation of G protein-coupled inwardly rectifying potassium conductance was measured using voltage-clamp recordings from locus ceruleus neurons in brain slices from naive or morphine-treated rats. Cellular tolerance was observed as a decrease in morphine efficacy in slices from morphine-treated rats. This tolerance persisted for at least 6 h. An additional reduction in morphine-mediated current was observed when slices from morphine-treated rats were continuously maintained in morphine at approximately the circulating plasma concentration. This additional reduction recovered within 1 h after removal of morphine from the slice and represents desensitization that developed in the tolerant animal. Recovery from desensitization, but not long-lasting tolerance, was facilitated by protein phosphatase 1 (PP1) activity. Furthermore, desensitization, but not tolerance, was reversed by protein kinase C (PKC) inhibitor but not by an inhibitor of c-Jun N-terminal kinase. Therefore, morphine treatment leads to both long-lasting cellular tolerance and readily reversible desensitization, which are differentially dependent on PP1 and PKC activity and combine to result in a substantial decrease in morphine effectiveness. This PKC-mediated desensitization may contribute to the previously reported PKC-dependent reversal of behavioral tolerance.
Collapse
Affiliation(s)
- Erica S Levitt
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | |
Collapse
|
30
|
Panova TI, Kazakov VM, Shevchenko TO. Mechanism of the Action of Comenic Acid on Opioid Receptors. NEUROPHYSIOLOGY+ 2012. [DOI: 10.1007/s11062-012-9303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Dang VC, Chieng BC, Christie MJ. Prolonged stimulation of μ-opioid receptors produces β-arrestin-2-mediated heterologous desensitization of α(2)-adrenoceptor function in locus ceruleus neurons. Mol Pharmacol 2012; 82:473-80. [PMID: 22689562 DOI: 10.1124/mol.112.079350] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Prolonged agonist stimulation of the μ-opioid receptor (MOR) initiates receptor regulatory events that rapidly attenuate receptor-mediated signaling (homologous desensitization). Emerging evidence suggests that persistent MOR stimulation can also reduce responsiveness of effectors to other G-protein-coupled receptors, termed heterologous desensitization. However, the mechanisms by which heterologous desensitization is triggered by MOR stimulation are unclear. This study used whole-cell patch-clamp recordings of ligand activated G-protein-activated inwardly rectifying potassium channel currents in mouse brain slices containing locus ceruleus (LC) neurons to determine the effects of prolonged stimulation of MOR on α(2)-adrenoceptor (α(2)-AR) function. The results show distinct and sequential development of homologous and heterologous desensitization during persistent stimulation of MOR in LC neurons with Met(5)-enkephalin (ME). ME stimulation of MOR promoted rapid homologous desensitization that reached a steady state after 5 min and partially recovered over 30 min. Longer stimulation of MOR (10 min) induced heterologous desensitization of α(2)-AR function that exhibited slower recovery than homologous desensitization. Heterologous (but not homologous) desensitization required β-arrestin-2 (βarr-2) because it was nearly abolished in βarr-2-knockout (ko) mice. Heterologous (but not homologous) desensitization was also prevented by inhibition of ERK1/2 and c-Src signaling in wild-type (wt) mouse LC neurons. Heterologous desensitization may be physiologically relevant during exposure to high doses of opioids because α(2)-AR-mediated slow inhibitory postsynaptic currents were depressed in wt but not βarr-2 ko LC neurons after prolonged exposure to opioids. Together, these findings demonstrate a novel mechanism by which βarr-2 can regulate postsynaptic responsiveness to neurotransmitter release.
Collapse
Affiliation(s)
- Vu C Dang
- Discipline of Pharmacology and Brain and Mind Research Institute, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
32
|
Dang VC, Christie MJ. Mechanisms of rapid opioid receptor desensitization, resensitization and tolerance in brain neurons. Br J Pharmacol 2012; 165:1704-1716. [PMID: 21564086 DOI: 10.1111/j.1476-5381.2011.01482.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Agonists acting on µ-opioid receptors (MOR) are very effective analgesics but cause tolerance during long-term or repeated exposure. Intensive efforts have been made to find novel opioid agonists that are efficacious analgesics but can elude the signalling events that cause tolerance. µ-Opioid agonists differentially couple to downstream signalling mechanisms. Some agonists, such as enkephalins, D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO), methadone and sufentanyl are efficacious at mediating G-protein and effector coupling, as well as triggering MOR regulatory events that include MOR phosphorylation, β-arrestin binding, receptor endocytosis and recycling. By contrast, morphine and closely related alkaloids can mediate efficacious MOR-effector coupling but poorly trigger receptor regulation. Several models have been proposed to relate differential MOR regulation by different opioids with their propensity to cause tolerance. Most are based on dogma that β-arrestin-2 (βarr-2) binding causes MOR desensitization and/or that MOR endocytosis and recycling are required for receptor resensitization. This review will examine some of these notions in light of recent evidence establishing that MOR dephosphorylation and resensitization do not require endocytosis. Recent evidence from opioid-treated animals also suggests that impaired MOR-effector coupling is driven, at least in part, by enhanced desensitization, as well as impaired resensitization that appears to be βarr-2 dependent. Better understanding of how chronic exposure to opioids alters receptor regulatory mechanisms may facilitate the development of effective analgesics that produce limited tolerance.
Collapse
Affiliation(s)
- Vu C Dang
- Department of Psychiatry, University of California, San Francisco, CA, USABrain & Mind Research Institute, University of Sydney, NSW, Australia
| | - MacDonald J Christie
- Department of Psychiatry, University of California, San Francisco, CA, USABrain & Mind Research Institute, University of Sydney, NSW, Australia
| |
Collapse
|
33
|
Murali SS, Napier IA, Rycroft BK, Christie MJ. Opioid-related (ORL1) receptors are enriched in a subpopulation of sensory neurons and prolonged activation produces no functional loss of surface N-type calcium channels. J Physiol 2012; 590:1655-67. [PMID: 22371475 PMCID: PMC3413501 DOI: 10.1113/jphysiol.2012.228429] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/20/2012] [Indexed: 01/20/2023] Open
Abstract
The opioid-related receptor, ORL1, is activated by the neuropeptide nociceptin/orphanin FQ (N/OFQ) and inhibits high-voltage-activated (HVA) calcium channel currents (I(Ca)) via a G-protein-coupled mechanism. Endocytosis of ORL1 receptor during prolonged N/OFQ exposure was proposed to cause N-type voltage-gated calcium channel (VGCC) internalization via physical interaction between ORL1 and the N-type channel. However, there is no direct electrophysiological evidence for this mechanism in dorsal root ganglion (DRG) neurons or their central nerve terminals. The present study tested this using whole-cell patch-clamp recordings of HVA I(Ca) in rat DRG neurons and primary afferent excitatory synaptic currents (eEPSCs) in spinal cord slices. DRG neurons were classified on the basis of diameter, isolectin-B4 (IB4) binding and responses to capsaicin, N/OFQ and a μ-opioid agonist, DAMGO. IB4-negative neurons less than 20 μm diameter were selectively responsive to N/OFQ as well as DAMGO. In these neurons, ORL1 desensitization by a supramaximal concentration of N/OFQ was not followed by a decrease in HVA I(Ca) current density or proportion of whole-cell HVA I(Ca) contributed by N-type VGCC as determined using the N-type channel selective blocker, ω-conotoxin CVID. There was also no decrease in the proportion of N-type I(Ca) when neurons were incubated at 37°C with N/OFQ for 30 min prior to recording. In spinal cord slices, N/OFQ consistently inhibited eEPSCs onto dorsal horn neurons. As observed in DRG neurons, preincubation of slices in N/OFQ for 30 min produced no decrease in the proportion of eEPSCs inhibited by CVID. In conclusion, no internalization of the N-type VGCC occurs in either the soma or central nerve terminals of DRG neurons following prolonged exposure to high, desensitizing concentrations of N/OFQ.
Collapse
Affiliation(s)
- Swetha S Murali
- Discipline of Pharmacology, University of Sydney, Sydney, Australia
| | | | | | | |
Collapse
|
34
|
Bie B, Zhao ZQ. Peripheral inflammation alters desensitization of substance P-evoked current in rat dorsal root ganglion neurons. Eur J Pharmacol 2011; 670:495-9. [DOI: 10.1016/j.ejphar.2011.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/24/2011] [Accepted: 09/07/2011] [Indexed: 12/01/2022]
|
35
|
de Juan-Sanz J, Zafra F, López-Corcuera B, Aragón C. Endocytosis of the neuronal glycine transporter GLYT2: role of membrane rafts and protein kinase C-dependent ubiquitination. Traffic 2011; 12:1850-67. [PMID: 21910806 DOI: 10.1111/j.1600-0854.2011.01278.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycinergic neurotransmission is terminated by sodium- and chloride-dependent plasma membrane transporters. The neuronal glycine transporter 2 (GLYT2) supplies the terminal with substrate to refill synaptic vesicles containing glycine. This crucial process is defective in human hyperekplexia, a condition that can be caused by mutations in GLYT2. Inhibitory glycinergic neurotransmission is modulated by the GLYT2 exocytosis/endocytosis equilibrium, although the mechanisms underlying the turnover of this transporter remain elusive. We studied GLYT2 internalization pathways and the role of ubiquitination and membrane raft association of the transporter in its endocytosis. Using pharmacological tools, dominant-negative mutants and small-interfering RNAs, we show that the clathrin-mediated pathway is the primary mechanism for constitutive and regulated GLYT2 endocytosis in heterologous cells and neurons. We show that GLYT2 is constitutively internalized from cell surface lipid rafts, remaining associated with rafts in subcellular recycling structures. Protein kinase C (PKC) negatively modulates GLYT2 via rapid and dynamic redistribution of GLYT2 from raft to non-raft membrane subdomains and increasing ubiquitinated GLYT2 endocytosis. This biphasic mechanism is a versatile means to modulate GLYT2 behavior and hence, inhibitory glycinergic neurotransmission. These findings may reveal new therapeutic targets to address glycinergic pathologies associated with alterations in GLYT2 trafficking.
Collapse
Affiliation(s)
- Jaime de Juan-Sanz
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
36
|
Cellular morphine tolerance produced by βarrestin-2-dependent impairment of μ-opioid receptor resensitization. J Neurosci 2011; 31:7122-30. [PMID: 21562274 DOI: 10.1523/jneurosci.5999-10.2011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic morphine treatment produces behavioral and cellular opioid tolerance that has been proposed to be caused by attenuated μ-opioid receptor (MOR) recovery from desensitization (resensitization). The process of MOR resensitization is thought to require βarrestin-2 (βarr-2)-dependent trafficking of desensitized receptors to endosomal compartments, followed by recycling of resensitized receptors back to the plasma membrane. However, there is little direct evidence for this, particularly in native neurons. This study used whole-cell patch-clamp recording in locus ceruleus (LC) neurons from wild-type (w.t.) and βarr-2 knock-out (k.o.) mice to examine whether βarr-2/dynamin-dependent trafficking is required for MOR resensitization in neurons from opioid-naive and morphine-treated mice. Surprisingly, recovery of MOR from acute desensitization in LC neurons does not require βarr-2- or dynamin-dependent trafficking. To the contrary, MOR resensitization was accelerated by disruption of either βarr-2 or dynamin function. Chronic morphine treatment caused cellular MOR tolerance and concurrently impaired MOR resensitization in neurons from w.t. mice, as expected from previous studies, but neither occurred in neurons from βarr-2 k.o. mice. Moreover, the impairment of MOR resensitization caused by chronic morphine was reversed in w.t. neurons when G-protein-coupled receptor kinase-2 (GRK2) or dynamin function was disrupted. Together, these results establish that βarr-2/dynamin-dependent receptor regulation is not required for MOR resensitization in LC neurons. Furthermore, chronic morphine treatment modifies GRK2-βarr-2-dynamin-dependent MOR trafficking to impair receptor resensitization, thereby contributing to opioid tolerance in LC neurons by reducing the number of functional receptors on the surface membrane.
Collapse
|
37
|
Nagi K, Piñeyro G. Regulation of opioid receptor signalling: implications for the development of analgesic tolerance. Mol Brain 2011; 4:25. [PMID: 21663702 PMCID: PMC3138391 DOI: 10.1186/1756-6606-4-25] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/13/2011] [Indexed: 11/10/2022] Open
Abstract
Opiate drugs are the most effective analgesics available but their clinical use is restricted by severe side effects. Some of these undesired actions appear after repeated administration and are related to adaptive changes directed at counteracting the consequences of sustained opioid receptor activation. Here we will discuss adaptations that contribute to the development of tolerance. The focus of the first part of the review is set on molecular mechanisms involved in the regulation of opioid receptor signalling in heterologous expression systems and neurons. In the second part we assess how adaptations that take place in vivo may contribute to analgesic tolerance developed during repeated opioid administration.
Collapse
Affiliation(s)
- Karim Nagi
- Département de Pharmacologie, Faculté de Médecine, Université de Montréal, Canada
| | | |
Collapse
|
38
|
Berger AC, Whistler JL. Morphine-induced mu opioid receptor trafficking enhances reward yet prevents compulsive drug use. EMBO Mol Med 2011; 3:385-97. [PMID: 21656686 PMCID: PMC3394511 DOI: 10.1002/emmm.201100144] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 01/08/2023] Open
Abstract
Morphine, heroin and other commonly abused opioids induce little mu opioid receptor (MOR) trafficking compared to endogenous opioids. We utilized knock-in mice expressing a mutant recycling MOR (RMOR) that desensitizes and is internalized in response to morphine to show that facilitating MOR trafficking not only enhances morphine reward but, despite this, reduces the development of addiction-like behaviours. To demonstrate this, we developed a novel model of the transition from controlled to compulsive drug use that recapitulates many features of human addiction, including persistent drug seeking despite adverse consequences and a decreased preference for alternative rewards. These behaviours emerged spontaneously in wild-type but not RMOR mice, and their intensity predicted the reinstatement of morphine seeking after extended abstinence, while prior morphine intake did not. These results confirm previous findings in the rat that addiction can be dissociated from both reward and consumption. Most importantly, these results demonstrate that one can simultaneously reduce the ‘addictiveness’ of morphine and enhance its desirable effects by promoting agonist-induced MOR trafficking.
Collapse
Affiliation(s)
- Amy Chang Berger
- Neuroscience Program, University of California, San Francisco, Ernest Gallo Clinic and Research Center, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA
| | | |
Collapse
|
39
|
Cannabinoid receptor 2 undergoes Rab5-mediated internalization and recycles via a Rab11-dependent pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1554-60. [PMID: 21640764 DOI: 10.1016/j.bbamcr.2011.05.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 11/20/2022]
Abstract
Cannabinoid receptor 2 (CB2) is a GPCR highly expressed on the surface of cells of the immune system, supporting its role in immunomodulation. This study has investigated the trafficking properties of this receptor when stably expressed by HEK-293 cells. As previously reported, cell surface CB2 rapidly internalized upon exposure to agonist. Direct evidence of CB2 recycling was observed upon competitive removal of the stimulating agonist by inverse agonist. CB2 also underwent slow constitutive internalization when agonist was absent and was up-regulated in the presence of inverse agonist. Co-expression of CB2 and dominant negative Rab5 resulted in a significantly reduced capacity for receptors to internalize with no effect on recycling of the internalized receptors. Conversely, co-expression with dominant negative Rab11 did not alter the ability of CB2 to internalize but did impair their ability to return to the cell surface. Co-expression of wild-type, dominant negative or constitutively active Rab4 with CB2 did not alter basal surface expression, extent of internalization, or extent of recycling. These results suggest that Rab5 is involved in CB2 endocytosis and that internalized receptors are recycled via a Rab11 associated pathway rather than the rapid Rab4 associated pathway. This report provides the first comprehensive description of CB2 internalization and recycling to date.
Collapse
|
40
|
Quillinan N, Lau EK, Virk M, von Zastrow M, Williams JT. Recovery from mu-opioid receptor desensitization after chronic treatment with morphine and methadone. J Neurosci 2011; 31:4434-43. [PMID: 21430144 PMCID: PMC3092436 DOI: 10.1523/jneurosci.4874-10.2011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 01/10/2011] [Accepted: 01/14/2011] [Indexed: 12/14/2022] Open
Abstract
Chronic treatment with morphine results in a decrease in μ-opioid receptor sensitivity, an increase in acute desensitization, and a reduction in the recovery from acute desensitization in locus ceruleus neurons. With acute administration, morphine is unlike many other opioid agonists in that it does not mediate robust acute desensitization or induce receptor trafficking. This study compares μ-opioid receptor desensitization and trafficking in brain slices taken from rats treated for 6-7 d with a range of doses of morphine (60, 30, and 15 mg · kg(-1) · d(-1)) and methadone (60, 30, and 5 mg · kg(-1) · d(-1)) applied by subcutaneous implantation of osmotic minipumps. Mice were treated with 45 mg · kg(-1) · d(-1). In morphine-treated animals, recovery from acute [Met](5)enkephalin-induced desensitization and receptor recycling was diminished. In contrast, recovery and recycling were unchanged in slices from methadone-treated animals. Remarkably the reduced recovery from desensitization and receptor recycling found in slices from morphine-treated animals were not observed in animals lacking β-arrestin-2. Furthermore, pharmacological inhibition of G-protein receptor kinase 2 (GRK2), although not affecting the ability of [Met](5)enkephalin to induce desensitization, acutely reversed the delay in recovery from desensitization produced by chronic morphine treatment. These results characterize a previously unidentified function of the GRK/arrestin system in mediating opioid regulation in response to chronic morphine administration. They also suggest that the GRK/arrestin system, rather than serving as a primary mediator of acute desensitization, controls recovery from desensitization by regulating receptor reinsertion to the plasma membrane after chronic treatment with morphine. The sustained GRK/arrestin-dependent desensitization is another way in which morphine and methadone are distinguished.
Collapse
Affiliation(s)
- Nidia Quillinan
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, and
| | - Elaine K. Lau
- Program in Neuroscience and Department of Psychiatry and Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California 94158
| | - Michael Virk
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, and
| | - Mark von Zastrow
- Program in Neuroscience and Department of Psychiatry and Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California 94158
| | - John T. Williams
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, and
| |
Collapse
|
41
|
Fyfe LW, Cleary DR, Macey TA, Morgan MM, Ingram SL. Tolerance to the antinociceptive effect of morphine in the absence of short-term presynaptic desensitization in rat periaqueductal gray neurons. J Pharmacol Exp Ther 2010; 335:674-80. [PMID: 20739455 PMCID: PMC2993552 DOI: 10.1124/jpet.110.172643] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 08/24/2010] [Indexed: 11/22/2022] Open
Abstract
Opioids activate the descending antinociceptive pathway from the ventrolateral periaqueductal gray (vlPAG) by both pre- and postsynaptic inhibition of tonically active GABAergic neurons (i.e., disinhibition). Previous research has shown that short-term desensitization of postsynaptic μ-opioid receptors (MOPrs) in the vlPAG is increased with the development of opioid tolerance. Given that pre- and postsynaptic MOPrs are coupled to different signaling mechanisms, the present study tested the hypothesis that short-term desensitization of presynaptic MOPrs also contributes to opioid tolerance. Twice-daily injections of morphine (5 mg/kg s.c.) for 2 days caused a rightward shift in the morphine dose-response curve on the hot plate test (D(50) = 9.9 mg/kg) compared with saline-pretreated (5.3 mg/kg) male Sprague-Dawley rats. In vitro whole-cell patch-clamp recordings from vlPAG slices revealed that inhibition of evoked inhibitory postsynaptic currents (eIPSCs) by the MOPr-selective agonist [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin was decreased in morphine-tolerant (EC(50) = 708 nM) compared with saline-pretreated rats (EC(50) = 163 nM). However, short-term desensitization of MOPr inhibition of eIPSCs was not observed in either saline- or morphine-pretreated rats. Reducing the number of available MOPrs with the irreversible opioid receptor antagonist, β-chlornaltrexamine decreased maximal MOPr inhibition with no evidence of desensitization, indicating that the lack of observed desensitization is not caused by receptor reserve. These results demonstrate that tolerance to the antinociceptive effect of morphine is associated with a decrease in presynaptic MOPr sensitivity or coupling to effectors, but this change is independent of short-term MOPr desensitization.
Collapse
Affiliation(s)
- Leon W Fyfe
- Department of Psychology, Washington State University, Vancouver, Washington 98686, USA
| | | | | | | | | |
Collapse
|
42
|
Macey TA, Ingram SL, Bobeck EN, Hegarty DM, Aicher SA, Arttamangkul S, Morgan MM. Opioid receptor internalization contributes to dermorphin-mediated antinociception. Neuroscience 2010; 168:543-50. [PMID: 20394808 PMCID: PMC3312465 DOI: 10.1016/j.neuroscience.2010.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/31/2010] [Accepted: 04/02/2010] [Indexed: 02/04/2023]
Abstract
Microinjection of opioids into the ventrolateral periaqueductal gray (vlPAG) produces antinociception in part by binding to mu-opioid receptors (MOPrs). Although both high and low efficacy agonists produce antinociception, low efficacy agonists such as morphine produce limited MOPr internalization suggesting that MOPr internalization and signaling leading to antinociception are independent. This hypothesis was tested in awake, behaving rats using DERM-A594, a fluorescently labeled dermorphin analog, and internalization blockers. Microinjection of DERM-A594 into the vlPAG produced both antinociception and internalization of DERM-A594. Administration of the irreversible opioid receptor antagonist beta-chlornaltrexamine (beta-CNA) prior to DERM-A594 microinjection reduced both the antinociceptive effect and the number of DERM-A594 labeled cells demonstrating that both effects are opioid receptor-mediated. Pretreatment with the internalization blockers dynamin dominant-negative inhibitory peptide (dynamin-DN) and concanavalinA (ConA) attenuated both DERM-A594 internalization and antinociception. Microinjection of dynamin-DN and ConA also decreased the antinociceptive potency of the unlabeled opioid agonist dermorphin when microinjected into the vlPAG as demonstrated by rightward shifts in the dose-response curves. In contrast, administration of dynamin-DN had no effect on the antinociceptive effect of microinjecting the GABA(A) receptor antagonist bicuculline into the vlPAG. The finding that dermorphin-induced antinociception is attenuated by blocking receptor internalization indicates that key parts of opioid receptor-mediated signaling depend on internalization.
Collapse
Affiliation(s)
- T A Macey
- Department of Psychology, Washington State University Vancouver, 14204 NE Salmon Creek Avenue, Vancouver, WA 98686, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Virk MS, Arttamangkul S, Birdsong WT, Williams JT. Buprenorphine is a weak partial agonist that inhibits opioid receptor desensitization. J Neurosci 2009; 29:7341-8. [PMID: 19494155 PMCID: PMC2752300 DOI: 10.1523/jneurosci.3723-08.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 11/21/2022] Open
Abstract
Buprenorphine is a weak partial agonist at mu-opioid receptors that is used for treatment of pain and addiction. Intracellular and whole-cell recordings were made from locus ceruleus neurons in rat brain slices to characterize the actions of buprenorphine. Acute application of buprenorphine caused a hyperpolarization that was prevented by previous treatment of slices with the irreversible opioid antagonist beta-chlornaltrexamine (beta-CNA) but was not reversed by a saturating concentration of naloxone. As expected for a partial agonist, subsaturating concentrations of buprenorphine decreased the [Met](5)enkephalin (ME)-induced hyperpolarization or outward current. When the ME-induced current was decreased below a critical value, desensitization and internalization of mu-opioid receptors was eliminated. The inhibition of desensitization by buprenorphine was not the result of previous desensitization, slow dissociation from the receptor, or elimination of receptor reserve. Treatment of slices with subsaturating concentrations of etorphine, methadone, oxymorphone, or beta-CNA also reduced the current induced by ME but did not block ME-induced desensitization. Treatment of animals with buprenorphine for 1 week resulted in the inhibition of the current induced by ME and a block of desensitization that was not different from the acute application of buprenorphine to brain slices. These observations show the unique characteristics of buprenorphine and further demonstrate the range of agonist-selective actions that are possible through G-protein-coupled receptors.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Analysis of Variance
- Animals
- Biophysics
- Brain/cytology
- Brain/drug effects
- Brimonidine Tartrate
- Buprenorphine/pharmacology
- Dose-Response Relationship, Drug
- Electric Stimulation/methods
- Enkephalin, Methionine/pharmacology
- In Vitro Techniques
- Male
- Membrane Potentials/drug effects
- Membrane Potentials/genetics
- Mice
- Mice, Transgenic
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Narcotics/pharmacology
- Neural Inhibition/drug effects
- Neural Inhibition/genetics
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques/methods
- Quinoxalines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/deficiency
- Receptors, Opioid, mu/metabolism
- Yohimbine/pharmacology
Collapse
Affiliation(s)
- Michael S. Virk
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | | | - William T. Birdsong
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - John T. Williams
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
44
|
Two distinct mechanisms mediate acute mu-opioid receptor desensitization in native neurons. J Neurosci 2009; 29:3322-7. [PMID: 19279269 DOI: 10.1523/jneurosci.4749-08.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sustained stimulation of G-protein coupled receptors (GPCRs) leads to rapid loss of receptor function (acute desensitization). For many GPCRs including the mu-opioid receptor (MOR), an accepted mechanism for acute desensitization is through G-protein coupled receptor kinase (GRKs) mediated phosphorylation of the receptor, which facilitates the binding of beta-arrestins (betaarrs) to the receptor and then promotes endocytosis. However, the mechanism(s) that mediate acute desensitization have not yet been well defined in native neurons. This study used whole-cell patch clamp recording of G-protein coupled inward-rectifying potassium (GIRK) currents to assay MOR function and identify mechanisms of acute MOR desensitization in locus ceruleus (LC) neurons. The rate and extent of MOR desensitization were unaffected by beta(arr)-2 knock-out. Disruption of GRK2 function via inhibitory peptide introduced directly into neurons also failed to affect desensitization in wild type or beta(arr)-2 knock-outs. Inhibition of ERK1/2 activation alone had little effect on acute desensitization. However, when both GRK2-beta(arr)-2 and ERK1/2 functions were disrupted simultaneously, desensitization of MOR was nearly abolished. Together, these results suggest that acute desensitization of MOR in native LC neurons is determined by at least two molecular pathways, one involving GRK2 and beta(arr)2, and a parallel pathway mediated by activated ERK1/2.
Collapse
|
45
|
Scavone JL, Van Bockstaele EJ. Mu-opioid receptor redistribution in the locus coeruleus upon precipitation of withdrawal in opiate-dependent rats. Anat Rec (Hoboken) 2009; 292:401-11. [PMID: 19248160 PMCID: PMC2863286 DOI: 10.1002/ar.20860] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Administration of mu-opioid receptor (MOR) agonists is known to produce adaptive changes within noradrenergic neurons of the rat locus coeruleus (LC). Alterations in the subcellular distribution of MOR have been shown to occur in the LC in response to full agonists and endogenous peptides; however, there is considerable debate in the literature whether trafficking of MOR occurs after chronic exposure to the partial-agonist morphine. In the present study, we examined adaptations in MOR after chronic opioid exposure using immunofluorescence and electron microscopy (EM), using receptor internalization as a functional endpoint. MOR trafficking in LC neurons was characterized in morphine-dependent rats that were given naltrexone at a dose known to precipitate withdrawal. After chronic morphine exposure, a subtle redistribution of MOR immunoreactivity from the membrane to the cytosol was detected within dendrites of LC neurons. Interestingly, an acute injection of naltrexone in rats exposed to chronic morphine produced a robust internalization of MOR, whereas administration of naltrexone failed to do so in naïve animals. These findings provide anatomical evidence for modified regulation of MOR trafficking after chronic morphine treatment in brain noradrenergic neurons. Adaptations in the MOR signaling pathways that regulate internalization may occur as a consequence of chronic treatment and precipitation of withdrawal. Mechanisms underlying this effect might include differential MOR regulation in the LC, or downstream effects of withdrawal-induced enkephalin (ENK) release from afferents to the LC.
Collapse
Affiliation(s)
- Jillian L Scavone
- Department of Neurosurgery, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylania, USA
| | | |
Collapse
|
46
|
Hamabe W, Yamane H, Harada S, Tokuyama S. Involvement of kappa opioid receptors in the inhibition of receptor desensitization and PKC activation induced by repeated morphine treatment. J Pharm Pharmacol 2008; 60:1183-8. [PMID: 18718122 DOI: 10.1211/jpp.60.9.0010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Analgesic tolerance to morphine can develop from long-term use of this drug for the treatment of pain. Many reports have shown that stimulation of the kappa opioid receptor (KOR) suppresses development of analgesic tolerance to morphine. Here, we studied the KOR-mediated inhibition of morphine tolerance during repeated morphine treatment, with a focus on desensitization of the receptor. The development of analgesic tolerance to morphine during repeated morphine administration (10 mg kg(-1) s.c.) was completely suppressed by U-50488H (2 mg kg(-1) i.p.), a KOR agonist. The decrease in [35S] GTPgammaS binding activity stimulated by the mu opioid receptor (MOR) agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) was also significantly inhibited by U-50488H. These results indicate that stimulation of KOR caused by repeated morphine treatment either inhibits MOR desensitization or accelerates recycling of MOR on the cell surface, thereby suppressing morphine tolerance. Furthermore, we found that activity of protein kinase C (PKC) was significantly decreased in mice treated with both U-50488H and morphine. These results suggest that the mechanisms underlying KOR-mediated inhibition of analgesic tolerance to morphine may be partly due to suppression of PKC activation and prevention of receptor desensitization.
Collapse
Affiliation(s)
- Wakako Hamabe
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | | | | | | |
Collapse
|
47
|
Tolerance to repeated morphine administration is associated with increased potency of opioid agonists. Neuropsychopharmacology 2008; 33:2494-504. [PMID: 18046309 PMCID: PMC5688517 DOI: 10.1038/sj.npp.1301634] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tolerance to the pain-relieving effects of opiates limits their clinical use. Although morphine tolerance is associated with desensitization of mu-opioid receptors, the underlying cellular mechanisms are not understood. One problem with the desensitization hypothesis is that acute morphine does not readily desensitize mu-opioid receptors in many cell types. Given that neurons in the periaqueductal gray (PAG) contribute to morphine antinociception and tolerance, an understanding of desensitization in PAG neurons is particularly relevant. Opioid activity in the PAG can be monitored with activation of G-protein-mediated inwardly rectifying potassium (GIRK) currents. The present data show that opioids have a biphasic effect on GIRK currents in morphine tolerant rats. Opioid activation of GIRK currents is initially potentiated in morphine (EC(50)=281 nM) compared to saline (EC(50)=8.8 microM) pretreated rats as indicated by a leftward shift in the concentration-response curve for met-enkephalin (ME)-induced currents. These currents were inhibited by superfusion of the mu-opioid receptor antagonist beta-funaltrexamine (beta-FNA) suggesting that repeated morphine administration enhances agonist stimulation of mu-opioid receptor coupling to G-proteins. Although supersensitivity of mu-opioid receptors in the PAG is counterintuitive to the development of tolerance, peak GIRK currents from tolerant rats desensitized more than currents from saline pretreated rats (56% of peak current after 10 min compared to 15%, respectively). These data indicate that antinociceptive tolerance may be triggered by enhanced agonist potency resulting in increased desensitization of mu-opioid receptors.
Collapse
|
48
|
Christie MJ. Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br J Pharmacol 2008; 154:384-96. [PMID: 18414400 DOI: 10.1038/bjp.2008.100] [Citation(s) in RCA: 308] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A large range of neuroadaptations develop in response to chronic opioid exposure and these are thought to be more or less critical for expression of the major features of opioid addiction: tolerance, withdrawal and processes that may contribute to compulsive use and relapse. This review considers these adaptations at different levels of organization in the nervous system including tolerance at the mu-opioid receptor itself, cellular tolerance and withdrawal in opioid-sensitive neurons, systems tolerance and withdrawal in opioid-sensitive nerve networks, as well as synaptic plasticity in opioid sensitive nerve networks. Receptor tolerance appears to involve enhancement of mechanisms of receptor regulation, including desensitization and internalization. Adaptations causing cellular tolerance are more complex but several important processes have been identified including upregulation of cAMP/PKA and cAMP response element-binding signalling and perhaps the mitogen activated PK cascades in opioid sensitive neurons that might not only influence tolerance and withdrawal but also synaptic plasticity during cycles of intoxication and withdrawal. The potential complexity of network, or systems adaptations that interact with opioid-sensitive neurons is great but some candidate neuropeptide systems that interact with mu-opioid sensitive neurons may play a role in tolerance and withdrawal, as might activation of glial signalling. Implication of synaptic forms of learning such as long term potentiation and long term depression in opioid addiction is still in its infancy but this ultimately has the potential to identify specific synapses that contribute to compulsive use and relapse.
Collapse
Affiliation(s)
- M J Christie
- Pain Management Research Institute and Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia.
| |
Collapse
|
49
|
Virk MS, Williams JT. Agonist-specific regulation of mu-opioid receptor desensitization and recovery from desensitization. Mol Pharmacol 2008; 73:1301-8. [PMID: 18198283 PMCID: PMC3640555 DOI: 10.1124/mol.107.042952] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Agonist-selective actions of opioids on the desensitization of mu-opioid receptors (MORs) have been well characterized, but few if any studies have examined agonist-dependent recovery from desensitization. The outward potassium current induced by several opioids was studied using whole-cell voltage-clamp recordings in locus ceruleus neurons. A brief application of the irreversible opioid antagonist beta-chlornaltrexamine (beta-CNA) was applied immediately after treatment of slices with saturating concentrations of opioid agonists. This approach permitted the measurement of desensitization and recovery from desensitization using multiple opioid agonists, including [Met](5)enkephalin (ME), [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO), etorphine, fentanyl, methadone, morphine, morphine-6-glucuronide, oxycodone, and oxymorphone. The results indicate that desensitization protects receptors from irreversible antagonism with beta-CNA. The amount of desensitization was measured as the decrease in current during a 10-min application of a saturating agonist concentration and was a good predictor of the extent of receptor protection from irreversible inactivation with beta-CNA. After desensitization with ME or DAMGO and treatment with beta-CNA, there was an initial profound inhibition of MOR-induced current that recovered significantly after 45 min. There was, however, no recovery of MOR-mediated current with time after treatment with agonists that did not cause desensitization, such as oxycodone. These results demonstrate that desensitization prevents irreversible inactivation of receptors by beta-CNA.
Collapse
Affiliation(s)
- Michael S Virk
- Vollum Institute, L474, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239.
| | | |
Collapse
|
50
|
Role of receptor internalization in opioid tolerance and dependence. Pharmacol Ther 2007; 117:199-206. [PMID: 18076994 DOI: 10.1016/j.pharmthera.2007.10.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 10/25/2007] [Indexed: 12/01/2022]
Abstract
Agonist-induced mu-opioid receptor (MOPr) internalization has long been suggested to contribute directly to functional receptor desensitization and opioid tolerance. In contrast, recent evidence suggests that opioid receptor internalization could in fact reduce opioid tolerance in vivo, but the mechanisms that are responsible for the internalization-mediated protection against opioid tolerance are controversely discussed. One prevailing hypothesis is, that receptor internalization leads to decreased receptor signaling and therefore to reduced associated compensatory changes in downstream signaling systems that are involved in the development of opioid tolerance. However, numerous studies have demonstrated that desensitized and internalized mu-opioid receptors are rapidly recycled to the cell surface in a reactivated state, thus counteracting receptor desensitization and opioid tolerance. Further studies revealed agonist-selective differences in the ability to induce opioid receptor internalization. Recently it has been demonstrated that the endocytotic efficacies of opioids are negatively correlated to the induced opioid tolerance. Thus, clearer understanding of the role of opioid receptor trafficking in the regulation of opioid tolerance and dependence will help in the treatment of patients suffering from chronic pain or drug dependence.
Collapse
|