1
|
Maris E. Internal sensory models allow for balance control using muscle spindle acceleration feedback. Neural Netw 2025; 189:107571. [PMID: 40412019 DOI: 10.1016/j.neunet.2025.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/22/2025] [Accepted: 04/30/2025] [Indexed: 05/27/2025]
Abstract
Motor control requires sensory feedback, and the nature of this feedback has implications for the tasks of the central nervous system (CNS): for an approximately linear mechanical system (e.g., a freely standing person, a rider on a bicycle), if the sensory feedback does not contain the state variables (i.e., joint position and velocity), then optimal control actions are based on an internal dynamical system that estimates these states from the available incomplete sensory feedback. Such a computational system can be implemented as a recurrent neural network (RNN), and it uses a sensory model to update the state estimates. This is highly relevant for muscle spindle primary afferents whose firing rates scale with acceleration: if fusimotor and skeletomotor control are perfectly coordinated, these firing rates scale with the exafferent joint acceleration component, and in the absence of fusimotor control, they scale with the total joint acceleration (exafferent plus reafferent). For both scenarios, a sensory model exists that expresses the exafferent joint acceleration as a function of the state variables, and for the second scenario, a sensory model exists that corrects for the reafferent joint acceleration. Simulations of standing and bicycle balance control under realistic conditions show that joint acceleration feedback is sufficient for balance control, but only if the reafferent acceleration component is either absent from the feedback or is corrected for in the computational system.
Collapse
Affiliation(s)
- Eric Maris
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, P.O. Box 9104, HE, Nijmegen, Netherlands.
| |
Collapse
|
2
|
Jelonek W, Malik J, Łochyński D. Effects of attentional focus on spatial localization of distal body parts and touch in two-arm position matching. Exp Brain Res 2024; 243:27. [PMID: 39699636 DOI: 10.1007/s00221-024-06976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
This study investigated how the judgment of proximal joint position can be affected by touch alone, focused attention on the distal body part, or touch spatial localization. Participants completed a two-arm elbow joint position-matching task, in which they indicated the location of one forearm by the placement of the other. In four test conditions, matching was performed during (1) detection of touch (tactile stimulation of index finger pads), (2) spatial localization of fingers (attention focused on the position of index finger pads), (3) spatial localization of touch on fingers (attention focused on tactile stimulation of index finger pads), and (4) detection of touch but localization of fingers (tactile stimulation of index finger pads, but attention focusing on the spatial position of the pads). In the first experiment (n = 23), the sensitivity of muscle spindle receptors in both reference and indicator arms was reduced and equalized by both-slack conditioning. In the second experiment (n = 20), the illusion of excessive elbow flexion in the reference arm and excessive extension in the indicator arm was generated through extension-flexion conditioning. In the first experiment, the accuracy and precision of matching were unaffected in any test condition. In the second experiment, participants made amplified undershooting errors under attention-focused conditions. In conclusion, focused attention on the location of a distal body part and touch affects both the spatial localization of the limb and tactile remapping only when the perceived forearm position is misinterpreted due to imbalanced proprioceptive input from antagonistic arm muscles.
Collapse
Affiliation(s)
- Wojciech Jelonek
- Department of Neuromuscular Physiotherapy, Poznan University of Physical Education, Królowej Jadwigi 27/39, Poznan, 61-871, Poland.
| | - Jakub Malik
- Department of Pedagogy, Poznan University of Physical Education, Królowej Jadwigi 27/39, Poznan, 61-871, Poland
| | - Dawid Łochyński
- Department of Neuromuscular Physiotherapy, Poznan University of Physical Education, Królowej Jadwigi 27/39, Poznan, 61-871, Poland
| |
Collapse
|
3
|
Nichols TR. Neuromechanical Circuits of the Spinal Motor Apparatus. Compr Physiol 2024; 14:5789-5838. [PMID: 39699088 DOI: 10.1002/cphy.c240002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The evolution of mechanisms for terrestrial locomotion has resulted in multi-segmented limbs that allow navigation on irregular terrains, changing of direction, manipulation of external objects, and control over the mechanical properties of limbs important for interaction with the environment, with corresponding changes in neural pathways in the spinal cord. This article is focused on the organization of these pathways, their interactions with the musculoskeletal system, and the integration of these neuromechanical circuits with supraspinal mechanisms to control limb impedance. It is argued that neural pathways from muscle spindles and Golgi tendon organs form a distributive impedance controller in the spinal cord that controls limb impedance and coordination during responses to external disturbances. These pathways include both monosynaptic and polysynaptic components. Autogenic, monosynaptic pathways serve to control the spring-like properties of muscles preserving the nonlinear relationship between stiffness and force. Intermuscular monosynaptic pathways compensate for inertial disparities between the inertial properties of limb segments and help to control inertial coupling between joints and axes of rotation. Reciprocal inhibition controls joint stiffness in conjunction with feedforward cocontraction commands. Excitatory force feedback becomes operational during locomotion and increases muscular stiffness to accommodate the higher inertial loads. Inhibitory force feedback is widely distributed among muscles. It is integrated with excitatory pathways from muscle spindles and Golgi tendon organs to determine limb stiffness and interjoint coordination during interactions with the environment. The intermuscular distribution of force feedback is variable and serves to modulate limb stiffness to meet the physical demands of different motor tasks. © 2024 American Physiological Society. Compr Physiol 14:5789-5838, 2024.
Collapse
Affiliation(s)
- T Richard Nichols
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Olson WP, Chokshi VB, Kim JJ, Cowan NJ, O'Connor DH. Muscle spindles provide flexible sensory feedback for movement sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612899. [PMID: 39345532 PMCID: PMC11429703 DOI: 10.1101/2024.09.13.612899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Sensory feedback is essential for motor performance and must adapt to task demands. Muscle spindle afferents (MSAs) are a major primary source of feedback about movement, and their responses are readily modulated online by gain-controller fusimotor neurons and other mechanisms. They are therefore a powerful site for implementing flexible sensorimotor control. We recorded from MSAs innervating the jaw musculature during performance of a directed lick sequence task. Jaw MSAs encoded complex jaw-tongue kinematics. However, kinematic encoding alone accounted for less than half of MSA spiking variability. MSA coding of kinematics changed based on sequence progression (beginning, middle, or end of the sequence, or reward consumption), suggesting that MSAs are flexibly tuned across the task. Dynamic control of incoming feedback signals from MSAs may be a strategy for adaptable sensorimotor control during performance of complex behaviors.
Collapse
|
5
|
Maurus P, Mahdi G, Cluff T. Increased muscle coactivation is linked with fast feedback control when reaching in unpredictable visual environments. iScience 2024; 27:111174. [PMID: 39524350 PMCID: PMC11550142 DOI: 10.1016/j.isci.2024.111174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Humans encounter unpredictable disturbances in daily activities and sports. When encountering unpredictable physical disturbances, healthy participants increase the peak velocity of their reaching movements, muscle coactivation, and responses to sensory feedback. Emerging evidence suggests that muscle coactivation may facilitate responses to sensory feedback and may not solely increase stiffness to resist displacements. We tested this idea by examining how healthy participants alter the control of reaching movements and responses to sensory feedback when encountering variable visuomotor rotations. The rotations changed amplitude and direction between movements, creating unpredictable errors that required fast online corrections. Participants increased the peak velocity of their movements, muscle coactivation, and responses to visual and proprioceptive feedback with the variability of the visuomotor rotations. The findings highlight an increase in neural responsiveness to sensory feedback and suggest that muscle coactivation may prime the nervous system for fast responses to sensory feedback that accommodate properties of unpredictable visual environments.
Collapse
Affiliation(s)
- Philipp Maurus
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ghadeer Mahdi
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Tyler Cluff
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
6
|
Torell F, Dimitriou M. Local muscle pressure stimulates the principal receptors for proprioception. Cell Rep 2024; 43:114699. [PMID: 39213153 DOI: 10.1016/j.celrep.2024.114699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/11/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Proprioception plays a crucial role in motor coordination and self-perception. Muscle spindles are the principal receptors for proprioception. They are believed to encode muscle stretch and signal limb position and velocity. Here, we applied percutaneous pressure to a small area of extensor muscles at the forearm while recording spindle afferent responses, skeletal muscle activity, and hand kinematics. Three levels of sustained pressure were applied on the spindle-bearing muscle when the hand was relaxed and immobile ("isometric" condition) and when the participant's hand moved rhythmically at the wrist. As hypothesized to occur due to compression of the spindle capsule, we show that muscle pressure is an "adequate" stimulus for human spindles in isometric conditions and that pressure enhances spindle responses during stretch. Interestingly, release of sustained pressure in isometric conditions lowered spindle firing below baseline rates. Our findings urge a re-evaluation of muscle proprioception in sensorimotor function and various neuromuscular pathologies.
Collapse
Affiliation(s)
- Frida Torell
- Department of Medical and Translational Biology, Umeå University, 901 87 Umeå, Sweden
| | - Michael Dimitriou
- Department of Medical and Translational Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
7
|
Sun Y, Fede C, Zhao X, Del Felice A, Pirri C, Stecco C. Quantity and Distribution of Muscle Spindles in Animal and Human Muscles. Int J Mol Sci 2024; 25:7320. [PMID: 39000428 PMCID: PMC11242712 DOI: 10.3390/ijms25137320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Muscle spindles have unique anatomical characteristics that can be directly affected by the surrounding tissues under physiological and pathological conditions. Understanding their spatial distribution and density in different muscles is imperative to unravel the complexity of motor function. In the present study, the distribution and number/density of muscle spindles in human and animal muscles were reviewed. We identified 56 articles focusing on muscle spindle distribution; 13 articles focused on human muscles and 43 focused on animal muscles. The results demonstrate that spindles are located at the nerve entry points and along distributed vessels and they relate to the intramuscular connective tissue. Muscles' deep layers and middle segments are the main topographic distribution areas. Eleven articles on humans and thirty-three articles on animals (totaling forty-four articles) focusing on muscle spindle quantity and density were identified. Hand and head muscles, such as the pronator teres/medial pterygoid muscle/masseter/flexor digitorum, were most commonly studied in the human studies. For animals, whole-body musculature was studied. The present study summarized the spindle quantity in 77 human and 189 animal muscles. We identified well-studied muscles and any as-yet unfound data. The current data fail to clarify the relationship between quantity/density and muscle characteristics. The intricate distribution of the muscle spindles and their density and quantity throughout the body present some unique patterns or correlations, according to the current data. However, it remains unclear whether muscles with fine motor control have more muscle spindles since the study standards are inconsistent and data on numerous muscles are missing. This study provides a comprehensive and exhaustive approach for clinicians and researchers to determine muscle spindle status.
Collapse
Affiliation(s)
- Yunfeng Sun
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy; (Y.S.); (X.Z.); (A.D.F.)
| | - Caterina Fede
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, 35122 Padova, Italy; (C.F.); (C.P.)
| | - Xiaoxiao Zhao
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy; (Y.S.); (X.Z.); (A.D.F.)
| | - Alessandra Del Felice
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy; (Y.S.); (X.Z.); (A.D.F.)
- Section of Neurology, Department of Neuroscience, University of Padova, 35122 Padova, Italy
| | - Carmelo Pirri
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, 35122 Padova, Italy; (C.F.); (C.P.)
| | - Carla Stecco
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, 35122 Padova, Italy; (C.F.); (C.P.)
| |
Collapse
|
8
|
Torell F, Franklin S, Franklin DW, Dimitriou M. Goal-directed modulation of stretch reflex gains is reduced in the non-dominant upper limb. Eur J Neurosci 2023; 58:3981-4001. [PMID: 37727025 DOI: 10.1111/ejn.16148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Most individuals experience their dominant arm as being more dexterous than the non-dominant arm, but the neural mechanisms underlying this asymmetry in motor behaviour are unclear. Using a delayed-reach task, we have recently demonstrated strong goal-directed tuning of stretch reflex gains in the dominant upper limb of human participants. Here, we used an equivalent experimental paradigm to address the neural mechanisms that underlie the preparation for reaching movements with the non-dominant upper limb. There were consistent effects of load, preparatory delay duration and target direction on the long latency stretch reflex. However, by comparing stretch reflex responses in the non-dominant arm with those previously documented in the dominant arm, we demonstrate that goal-directed tuning of short and long latency stretch reflexes is markedly weaker in the non-dominant limb. The results indicate that the motor performance asymmetries across the two upper limbs are partly due to the more sophisticated control of reflexive stiffness in the dominant limb, likely facilitated by the superior goal-directed control of muscle spindle receptors. Our findings therefore suggest that fusimotor control may play a role in determining performance of complex motor behaviours and support existing proposals that the dominant arm is better supplied than the non-dominant arm for executing more complex tasks, such as trajectory control.
Collapse
Affiliation(s)
- Frida Torell
- Physiology Section, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Sae Franklin
- Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - David W Franklin
- Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany
- Munich Data Science Institute (MDSI), Technical University of Munich, Munich, Germany
| | - Michael Dimitriou
- Physiology Section, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Torell F. Evaluation of stretch reflex synergies in the upper limb using principal component analysis (PCA). PLoS One 2023; 18:e0292807. [PMID: 37824570 PMCID: PMC10569523 DOI: 10.1371/journal.pone.0292807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
The dynamic nature of movement and muscle activation emphasizes the importance of a sound experimental design. To ensure that an experiment determines what we intend, the design must be carefully evaluated. Before analyzing data, it is imperative to limit the number of outliers, biases, and skewness. In the present study, a simple center-out experiment was performed by 16 healthy volunteers. The experiment included three load conditions, two preparatory delays, two perturbations, and four targets placed along a diagonal path on a 2D plane. While the participants performed the tasks, the activity of seven arm muscles were monitored using surface electromyography (EMG). Principal component analysis (PCA) was used to evaluate the study design, identify muscle synergies, and assess the effects of individual quirks. With PCA, we can identify the trials that trigger stretch reflexes and pinpoint muscle synergies. The posterior deltoid, triceps long head, and brachioradialis were engaged when targets were in the direction of muscle shortening and the perturbation was applied in the opposite direction. Similarly, the pectoralis and anterior deltoid were engaged when the targets were in the direction of muscle shortening and the perturbation was applied in the opposite direction. The stretch reflexes were not triggered when the perturbation brought the hand in the direction of, or into the target, except if the muscle was pre-loaded. The use of PCA was also proven valuable when evaluating participant performance. While individual quirks are to be expected, failure to perform trials as expected can adversely affect the study results.
Collapse
Affiliation(s)
- Frida Torell
- Physiology Section, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
Wang AB, Housley SN, Ludvig D, Franz CK, Flores AM, Cope TC, Perreault EJ. Cancer survivors post-chemotherapy exhibit unimpaired short-latency stretch reflexes in the proximal upper extremity. J Neurophysiol 2023; 130:895-909. [PMID: 37671425 PMCID: PMC10649846 DOI: 10.1152/jn.00299.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023] Open
Abstract
Oxaliplatin (OX) chemotherapy can lead to long-term sensorimotor impairments in cancer survivors. The impairments are often thought to be caused by OX-induced progressive degeneration of sensory afferents known as length-dependent dying-back sensory neuropathy. However, recent preclinical work has identified functional defects in the encoding of muscle proprioceptors and in motoneuron firing. These functional defects in the proprioceptive sensorimotor circuitry could readily impair muscle stretch reflexes, a fundamental building block of motor coordination. Given that muscle proprioceptors are distributed throughout skeletal muscle, defects in stretch reflexes could be widespread, including in the proximal region where dying-back sensory neuropathy is less prominent. All previous investigations on chemotherapy-related reflex changes focused on distal joints, leading to results that could be influenced by dying-back sensory neuropathy rather than more specific changes to sensorimotor circuitry. Our study extends this earlier work by quantifying stretch reflexes in the shoulder muscles in 16 cancer survivors and 16 healthy controls. Conduction studies of the sensory nerves in hand were completed to detect distal sensory neuropathy. We found no significant differences in the short-latency stretch reflexes (amplitude and latency) of the shoulder muscles between cancer survivors and healthy controls, contrasting with the expected differences based on the preclinical work. Our results may be linked to differences between the human and preclinical testing paradigms including, among many possibilities, differences in the tested limb or species. Determining the source of these differences will be important for developing a complete picture of how OX chemotherapy contributes to long-term sensorimotor impairments.NEW & NOTEWORTHY Our results showed that cancer survivors after oxaliplatin (OX) treatment exhibited stretch reflexes that were comparable with age-matched healthy individuals in the proximal upper limb. The lack of OX effect might be linked to differences between the clinical and preclinical testing paradigms. These findings refine our expectations derived from the preclinical study and guide future assessments of OX effects that may have been insensitive to our measurement techniques.
Collapse
Affiliation(s)
- Allison B Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
| | - Stephen N Housley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Daniel Ludvig
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
| | - Colin K Franz
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Ann Marie Flores
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, United States
| | - Timothy C Cope
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States
- W.H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Georgia Institute of Technology, Atlanta, Georgia, United States
- Integrated Cancer Research Center, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Eric J Perreault
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| |
Collapse
|
11
|
Maurus P, Jackson K, Cashaback JG, Cluff T. The nervous system tunes sensorimotor gains when reaching in variable mechanical environments. iScience 2023; 26:106756. [PMID: 37213228 PMCID: PMC10197011 DOI: 10.1016/j.isci.2023.106756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/10/2023] [Accepted: 04/23/2023] [Indexed: 05/23/2023] Open
Abstract
Humans often move in the presence of mechanical disturbances that can vary in direction and amplitude throughout movement. These disturbances can jeopardize the outcomes of our actions, such as when drinking from a glass of water on a turbulent flight or carrying a cup of coffee while walking on a busy sidewalk. Here, we examine control strategies that allow the nervous system to maintain performance when reaching in the presence of mechanical disturbances that vary randomly throughout movement. Healthy participants altered their control strategies to make movements more robust against disturbances. The change in control was associated with faster reaching movements and increased responses to proprioceptive and visual feedback that were tuned to the variability of the disturbances. Our findings highlight that the nervous system exploits a continuum of control strategies to increase its responsiveness to sensory feedback when reaching in the presence of increasingly variable physical disturbances.
Collapse
Affiliation(s)
- Philipp Maurus
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Kuira Jackson
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Joshua G.A. Cashaback
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE 19716, USA
| | - Tyler Cluff
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Corresponding author
| |
Collapse
|
12
|
Torell F, Franklin S, Franklin DW, Dimitriou M. Assistive Loading Promotes Goal-Directed Tuning of Stretch Reflex Gains. eNeuro 2023; 10:ENEURO.0438-22.2023. [PMID: 36781230 PMCID: PMC9972504 DOI: 10.1523/eneuro.0438-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Voluntary movements are prepared before they are executed. Preparatory activity has been observed across the CNS and recently documented in first-order neurons of the human PNS (i.e., in muscle spindles). Changes seen in sensory organs suggest that independent modulation of stretch reflex gains may represent an important component of movement preparation. The aim of the current study was to further investigate the preparatory modulation of short-latency stretch reflex responses (SLRs) and long-latency stretch reflex responses (LLRs) of the dominant upper limb of human subjects. Specifically, we investigated how different target parameters (target distance and direction) affect the preparatory tuning of stretch reflex gains in the context of goal-directed reaching, and whether any such tuning depends on preparation duration and the direction of background loads. We found that target distance produced only small variations in reflex gains. In contrast, both SLR and LLR gains were strongly modulated as a function of target direction, in a manner that facilitated the upcoming voluntary movement. This goal-directed tuning of SLR and LLR gains was present or enhanced when the preparatory delay was sufficiently long (>250 ms) and the homonymous muscle was unloaded [i.e., when a background load was first applied in the direction of homonymous muscle action (assistive loading)]. The results extend further support for a relatively slow-evolving process in reach preparation that functions to modulate reflexive muscle stiffness, likely via the independent control of fusimotor neurons. Such control can augment voluntary goal-directed movement and is triggered or enhanced when the homonymous muscle is unloaded.
Collapse
Affiliation(s)
- Frida Torell
- Physiology Section, Department of Integrative Medical Biology, Umeå University, S-901 87 Umeå, Sweden
| | - Sae Franklin
- Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical University of Munich, D-80992 Munich, Germany
| | - David W Franklin
- Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical University of Munich, D-80992 Munich, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, D-80992 Munich, Germany
- Munich Data Science Institute (MDSI), Technical University of Munich, 85748 Munich, Germany
| | - Michael Dimitriou
- Physiology Section, Department of Integrative Medical Biology, Umeå University, S-901 87 Umeå, Sweden
| |
Collapse
|
13
|
Villamar Z, Ludvig D, Perreault EJ. Short-latency stretch reflexes depend on the balance of activity in agonist and antagonist muscles during ballistic elbow movements. J Neurophysiol 2023; 129:7-16. [PMID: 36475940 PMCID: PMC9799151 DOI: 10.1152/jn.00171.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/28/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
The spinal stretch reflex is a fundamental building block of motor function, with a sensitivity that varies continuously during movement and when changing between movement and posture. Many have investigated task-dependent reflex sensitivity, but few have provided simple, quantitative analyses of the relationship between the volitional control and stretch reflex sensitivity throughout tasks that require coordinated activity of several muscles. Here, we develop such an analysis and use it to test the hypothesis that modulation of reflex sensitivity during movement can be explained by the balance of activity within agonist and antagonist muscles better than by activity only in the muscle homonymous with the reflex. Subjects completed hundreds of flexion and extension movements as small, pseudorandom perturbations of elbow angle were applied to obtain estimates of stretch reflex amplitude throughout the movement. A subset of subjects performed a postural control task with muscle activities matched to those during movement. We found that reflex modulation during movement can be described by background activity in antagonist muscles about the elbow much better than by activity only in the muscle homonymous to the reflex (P < 0.001). Agonist muscle activity enhanced reflex sensitivity, whereas antagonist activity suppressed it. Surprisingly, the magnitude of these effects was similar, suggesting a balance of control between agonists and antagonists very different from the dominance of sensitivity to homonymous activity during posture. This balance is due to a large decrease in sensitivity to homonymous muscle activity during movement rather than substantial changes in the influence of antagonistic muscle activity.NEW & NOTEWORTHY This study examined the sensitivity of the stretch reflexes elicited in elbow muscles to the background activity in these same muscles during movement and postural tasks. We found a heightened reciprocal control of reflex sensitivity during movement that was not present during maintenance of posture. These results help explain previous discrepancies in reflex sensitivity measured during movement and posture and provide a simple model for assessing their contributions to muscle activity in both tasks.
Collapse
Affiliation(s)
- Zoe Villamar
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
- Shirley Ryan AbilityLab, Chicago, Illinois
| | - Daniel Ludvig
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
- Shirley Ryan AbilityLab, Chicago, Illinois
| | - Eric J Perreault
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
- Shirley Ryan AbilityLab, Chicago, Illinois
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| |
Collapse
|
14
|
Dimitriou M. Human muscle spindles are wired to function as controllable signal-processing devices. eLife 2022; 11:e78091. [PMID: 35829705 PMCID: PMC9278952 DOI: 10.7554/elife.78091] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/29/2022] [Indexed: 12/26/2022] Open
Abstract
Muscle spindles are encapsulated sensory organs found in most of our muscles. Prevalent models of sensorimotor control assume the role of spindles is to reliably encode limb posture and movement. Here, I argue that the traditional view of spindles is outdated. Spindle organs can be tuned by spinal γ motor neurons that receive top-down and peripheral input, including from cutaneous afferents. A new model is presented, viewing γ motor activity as an intermediate coordinate transformation that allows multimodal information to converge on spindles, creating flexible coordinate representations at the level of the peripheral nervous system. That is, I propose that spindles play a unique overarching role in the nervous system: that of a peripheral signal-processing device that flexibly facilitates sensorimotor performance, according to task characteristics. This role is compatible with previous findings and supported by recent studies with naturalistically active humans. Such studies have so far shown that spindle tuning enables the independent preparatory control of reflex muscle stiffness, the selective extraction of information during implicit motor adaptation, and for segmental stretch reflexes to operate in joint space. Incorporation of advanced signal-processing at the periphery may well prove a critical step in the evolution of sensorimotor control theories.
Collapse
Affiliation(s)
- Michael Dimitriou
- Physiology Section, Department of Integrative Medical Biology, Umeå UniversityUmeåSweden
| |
Collapse
|
15
|
Niespodziński B, Mieszkowski J, Sawczyn S, Kochanowicz K, Szulc A, Zasada M, Kochanowicz A. Elbow Joint Position and Force Senses in Young and Adult Untrained People and Gymnasts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137592. [PMID: 35805246 PMCID: PMC9265726 DOI: 10.3390/ijerph19137592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/15/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022]
Abstract
Joint position (JPS) and force senses (FS) are the proprioception modalities. While the development of JPS was investigated both in children/adult and athlete/untrained conditions, there is a lack of insight into the development of FS. Overall, 28 gymnasts and 25 untrained controls underwent proprioception testing. They were divided into two groups: 9 to 11-year-old boys (13 gymnasts and 10 non-athletes) and 18 to 25-year-old adults (15 gymnasts and 15 non-athletes). The testing was performed at an isokinetic dynamometer and included elbow JPS and FS (20% and 50% maximal voluntary contraction) tasks. Children had two times higher error in JPS (p < 0.01) and 50% higher errors in FS of both flexor (p < 0.001) and extensor muscles (p < 0.05) in comparison with adults. Only in the 50% maximal voluntary contraction task, gymnasts showed 33% lower error than the controls (p < 0.01). Untrained boys presented 54%, 132%, and 169% higher error for elbow flexor performance than young gymnasts, untrained adults, and adult gymnasts, respectively (p < 0.01). The 9 to 11-year-old participants were characterized by a lower precision of JPS and FS performance in comparison with adults. Gymnastic training can possibly accelerate the development of FS when higher loads are considered.
Collapse
Affiliation(s)
- Bartłomiej Niespodziński
- Department of Biological Foundations of Physical Education, Institute of Physical Education, Kazimierz Wielki University, Sportowa 2, 85-091 Bydgoszcz, Poland; (A.S.); (M.Z.)
- Correspondence: ; Tel.: +48-52-32-31-753; Fax: +48-52-32-31-706
| | - Jan Mieszkowski
- Department of Gymnastics and Dance, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland; (J.M.); (S.S.); (A.K.)
| | - Stanisław Sawczyn
- Department of Gymnastics and Dance, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland; (J.M.); (S.S.); (A.K.)
| | - Kazimierz Kochanowicz
- Department of Theory of Sport, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| | - Adam Szulc
- Department of Biological Foundations of Physical Education, Institute of Physical Education, Kazimierz Wielki University, Sportowa 2, 85-091 Bydgoszcz, Poland; (A.S.); (M.Z.)
| | - Mariusz Zasada
- Department of Biological Foundations of Physical Education, Institute of Physical Education, Kazimierz Wielki University, Sportowa 2, 85-091 Bydgoszcz, Poland; (A.S.); (M.Z.)
| | - Andrzej Kochanowicz
- Department of Gymnastics and Dance, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland; (J.M.); (S.S.); (A.K.)
| |
Collapse
|
16
|
Abstract
Scientist and technologist have long sought to advance limb prostheses that connect directly to the peripheral nervous system, enabling a person with amputation to volitionally control synthetic actuators that move, stiffen and power the prosthesis, as well as to experience natural afferent sensations from the prosthesis. Recently, the agonist-antagonist myoneural interface (AMI) was developed, a mechanoneural transduction architecture and neural interface system designed to provide persons with amputation improved muscle-tendon proprioception and neuroprosthetic control. In this paper, we provide an overview of the AMI, including its conceptual framing and preclinical science, surgical techniques for its construction, and clinical efficacy related to pain mitigation, phantom limb range of motion, fascicle dynamics, central brain proprioceptive sensorimotor preservation, and prosthetic controllability. Following this broad overview, we end with a discussion of current limitations of the AMI and potential resolutions to such challenges.
Collapse
|
17
|
Yeon SH, Song H, Herr HM. Spatiotemporally Synchronized Surface EMG and Ultrasonography Measurement Using a Flexible and Low-Profile EMG Electrode. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6242-6246. [PMID: 34892540 DOI: 10.1109/embc46164.2021.9629789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The temporally synchronized recording of muscle activity and fascicle dynamics is essential in understanding the neurophysiology of human motor control which could promote developments of effective rehabilitation strategies and assistive technologies. Surface electromyography (sEMG) and ultrasonography provide easy-to-use, low-cost, and noninvasive modalities to assess muscle activity and fascicle dynamics, and have been widely used in both clinical and lab settings. However, due to size of these sensors and limited skin surface area, it is extremely challenging to collect data from a muscle of interest in a spatially as well as temporally synchronized manner. Here, we introduce a low-cost, noninvasive flexible electrode that provides high quality sEMG recording, while also enabling spatiotemporally synchronized ultrasonography recordings. The proposed method was verified by comparing ultrasonography of a phantom and a tibialis anterior (TA) muscle during dorsiflexion and plantarflexion with and without the electrode acutely placed under an ultrasound probe. Our results show no significant artifact in ultrasonography from both the phantom and TA fascicle strains due to the presence of the electrode, demonstrating the capability of spatiotemporally synchronized sEMG and ultrasonography recording.
Collapse
|
18
|
Versteeg C, Rosenow JM, Bensmaia SJ, Miller LE. Encoding of limb state by single neurons in the cuneate nucleus of awake monkeys. J Neurophysiol 2021; 126:693-706. [PMID: 34010577 PMCID: PMC8409958 DOI: 10.1152/jn.00568.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
The cuneate nucleus (CN) is among the first sites along the neuraxis where proprioceptive signals can be integrated, transformed, and modulated. The objective of the study was to characterize the proprioceptive representations in CN. To this end, we recorded from single CN neurons in three monkeys during active reaching and passive limb perturbation. We found that many neurons exhibited responses that were tuned approximately sinusoidally to limb movement direction, as has been found for other sensorimotor neurons. The distribution of their preferred directions (PDs) was highly nonuniform and resembled that of muscle spindles within individual muscles, suggesting that CN neurons typically receive inputs from only a single muscle. We also found that the responses of proprioceptive CN neurons tended to be modestly amplified during active reaching movements compared to passive limb perturbations, in contrast to cutaneous CN neurons whose responses were not systematically different in the active and passive conditions. Somatosensory signals thus seem to be subject to a "spotlighting" of relevant sensory information rather than uniform suppression as has been suggested previously.NEW & NOTEWORTHY The cuneate nucleus (CN) is the somatosensory gateway into the brain, and only recently has it been possible to record these signals from an awake animal. We recorded single CN neurons in monkeys. Proprioceptive CN neurons appear to receive input from very few muscles, and their sensitivity to movement changes reliably during reaching relative to passive arm perturbations. Sensitivity is generally increased, but not exclusively so, as though CN "spotlights" critical proprioceptive information during reaching.
Collapse
Affiliation(s)
- Christopher Versteeg
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Joshua M Rosenow
- Department of Neurology, Northwestern University, Chicago, Illinois
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
- Grossman Institute of Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois
| | - Lee E Miller
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
- Shirley Ryan AbilityLab, Chicago, Illinois
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
19
|
Poscente SV, Peters RM, Cashaback JGA, Cluff T. Rapid Feedback Responses Parallel the Urgency of Voluntary Reaching Movements. Neuroscience 2021; 475:163-184. [PMID: 34302907 DOI: 10.1016/j.neuroscience.2021.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022]
Abstract
Optimal feedback control is a prominent theory used to interpret human motor behaviour. The theory posits that skilled actions emerge from control policies that link voluntary motor control (feedforward) with flexible feedback corrections (feedback control). It is clear the nervous system can generate flexible motor corrections (reflexes) when performing actions with different goals. We know little, however, about shared features of voluntary actions and feedback control in human movement. Here we reveal a link between the timing demands of voluntary actions and flexible responses to mechanical perturbations. In two experiments, 40 human participants (21 females) made reaching movements with different timing demands. We disturbed the arm with mechanical perturbations at movement onset (Experiment 1) and at locations ranging from movement onset to completion (Experiment 2). We used the resulting muscle responses and limb displacements as a proxy for the control policies that support voluntary reaching movements. We observed an increase in the sensitivity of elbow and shoulder muscle responses and a reduction in limb motion when the task imposed greater urgency to respond to the same perturbations. The results reveal a relationship between voluntary actions and feedback control as the limb was displaced less when moving faster in perturbation trials. Muscle responses scaled with changes in the displacement of the limb in perturbation trials within each timing condition. Across both experiments, human behaviour was captured by simulations based on stochastic optimal feedback control. Taken together, the results highlight flexible control that links sensory processing with features of human reaching movements.
Collapse
Affiliation(s)
- Sophia V Poscente
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ryan M Peters
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Joshua G A Cashaback
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA; Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA; Biomechanics and Movement Science Program, University of Delaware, Newark, DE 19716, USA
| | - Tyler Cluff
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
20
|
Dimitriou M. Crosstalk proposal: There is much to gain from the independent control of human muscle spindles. J Physiol 2021; 599:2501-2504. [PMID: 33749831 DOI: 10.1113/jp281338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Michael Dimitriou
- Physiology Section, Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden
| |
Collapse
|
21
|
Papaioannou S, Dimitriou M. Goal-dependent tuning of muscle spindle receptors during movement preparation. SCIENCE ADVANCES 2021; 7:7/9/eabe0401. [PMID: 33627426 PMCID: PMC7904268 DOI: 10.1126/sciadv.abe0401] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Voluntary movements are believed to undergo preparation before they are executed. Preparatory activity can benefit reaction time and the quality of planned movements, but the neural mechanisms at work during preparation are unclear. For example, there are no overt changes in muscle force during preparation. Here, using an instructed-delay manual task, we demonstrate a decrease in human muscle afferent activity (primary spindles) when preparing to reach targets in directions associated with stretch of the spindle-bearing muscle. This goal-dependent modulation of proprioceptors began early after target onset but was markedly stronger at the latter parts of the preparatory period. Moreover, whole-arm perturbations during reach preparation revealed a modulation of stretch reflex gains (shoulder and upper arm muscles) that reflected the observed changes in spindle activity. We suggest that one function of central preparatory activity is to tune muscle stiffness according to task goals via the independent control of muscle spindle sensors.
Collapse
Affiliation(s)
- Stylianos Papaioannou
- Physiology Section, Department of Integrative Medical Biology, University of Umeå, S-901 87 Umeå, Sweden
| | - Michael Dimitriou
- Physiology Section, Department of Integrative Medical Biology, University of Umeå, S-901 87 Umeå, Sweden.
| |
Collapse
|
22
|
Dynamic temporal modulation of somatosensory processing during reaching. Sci Rep 2021; 11:1928. [PMID: 33479355 PMCID: PMC7820441 DOI: 10.1038/s41598-021-81156-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/04/2021] [Indexed: 11/20/2022] Open
Abstract
Sensorimotor control of human action integrates feedforward policies that predict future body states with online sensory feedback. These predictions lead to a suppression of the associated feedback signals. Here, we examine whether somatosensory processing throughout a goal-directed movement is constantly suppressed or dynamically tuned so that online feedback processing is enhanced at critical moments of the movement. Participants reached towards their other hand in the absence of visual input and detected a probing tactile stimulus on their moving or static hand. Somatosensory processing on the moving hand was dynamically tuned over the time course of reaching, being hampered in early and late stages of the movement, but, interestingly, recovering around the time of maximal speed. This novel finding of temporal somatosensory tuning was further corroborated in a second experiment, in which larger movement amplitudes shifted the absolute time of maximal speed later in the movement. We further show that the release from suppression on the moving limb was temporally coupled with enhanced somatosensory processing on the target hand. We discuss these results in the context of optimal feedforward control and suggest that somatosensory processing is dynamically tuned during the time course of reaching by enhancing sensory processing at critical moments of the movement.
Collapse
|
23
|
Barrett P, Quick TJ, Mudera V, Player DJ. Generating intrafusal skeletal muscle fibres in vitro: Current state of the art and future challenges. J Tissue Eng 2020; 11:2041731420985205. [PMID: 34956586 PMCID: PMC8693220 DOI: 10.1177/2041731420985205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/12/2020] [Indexed: 01/18/2023] Open
Abstract
Intrafusal fibres are a specialised cell population in skeletal muscle, found within the muscle spindle. These fibres have a mechano-sensory capacity, forming part of the monosynaptic stretch-reflex arc, a key component responsible for proprioceptive function. Impairment of proprioception and associated dysfunction of the muscle spindle is linked with many neuromuscular diseases. Research to-date has largely been undertaken in vivo or using ex vivo preparations. These studies have provided a foundation for our understanding of muscle spindle physiology, however, the cellular and molecular mechanisms which underpin physiological changes are yet to be fully elucidated. Therefrom, the use of in vitro models has been proposed, whereby intrafusal fibres can be generated de novo. Although there has been progress, it is predominantly a developing and evolving area of research. This narrative review presents the current state of art in this area and proposes the direction of future work, with the aim of providing novel pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Philip Barrett
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Tom J Quick
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, Stanmore, UK
- UCL Centre for Nerve Engineering, University College London, London, UK
| | - Vivek Mudera
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Darren J Player
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| |
Collapse
|
24
|
Blum KP, Campbell KS, Horslen BC, Nardelli P, Housley SN, Cope TC, Ting LH. Diverse and complex muscle spindle afferent firing properties emerge from multiscale muscle mechanics. eLife 2020; 9:e55177. [PMID: 33370235 PMCID: PMC7769569 DOI: 10.7554/elife.55177] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Despite decades of research, we lack a mechanistic framework capable of predicting how movement-related signals are transformed into the diversity of muscle spindle afferent firing patterns observed experimentally, particularly in naturalistic behaviors. Here, a biophysical model demonstrates that well-known firing characteristics of mammalian muscle spindle Ia afferents - including movement history dependence, and nonlinear scaling with muscle stretch velocity - emerge from first principles of muscle contractile mechanics. Further, mechanical interactions of the muscle spindle with muscle-tendon dynamics reveal how motor commands to the muscle (alpha drive) versus muscle spindle (gamma drive) can cause highly variable and complex activity during active muscle contraction and muscle stretch that defy simple explanation. Depending on the neuromechanical conditions, the muscle spindle model output appears to 'encode' aspects of muscle force, yank, length, stiffness, velocity, and/or acceleration, providing an extendable, multiscale, biophysical framework for understanding and predicting proprioceptive sensory signals in health and disease.
Collapse
Affiliation(s)
- Kyle P Blum
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | | | - Brian C Horslen
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | - Paul Nardelli
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Stephen N Housley
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Timothy C Cope
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Lena H Ting
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
- Department of Rehabilitation Medicine, Emory UniversityAtlantaUnited States
| |
Collapse
|
25
|
Özyurt MG, Topkara B, Şenocak BS, Budan AS, Yüce MN, Türker KS. Post-activation depression of primary afferents reevaluated in humans. J Electromyogr Kinesiol 2020; 54:102460. [PMID: 32905963 DOI: 10.1016/j.jelekin.2020.102460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 11/26/2022] Open
Abstract
Amplitude variation of Hoffmann Reflex (H-reflex) was used as a tool to investigate many neuronal networks. However, H-reflex itself is a subject to intrinsic changes including post-activation depression (P-AD). We aimed to investigate P-AD and its implication on motor control in humans. Upon tibial nerve stimulation in 23 healthy participants, peak-to-peak amplitude change of H-reflex was investigated using surface electromyography (SEMG) of soleus muscle. Variety of stimulus intensities, interstimulus intervals (ISIs), voluntary contraction levels/types and force recording were used to investigate the nature of P-AD. We have shown that P-AD was significantly stronger in the shorter ISIs. The only exception was the ISI of 200 msecs which had a weaker P-AD than some of the longer ISIs. Sudden muscle relaxation, on the other hand, further increased the effectiveness of the ongoing P-AD. Moreover, P-AD displayed its full effect with the first stimulus when there was no muscle contraction and was efficient to reduce the muscle force output by about 30%. These findings provide insight about the variations and mechanism of P-AD and could lead to improvements in diagnostic tools in neurological diseases.
Collapse
Affiliation(s)
| | - Betilay Topkara
- Koç University, School of Medicine, 34450 Sariyer, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
26
|
Hernandez-Castillo CR, Maeda RS, Pruszynski JA, Diedrichsen J. Sensory information from a slipping object elicits a rapid and automatic shoulder response. J Neurophysiol 2020; 123:1103-1112. [PMID: 32073916 DOI: 10.1152/jn.00672.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Humans have the remarkable ability to hold, grasp, and manipulate objects. Previous work has reported rapid and coordinated reactions in hand and shoulder muscles in response to external perturbations to the arm during object manipulation; however, little is known about how somatosensory feedback of an object slipping in the hand influences responses of the arm. We built a handheld device to stimulate the sensation of slipping at all five fingertips. The device was integrated into an exoskeleton robot that supported it against gravity. The setup allowed us to decouple somatosensory stimulation in the fingers from forces applied to the arm, two variables that are highly interdependent in real-world scenarios. Fourteen participants performed three experiments in which we measured their arm feedback responses during slip stimulation. Slip stimulations were applied horizontally in one of two directions, and participants were instructed to either follow the slip direction or move the arm in the opposite direction. Participants showed shoulder muscle responses within ∼67 ms of slip onset when following the direction of slip but significantly slower responses when instructed to move in the opposite direction. Shoulder responses were modulated by the speed but not the distance of the slip. Finally, when slip stimulation was combined with mechanical perturbations to the arm, we found that sensory information from the fingertips significantly modulated the shoulder feedback responses. Overall, the results demonstrate the existence of a rapid feedback system that stabilizes handheld objects.NEW & NOTEWORTHY We tested whether the sensation of an object slipping from the fingers modulates shoulder feedback responses. We found rapid shoulder feedback responses when participants were instructed to follow the slip direction with the arm. Shoulder responses following mechanical joint perturbations were also potentiated when combined with slipping. These results demonstrate the existence of fast and automatic feedback responses in the arm in reaction to sensory input to the fingertips that maintain grip on handheld objects.
Collapse
Affiliation(s)
- Carlos R Hernandez-Castillo
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Computer Science, Western University, London, Ontario, Canada
| | - Rodrigo S Maeda
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada
| | - J Andrew Pruszynski
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Jörn Diedrichsen
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Computer Science, Western University, London, Ontario, Canada
| |
Collapse
|
27
|
Caprine Models of the Agonist-Antagonist Myoneural Interface Implemented at the Above- and Below-Knee Amputation Levels. Plast Reconstr Surg 2019; 144:218e-229e. [PMID: 31348345 DOI: 10.1097/prs.0000000000005864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Traditional approaches to amputation are not capable of reproducing the dynamic muscle relationships that are essential for proprioceptive sensation and joint control. In this study, the authors present two caprine models of the agonist-antagonist myoneural interface (AMI), a surgical approach designed to improve bidirectional neural control of a bionic limb. The key advancement of the AMI is the surgical coaptation of natively innervated agonist-antagonist muscle pairs within the residual limb. METHODS One AMI was surgically created in the hindlimb of each of two African Pygmy goats at the time of primary transtibial amputation. Each animal was also implanted with muscle electrodes and sonomicrometer crystals to enable measurement of muscle activation and muscle state, respectively. Coupled agonist-antagonist excursion in the agonist-antagonist myoneural interface muscles was measured longitudinally for each animal. Fibrosis in the residual limb was evaluated grossly in each animal as part of a planned terminal procedure. RESULTS Electromyographic and muscle state measurements showed coupled agonist-antagonist motion within the AMI in the presence of both neural activation and artificial muscle stimulation. Gross observation of the residual limb during a planned terminal procedure revealed a thin fibrotic encapsulation of the AMI constructs, which was not sufficient to preclude coupled muscle excursion. CONCLUSIONS These findings highlight the AMI's potential to provide coupled motion of distal agonist-antagonist muscle pairs preserved during below- or above-knee amputation at nearly human scale. Guided by these findings, it is the authors' expectation that further development of the AMI architecture will improve neural control of advanced limb prostheses through incorporation of physiologically relevant muscle-tendon proprioception.
Collapse
|
28
|
Clites TR, Herr HM, Srinivasan SS, Zorzos AN, Carty MJ. The Ewing Amputation: The First Human Implementation of the Agonist-Antagonist Myoneural Interface. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2018; 6:e1997. [PMID: 30881798 PMCID: PMC6414116 DOI: 10.1097/gox.0000000000001997] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/14/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND The agonist-antagonist myoneural interface (AMI) comprises a surgical construct and neural control architecture designed to serve as a bidirectional interface, capable of reflecting proprioceptive sensation of prosthetic joint position, speed, and torque from and advanced limb prosthesis onto the central nervous system. The AMI surgical procedure has previously been vetted in animal models; we here present the surgical results of its translation to human subjects. METHODS Modified unilateral below knee amputations were performed in the elective setting in 3 human subjects between July 2016 and April 2017. AMIs were constructed in each subject to control and interpret proprioception from the bionic ankle and subtalar joints. Intraoperative, perioperative, and postoperative residual-limb outcome measures were recorded and analyzed, including electromyographic and radiographic imaging of AMI musculature. RESULTS Mean subject age was 38 ± 13 years, and mean body mass index was 29.5 ± 5.5 kg/m2. Mean operative time was 346 ± 87 minutes, including 120 minutes of tourniquet time per subject. Complications were minor and included transient cellulitis and one instance of delayed wound healing. All subjects demonstrated mild limb hypertrophy postoperatively, and intact construct excursion with volitional muscle activation. All patients reported a high degree of phantom limb position perception with no reports of phantom pain. CONCLUSIONS The AMI offers the possibility of improved prosthetic control and restoration of muscle-tendon proprioception. Initial results in this first cohort of human patients are promising and provide evidence as to the potential role of AMIs in the care of patients requiring below knee amputation.
Collapse
Affiliation(s)
- Tyler R. Clites
- From the Massachusetts Institute of Technology, Center for Extreme Bionics, Cambridge, Mass
| | - Hugh M. Herr
- From the Massachusetts Institute of Technology, Center for Extreme Bionics, Cambridge, Mass
| | - Shriya S. Srinivasan
- From the Massachusetts Institute of Technology, Center for Extreme Bionics, Cambridge, Mass
| | - Anthony N. Zorzos
- From the Massachusetts Institute of Technology, Center for Extreme Bionics, Cambridge, Mass
| | - Matthew J. Carty
- From the Massachusetts Institute of Technology, Center for Extreme Bionics, Cambridge, Mass
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, Mass
| |
Collapse
|
29
|
Abstract
Muscle spindles are ubiquitous encapsulated mechanoreceptors found in most mammalian muscles. There are two types of endings, primary and secondary, and both are sensitive to changes in muscle length and velocity, with the primary endings having a greater dynamic sensitivity. Unlike other mechanoreceptors in the somatosensory system, muscle spindles are unique in possessing motor innervation, via γ-motoneurons (fusimotor neurons), that control their sensitivity to stretch. Much of what we know about human muscles spindles comes from studying the behavior of their afferents via intraneural microelectrodes (microneurography) inserted into accessible peripheral nerves. We review the functional properties of human muscle spindles, comparing and contrasting with what we know about the functions of muscle spindles studied in experimental animals. As in the cat, many human muscle spindles possess a background discharge that is related to the degree of muscle stretch, but mean firing rates are much lower (~10 Hz). They can faithfully encode changes in muscle fascicle length in passive conditions, but higher level extraction of information is required by the central nervous system to measure changes in muscle length during muscle contraction. Moreover, although there is some evidence supporting independent control of human muscle spindles via fusimotor neurons, any effects are modest compared with the clearly independent control of fusimotor neurons observed in the cat.
Collapse
Affiliation(s)
- Vaughan G. Macefield
- School of Medicine, Western Sydney University, Sydney, Australia
- Neuroscience Research Institute, Sydney, Australia
- Baker Heart & Diabetes Institute, Melbourne, Australia
| | | |
Collapse
|
30
|
Clites TR, Carty MJ, Ullauri JB, Carney ME, Mooney LM, Duval JF, Srinivasan SS, Herr HM. Proprioception from a neurally controlled lower-extremity prosthesis. Sci Transl Med 2018; 10:10/443/eaap8373. [DOI: 10.1126/scitranslmed.aap8373] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/09/2017] [Accepted: 05/03/2018] [Indexed: 11/02/2022]
|
31
|
Brownstone RM, Lancelin C. Escape from homeostasis: spinal microcircuits and progression of amyotrophic lateral sclerosis. J Neurophysiol 2018; 119:1782-1794. [PMID: 29384454 PMCID: PMC6008087 DOI: 10.1152/jn.00331.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In amyotrophic lateral sclerosis (ALS), loss of motoneuron function leads to weakness and, ultimately, respiratory failure and death. Regardless of the initial pathogenic factors, motoneuron loss follows a specific pattern: the largest α-motoneurons die before smaller α-motoneurons, and γ-motoneurons are spared. In this article, we examine how homeostatic responses to this orderly progression could lead to local microcircuit dysfunction that in turn propagates motoneuron dysfunction and death. We first review motoneuron diversity and the principle of α-γ coactivation and then discuss two specific spinal motoneuron microcircuits: those involving proprioceptive afferents and those involving Renshaw cells. Next, we propose that the overall homeostatic response of the nervous system is aimed at maintaining force output. Thus motoneuron degeneration would lead to an increase in inputs to motoneurons, and, because of the pattern of neuronal degeneration, would result in an imbalance in local microcircuit activity that would overwhelm initial homeostatic responses. We suggest that this activity would ultimately lead to excitotoxicity of motoneurons, which would hasten the progression of disease. Finally, we propose that should this be the case, new therapies targeted toward microcircuit dysfunction could slow the course of ALS.
Collapse
Affiliation(s)
- Robert M Brownstone
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London , London , United Kingdom
| | - Camille Lancelin
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London , London , United Kingdom
| |
Collapse
|
32
|
Jalaleddini K, Nagamori A, Laine CM, Golkar MA, Kearney RE, Valero‐Cuevas FJ. Physiological tremor increases when skeletal muscle is shortened: implications for fusimotor control. J Physiol 2017; 595:7331-7346. [PMID: 29023731 PMCID: PMC5730841 DOI: 10.1113/jp274899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/25/2017] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS In tonic, isometric, plantarflexion contractions, physiological tremor increases as the ankle joint becomes plantarflexed. Modulation of physiological tremor as a function of muscle stretch differs from that of the stretch reflex amplitude. Amplitude of physiological tremor may be altered as a function of reflex pathway gains. Healthy humans likely increase their γ-static fusimotor drive when muscles shorten. Quantification of physiological tremor by manipulation of joint angle may be a useful experimental probe of afferent gains and/or the integrity of automatic fusimotor control. ABSTRACT The involuntary force fluctuations associated with physiological (as distinct from pathological) tremor are an unavoidable component of human motor control. While the origins of physiological tremor are known to depend on muscle afferentation, it is possible that the mechanical properties of muscle-tendon systems also affect its generation, amplification and maintenance. In this paper, we investigated the dependence of physiological tremor on muscle length in healthy individuals. We measured physiological tremor during tonic, isometric plantarflexion torque at 30% of maximum at three ankle angles. The amplitude of physiological tremor increased as calf muscles shortened in contrast to the stretch reflex whose amplitude decreases as muscle shortens. We used a published closed-loop simulation model of afferented muscle to explore the mechanisms responsible for this behaviour. We demonstrate that changing muscle lengths does not suffice to explain our experimental findings. Rather, the model consistently required the modulation of γ-static fusimotor drive to produce increases in physiological tremor with muscle shortening - while successfully replicating the concomitant reduction in stretch reflex amplitude. This need to control γ-static fusimotor drive explicitly as a function of muscle length has important implications. First, it permits the amplitudes of physiological tremor and stretch reflex to be decoupled. Second, it postulates neuromechanical interactions that require length-dependent γ drive modulation to be independent from α drive to the parent muscle. Lastly, it suggests that physiological tremor can be used as a simple, non-invasive measure of the afferent mechanisms underlying healthy motor function, and their disruption in neurological conditions.
Collapse
Affiliation(s)
- Kian Jalaleddini
- Division of Biokinesiology and Physical TherapyUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Akira Nagamori
- Division of Biokinesiology and Physical TherapyUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Christopher M. Laine
- Division of Biokinesiology and Physical TherapyUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Mahsa A. Golkar
- Department of Biomedical EngineeringMcGill UniversityMontréalQCCanada
| | - Robert E. Kearney
- Department of Biomedical EngineeringMcGill UniversityMontréalQCCanada
| | - Francisco J. Valero‐Cuevas
- Division of Biokinesiology and Physical TherapyUniversity of Southern CaliforniaLos AngelesCAUSA
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|
33
|
Blum KP, Lamotte D’Incamps B, Zytnicki D, Ting LH. Force encoding in muscle spindles during stretch of passive muscle. PLoS Comput Biol 2017; 13:e1005767. [PMID: 28945740 PMCID: PMC5634630 DOI: 10.1371/journal.pcbi.1005767] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/10/2017] [Accepted: 09/05/2017] [Indexed: 12/03/2022] Open
Abstract
Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions relevant to the detection and sensorimotor response to mechanical perturbations to the body, and to previously-described history-dependence in perception of limb position.
Collapse
Affiliation(s)
- Kyle P. Blum
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Boris Lamotte D’Incamps
- Center for Neurophysics, Physiology and Pathophysiology, Université Paris Descartes, Paris, France
| | - Daniel Zytnicki
- Center for Neurophysics, Physiology and Pathophysiology, Université Paris Descartes, Paris, France
| | - Lena H. Ting
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
34
|
Neurophysiological insights on flexibility improvements through motor imagery. Behav Brain Res 2017; 331:159-168. [DOI: 10.1016/j.bbr.2017.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 01/21/2023]
|
35
|
Crevecoeur F, Barrea A, Libouton X, Thonnard JL, Lefèvre P. Multisensory components of rapid motor responses to fingertip loading. J Neurophysiol 2017; 118:331-343. [PMID: 28468992 DOI: 10.1152/jn.00091.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 11/22/2022] Open
Abstract
Tactile and muscle afferents provide critical sensory information for grasp control, yet the contribution of each sensory system during online control has not been clearly identified. More precisely, it is unknown how these two sensory systems participate in online control of digit forces following perturbations to held objects. To address this issue, we investigated motor responses in the context of fingertip loading, which parallels the impact of perturbations to held objects on finger motion and fingerpad deformation, and characterized surface recordings of intrinsic (first dorsal interosseous, FDI) and extrinsic (flexor digitorum superficialis, FDS) hand muscles based on statistical modeling. We designed a series of experiments probing the effects of peripheral stimulation with or without anesthesia of the finger, and of task instructions. Loading of the fingertip generated a motor response in FDI at ~60 ms following the perturbation onset, which was only driven by muscle stretch, as the ring-block anesthesia reduced the gain of the response occurring later than 90 ms, leaving responses occurring before this time unaffected. In contrast, the motor response in FDS was independent of the lateral motion of the finger. This response started at ~90 ms on average and was immediately adjusted to task demands. Altogether these results highlight how a rapid integration of partially distinct sensorimotor circuits supports rapid motor responses to fingertip loading.NEW & NOTEWORTHY To grasp and manipulate objects, the brain uses touch signals related to skin deformation as well as sensory information about motion of the fingers encoded in muscle spindles. Here we investigated how these two sensory systems contribute to feedback responses to perturbation applied to the fingertip. We found distinct response components, suggesting that each sensory system engages separate sensorimotor circuits with distinct functions and latencies.
Collapse
Affiliation(s)
- F Crevecoeur
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Institute of Neuroscience (IoNS), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - A Barrea
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Institute of Neuroscience (IoNS), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - X Libouton
- Cliniques Universitaire Saint-Luc, Université catholique de Louvain, Louvain-la-Neuve, Belgium; and
| | - J-L Thonnard
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Physical and Rehabilitation Medicine Department, Cliniques Universitaire Saint-Luc, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - P Lefèvre
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, Louvain-la-Neuve, Belgium; .,Institute of Neuroscience (IoNS), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
36
|
Clites TR, Carty MJ, Srinivasan S, Zorzos AN, Herr HM. A murine model of a novel surgical architecture for proprioceptive muscle feedback and its potential application to control of advanced limb prostheses. J Neural Eng 2017; 14:036002. [PMID: 28211795 DOI: 10.1088/1741-2552/aa614b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Proprioceptive mechanisms play a critical role in both reflexive and volitional lower extremity control. Significant strides have been made in the development of bionic limbs that are capable of bi-directional communication with the peripheral nervous system, but none of these systems have been capable of providing physiologically-relevant muscle-based proprioceptive feedback through natural neural pathways. In this study, we present the agonist-antagonist myoneural interface (AMI), a surgical approach with the capacity to provide graded kinesthetic feedback from a prosthesis through mechanical activation of native mechanoreceptors within residual agonist-antagonist muscle pairs. APPROACH (1) Sonomicrometery and electroneurography measurement systems were validated using a servo-based muscle tensioning system. (2) A heuristic controller was implemented to modulate functional electrical stimulation of an agonist muscle, using sonomicrometric measurements of stretch from a mechanically-coupled antagonist muscle as feedback. (3) One AMI was surgically constructed in the hindlimb of each rat. (4) The gastrocnemius-soleus complex of the rat was cycled through a series of ramp-and-hold stretches in two different muscle architectures: native (physiologically-intact) and AMI (modified). Integrated electroneurography from the tibial nerve was compared across the two architectures. MAIN RESULTS Correlation between stretch and afferent signal demonstrated that the AMI is capable of provoking graded afferent signals in response to ramp-and-hold stretches, in a manner similar to the native muscle architecture. The response magnitude in the AMI was reduced when compared to the native architecture, likely due to lower stretch amplitudes. The closed-loop control system showed robustness at high stretch magnitudes, with some oscillation at low stretch magnitudes. SIGNIFICANCE These results indicate that the AMI has the potential to communicate meaningful kinesthetic feedback from a prosthetic limb by replicating the agonist-antagonist relationships that are fundamental to physiological proprioception.
Collapse
Affiliation(s)
- Tyler R Clites
- Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | | | | | | | | |
Collapse
|
37
|
Jalaleddini K, Minos Niu C, Chakravarthi Raja S, Joon Sohn W, Loeb GE, Sanger TD, Valero-Cuevas FJ. Neuromorphic meets neuromechanics, part II: the role of fusimotor drive. J Neural Eng 2017; 14:025002. [PMID: 28094764 DOI: 10.1088/1741-2552/aa59bd] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We studied the fundamentals of muscle afferentation by building a Neuro-mechano-morphic system actuating a cadaveric finger. This system is a faithful implementation of the stretch reflex circuitry. It allowed the systematic exploration of the effects of different fusimotor drives to the muscle spindle on the closed-loop stretch reflex response. APPROACH As in Part I of this work, sensory neurons conveyed proprioceptive information from muscle spindles (with static and dynamic fusimotor drive) to populations of α-motor neurons (with recruitment and rate coding properties). The motor commands were transformed into tendon forces by a Hill-type muscle model (with activation-contraction dynamics) via brushless DC motors. Two independent afferented muscles emulated the forces of flexor digitorum profundus and the extensor indicis proprius muscles, forming an antagonist pair at the metacarpophalangeal joint of a cadaveric index finger. We measured the physical response to repetitions of bi-directional ramp-and-hold rotational perturbations for 81 combinations of static and dynamic fusimotor drives, across four ramp velocities, and three levels of constant cortical drive to the α-motor neuron pool. MAIN RESULTS We found that this system produced responses compatible with the physiological literature. Fusimotor and cortical drives had nonlinear effects on the reflex forces. In particular, only cortical drive affected the sensitivity of reflex forces to static fusimotor drive. In contrast, both static fusimotor and cortical drives reduced the sensitivity to dynamic fusimotor drive. Interestingly, realistic signal-dependent motor noise emerged naturally in our system without having been explicitly modeled. SIGNIFICANCE We demonstrate that these fundamental features of spinal afferentation sufficed to produce muscle function. As such, our Neuro-mechano-morphic system is a viable platform to study the spinal mechanisms for healthy muscle function-and its pathologies such as dystonia and spasticity. In addition, it is a working prototype of a robust biomorphic controller for compliant robotic limbs and exoskeletons.
Collapse
Affiliation(s)
- Kian Jalaleddini
- Division of Biokinesiology and Physical Therapy, University of Southern California, CA, United States of America
| | | | | | | | | | | | | |
Collapse
|
38
|
Grandjean B, Maier MA. Emergence of gamma motor activity in an artificial neural network model of the corticospinal system. J Comput Neurosci 2016; 42:53-70. [PMID: 27677889 DOI: 10.1007/s10827-016-0627-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 11/26/2022]
Abstract
Muscle spindle discharge during active movement is a function of mechanical and neural parameters. Muscle length changes (and their derivatives) represent its primary mechanical, fusimotor drive its neural component. However, neither the action nor the function of fusimotor and in particular of γ-drive, have been clearly established, since γ-motor activity during voluntary, non-locomotor movements remains largely unknown. Here, using a computational approach, we explored whether γ-drive emerges in an artificial neural network model of the corticospinal system linked to a biomechanical antagonist wrist simulator. The wrist simulator included length-sensitive and γ-drive-dependent type Ia and type II muscle spindle activity. Network activity and connectivity were derived by a gradient descent algorithm to generate reciprocal, known target α-motor unit activity during wrist flexion-extension (F/E) movements. Two tasks were simulated: an alternating F/E task and a slow F/E tracking task. Emergence of γ-motor activity in the alternating F/E network was a function of α-motor unit drive: if muscle afferent (together with supraspinal) input was required for driving α-motor units, then γ-drive emerged in the form of α-γ coactivation, as predicted by empirical studies. In the slow F/E tracking network, γ-drive emerged in the form of α-γ dissociation and provided critical, bidirectional muscle afferent activity to the cortical network, containing known bidirectional target units. The model thus demonstrates the complementary aspects of spindle output and hence γ-drive: i) muscle spindle activity as a driving force of α-motor unit activity, and ii) afferent activity providing continuous sensory information, both of which crucially depend on γ-drive.
Collapse
Affiliation(s)
- Bernard Grandjean
- FR3636 CNRS, Université Paris Descartes, Sorbonne Paris Cité, F-75006, Paris, France
| | - Marc A Maier
- FR3636 CNRS, Université Paris Descartes, Sorbonne Paris Cité, F-75006, Paris, France.
- Université Paris Diderot, Sorbonne Paris Cité, F-75013, Paris, France.
| |
Collapse
|
39
|
Carvalho DZ, Boes CJ. Absent quadriceps reflex with distant toe flexor response: An underrecognized neurological sign. Clin Neurol Neurosurg 2016; 149:44-5. [PMID: 27458829 DOI: 10.1016/j.clineuro.2016.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/22/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022]
Abstract
As opposed to finger flexion response upon tapping the styloid process with absent brachioradialis reflex (inverted brachioradialis reflex), toe flexion response upon patellar percussion with absent quadriceps reflex is a quite underrecognized neurological sign, and has been reported only once in the literature. Similar to the inverted brachioradialis reflex, this sign can also be useful for neurological localization. We hereby report a patient presenting with signs and symptoms of lumbar radiculopathy in the setting of an anterior epidural mass compressing the cauda equina at L2-L4, without evidence of myelopathy. Upon examination, the patient had bilateral absent quadriceps reflexes with a right toe flexor response when the right patella was percussed. An absent quadriceps reflex with distant toe flexor response is proposed as a lower extremity equivalent of the inverted brachioradialis reflex, likely localizing to L3-L4 levels. Spindle hypersensitivity due to lack of reciprocal inhibition from antagonist muscles is hypothesized as a possible underlying mechanism. Further observations should help clarify the most common underlying etiology (radicular vs. radiculomyelopathy). Neurologists should be able to recognize this sign, as it can be helpful for neurological localization.
Collapse
|
40
|
Puntkattalee MJ, Whitmire CJ, Macklin AS, Stanley GB, Ting LH. Directional acuity of whole-body perturbations during standing balance. Gait Posture 2016; 48:77-82. [PMID: 27477713 PMCID: PMC5500239 DOI: 10.1016/j.gaitpost.2016.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/18/2016] [Accepted: 04/07/2016] [Indexed: 02/02/2023]
Abstract
The ability to perceive the direction of whole-body motion during standing may be critical to maintaining balance and preventing a fall. Our first goal was to quantify kinesthetic perception of whole-body motion by estimating directional acuity thresholds of support-surface perturbations during standing. The directional acuity threshold to lateral deviations in backward support-surface motion in healthy, young adults was quantified as 9.5±2.4° using the psychometric method (n=25 subjects). However, inherent limitations in the psychometric method, such as a large number of required trials and the predetermined stimulus set, may preclude wider use of this method in clinical populations. Our second goal was to validate an adaptive algorithm known as parameter estimation by sequential testing (PEST) as an alternative threshold estimation technique to minimize the required trial count without predetermined knowledge of the relevant stimulus space. The directional acuity threshold was estimated at 11.7±3.8° from the PEST method (n=11 of 25 subjects, psychometric threshold=10.1±3.1°) using only one-third the number of trials compared to the psychometric method. Furthermore, PEST estimates of the direction acuity threshold were highly correlated with the psychometric estimates across subjects (r=0.93) suggesting that both methods provide comparable estimates of the perceptual threshold. Computational modeling of both techniques revealed similar variance in the estimated thresholds across simulations of about 1°. Our results suggest that the PEST algorithm can be used to more quickly quantify whole-body directional acuity during standing in individuals with balance impairments.
Collapse
Affiliation(s)
- M. Jane Puntkattalee
- Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Atlanta, GA 30332, USA
| | - Clarissa J. Whitmire
- Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Atlanta, GA 30332, USA
| | - Alix S. Macklin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Garrett B. Stanley
- Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Atlanta, GA 30332, USA
| | - Lena H. Ting
- Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Atlanta, GA 30332, USA,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA,Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
41
|
Vlaar MP, Solis-Escalante T, Vardy AN, van der Helm FCT, Schouten AC. Quantifying Nonlinear Contributions to Cortical Responses Evoked by Continuous Wrist Manipulation. IEEE Trans Neural Syst Rehabil Eng 2016; 25:481-491. [PMID: 27305683 DOI: 10.1109/tnsre.2016.2579118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cortical responses to continuous stimuli as recorded using either magneto- or electroencephalography (EEG) have shown power at harmonics of the stimulated frequency, indicating nonlinear behavior. Even though the selection of analysis techniques depends on the linearity of the system under study, the importance of nonlinear contributions to cortical responses has not been formally addressed. The goal of this paper is to quantify the nonlinear contributions to the cortical response obtained from continuous sensory stimulation. EEG was used to record the cortical response evoked by continuous movement of the wrist joint of healthy subjects applied with a robotic manipulator. Multisine stimulus signals (i.e., the sum of several sinusoids) elicit a periodic cortical response and allow to assess the nonlinear contributions to the response. Wrist dynamics (relation between joint angle and torque) were successfully linearized, explaining 99% of the response. In contrast, the cortical response revealed a highly nonlinear relation; where most power ( ∼ 80 %) occurred at non-stimulated frequencies. Moreover, only 10% of the response could be explained using a nonparametric linear model. These results indicate that the recorded evoked cortical responses are governed by nonlinearities and that linear methods do not suffice when describing the relation between mechanical stimulus and cortical response.
Collapse
|
42
|
Kiely J, Collins DJ. Uniqueness of Human Running Coordination: The Integration of Modern and Ancient Evolutionary Innovations. Front Psychol 2016; 7:262. [PMID: 27148098 PMCID: PMC4826868 DOI: 10.3389/fpsyg.2016.00262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/10/2016] [Indexed: 12/26/2022] Open
Abstract
Running is a pervasive activity across human cultures and a cornerstone of contemporary health, fitness, and sporting activities. Yet for the overwhelming predominance of human existence running was an essential prerequisite for survival. A means to hunt, and a means to escape when hunted. In a very real sense humans have evolved to run. Yet curiously, perhaps due to running's cultural ubiquity and the natural ease with which we learn to run, we rarely consider the uniqueness of human bipedal running within the animal kingdom. Our unique upright, single stance, bouncing running gait imposes a unique set of coordinative difficulties. Challenges demanding we precariously balance our fragile brains in the very position where they are most vulnerable to falling injury while simultaneously retaining stability, steering direction of travel, and powering the upcoming stride: all within the abbreviated time-frames afforded by short, violent ground contacts separated by long flight times. These running coordination challenges are solved through the tightly-integrated blending of primitive evolutionary legacies, conserved from reptilian and vertebrate lineages, and comparatively modern, more exclusively human, innovations. The integrated unification of these top-down and bottom-up control processes bestows humans with an agile control system, enabling us to readily modulate speeds, change direction, negotiate varied terrains and to instantaneously adapt to changing surface conditions. The seamless integration of these evolutionary processes is facilitated by pervasive, neural and biological, activity-dependent adaptive plasticity. Over time, and with progressive exposure, this adaptive plasticity shapes neural and biological structures to best cope with regularly imposed movement challenges. This pervasive plasticity enables the gradual construction of a robust system of distributed coordinated control, comprised of processes that are so deeply collectively entwined that describing their functionality in isolation obscures their true irrevocably entangled nature. Although other species rely on a similar set of coordinated processes to run, the bouncing bipedal nature of human running presents a specific set of coordination challenges, solved using a customized blend of evolved solutions. A deeper appreciation of the foundations of the running coordination phenomenon promotes conceptual clarity, potentially informing future advances in running training and running-injury rehabilitation interventions.
Collapse
Affiliation(s)
- John Kiely
- School of Health and Wellbeing, Institute of Coaching and Performance, University of Central LancashirePreston, UK; Fitness Department, Irish Rugby Football UnionDublin, Ireland
| | - David J Collins
- School of Health and Wellbeing, Institute of Coaching and Performance, University of Central Lancashire Preston, UK
| |
Collapse
|
43
|
Dimitriou M. Enhanced Muscle Afferent Signals during Motor Learning in Humans. Curr Biol 2016; 26:1062-8. [DOI: 10.1016/j.cub.2016.02.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/29/2015] [Accepted: 02/08/2016] [Indexed: 11/17/2022]
|
44
|
Thornell LE, Carlsson L, Eriksson PO, Liu JX, Österlund C, Stål P, Pedrosa-Domellöf F. Fibre typing of intrafusal fibres. J Anat 2015; 227:136-56. [PMID: 26179023 PMCID: PMC4523317 DOI: 10.1111/joa.12338] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2015] [Indexed: 12/23/2022] Open
Abstract
The first descriptions of muscle spindles with intrafusal fibres containing striated myofibrils and nervous elements were given approximately 150 years ago. It took, however, another 100 years to establish the presence of two types of intrafusal muscle fibres: nuclear bag and nuclear chain fibres. The present paper highlights primarily the contribution of Robert Banks in fibre typing of intrafusal fibres: the confirmation of the principle of two types of nuclear bag fibres in mammalian spindles and the variation in occurrence of a dense M-band along the fibres. Furthermore, this paper summarizes how studies from the Umeå University group (Laboratory of Muscle Biology in the Department of Integrative Medical Biology) on fibre typing and the structure and composition of M-bands have contributed to the current understanding of muscle spindle complexity in adult humans as well as to muscle spindle development and effects of ageing. The variable molecular composition of the intrafusal sarcomeres with respect to myosin heavy chains and M-band proteins gives new perspectives on the role of the intrafusal myofibrils as stretch-activated sensors influencing tension/stiffness and signalling to nuclei.
Collapse
Affiliation(s)
- Lars-Eric Thornell
- Department of Integrative Medical Biology, Laboratory of Muscle Biology, Umeå UniversityUmeå, Sweden
| | - Lena Carlsson
- Department of Integrative Medical Biology, Laboratory of Muscle Biology, Umeå UniversityUmeå, Sweden
| | - Per-Olof Eriksson
- Department of Odontology, Clinical Oral Physiology, Umeå UniversityUmeå, Sweden
| | - Jing-Xia Liu
- Department of Integrative Medical Biology, Laboratory of Muscle Biology, Umeå UniversityUmeå, Sweden
| | - Catharina Österlund
- Department of Odontology, Clinical Oral Physiology, Umeå UniversityUmeå, Sweden
| | - Per Stål
- Department of Integrative Medical Biology, Laboratory of Muscle Biology, Umeå UniversityUmeå, Sweden
| | - Fatima Pedrosa-Domellöf
- Department of Integrative Medical Biology, Laboratory of Muscle Biology, Umeå UniversityUmeå, Sweden
- Department of Clinical Sciences, Ophthalmology, Umeå UniversityUmeå, Sweden
| |
Collapse
|
45
|
Prochazka A. Sensory control of normal movement and of movement aided by neural prostheses. J Anat 2015; 227:167-77. [PMID: 26047134 PMCID: PMC4523319 DOI: 10.1111/joa.12311] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2015] [Indexed: 11/27/2022] Open
Abstract
Signals from sensory receptors in muscles and skin enter the central nervous system (CNS), where they contribute to kinaesthesia and the generation of motor commands. Many lines of evidence indicate that sensory input from skin receptors, muscle spindles and Golgi tendon organs play the predominant role in this regard. Yet in spite of over 100 years of research on this topic, some quite fundamental questions remain unresolved. How does the CNS choose to use the ability to control muscle spindle sensitivity during voluntary movements? Do spinal reflexes contribute usefully to load compensation, given that the feedback gain must be quite low to avoid instability? To what extent do signals from skin stretch receptors contribute? This article provides a brief review of various theories, past and present, that address these questions. To what extent has the knowledge gained resulted in clinical applications? Muscles paralyzed as a result of spinal cord injury or stroke can be activated by electrical stimulation delivered by neuroprostheses. In practice, at most two or three sensors can be deployed on the human body, providing only a small fraction of the information supplied by the tens of thousands of sensory receptors in animals. Most of the neuroprostheses developed so far do not provide continuous feedback control. Instead, they switch from one state to another when signals from their one or two sensors meet pre-set thresholds (finite state control). The inherent springiness of electrically activated muscle provides a crucial form of feedback control that helps smooth the resulting movements. In spite of the dissimilarities, parallels can be found between feedback control in neuroprostheses and in animals and this can provide surprising insights in both directions.
Collapse
Affiliation(s)
- Arthur Prochazka
- Neuroscience and Mental Health Institute, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
46
|
Tuthill J. Muscles antagonize their neighbors' spindles. J Exp Biol 2015. [DOI: 10.1242/jeb.112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|