1
|
Rajebhosale P, Jiang L, Ressa HJ, Johnson KR, Desai NS, Jone A, Role LW, Talmage DA. Diversification of dentate gyrus granule cell subtypes is regulated by Nrg1 nuclear back-signaling. Life Sci Alliance 2025; 8:e202403169. [PMID: 40280713 PMCID: PMC12032840 DOI: 10.26508/lsa.202403169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Neuronal heterogeneity is a defining feature of the developing mammalian brain, but the mechanisms regulating the diversification of closely related cell types remain elusive. Here, we investigated granule cell (GC) subtype composition in the dentate gyrus (DG) and the influence of a psychosis-associated V321L mutation in Neuregulin1 (Nrg1). Using morphoelectric characterization, single-nucleus gene expression, and chromatin accessibility profiling, we identified distinctions between typical GCs and a rare subtype known as semilunar granule cells (SGCs). We found that the V321L mutation, which disrupts Nrg1 nuclear back-signaling, results in overabundance of SGC-like cells. Pseudotime analyses suggest a GC-to-SGC transition potential, supported by the accessibility of SGC-enriched genes in non-SGCs. In WT mice, SGC-like gene expression increases during adolescence, coinciding with reduced Nrg1 back-signaling capacity. These results suggest that intact Nrg1 nuclear signaling represses SGC-like fate and that its developmental or pathological loss may permit acquisition of this fate. Our findings reveal a novel role of Nrg1 in maintaining DG cell-type composition and suggest that disrupted subtype regulation may contribute to disease-associated changes in the DG.
Collapse
Affiliation(s)
- Prithviraj Rajebhosale
- Genetics of Neuronal Signaling Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Li Jiang
- Genetics of Neuronal Signaling Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Haylee J Ressa
- Undergraduate Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Kory R Johnson
- Bioinformatics Core, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Niraj S Desai
- Circuits, Synapses and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Alice Jone
- Program in Neuroscience, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Lorna W Role
- Circuits, Synapses and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - David A Talmage
- Genetics of Neuronal Signaling Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| |
Collapse
|
2
|
Nadeem A, Sharma P, Gupta P, Sandeep P, Sharma B, Sharma N, Yadav M, Dhiman N. Exploring Neuregulin3: From physiology to pathology, a novel target for rational drug design. Biochem Pharmacol 2025; 238:116964. [PMID: 40320052 DOI: 10.1016/j.bcp.2025.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025]
Abstract
Neuregulin 3 (NRG3) is an epidermal growth factor related protein that binds to and stimulates the Erb-B2 receptor tyrosine kinase 4 (ErbB4). NRG3 is a multifunctional protein with fifteen alternative splicing isoforms categorized into four classes. Numerous physiological processes, such as the formation of cortical plate, cortical patterning, synaptic development, neuronal proliferation, regulation of neurotransmission, control of impulsive behavior, mammary gland morphogenesis, spermatogonial proliferation and cardiac homeostasis are influenced by NRG3. Besides its physiological roles, NRG3 also modulates anxiogenic phenotypes. It is a susceptibility gene for schizophrenia, autism spectrum disorder and Hirschsprung's Disease. Furthermore, anxiety during nicotine withdrawal is dependent on NRG3-ErbB4 signaling. Research on a range of solid carcinomas, such as brain tumors, ovarian cancer, gastrointestinal cancer and breast cancer, has demonstrated NRG3 gene as a therapeutic target. NRG3 also has potential involvement in epilepsy, angular limb malformation in Rambouillet rams, amyotrophic lateral sclerosis and polythelia. Nevertheless, little is known about the molecular characteristics, activities specific to isoforms, and molecular mechanisms of NRG3. Examining its potential involvement in a range of physiological processes and pathological states is a unique area that needs in-depth study and may offer new mechanistic insights and comprehension of these elements. Thus, the purpose of this review is to shed light on the utility of NRG3 as a potential target in various health and disease conditions.
Collapse
Affiliation(s)
- Aqsa Nadeem
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh 201306, India.
| | - Palak Gupta
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Parth Sandeep
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| | - Nitin Sharma
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Mahendra Yadav
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Turner-Ivey B, Jenkins DP, Carroll SL. Multiple Roles for Neuregulins and Their ERBB Receptors in Neurodegenerative Disease Pathogenesis and Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00119-1. [PMID: 40254133 DOI: 10.1016/j.ajpath.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025]
Abstract
The role that neurotrophins, such as nerve growth factor, play in the pathogenesis of neurodegenerative diseases has long been appreciated. However, the neuregulin (NRG) family of growth factors and/or their v-erb-B2 avian erythroblastic leukemia viral oncogene homolog (ERBB) receptors have also been implicated in the pathogenesis of conditions, such as Alzheimer disease (AD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS). In this review, we consider i) the structural variability of NRG isoforms generated by alternative RNA splicing, the use of multiple promoters and proteolysis, and the impact that this structural variability has on neuronal and glial physiology during development and adulthood. We discuss ii) the NRG receptors ERBB2, ERBB3, and ERBB4, how activation of each of these receptors further diversifies NRG actions in the central nervous system, and how dementia-related proteins, such as γ-secretase modulate the action of NRGs and their ERBB receptors. We then iii) turn to the abnormalities in NRG and ERBB expression and function evident in human AD and mouse AD models, how these abnormalities affect brain function, and attempts to use NRGs to treat AD. Finally, iv) we discuss NRG effects on the survival and function of neurons relevant to FTLD and ALS, alterations in NRG/ERBB signaling identified in these conditions, and the recent discovery of multiple human pedigrees in which autosomal dominant FTLD/ALS potentially results from point mutations in ERBB4.
Collapse
Affiliation(s)
- Brittany Turner-Ivey
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Dorea P Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
4
|
Rajebhosale P, Jone A, Johnson KR, Hofland R, Palarpalar C, Khan S, Role LW, Talmage DA. Neuregulin1 Nuclear Signaling Influences Adult Neurogenesis and Regulates a Schizophrenia Susceptibility Gene Network within the Mouse Dentate Gyrus. J Neurosci 2024; 44:e0063242024. [PMID: 39214704 PMCID: PMC11502234 DOI: 10.1523/jneurosci.0063-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Neuregulin1 (Nrg1) signaling is critical for neuronal development and function from fate specification to synaptic plasticity. Type III Nrg1 is a synaptic protein which engages in bidirectional signaling with its receptor ErbB4. Forward signaling engages ErbB4 phosphorylation, whereas back signaling engages two known mechanisms: (1) local axonal PI3K-AKT signaling and (2) cleavage by γ-secretase resulting in cytosolic release of the intracellular domain (ICD), which can traffic to the nucleus (Bao et al., 2003; Hancock et al., 2008). To dissect the contribution of these alternate signaling strategies to neuronal development, we generated a transgenic mouse with a missense mutation (V321L) in the Nrg1 transmembrane domain that disrupts nuclear back signaling with minimal effects on forward signaling or local back signaling and was previously found to be associated with psychosis (Walss-Bass et al., 2006). We combined RNA sequencing, retroviral fate mapping of neural stem cells, behavioral analyses, and various network analyses of transcriptomic data to investigate the effect of disrupting Nrg1 nuclear back signaling in the dentate gyrus (DG) of male and female mice. The V321L mutation impairs nuclear translocation of the Nrg1 ICD and alters gene expression in the DG. V321L mice show reduced stem cell proliferation, altered cell cycle dynamics, fate specification defects, and dendritic dysmorphogenesis. Orthologs of known schizophrenia (SCZ)-susceptibility genes were dysregulated in the V321L DG. These genes coordinated a larger network with other dysregulated genes. Weighted gene correlation network analysis and protein interaction network analyses revealed striking similarity between DG transcriptomes of V321L mouse and humans with SCZ.
Collapse
Affiliation(s)
- Prithviraj Rajebhosale
- Genetics of Neuronal Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Alice Jone
- Graduate Program in Neuroscience, State University of New York at Stony Brook, Stony Brook, New York 11794
| | - Kory R Johnson
- Bioinformatics Core, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 21042
| | - Rohan Hofland
- Undergraduate Biology, Stony Brook University, Stony Brook, New York 11794
| | - Camille Palarpalar
- Undergraduate Biology, Stony Brook University, Stony Brook, New York 11794
| | - Samara Khan
- Undergraduate Biology, Stony Brook University, Stony Brook, New York 11794
| | - Lorna W Role
- Circuits, Synapses, & Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - David A Talmage
- Genetics of Neuronal Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
5
|
Mackenzie SC, Rahmioglu N, Romaniuk L, Collins F, Coxon L, Whalley HC, Vincent K, Zondervan KT, Horne AW, Whitaker LH. Genome-wide association reveals a locus in neuregulin 3 associated with gabapentin efficacy in women with chronic pelvic pain. iScience 2024; 27:110370. [PMID: 39258169 PMCID: PMC11384074 DOI: 10.1016/j.isci.2024.110370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/13/2024] [Accepted: 06/21/2024] [Indexed: 09/12/2024] Open
Abstract
Chronic pelvic pain (CPP) in women with no obvious pelvic pathology has few evidence-based treatment options. Our recent multicenter randomized controlled trial (GaPP2) in women with CPP and no obvious pelvic pathology showed that gabapentin did not relieve pain overall and was associated with more side effects than placebo. We conducted an exploratory genome-wide association study using eligible GaPP2 participants aiming to identify genetic variants associated with gabapentin response. One genome-wide significant association with gabapentin analgesic response was identified, rs4442490, an intron variant located in Neuregulin 3 (NRG3) (p = 2·11×10-8; OR = 18·82 (95% CI 4·86-72·83). Analysis of a large sample of UK Biobank participants demonstrated phenome-wide significant brain imaging features of rs4442490, particularly implicating the orbitofrontal cortex. NRG3 is expressed predominantly in central nervous system tissues and plays a critical role in nervous system development, maintenance, and repair, suggesting a neurobiologically plausible role in gabapentin efficacy and potential for personalized analgesic treatment.
Collapse
Affiliation(s)
- Scott C. Mackenzie
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Nilufer Rahmioglu
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7BN, UK
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women’s & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Liana Romaniuk
- Division of Psychiatry, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Frances Collins
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Lydia Coxon
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women’s & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Heather C. Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh EH10 5HF, UK
- Generation Scotland, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Katy Vincent
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women’s & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Krina T. Zondervan
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7BN, UK
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women’s & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Andrew W. Horne
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Lucy H.R. Whitaker
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
6
|
Fisher ML, Prantzalos ER, O'Donovan B, Anderson TL, Sahoo PK, Twiss JL, Ortinski PI, Turner JR. Dynamic effects of ventral hippocampal NRG3/ERBB4 signaling on nicotine withdrawal-induced responses. Neuropharmacology 2024; 247:109846. [PMID: 38211698 PMCID: PMC10923109 DOI: 10.1016/j.neuropharm.2024.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Tobacco smoking remains a leading cause of preventable death in the United States, with approximately a 5% success rate for smokers attempting to quit. High relapse rates have been linked to several genetic factors, indicating that the mechanistic relationship between genes and drugs of abuse is a valuable avenue for the development of novel smoking cessation therapies. For example, various single nucleotide polymorphisms (SNPs) in the gene for neuregulin 3 (NRG3) and its cognate receptor, the receptor tyrosine-protein kinase erbB-4 (ERBB4), have been linked to nicotine addiction. Our lab has previously shown that ERBB4 plays a role in anxiety-like behavior during nicotine withdrawal (WD); however, the neuronal mechanisms and circuit-specific effects of NRG3-ERBB4 signaling during nicotine and WD are unknown. The present study utilizes genetic, biochemical, and functional approaches to examine the anxiety-related behavioral and functional role of NRG3-ERBB4 signaling, specifically in the ventral hippocampus (VH) of male and female mice. We report that 24hWD from nicotine is associated with altered synaptic expression of VH NRG3 and ERBB4, and genetic disruption of VH ErbB4 leads to an elimination of anxiety-like behaviors induced during 24hWD. Moreover, we observed attenuation of GABAergic transmission as well as alterations in Ca2+-dependent network activity in the ventral CA1 area of VH ErbB4 knock-down mice during 24hWD. Our findings further highlight contributions of the NRG3-ERBB4 signaling pathway to anxiety-related behaviors seen during nicotine WD.
Collapse
Affiliation(s)
- Miranda L Fisher
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, USA
| | - Emily R Prantzalos
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, USA
| | - Bernadette O'Donovan
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Tanner L Anderson
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina College of Arts and Sciences, Columbia, SC, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina College of Arts and Sciences, Columbia, SC, USA
| | - Pavel I Ortinski
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, USA.
| |
Collapse
|
7
|
Elder TR, Turner JR. Nicotine use disorder and Neuregulin 3: Opportunities for precision medicine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 99:387-404. [PMID: 38467488 DOI: 10.1016/bs.apha.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Nicotine use disorder remains a major public health emergency despite years of trumpeting the consequences of smoking. This is likely due to the complex interplay of genetics and nicotine exposure across the lifespan of these individuals. Genetics influence all aspects of life, including complex disorders such as nicotine use disorder. This review first highlights the critical neurocircuitry underlying nicotine dependence and withdrawal, and then describes the cellular signaling mechanisms involved. Finally, current genetic, genomic, and transcriptomic evidence for new drug development of smoking cessation aids is discussed, with a focus on the Neuregulin 3 Signaling Pathway.
Collapse
Affiliation(s)
- Taylor R Elder
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, United States
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, United States.
| |
Collapse
|
8
|
Sotoyama H, Namba H, Tohmi M, Nawa H. Schizophrenia Animal Modeling with Epidermal Growth Factor and Its Homologs: Their Connections to the Inflammatory Pathway and the Dopamine System. Biomolecules 2023; 13:biom13020372. [PMID: 36830741 PMCID: PMC9953688 DOI: 10.3390/biom13020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Epidermal growth factor (EGF) and its homologs, such as neuregulins, bind to ErbB (Her) receptor kinases and regulate glial differentiation and dopaminergic/GABAergic maturation in the brain and are therefore implicated in schizophrenia neuropathology involving these cell abnormalities. In this review, we summarize the biological activities of the EGF family and its neuropathologic association with schizophrenia, mainly overviewing our previous model studies and the related articles. Transgenic mice as well as the rat/monkey models established by perinatal challenges of EGF or its homologs consistently exhibit various behavioral endophenotypes relevant to schizophrenia. In particular, post-pubertal elevation in baseline dopaminergic activity may illustrate the abnormal behaviors relevant to positive and negative symptoms as well as to the timing of this behavioral onset. With the given molecular interaction and transactivation of ErbB receptor kinases with Toll-like receptors (TLRs), EGF/ErbB signals are recruited by viral infection and inflammatory diseases such as COVID-19-mediated pneumonia and poxvirus-mediated fibroma and implicated in the immune-inflammatory hypothesis of schizophrenia. Finally, we also discuss the interaction of clozapine with ErbB receptor kinases as well as new antipsychotic development targeting these receptors.
Collapse
Affiliation(s)
- Hidekazu Sotoyama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Physiology, School of Medicine, Niigata University, Niigata 951-8122, Japan
- Correspondence: (H.N.); (H.S.)
| | - Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 649-8156, Japan
| | - Manavu Tohmi
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 649-8156, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 649-8156, Japan
- Correspondence: (H.N.); (H.S.)
| |
Collapse
|
9
|
Vullhorst D, Bloom MS, Akella N, Buonanno A. ER-PM Junctions on GABAergic Interneurons Are Organized by Neuregulin 2/VAP Interactions and Regulated by NMDA Receptors. Int J Mol Sci 2023; 24:2908. [PMID: 36769244 PMCID: PMC9917868 DOI: 10.3390/ijms24032908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Neuregulins (NRGs) signal via ErbB receptors to regulate neural development, excitability, synaptic and network activity, and behaviors relevant to psychiatric disorders. Bidirectional signaling between NRG2/ErbB4 and NMDA receptors is thought to homeostatically regulate GABAergic interneurons in response to increased excitatory neurotransmission or elevated extracellular glutamate levels. Unprocessed proNRG2 forms discrete clusters on cell bodies and proximal dendrites that colocalize with the potassium channel Kv2.1 at specialized endoplasmic reticulum-plasma membrane (ER-PM) junctions, and NMDA receptor activation triggers rapid dissociation from ER-PM junctions and ectodomain shedding by ADAM10. Here, we elucidate the mechanistic basis of proNRG2 clustering at ER-PM junctions and its regulation by NMDA receptors. Importantly, we demonstrate that proNRG2 promotes the formation of ER-PM junctions by directly binding the ER-resident membrane tether VAP, like Kv2.1. The proNRG2 intracellular domain harbors two non-canonical, low-affinity sites that cooperatively mediate VAP binding. One of these is a cryptic and phosphorylation-dependent VAP binding motif that is dephosphorylated following NMDA receptor activation, thus revealing how excitatory neurotransmission promotes the dissociation of proNRG2 from ER-PM junctions. Therefore, proNRG2 and Kv2.1 can independently function as VAP-dependent organizers of neuronal ER-PM junctions. Based on these and prior studies, we propose that proNRG2 and Kv2.1 serve as co-regulated downstream effectors of NMDA receptors to homeostatically regulate GABAergic interneurons.
Collapse
Affiliation(s)
- Detlef Vullhorst
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
10
|
Fisher ML, Prantzalos ER, O'Donovan B, Anderson T, Sahoo PK, Twiss JL, Ortinski PI, Turner JR. Dynamic Effects of Ventral Hippocampal NRG3/ERBB4 Signaling on Nicotine Withdrawal-Induced Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524432. [PMID: 36711798 PMCID: PMC9882308 DOI: 10.1101/2023.01.17.524432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tobacco smoking remains a leading cause of preventable death in the United States, with a less than 5% success rate for smokers attempting to quit. High relapse rates have been linked to several genetic factors, indicating that the mechanistic relationship between genes and drugs of abuse is a valuable avenue for the development of novel smoking cessation therapies. For example, various single nucleotide polymorphisms (SNPs) in the gene for neuregulin 3 (NRG3) and its cognate receptor, the receptor tyrosine-protein kinase erbB-4 (ERBB4), have been linked to nicotine addiction. Our lab has previously shown that ERBB4 plays a role in anxiety-like behavior during nicotine withdrawal (WD); however, the neuronal mechanisms and circuit-specific effects of NRG3-ERBB4 signaling during nicotine and WD are unknown. The present study utilizes genetic, biochemical, and functional approaches to examine the anxiety-related behavioral and functional role of NRG3-ERBB4 signaling, specifically in the ventral hippocampus (VH). We report that 24hWD from nicotine is associated with altered synaptic expression of VH NRG3 and ERBB4, and genetic disruption of VH ErbB4 leads to an elimination of anxiety-like behaviors induced during 24hWD. Moreover, we observed attenuation of GABAergic transmission as well as alterations in Ca2+-dependent network activity in the ventral CA1 area of VH ErbB4 knock-down mice during 24hWD. Our findings further highlight contributions of the NRG3-ERBB4 signaling pathway to anxiety-related behaviors seen during nicotine WD.
Collapse
Affiliation(s)
- Miranda L Fisher
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | - Emily R Prantzalos
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | - Bernadette O'Donovan
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Tanner Anderson
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina College of Arts and Sciences, Columbia, South Carolina, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina College of Arts and Sciences, Columbia, South Carolina, USA
| | - Pavel I Ortinski
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| |
Collapse
|
11
|
Duński E, Pękowska A. Keeping the balance: Trade-offs between human brain evolution, autism, and schizophrenia. Front Genet 2022; 13:1009390. [DOI: 10.3389/fgene.2022.1009390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
The unique qualities of the human brain are a product of a complex evolutionary process. Evolution, famously described by François Jacob as a “tinkerer,” builds upon existing genetic elements by modifying and repurposing them for new functions. Genetic changes in DNA may lead to the emergence of new genes or cause altered gene expression patterns. Both gene and regulatory element mutations may lead to new functions. Yet, this process may lead to side-effects. An evolutionary trade-off occurs when an otherwise beneficial change, which is important for evolutionary success and is under strong positive selection, concurrently results in a detrimental change in another trait. Pleiotropy occurs when a gene affects multiple traits. Antagonistic pleiotropy is a phenomenon whereby a genetic variant leads to an increase in fitness at one life-stage or in a specific environment, but simultaneously decreases fitness in another respect. Therefore, it is conceivable that the molecular underpinnings of evolution of highly complex traits, including brain size or cognitive ability, under certain conditions could result in deleterious effects, which would increase the susceptibility to psychiatric or neurodevelopmental diseases. Here, we discuss possible trade-offs and antagonistic pleiotropies between evolutionary change in a gene sequence, dosage or activity and the susceptibility of individuals to autism spectrum disorders and schizophrenia. We present current knowledge about genes and alterations in gene regulatory landscapes, which have likely played a role in establishing human-specific traits and have been implicated in those diseases.
Collapse
|
12
|
Erben L, Welday JP, Murphy R, Buonanno A. Toxic and Phenotypic Effects of AAV_Cre Used to Transduce Mesencephalic Dopaminergic Neurons. Int J Mol Sci 2022; 23:9462. [PMID: 36012727 PMCID: PMC9408874 DOI: 10.3390/ijms23169462] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
A popular approach to spatiotemporally target genes using the loxP/Cre recombination system is stereotaxic microinjection of adeno-associated virus (AAV) expressing Cre recombinase (AAV_Cre) in specific neuronal structures. Here, we report that AAV_Cre microinjection in the ventral tegmental area (VTA) of ErbB4 Cyt-1-floxed (ErbB4 Cyt-1fl/fl) mice at titers commonly used in the literature (~1012-1013 GC/mL) can have neurotoxic effects on dopaminergic neurons and elicit behavioral abnormalities. However, these effects of AAV_Cre microinjection are independent of ErbB4 Cyt-1 recombination because they are also observed in microinjected wild-type (WT) controls. Mice microinjected with AAV_Cre (1012-1013 GC/mL) exhibit reductions of tyrosine hydroxylase (TH) and dopamine transporter (DAT) expression, loss of dopaminergic neurons, and they behaviorally become hyperactive, fail to habituate in the open field and exhibit sensorimotor gating deficits compared to controls microinjected with AAV_GFP. Importantly, these AAV_Cre non-specific effects are: (1) independent of serotype, (2) occur with vectors expressing either Cre or Cre-GFP fusion protein and (3) preventable by reducing viral titers by 1000-fold (1010 GC/mL), which retains sufficient recombination activity to target floxed genes. Our studies emphasize the importance of including AAV_Cre-injected WT controls in experiments because recombination-independent effects on gene expression, neurotoxicity and behaviors could be erroneously attributed to consequences of gene ablation.
Collapse
Affiliation(s)
| | | | | | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Shiosaka S. Kallikrein 8: A key sheddase to strengthen and stabilize neural plasticity. Neurosci Biobehav Rev 2022; 140:104774. [PMID: 35820483 DOI: 10.1016/j.neubiorev.2022.104774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
Abstract
Neural networks are modified and reorganized throughout life, even in the matured brain. Synapses in the networks form, change, or disappear dynamically in the plasticity state. The pre- and postsynaptic signaling, transmission, and structural dynamics have been studied considerably well. However, not many studies have shed light on the events in the synaptic cleft and intercellular space. Neural activity-dependent protein shedding is a phenomenon in which (1) presynaptic excitation evokes secretion or activation of sheddases, (2) sheddases are involved not only in cleavage of membrane- or matrix-bound proteins but also in mechanical modulation of cell-to-cell connectivity, and (3) freed activity domains of protein factors play a role in receptor-mediated or non-mediated biological actions. Kallikrein 8/neuropsin (KLK8) is a kallikrein family serine protease rich in the mammalian limbic brain. Accumulated evidence has suggested that KLK8 is an important modulator of neural plasticity and consequently, cognition. Insufficiency, as well as excess of KLK8 may have detrimental effects on limbic functions.
Collapse
Affiliation(s)
- Sadao Shiosaka
- Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka Prefectural Hospital Organization, Miyanosaka 3-16-21, Hirakata-shi, Osaka 573-0022, Japan.
| |
Collapse
|
14
|
Ahmad T, Vullhorst D, Chaudhuri R, Guardia CM, Chaudhary N, Karavanova I, Bonifacino JS, Buonanno A. Transcytosis and trans-synaptic retention by postsynaptic ErbB4 underlie axonal accumulation of NRG3. J Cell Biol 2022; 221:213222. [PMID: 35579602 PMCID: PMC9118086 DOI: 10.1083/jcb.202110167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 01/07/2023] Open
Abstract
Neuregulins (NRGs) are EGF-like ligands associated with cognitive disorders. Unprocessed proNRG3 is cleaved by BACE1 to generate the mature membrane-bound NRG3 ligand, but the subcellular site of proNRG3 cleavage, mechanisms underlying its transport into axons, and presynaptic accumulation remain unknown. Using an optogenetic proNRG3 cleavage reporter (LA143-NRG3), we investigate the spatial-temporal dynamics of NRG3 processing and sorting in neurons. In dark conditions, unprocessed LA143-NRG3 is retained in the trans-Golgi network but, upon photoactivation, is cleaved by BACE1 and released from the TGN. Mature NRG3 then emerges on the somatodendritic plasma membrane from where it is re-endocytosed and anterogradely transported on Rab4+ vesicles into axons via transcytosis. By contrast, the BACE1 substrate APP is sorted into axons on Rab11+ vesicles. Lastly, by a mechanism we denote "trans-synaptic retention," NRG3 accumulates at presynaptic terminals by stable interaction with its receptor ErbB4 on postsynaptic GABAergic interneurons. We propose that trans-synaptic retention may account for polarized expression of other neuronal transmembrane ligands and receptors.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD,Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Detlef Vullhorst
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Rituparna Chaudhuri
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre, Haryana, India
| | - Carlos M. Guardia
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Nisha Chaudhary
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Irina Karavanova
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Juan S. Bonifacino
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD,Correspondence to Andres Buonanno:
| |
Collapse
|
15
|
Erben L, Welday JP, Cronin ME, Murphy R, Skirzewski M, Vullhorst D, Carroll SL, Buonanno A. Developmental, neurochemical, and behavioral analyses of ErbB4 Cyt-1 knockout mice. J Neurochem 2022; 161:435-452. [PMID: 35523590 PMCID: PMC9149141 DOI: 10.1111/jnc.15612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 01/26/2023]
Abstract
Neuregulins (NRGs) and their cognate neuronal receptor ERBB4, which is expressed in GABAergic and dopaminergic neurons, regulate numerous behaviors in rodents and have been identified as schizophrenia at-risk genes. ErbB4 transcripts are alternatively spliced to generate isoforms that either include (Cyt-1) or exclude (Cyt-2) exon 26, which encodes a cytoplasmic domain that imparts ErbB4 receptors the ability to signal via the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. Although ErbB4 Cyt-1/2 isoforms have been studied in transfected cultured cells, their functions in vivo remain unknown. Here, we generated ErbB4-floxed (ErbB4-Cyt1fl/fl ) mice to investigate the effects of germline (constitutive) and conditional (acute) deletions of the Cyt-1 exon. Overall receptor mRNA levels remain unchanged in germline ErbB4 Cyt-1 knockouts (Cyt-1 KOs), with all transcripts encoding Cyt-2 variants. In contrast to mice lacking all ErbB4 receptor function, GABAergic interneuron migration and number are unaltered in Cyt-1 KOs. However, basal extracellular dopamine (DA) levels in the medial prefrontal cortex are increased in Cyt-1 heterozygotes. Despite these neurochemical changes, Cyt-1 heterozygous and homozygous mice do not manifest behavioral abnormalities previously reported to be altered in ErbB4 null mice. To address the possibility that Cyt-2 variants compensate for the lack of Cyt-1 during development, we microinjected an adeno-associated virus expressing Cre-recombinase (AAV-Cre) into the DA-rich ventral tegmental area of adult ErbB4-Cyt1fl/fl mice to acutely target exon 26. These conditional Cyt-1 KOs were found to exhibit behavioral abnormalities in the elevated plus maze and startle response, consistent with the idea that late exon 26 ablations may circumvent compensation by Cyt-2 variants. Taken together, our observations indicate that ErbB4 Cyt-1 function in vivo is important for DA balance and behaviors in adults.
Collapse
Affiliation(s)
- Larissa Erben
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| | - Jacqueline P Welday
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| | - Marie E Cronin
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| | - Ricardo Murphy
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| | - Miguel Skirzewski
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| | - Detlef Vullhorst
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Onesto MM, Short CA, Rempel SK, Catlett TS, Gomez TM. Growth Factors as Axon Guidance Molecules: Lessons From in vitro Studies. Front Neurosci 2021; 15:678454. [PMID: 34093120 PMCID: PMC8175860 DOI: 10.3389/fnins.2021.678454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Growth cones at the tips of extending axons navigate through developing organisms by probing extracellular cues, which guide them through intermediate steps and onto final synaptic target sites. Widespread focus on a few guidance cue families has historically overshadowed potentially crucial roles of less well-studied growth factors in axon guidance. In fact, recent evidence suggests that a variety of growth factors have the ability to guide axons, affecting the targeting and morphogenesis of growth cones in vitro. This review summarizes in vitro experiments identifying responses and signaling mechanisms underlying axon morphogenesis caused by underappreciated growth factors.
Collapse
Affiliation(s)
| | | | | | | | - Timothy M. Gomez
- Neuroscience Training Program and Cell and Molecular Biology Program, Department of Neuroscience, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
17
|
Deardorff AS, Romer SH, Fyffe RE. Location, location, location: the organization and roles of potassium channels in mammalian motoneurons. J Physiol 2021; 599:1391-1420. [DOI: 10.1113/jp278675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/08/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Adam S. Deardorff
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
- Department of Neurology and Internal Medicine, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
| | - Shannon H. Romer
- Odyssey Systems Environmental Health Effects Laboratory, Navy Medical Research Unit‐Dayton Wright‐Patterson Air Force Base OH 45433 USA
| | - Robert E.W. Fyffe
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
| |
Collapse
|
18
|
Exposito-Alonso D, Osório C, Bernard C, Pascual-García S, Del Pino I, Marín O, Rico B. Subcellular sorting of neuregulins controls the assembly of excitatory-inhibitory cortical circuits. eLife 2020; 9:57000. [PMID: 33320083 PMCID: PMC7755390 DOI: 10.7554/elife.57000] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
The assembly of specific neuronal circuits relies on the expression of complementary molecular programs in presynaptic and postsynaptic neurons. In the cerebral cortex, the tyrosine kinase receptor ErbB4 is critical for the wiring of specific populations of GABAergic interneurons, in which it paradoxically regulates both the formation of inhibitory synapses as well as the development of excitatory synapses received by these cells. Here, we found that Nrg1 and Nrg3, two members of the neuregulin family of trophic factors, regulate the inhibitory outputs and excitatory inputs of interneurons in the mouse cerebral cortex, respectively. The differential role of Nrg1 and Nrg3 in this process is not due to their receptor-binding EGF-like domain, but rather to their distinctive subcellular localization within pyramidal cells. Our study reveals a novel strategy for the assembly of cortical circuits that involves the differential subcellular sorting of family-related synaptic proteins.
Collapse
Affiliation(s)
- David Exposito-Alonso
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Catarina Osório
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Clémence Bernard
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Sandra Pascual-García
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Isabel Del Pino
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Beatriz Rico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
19
|
Ovsepian SV, Horacek J, O'Leary VB, Hoschl C. The Ups and Downs of BACE1: Walking a Fine Line between Neurocognitive and Other Psychiatric Symptoms of Alzheimer's Disease. Neuroscientist 2020; 27:222-234. [PMID: 32713260 DOI: 10.1177/1073858420940943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although neurocognitive deficit is the best-recognized indicator of Alzheimer's disease (AD), psychotic and other noncognitive symptoms are the prime cause of institutionalization. BACE1 is the rate-limiting enzyme in the production of Aβ of AD, and one of the promising therapeutic targets in countering cognitive decline and amyloid pathology. Changes in BACE1 activity have also emerged to cause significant noncognitive neuropsychiatric symptoms and impairments of circadian rhythms, as evident from clinical trials and reports in transgenic models. In this study, we consider key characteristics of BACE1 with its contribution to neurocognitive deficit and other psychiatric symptoms of AD. We argue that a growing list of noncognitive mental impairments related to pharmacological modulation of BACE1 might present a major obstacle in clinical translation of emerging therapeutic leads targeting this protease. The adverse effects of BACE1 inhibition on mental health call for a revision of treatment strategies that assume indiscriminate inhibition of this key protease, and stress the need for further mechanistic and translational studies.
Collapse
Affiliation(s)
- Saak V Ovsepian
- National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.,International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Jiri Horacek
- National Institute of Mental Health, Klecany, Czech Republic
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Cyril Hoschl
- National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
20
|
Shi L, Bergson CM. Neuregulin 1: an intriguing therapeutic target for neurodevelopmental disorders. Transl Psychiatry 2020; 10:190. [PMID: 32546684 PMCID: PMC7297728 DOI: 10.1038/s41398-020-00868-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Neurodevelopmental psychiatric disorders including schizophrenia (Sz) and attention deficit hyperactivity disorder (ADHD) are chronic mental illnesses, which place costly and painful burdens on patients, their families and society. In recent years, the epidermal growth factor (EGF) family member Neuregulin 1 (NRG1) and one of its receptors, ErbB4, have received considerable attention due to their regulation of inhibitory local neural circuit mechanisms important for information processing, attention, and cognitive flexibility. Here we examine an emerging body of work indicating that either decreasing NRG1-ErbB4 signaling in fast-spiking parvalbumin positive (PV+) interneurons or increasing it in vasoactive intestinal peptide positive (VIP+) interneurons could reactivate cortical plasticity, potentially making it a future target for gene therapy in adults with neurodevelopmental disorders. We propose preclinical studies to explore this model in prefrontal cortex (PFC), but also review the many challenges in pursuing cell type and brain-region-specific therapeutic approaches for the NRG1 system.
Collapse
Affiliation(s)
- Liang Shi
- grid.410427.40000 0001 2284 9329Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, 1460 Laney Walker Boulevard, Augusta, GA 30912 USA ,grid.189967.80000 0001 0941 6502Present Address: Department of Cell Biology, Emory University School of Medicine, Atlanta, GA USA
| | - Clare M. Bergson
- grid.410427.40000 0001 2284 9329Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, 1460 Laney Walker Boulevard, Augusta, GA 30912 USA
| |
Collapse
|
21
|
Neuregulins 1, 2, and 3 Promote Early Neurite Outgrowth in ErbB4-Expressing Cortical GABAergic Interneurons. Mol Neurobiol 2020; 57:3568-3588. [PMID: 32542595 DOI: 10.1007/s12035-020-01966-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022]
Abstract
The neuregulins (Nrgs 1-4) are a family of signaling molecules that play diverse roles in the nervous system. Nrg1 has been implicated in the formation of synapses and in synaptic plasticity. Previous studies have shown Nrg1 can affect neurite outgrowth in several neuronal populations, while the role of Nrg2 and Nrg3 in this process has remained understudied. The Nrgs can bind and activate the ErbB4 receptor tyrosine kinase which is preferentially expressed in GABAergic interneurons in the rodent hippocampus and cerebral cortex. In the present study, we evaluated the effects of Nrgs 1, 2, and 3 on neurite outgrowth of dissociated rat cortical ErbB4-positive (+)/GABA+ interneurons in vitro. All three Nrgs were able to promote neurite outgrowth during the first 2 days in vitro, with increases detected for both the axon (116-120%) and other neurites (100-120%). Increases in the average number of primary and secondary neurites were also observed. Treatment with the Nrgs for an additional 3 days promoted an increase in axonal length (86-96%), with only minimal effects on the remaining neurites (8-13%). ErbB4 expression persisted throughout the dendritic arbor and cell soma at all stages examined, while its expression in the axon was transient and declined with cell maturation. ErbB4 overexpression in GABAergic neurons promoted neurite outgrowth, an effect that was potentiated by Nrg treatment. These results show that Nrgs 1, 2, and 3 are each capable of influencing dendritic and axonal growth at early developmental stages in GABAergic neurons grown in vitro.
Collapse
|
22
|
Ledonne A, Mercuri NB. On the Modulatory Roles of Neuregulins/ErbB Signaling on Synaptic Plasticity. Int J Mol Sci 2019; 21:ijms21010275. [PMID: 31906113 PMCID: PMC6981567 DOI: 10.3390/ijms21010275] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
Neuregulins (NRGs) are a family of epidermal growth factor-related proteins, acting on tyrosine kinase receptors of the ErbB family. NRGs play an essential role in the development of the nervous system, since they orchestrate vital functions such as cell differentiation, axonal growth, myelination, and synapse formation. They are also crucially involved in the functioning of adult brain, by directly modulating neuronal excitability, neurotransmission, and synaptic plasticity. Here, we provide a review of the literature documenting the roles of NRGs/ErbB signaling in the modulation of synaptic plasticity, focusing on evidence reported in the hippocampus and midbrain dopamine (DA) nuclei. The emerging picture shows multifaceted roles of NRGs/ErbB receptors, which critically modulate different forms of synaptic plasticity (LTP, LTD, and depotentiation) affecting glutamatergic, GABAergic, and DAergic synapses, by various mechanisms. Further, we discuss the relevance of NRGs/ErbB-dependent synaptic plasticity in the control of brain processes, like learning and memory and the known involvement of NRGs/ErbB signaling in the modulation of synaptic plasticity in brain’s pathological conditions. Current evidence points to a central role of NRGs/ErbB receptors in controlling glutamatergic LTP/LTD and GABAergic LTD at hippocampal CA3–CA1 synapses, as well as glutamatergic LTD in midbrain DA neurons, thus supporting that NRGs/ErbB signaling is essential for proper brain functions, cognitive processes, and complex behaviors. This suggests that dysregulated NRGs/ErbB-dependent synaptic plasticity might contribute to mechanisms underlying different neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ada Ledonne
- Department of Experimental Neuroscience, Santa Lucia Foundation, Via del Fosso di Fiorano, no 64, 00143 Rome, Italy;
- Correspondence: ; Tel.: +3906-501703160; Fax: +3906-501703307
| | - Nicola B. Mercuri
- Department of Experimental Neuroscience, Santa Lucia Foundation, Via del Fosso di Fiorano, no 64, 00143 Rome, Italy;
- Department of Systems Medicine, University of Rome “Tor Vergata”, Via Montpellier no 1, 00133 Rome, Italy
| |
Collapse
|
23
|
Grieco SF, Wang G, Mahapatra A, Lai C, Holmes TC, Xu X. Neuregulin and ErbB expression is regulated by development and sensory experience in mouse visual cortex. J Comp Neurol 2019; 528:419-432. [PMID: 31454079 PMCID: PMC6901715 DOI: 10.1002/cne.24762] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/22/2019] [Accepted: 08/14/2019] [Indexed: 01/14/2023]
Abstract
Neuregulins (NRGs) are protein ligands that impact neural development and circuit function. NRGs signal through the ErbB receptor tyrosine kinase family. NRG1/ErbB4 signaling in parvalbumin-expressing (PV) inhibitory interneurons is critical for visual cortical plasticity. There are multiple types of NRGs and ErbBs that can potentially contribute to visual cortical plasticity at different developmental stages. Thus, it is important to understand the normal developmental expression profiles of NRGs and ErbBs in specific neuron types in the visual cortex, and to study whether and how their expression changes in PV inhibitory neurons and excitatory neurons track with sensory perturbation. Cell type-specific translating ribosome affinity purification and qPCR was used to compare mRNA expression of nrg1,2,3,4 and erbB1,2,3,4 in PV and excitatory neurons in mouse visual cortex. We show that the expression of nrg1 and nrg3 decreases in PV neurons at the critical period peak, postnatal day 28 (P28) after monocular deprivation and dark rearing, and in the adult cortex (at P104) after 2-week long dark exposure. In contrast, nrg1 expression by excitatory neurons is unchanged at P28 and P104 following sensory deprivation, whereas nrg3 expression by excitatory neurons shows changes depending on the age and the mode of sensory deprivation. ErbB4 expression in PV neurons remains consistently high and does not appear to change in response to sensory deprivation. These data provide new important details of cell type-specific NRG/ErbB expression in the visual cortex and support that NRG1/ErbB4 signaling is implicated in both critical period and adult visual cortical plasticity.
Collapse
Affiliation(s)
- Steven F Grieco
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
| | - Gina Wang
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
| | - Ananya Mahapatra
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
| | - Cary Lai
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California.,Department of Biomedical Engineering, University of California, Irvine, California
| |
Collapse
|
24
|
Vullhorst D, Buonanno A. NMDA Receptors Regulate Neuregulin 2 Binding to ER-PM Junctions and Ectodomain Release by ADAM10 [corrected]. Mol Neurobiol 2019; 56:8345-8363. [PMID: 31240601 DOI: 10.1007/s12035-019-01659-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022]
Abstract
Unprocessed pro-neuregulin 2 (pro-NRG2) accumulates on neuronal cell bodies at junctions between the endoplasmic reticulum and plasma membrane (ER-PM junctions). NMDA receptors (NMDARs) trigger NRG2 ectodomain shedding from these sites followed by activation of ErbB4 receptor tyrosine kinases, and ErbB4 signaling cell-autonomously downregulates intrinsic excitability of GABAergic interneurons by reducing voltage-gated sodium channel currents. NMDARs also promote dispersal of Kv2.1 clusters from ER-PM junctions and cause a hyperpolarizing shift in its voltage-dependent channel activation, suggesting that NRG2/ErbB4 and Kv2.1 work together to regulate intrinsic interneuron excitability in an activity-dependent manner. Here we explored the cellular processes underlying NMDAR-dependent NRG2 shedding in cultured rat hippocampal neurons. We report that NMDARs control shedding by two separate but converging mechanisms. First, NMDA treatment disrupts binding of pro-NRG2 to ER-PM junctions by post-translationally modifying conserved Ser/Thr residues in its intracellular domain. Second, using a mutant NRG2 protein that cannot be modified at these residues and that fails to accumulate at ER-PM junctions, we demonstrate that NMDARs also directly promote NRG2 shedding by ADAM-type metalloproteinases. Using pharmacological and shRNA-mediated knockdown, and metalloproteinase overexpression, we unexpectedly find that ADAM10, but not ADAM17/TACE, is the major NRG2 sheddase acting downstream of NMDAR activation. Together, these findings reveal how NMDARs exert tight control over the NRG2/ErbB4 signaling pathway, and suggest that NRG2 and Kv2.1 are co-regulated components of a shared pathway that responds to elevated extracellular glutamate levels.
Collapse
Affiliation(s)
- Detlef Vullhorst
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 35 Lincoln Drive, Room 2C-1000, Bethesda, MD, 20892, USA
| | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 35 Lincoln Drive, Room 2C-1000, Bethesda, MD, 20892, USA.
| |
Collapse
|
25
|
Yi XM, Chen Y, Tu GJ. Neuregulin‑1 impacting bone marrow mesenchymal stem cell migration is conducive to functional recovery following spinal cord injury. Mol Med Rep 2019; 20:41-48. [PMID: 31115509 PMCID: PMC6580016 DOI: 10.3892/mmr.2019.10217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/15/2018] [Indexed: 11/30/2022] Open
Abstract
The present study was designed to investigate the effect of neuregulin-1 (NRG1) on the migration of rat bone marrow mesenchymal stem cells (BMSCs) and evaluate the role of NRG1 in the functional recovery following spinal cord injury (SCI). Firstly, the effect of NRG1 on the mRNA expression of Snail in the BMSCs was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis; secondly, the BMSCs were transfected with a Snail-overexpression plasmid (pBabe-puro-Snail) and the expression levels of Snail and matrix metalloptoreinase-2 (MMP-2) were detected by RT-qPCR and western blot analyses; thirdly, the cell proliferation and migration of BMSCs modified with pBabe-puro-Snail were detected by methyl thiazolyl tetrazolium and migration assays, respectively; finally, functional recovery of SCI was assessed using the Basso, Beattie, and Bresnahan rating scales. The results showed that NRG1 concentration-dependently promoted the expression of Snail with a peak at 40 ng/ml and 48 h; NRG1 enhanced the promoting effect of Snail on the expression of MMP-2; the overexpression of Snail did not enhance the cell growth of the BMSCs. The NRG1-modified BMSCs promoted the functional recovery of SCI. These results suggested that NRG1 significantly promoted the expression of MMP-2 by upregulating the expression of Snail, and enhanced cell migration of the BMSCs conducive to the functional recovery of SCI.
Collapse
Affiliation(s)
- Xi-Meng Yi
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yi Chen
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guan-Jun Tu
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
26
|
Salvany S, Casanovas A, Tarabal O, Piedrafita L, Hernández S, Santafé M, Soto-Bernardini MC, Calderó J, Schwab MH, Esquerda JE. Localization and dynamic changes of neuregulin-1 at C-type synaptic boutons in association with motor neuron injury and repair. FASEB J 2019; 33:7833-7851. [PMID: 30912977 DOI: 10.1096/fj.201802329r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
C-type synaptic boutons (C-boutons) provide cholinergic afferent input to spinal cord motor neurons (MNs), which display an endoplasmic reticulum (ER)-related subsurface cistern (SSC) adjacent to their postsynaptic membrane. A constellation of postsynaptic proteins is clustered at C-boutons, including M2 muscarinic receptors, potassium channels, and σ-1 receptors. In addition, we previously found that neuregulin (NRG)1 is associated with C-boutons at postsynaptic SSCs, whereas its ErbB receptors are located in the presynaptic compartment. C-bouton-mediated regulation of MN excitability has been implicated in MN disease, but NRG1-mediated functions and the impact of various pathologic conditions on C-bouton integrity have not been studied in detail. Here, we investigated changes in C-boutons after electrical stimulation, pharmacological treatment, and peripheral nerve axotomy. SSC-linked NRG1 clusters were severely disrupted in acutely stressed MNs and after tunicamycin-induced ER stress. In axotomized MNs, C-bouton loss occurred in concomitance with microglial recruitment and was prevented by the ER stress inhibitor salubrinal. Activated microglia displayed a positive chemotaxis to C-boutons. Analysis of transgenic mice overexpressing NRG1 type I and type III isoforms in MNs indicated that NRG1 type III acts as an organizer of SSC-like structures, whereas NRG1 type I promotes synaptogenesis of presynaptic cholinergic terminals. Moreover, MN-derived NRG1 signals may regulate the activity of perineuronal microglial cells. Together, these data provide new insights into the molecular and cellular pathology of C-boutons in MN injury and suggest that distinct NRG1 isoform-mediated signaling functions regulate the complex matching between pre- and postsynaptic C-bouton elements.-Salvany, S., Casanovas, A., Tarabal, O., Piedrafita, L., Hernández, S., Santafé, M., Soto-Bernardini, M. C., Calderó, J., Schwab, M. H., Esquerda, J. E. Localization and dynamic changes of neuregulin-1 at C-type synaptic boutons in association with motor neuron injury and repair.
Collapse
Affiliation(s)
- Sara Salvany
- Unitat de Neurobiologia Cellular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Anna Casanovas
- Unitat de Neurobiologia Cellular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Olga Tarabal
- Unitat de Neurobiologia Cellular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Lídia Piedrafita
- Unitat de Neurobiologia Cellular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Sara Hernández
- Unitat de Neurobiologia Cellular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Manuel Santafé
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - María Clara Soto-Bernardini
- Instituto Tecnológico de Costa Rica (TEC), Centro de Investigación en Biotecnología (CIB), Escuela de Biología, Cartago, Costa Rica
| | - Jordi Calderó
- Unitat de Neurobiologia Cellular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Markus H Schwab
- Institute of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience (ZSN), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Josep E Esquerda
- Unitat de Neurobiologia Cellular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| |
Collapse
|
27
|
Liu Y, Sugiura Y, Chen F, Lee KF, Ye Q, Lin W. Blocking skeletal muscle DHPRs/Ryr1 prevents neuromuscular synapse loss in mutant mice deficient in type III Neuregulin 1 (CRD-Nrg1). PLoS Genet 2019; 15:e1007857. [PMID: 30870432 PMCID: PMC6417856 DOI: 10.1371/journal.pgen.1007857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/28/2018] [Indexed: 11/22/2022] Open
Abstract
Schwann cells are integral components of vertebrate neuromuscular synapses; in their absence, pre-synaptic nerve terminals withdraw from post-synaptic muscles, leading to muscle denervation and synapse loss at the developing neuromuscular junction (NMJ). Here, we report a rescue of muscle denervation and neuromuscular synapses loss in type III Neuregulin 1 mutant mice (CRD-Nrg1-/-), which lack Schwann cells. We found that muscle denervation and neuromuscular synapse loss were prevented in CRD-Nrg1-/-mice when presynaptic activity was blocked by ablating a specific gene, such as Snap25 (synaptosomal-associated 25 kDa protein) or Chat (choline acetyltransferase). Further, these effects were mediated by a pathway that requires postsynaptic acetylcholine receptors (AChRs), because ablating Chrna1 (acetylcholine receptor α1 subunit), which encodes muscle-specific AChRs in CRD-Nrg1-/-mice also rescued muscle denervation. Moreover, genetically ablating muscle dihydropyridine receptor (DHPR) β1 subunit (Cacnb1) or ryanodine receptor 1 (Ryr1) also rescued muscle denervation and neuromuscular synapse loss in CRD-Nrg1-/-mice. Thus, these genetic manipulations follow a pathway-from presynaptic to postsynaptic, and, ultimately to muscle activity mediated by DHPRs and Ryr1. Importantly, electrophysiological analyses reveal robust synaptic activity in the rescued, Schwann-cell deficient NMJs in CRD-Nrg1-/-Cacnb1-/-or CRD-Nrg1-/-Ryr1-/-mutant mice. Thus, a blockade of synaptic activity, although sufficient, is not necessary to preserve NMJs that lack Schwann cells. Instead, a blockade of muscle activity mediated by DHRPs and Ryr1 is both necessary and sufficient for preserving NMJs that lack Schwann cells. These findings suggest that muscle activity mediated by DHPRs/Ryr1 may destabilize developing NMJs and that Schwann cells play crucial roles in counteracting such a destabilizing activity to preserve neuromuscular synapses during development.
Collapse
Affiliation(s)
- Yun Liu
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States of America
| | - Yoshie Sugiura
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States of America
| | - Fujun Chen
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States of America
| | - Kuo-Fen Lee
- The Salk Institute, La Jolla, United States of America
| | - Qiaohong Ye
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States of America
| | - Weichun Lin
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States of America
| |
Collapse
|
28
|
Icariside II attenuates lipopolysaccharide-induced neuroinflammation through inhibiting TLR4/MyD88/NF-κB pathway in rats. Biomed Pharmacother 2019; 111:315-324. [DOI: 10.1016/j.biopha.2018.10.201] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 11/18/2022] Open
|
29
|
Grieco SF, Holmes TC, Xu X. Neuregulin directed molecular mechanisms of visual cortical plasticity. J Comp Neurol 2019; 527:668-678. [PMID: 29464684 PMCID: PMC6103898 DOI: 10.1002/cne.24414] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 02/06/2023]
Abstract
Experience-dependent critical period (CP) plasticity has been extensively studied in the visual cortex. Monocular deprivation during the CP affects ocular dominance, limits visual performance, and contributes to the pathological etiology of amblyopia. Neuregulin-1 (NRG1) signaling through its tyrosine kinase receptor ErbB4 is essential for the normal development of the nervous system and has been linked to neuropsychiatric disorders such as schizophrenia. We discovered recently that NRG1/ErbB4 signaling in PV neurons is critical for the initiation of CP visual cortical plasticity by controlling excitatory synaptic inputs onto PV neurons and thus PV-cell mediated cortical inhibition that occurs following visual deprivation. Building on this discovery, we review the existing literature of neuregulin signaling in developing and adult cortex and address the implication of NRG/ErbB4 signaling in visual cortical plasticity at the cellular and circuit levels. NRG-directed research may lead to therapeutic approaches to reactivate plasticity in the adult cortex.
Collapse
Affiliation(s)
- Steven F Grieco
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, California
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California
| | - Todd C Holmes
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, California
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, California
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California
| |
Collapse
|
30
|
Fowler CD, Turner JR, Imad Damaj M. Molecular Mechanisms Associated with Nicotine Pharmacology and Dependence. Handb Exp Pharmacol 2019; 258:373-393. [PMID: 31267166 DOI: 10.1007/164_2019_252] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tobacco dependence is a leading cause of preventable disease and death worldwide. Nicotine, the main psychoactive component in tobacco cigarettes, has also been garnering increased popularity in its vaporized form, as derived from e-cigarette devices. Thus, an understanding of the molecular mechanisms underlying nicotine pharmacology and dependence is required to ascertain novel approaches to treat drug dependence. In this chapter, we review the field's current understanding of nicotine's actions in the brain, the neurocircuitry underlying drug dependence, factors that modulate the function of nicotinic acetylcholine receptors, and the role of specific genes in mitigating the vulnerability to develop nicotine dependence. In addition to nicotine's direct actions in the brain, other constituents in nicotine and tobacco products have also been found to alter drug use, and thus, evidence is provided to highlight this issue. Finally, currently available pharmacotherapeutic strategies are discussed, along with an outlook for future therapeutic directions to achieve to the goal of long-term nicotine cessation.
Collapse
Affiliation(s)
- Christie D Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA. .,Translational Research Initiative for Pain and Neuropathy at VCU, Richmond, VA, USA.
| |
Collapse
|
31
|
Rahman A, Weber J, Labin E, Lai C, Prieto AL. Developmental expression of Neuregulin‐3 in the rat central nervous system. J Comp Neurol 2018; 527:797-817. [DOI: 10.1002/cne.24559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/24/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Afrida Rahman
- Departmentof Psychological and Brain SciencesIndiana University Bloomington Indiana
| | - Janet Weber
- Department NeuroscienceUniversity of California San Diego San Diego California
| | - Edward Labin
- Department of NeurologyUniversity of Minnesota Minneapolis
| | - Cary Lai
- Departmentof Psychological and Brain SciencesIndiana University Bloomington Indiana
| | - Anne L Prieto
- Departmentof Psychological and Brain SciencesIndiana University Bloomington Indiana
| |
Collapse
|
32
|
Mitchell RA, Luwor RB, Burgess AW. Epidermal growth factor receptor: Structure-function informing the design of anticancer therapeutics. Exp Cell Res 2018; 371:1-19. [PMID: 30098332 DOI: 10.1016/j.yexcr.2018.08.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022]
Abstract
Research on the epidermal growth factor (EGF) family and the family of receptors (EGFR) has progressed rapidly in recent times. New crystal structures of the ectodomains with different ligands, the activation of the kinase domain through oligomerisation and the use of fluorescence techniques have revealed profound conformational changes on ligand binding. The control of cell signaling from the EGFR-family is complex, with heterodimerisation, ligand affinity and signaling cross-talk influencing cellular outcomes. Analysis of tissue homeostasis indicates that the control of pro-ligand processing is likely to be as important as receptor activation events. Several members of the EGFR-family are overexpressed and/or mutated in cancer cells. The perturbation of EGFR-family signaling drives the malignant phenotype of many cancers and both inhibitors and antagonists of signaling from these receptors have already produced therapeutic benefits for patients. The design of affibodies, antibodies, small molecule inhibitors and even immunotherapeutic drugs targeting the EGFR-family has yielded promising new approaches to improving outcomes for cancer patients. In this review, we describe recent discoveries which have increased our understanding of the structure and dynamics of signaling from the EGFR-family, the roles of ligand processing and receptor cross-talk. We discuss the relevance of these studies to the development of strategies for designing more effective targeted treatments for cancer patients.
Collapse
Affiliation(s)
- Ruth A Mitchell
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Antony W Burgess
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| |
Collapse
|
33
|
Müller T, Braud S, Jüttner R, Voigt BC, Paulick K, Sheean ME, Klisch C, Gueneykaya D, Rathjen FG, Geiger JR, Poulet JF, Birchmeier C. Neuregulin 3 promotes excitatory synapse formation on hippocampal interneurons. EMBO J 2018; 37:embj.201798858. [PMID: 30049711 PMCID: PMC6120667 DOI: 10.15252/embj.201798858] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/09/2023] Open
Abstract
Hippocampal GABAergic interneurons are crucial for cortical network function and have been implicated in psychiatric disorders. We show here that Neuregulin 3 (Nrg3), a relatively little investigated low-affinity ligand, is a functionally dominant interaction partner of ErbB4 in parvalbumin-positive (PV) interneurons. Nrg3 and ErbB4 are located pre- and postsynaptically, respectively, in excitatory synapses on PV interneurons in vivo Additionally, we show that ablation of Nrg3 results in a similar phenotype as the one described for ErbB4 ablation, including reduced excitatory synapse numbers on PV interneurons, altered short-term plasticity, and disinhibition of the hippocampal network. In culture, presynaptic Nrg3 increases excitatory synapse numbers on ErbB4+ interneurons and affects short-term plasticity. Nrg3 mutant neurons are poor donors of presynaptic terminals in the presence of competing neurons that produce recombinant Nrg3, and this bias requires postsynaptic ErbB4 but not ErbB4 kinase activity. Furthermore, when presented by non-neuronal cells, Nrg3 induces postsynaptic membrane specialization. Our data indicate that Nrg3 provides adhesive cues that facilitate excitatory neurons to synapse onto ErbB4+ interneurons.
Collapse
Affiliation(s)
- Thomas Müller
- Developmental Biology/Signal Transduction Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Stephanie Braud
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - René Jüttner
- Developmental Neurobiology Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Birgit C Voigt
- Neural Circuits and Behaviour Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Katharina Paulick
- Developmental Biology/Signal Transduction Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Maria E Sheean
- Developmental Biology/Signal Transduction Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Constantin Klisch
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dilansu Gueneykaya
- Cellular Neuroscience Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Fritz G Rathjen
- Developmental Neurobiology Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Jörg Rp Geiger
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - James Fa Poulet
- Neural Circuits and Behaviour Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany.,Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
34
|
Erben L, He MX, Laeremans A, Park E, Buonanno A. A Novel Ultrasensitive In Situ Hybridization Approach to Detect Short Sequences and Splice Variants with Cellular Resolution. Mol Neurobiol 2018; 55:6169-6181. [PMID: 29264769 PMCID: PMC5994223 DOI: 10.1007/s12035-017-0834-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/08/2017] [Indexed: 01/30/2023]
Abstract
Investigating the expression of RNAs that differ by short or single nucleotide sequences at a single-cell level in tissue has been limited by the sensitivity and specificity of in situ hybridization (ISH) techniques. Detection of short isoform-specific sequences requires RNA isolation for PCR analysis-an approach that loses the regional and cell-type-specific distribution of isoforms. Having the capability to distinguish the differential expression of RNA variants in tissue is critical because alterations in mRNA splicing and editing, as well as coding single nucleotide polymorphisms, have been associated with numerous cancers, neurological and psychiatric disorders. Here we introduce a novel highly sensitive single-probe colorimetric/fluorescent ISH approach that targets short exon/exon RNA splice junctions using single-pair oligonucleotide probes (~ 50 bp). We use this approach to investigate, with single-cell resolution, the expression of four transcripts encoding the neuregulin (NRG) receptor ErbB4 that differ by alternative splicing of exons encoding two juxtamembrane (JMa/JMb) and two cytoplasmic (CYT-1/CYT-2) domains that alter receptor stability and signaling modes, respectively. By comparing ErbB4 hybridization on sections from wild-type and ErbB4 knockout mice (missing exon 2), we initially demonstrate that single-pair probes provide the sensitivity and specificity to visualize and quantify the differential expression of ErbB4 isoforms. Using cell-type-specific GFP reporter mice, we go on to demonstrate that expression of ErbB4 isoforms differs between neurons and oligodendrocytes, and that this differential expression of ErbB4 isoforms is evolutionarily conserved to humans. This single-pair probe ISH approach, known as BaseScope, could serve as an invaluable diagnostic tool to detect alternative spliced isoforms, and potentially single base polymorphisms, associated with disease.
Collapse
Affiliation(s)
- Larissa Erben
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bldg. 35, Room 2C-1000, Bethesda, MD, 20892, USA
- Institute of Molecular Psychiatry, University Bonn, 53127, Bonn, Germany
| | - Ming-Xiao He
- Advanced Cell Diagnostics, Newark, CA, 94560, USA
| | | | - Emily Park
- Advanced Cell Diagnostics, Newark, CA, 94560, USA
| | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bldg. 35, Room 2C-1000, Bethesda, MD, 20892, USA.
| |
Collapse
|
35
|
Controlling of glutamate release by neuregulin3 via inhibiting the assembly of the SNARE complex. Proc Natl Acad Sci U S A 2018; 115:2508-2513. [PMID: 29463705 DOI: 10.1073/pnas.1716322115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neuregulin3 (NRG3) is a growth factor of the neuregulin (NRG) family and a risk gene of various severe mental illnesses including schizophrenia, bipolar disorders, and major depression. However, the physiological function of NRG3 remains poorly understood. Here we show that loss of Nrg3 in GFAP-Nrg3f/f mice increased glutamatergic transmission, but had no effect on GABAergic transmission. These phenotypes were observed in Nex-Nrg3f/f mice, where Nrg3 was specifically knocked out in pyramidal neurons, indicating that Nrg3 regulates glutamatergic transmission by a cell-autonomous mechanism. Consequently, in the absence of Nrg3 in pyramidal neurons, mutant mice displayed various behavioral deficits related to mental illnesses. We show that the Nrg3 mutation decreased paired-pulse facilitation, increased decay of NMDAR currents when treated with MK801, and increased minimal stimulation-elicited response, providing evidence that the Nrg3 mutation increases glutamate release probability. Notably, Nrg3 is a presynaptic protein that regulates the SNARE-complex assembly. Finally, increased Nrg3 levels, as observed in patients with severe mental illnesses, suppressed glutamatergic transmission. Together, these observations indicate that, unlike the prototype Nrg1, the effect of which is mediated by activating ErbB4 in interneurons, Nrg3 is critical in controlling glutamatergic transmission by regulating the SNARE complex at the presynaptic terminals, identifying a function of Nrg3 and revealing a pathophysiological mechanism for hypofunction of the glutamatergic pathway in Nrg3-related severe mental illnesses.
Collapse
|
36
|
Zhang Z, Huang J, Shen Y, Li R. BACE1-Dependent Neuregulin-1 Signaling: An Implication for Schizophrenia. Front Mol Neurosci 2017; 10:302. [PMID: 28993723 PMCID: PMC5622153 DOI: 10.3389/fnmol.2017.00302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia is a chronic psychiatric disorder with a lifetime prevalence of about 1% in the general population. Recent studies have shown that Neuregulin-1 (Nrg1) is a candidate gene for schizophrenia. At least 15 alternative splicing of NRG1 isoforms all contain an extracellular epidermal growth factor (EGF)-like domain, which is sufficient for Nrg1 biological activity including the formation of myelin sheaths and the regulation of synaptic plasticity. It is known that Nrg1 can be cleaved by β-secretase (BACE1) and the resulting N-terminal fragment (Nrg1-ntf) binds to receptor tyrosine kinase ErbB4, which activates Nrg1/ErbB4 signaling. While changes in Nrg1 expression levels in schizophrenia still remain controversial, understanding the BACE1-cleaved Nrg1-ntf and Nrg1/ErbB4 signaling in schizophrenia neuropathogenesis is essential and important. In this review paper, we included three major parts: (1) Nrg1 structure and cleavage pattern by BACE1; (2) BACE1-dependent Nrg1 cleavage associated with schizophrenia in human studies; and (3) Animal studies of Nrg1 and BACE1 mutations with behavioral observations. Our review will provide a better understanding of Nrg1 in schizophrenia and a potential strategy for using BACE1 cleavage of Nrg1 as a unique biomarker for diagnosis, as well as a new therapeutic target, of schizophrenia.
Collapse
Affiliation(s)
- Zhengrong Zhang
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical UniversityBeijing, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical UniversityBeijing, China
| | - Yong Shen
- Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of ChinaHefei, China.,Center for Therapeutic Strategies for Brain Disorders, Roskamp Institute, SarasotaFL, United States.,Center for Hormone Advanced Science and Education, Roskamp Institute, SarasotaFL, United States
| | - Rena Li
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical UniversityBeijing, China.,Center for Therapeutic Strategies for Brain Disorders, Roskamp Institute, SarasotaFL, United States.,Center for Hormone Advanced Science and Education, Roskamp Institute, SarasotaFL, United States.,Beijing Institute for Brain Disorders, Capital Medical UniversityBeijing, China
| |
Collapse
|