1
|
Doherty DW, Chen L, Smith Y, Wichmann T, Chu HY, Lytton WW. Decreased cellular excitability of pyramidal tract neurons in primary motor cortex leads to paradoxically increased network activity in simulated parkinsonian motor cortex. RESEARCH SQUARE 2025:rs.3.rs-6254909. [PMID: 40297688 PMCID: PMC12036466 DOI: 10.21203/rs.3.rs-6254909/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Recent evidence suggests that the primary motor cortex (M1) layer 5B pyramidal tract (PT5B) neurons show a decreased intrinsic excitability in mouse models of parkinsonism, which perhaps plays an important role in the pathophysiology of parkinsonian motor symptoms. PT5B neurons project to outputs in the brainstem and the spinal cord, leading to the direct motor expression of Parkinson's disease (PD) pathology. We set out to explore how the decreased PT5B neuron excitability influences the activity patterns of the M1 network. Using NEURON/NetPyNE simulators, we implemented detailed computer simulations of PT5B neurons based on control and 6-OHDA-treated mouse slice data. We placed these PT5B cells in an in vivo M1 network simulation, driven by ascending input from the thalamus and from other cortical areas. Simulated 6-OHDA-treated mouse PT5B neurons in an otherwise unmodified simulated M1 network resulted in major changes in LFP oscillatory power in the parkinsonian condition: an order of magnitude increase in beta band power around 15 Hz in the rest state and a lesser increase in beta power in the parkinsonian activated (movement) state. We demonstrated that relatively small changes in PT5B neuron excitability altered the patterns of activity throughout the M1 circuit. In particular, the decreased PT5B neuron excitability resulted in increased beta band power, which is a signature of PD pathophysiology.
Collapse
|
2
|
Chen L, Chehade HD, Chu HY. Motor cortical neuronal hyperexcitability associated with α-synuclein aggregation. NPJ Parkinsons Dis 2025; 11:18. [PMID: 39809792 PMCID: PMC11733020 DOI: 10.1038/s41531-024-00867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
ΑBSTRACT: In Parkinson's disease (PD), Lewy pathology deposits in the cerebral cortex, but how the pathology disrupts cortical circuit integrity and function remains poorly understood. To begin to address this question, we injected α-synuclein (αSyn) preformed fibrils (PFFs) into the dorsolateral striatum of mice to seed αSyn pathology in the cortical cortex and induce degeneration of midbrain dopaminergic neurons. We reported that αSyn aggregates accumulate in the motor cortex in a layer- and cell-subtype-specific pattern. Specifically, αSyn aggregates-bearing intratelencephalic neurons (ITNs) showed hyperexcitability, increased input resistance, and decreased cell capacitance, which were associated with impaired HCN channel function. Morphologically, the αSyn aggregates-bearing ITNs showed shrinkage of cell bodies and loss of dendritic spines. Last, we showed that partial dopamine depletion is not sufficient to alter thalamocortical transmission to cortical pyramidal neurons. Our results provide a novel mechanistic understanding of cortical circuit dysfunction in PD.
Collapse
Affiliation(s)
- Liqiang Chen
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, USA
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Department of Pharmacology and Physiology, Georgetown University of Medical Center, Washington, DC, 20007, USA
| | - Hiba Douja Chehade
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, USA
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Department of Pharmacology and Physiology, Georgetown University of Medical Center, Washington, DC, 20007, USA
| | - Hong-Yuan Chu
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, USA.
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA.
- Department of Pharmacology and Physiology, Georgetown University of Medical Center, Washington, DC, 20007, USA.
| |
Collapse
|
3
|
Berezhnoi D, Chehade HD, Simms G, Chen L, Chu HY. Sub-second characterization of locomotor activities of mouse models of Parkinsonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.26.630411. [PMID: 39763733 PMCID: PMC11703164 DOI: 10.1101/2024.12.26.630411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The degeneration of midbrain dopamine (DA) neurons disrupts the neural control of natural behavior, such as walking, posture, and gait in Parkinson's disease. While some aspects of motor symptoms can be managed by dopamine replacement therapies, others respond poorly. Recent advancements in machine learning-based technologies offer opportunities for unbiased segmentation and quantification of natural behavior in both healthy and diseased states. In the present study, we applied the motion sequencing (MoSeq) platform to study the spontaneous locomotor activities of neurotoxin and genetic mouse models of Parkinsonism as the midbrain DA neurons progressively degenerate. We also evaluated the treatment efficacy of levodopa (L-DOPA) on behavioral modules at fine time scales. We revealed robust changes in the kinematics and usage of the behavioral modules that encode spontaneous locomotor activity. Further analysis demonstrates that fast behavioral modules with higher velocities were more vulnerable to loss of DA and preferentially affected at early stages of Parkinsonism. Last, L-DOPA effectively improved the velocity, but not the usage and transition probability, of behavioral modules of Parkinsonian animals. In conclusion, the hypokinetic phenotypes in Parkinsonism are mediated by the decreased velocities of behavioral modules and the disrupted temporal organization of sub-second modules into actions. Moreover, we showed that the therapeutic effect of L-DOPA is mainly mediated by its effect on the velocities of behavior modules at fine time scales. This work documents robust changes in the velocity, usage, and temporal organization of behavioral modules and their responsiveness to dopaminergic treatment under the Parkinsonian state.
Collapse
Affiliation(s)
- Daniil Berezhnoi
- Department of Pharmacology and Physiology, Georgetown University of Medical Center, Washington DC, 20007, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, United States
| | - Hiba Douja Chehade
- Department of Pharmacology and Physiology, Georgetown University of Medical Center, Washington DC, 20007, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, United States
| | - Gabriel Simms
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, United States
| | - Liqiang Chen
- Department of Pharmacology and Physiology, Georgetown University of Medical Center, Washington DC, 20007, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, United States
| | - Hong-Yuan Chu
- Department of Pharmacology and Physiology, Georgetown University of Medical Center, Washington DC, 20007, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, United States
| |
Collapse
|
4
|
Chu HY. Motor cortical circuit adaptations in parkinsonism. Neural Regen Res 2024; 19:2107-2108. [PMID: 38488541 PMCID: PMC11034584 DOI: 10.4103/1673-5374.392884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/10/2023] [Accepted: 11/29/2023] [Indexed: 04/24/2024] Open
Affiliation(s)
- Hong-Yuan Chu
- Department of Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
5
|
Chen L, Chehade HD, Chu HY. Motor Cortical Neuronal Hyperexcitability Associated with α-Synuclein Aggregation. RESEARCH SQUARE 2024:rs.3.rs-4797540. [PMID: 39281856 PMCID: PMC11398582 DOI: 10.21203/rs.3.rs-4797540/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Dysfunction of the cerebral cortex is thought to underlie motor and cognitive impairments in Parkinson disease (PD). While cortical function is known to be suppressed by abnormal basal ganglia output following dopaminergic degeneration, it remains to be determined how the deposition of Lewy pathology disrupts cortical circuit integrity and function. Moreover, it is also unknown whether cortical Lewy pathology and midbrain dopaminergic degeneration interact to disrupt cortical function in late-stage. To begin to address these questions, we injected α-synuclein (αSyn) preformed fibrils (PFFs) into the dorsolateral striatum of mice to seed αSyn pathology in the cortical cortex and induce degeneration of midbrain dopaminergic neurons. Using this model system, we reported that αSyn aggregates accumulate in the motor cortex in a layer- and cell-subtype-specific pattern. Particularly, intratelencephalic neurons (ITNs) showed earlier accumulation and greater extent of αSyn aggregates relative to corticospinal neurons (CSNs). Moreover, we demonstrated that the intrinsic excitability and inputs resistance of αSyn aggregates-bearing ITNs in the secondary motor cortex (M2) are increased, along with a noticeable shrinkage of cell bodies and loss of dendritic spines. Last, neither the intrinsic excitability of CSNs nor their thalamocortical input was altered by a partial striatal dopamine depletion associated with αSyn pathology. Our results documented motor cortical neuronal hyperexcitability associated with αSyn aggregation and provided a novel mechanistic understanding of cortical circuit dysfunction in PD.
Collapse
Affiliation(s)
- Liqiang Chen
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, United States
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, United States
- Department of Pharmacology and Physiology, Georgetown University of Medical Center, Washington DC, 20007, United States
| | - Hiba Douja Chehade
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, United States
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, United States
- Department of Pharmacology and Physiology, Georgetown University of Medical Center, Washington DC, 20007, United States
| | - Hong-Yuan Chu
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, United States
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, United States
- Department of Pharmacology and Physiology, Georgetown University of Medical Center, Washington DC, 20007, United States
| |
Collapse
|
6
|
Chen L, Chehade HD, Chu HY. Motor Cortical Neuronal Hyperexcitability Associated with α-Synuclein Aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604995. [PMID: 39091827 PMCID: PMC11291145 DOI: 10.1101/2024.07.24.604995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Dysfunction of the cerebral cortex is thought to underlie motor and cognitive impairments in Parkinson disease (PD). While cortical function is known to be suppressed by abnormal basal ganglia output following dopaminergic degeneration, it remains to be determined how the deposition of Lewy pathology disrupts cortical circuit integrity and function. Moreover, it is also unknown whether cortical Lewy pathology and midbrain dopaminergic degeneration interact to disrupt cortical function in late-stage. To begin to address these questions, we injected α-synuclein (αSyn) preformed fibrils (PFFs) into the dorsolateral striatum of mice to seed αSyn pathology in the cortical cortex and induce degeneration of midbrain dopaminergic neurons. Using this model system, we reported that αSyn aggregates accumulate in the motor cortex in a layer- and cell-subtype-specific pattern. Particularly, intratelencephalic neurons (ITNs) showed earlier accumulation and greater extent of αSyn aggregates relative to corticospinal neurons (CSNs). Moreover, we demonstrated that the intrinsic excitability and inputs resistance of αSyn aggregates-bearing ITNs in the secondary motor cortex (M2) are increased, along with a noticeable shrinkage of cell bodies and loss of dendritic spines. Last, neither the intrinsic excitability of CSNs nor their thalamocortical input was altered by a partial striatal dopamine depletion associated with αSyn pathology. Our results documented motor cortical neuronal hyperexcitability associated with αSyn aggregation and provided a novel mechanistic understanding of cortical circuit dysfunction in PD.
Collapse
Affiliation(s)
- Liqiang Chen
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, United States
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, United States
- Department of Pharmacology and Physiology, Georgetown University of Medical Center, Washington DC, 20007, United States
| | - Hiba Douja Chehade
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, United States
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, United States
- Department of Pharmacology and Physiology, Georgetown University of Medical Center, Washington DC, 20007, United States
| | - Hong-Yuan Chu
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, United States
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, United States
- Department of Pharmacology and Physiology, Georgetown University of Medical Center, Washington DC, 20007, United States
| |
Collapse
|
7
|
Wang W, Sessler CD, Wang X, Liu J. In Situ Synthesis and Assembly of Functional Materials and Devices in Living Systems. Acc Chem Res 2024; 57:2013-2026. [PMID: 39007720 DOI: 10.1021/acs.accounts.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Integrating functional materials and devices with living systems enables novel methods for recording, manipulating, or augmenting organisms not accessible by traditional chemical, optical, or genetic approaches. (The term "device" refers to the fundamental components of complex electronic systems, such as transistors, capacitors, conductors, and electrodes.) Typically, these advanced materials and devices are synthesized, either through chemical or physical reactions, outside the biological systems (ex situ) before they are integrated. This is due in part to the more limited repertoire of biocompatible chemical transformations available for assembling functional materials in vivo. Given that most of the assembled bulk materials are impermeable to cell membranes and cannot go through the blood-brain barrier (BBB), the external synthesis poses challenges when trying to interface these materials and devices with cells precisely and in a timely manner and at the micro- and nanoscale─a crucial requirement for modulating cellular functions. In contrast to presynthesis in a separate location, in situ assembly, wherein small molecules or building blocks are directly assembled into functional materials within a biological system at the desired site of action, has offered a potential solution for spatiotemporal and genetic control of material synthesis and assembly. In this Account, we highlight recent advances in spatially and temporally targeted functional material synthesis and assembly in living cells, tissues and animals and provide perspective on how they may enable novel probing, modulation, or augmentation of fundamental biology. We discuss several strategies, starting from the traditional nontargeted methods to targeted assembly of functional materials and devices based on the endogenous markers of the biological system. We then focus on genetically targeted assembly of functional materials, which employs enzymatic catalysis centers expressed in living systems to assemble functional materials in specific molecular-defined cell types. We introduce the recent efforts of our group to modulate membrane capacitance and neuron excitability using in situ synthesized electrically functional polymers in a genetically targetable manner. These advances demonstrate the promise of in situ synthesis and assembly of functional materials and devices, including the optogenetic polymerization developed by our lab, to interface with cells in a cellular- or subcellular-specific manner by incorporating genetic and/or optical control over material assembly. Finally, we discuss remaining challenges, areas for improvement, potential applications to other biological systems, and novel methods for the in situ synthesis of functional materials that could be elevated by incorporating genetic or material design strategies. As researchers expand the toolkit of biocompatible in situ functional material synthetic techniques, we anticipate that these advancements could potentially offer valuable tools for exploring biological systems and developing therapeutic solutions.
Collapse
Affiliation(s)
- Wenbo Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, United States
| | - Chanan D Sessler
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Xiao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, United States
| |
Collapse
|
8
|
Chu HY, Smith Y, Lytton WW, Grafton S, Villalba R, Masilamoni G, Wichmann T. Dysfunction of motor cortices in Parkinson's disease. Cereb Cortex 2024; 34:bhae294. [PMID: 39066504 PMCID: PMC11281850 DOI: 10.1093/cercor/bhae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/26/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The cerebral cortex has long been thought to be involved in the pathophysiology of motor symptoms of Parkinson's disease. The impaired cortical function is believed to be a direct and immediate effect of pathologically patterned basal ganglia output, mediated to the cerebral cortex by way of the ventral motor thalamus. However, recent studies in humans with Parkinson's disease and in animal models of the disease have provided strong evidence suggesting that the involvement of the cerebral cortex is much broader than merely serving as a passive conduit for subcortical disturbances. In the present review, we discuss Parkinson's disease-related changes in frontal cortical motor regions, focusing on neuropathology, plasticity, changes in neurotransmission, and altered network interactions. We will also examine recent studies exploring the cortical circuits as potential targets for neuromodulation to treat Parkinson's disease.
Collapse
Affiliation(s)
- Hong-Yuan Chu
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Rd N.W., Washington D.C. 20007, United States
| | - Yoland Smith
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Neurology, School of Medicine, Emory University, 12 Executive Drive N.E., Atlanta, GA 30329, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - William W Lytton
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Physiology & Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States
- Department of Neurology, Kings County Hospital, 451 Clarkson Avenue,Brooklyn, NY 11203, United States
| | - Scott Grafton
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Psychological and Brain Sciences, University of California, 551 UCEN Road, Santa Barbara, CA 93106, United States
| | - Rosa Villalba
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - Gunasingh Masilamoni
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - Thomas Wichmann
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Neurology, School of Medicine, Emory University, 12 Executive Drive N.E., Atlanta, GA 30329, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| |
Collapse
|
9
|
Doherty DW, Chen L, Smith Y, Wichmann T, Chu HY, Lytton WW. Decreased cellular excitability of pyramidal tract neurons in primary motor cortex leads to paradoxically increased network activity in simulated parkinsonian motor cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595566. [PMID: 38948850 PMCID: PMC11212883 DOI: 10.1101/2024.05.23.595566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Decreased excitability of pyramidal tract neurons in layer 5B (PT5B) of primary motor cortex (M1) has recently been shown in a dopamine-depleted mouse model of parkinsonism. We hypothesized that decreased PT5B neuron excitability would substantially disrupt oscillatory and non-oscillatory firing patterns of neurons in layer 5 (L5) of primary motor cortex (M1). To test this hypothesis, we performed computer simulations using a previously validated computer model of mouse M1. Inclusion of the experimentally identified parkinsonism-associated decrease of PT5B excitability into our computational model produced a paradoxical increase in rest-state PT5B firing rate, as well as an increase in beta-band oscillatory power in local field potential (LFP). In the movement-state, PT5B population firing and LFP showed reduced beta and increased high-beta, low-gamma activity of 20-35 Hz in the parkinsonian, but not in control condition. The appearance of beta-band oscillations in parkinsonism would be expected to disrupt normal M1 motor output and contribute to motor activity deficits seen in patients with Parkinson's disease (PD).
Collapse
Affiliation(s)
- Donald W Doherty
- Department of Physiology & Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Liqiang Chen
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington D.C., USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Yoland Smith
- Emory National Primate Research Center, Department of Neurology, Udall Center of Excellence for Parkinson's Disease Research, Emory University, School of Medicine, Atlanta GA 30329 USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Thomas Wichmann
- Emory National Primate Research Center, Department of Neurology, Udall Center of Excellence for Parkinson's Disease Research, Emory University, School of Medicine, Atlanta GA 30329 USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Hong-Yuan Chu
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington D.C., USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - William W Lytton
- Department of Physiology & Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
- Kings County Hospital, Brooklyn, NY 11203, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
10
|
Cherian S, Simms G, Chen L, Chu HY. Loss of Midbrain Dopamine Neurons Does Not Alter GABAergic Inhibition Mediated by Parvalbumin-Expressing Interneurons in Mouse Primary Motor Cortex. eNeuro 2024; 11:ENEURO.0010-24.2024. [PMID: 38658137 PMCID: PMC11082919 DOI: 10.1523/eneuro.0010-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
The primary motor cortex (M1) integrates sensory and cognitive inputs to generate voluntary movement. Its functional impairments have been implicated in the pathophysiology of motor symptoms in Parkinson's disease (PD). Specifically, dopaminergic degeneration and basal ganglia dysfunction entrain M1 neurons into the abnormally synchronized bursting pattern of activity throughout the cortico-basal ganglia-thalamocortical network. However, how degeneration of the midbrain dopaminergic neurons affects the anatomy, microcircuit connectivity, and function of the M1 network remains poorly understood. The present study examined whether and how the loss of dopamine (DA) affects the morphology, cellular excitability, and synaptic physiology of Layer 5 parvalbumin-expressing (PV+) cells in the M1 of mice of both sexes. Here, we reported that loss of midbrain dopaminergic neurons does not alter the number, morphology, and physiology of Layer 5 PV+ cells in M1. Moreover, we demonstrated that the number of perisomatic PV+ puncta of M1 pyramidal neurons as well as their functional innervation of cortical pyramidal neurons were not altered following the loss of DA. Together, the present study documents an intact GABAergic inhibitory network formed by PV+ cells following the loss of midbrain dopaminergic neurons.
Collapse
Affiliation(s)
- Suraj Cherian
- Department of Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Gabriel Simms
- Department of Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Liqiang Chen
- Department of Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Hong-Yuan Chu
- Department of Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan 49503
| |
Collapse
|
11
|
Chen L, Daniels S, Dvorak R, Chu HY. Reduced thalamic excitation to motor cortical pyramidal tract neurons in parkinsonism. SCIENCE ADVANCES 2023; 9:eadg3038. [PMID: 37611096 PMCID: PMC10446482 DOI: 10.1126/sciadv.adg3038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Degeneration of midbrain dopaminergic (DA) neurons alters the connectivity and functionality of the basal ganglia-thalamocortical circuits in Parkinson's disease (PD). Particularly, the aberrant outputs of the primary motor cortex (M1) contribute to parkinsonian motor deficits. However, cortical adaptations at cellular and synaptic levels in parkinsonism remain poorly understood. Using multidisciplinary approaches, we found that DA degeneration induces cell subtype- and input-specific reduction of thalamic excitation to M1 pyramidal tract (PT) neurons. At molecular level, we identified that N-methyl-d-aspartate (NMDA) receptors play a key role in mediating the reduced thalamocortical excitation to PT neurons. At circuit level, we showed that the reduced thalamocortical transmission in parkinsonian mice can be rescued by chemogenetically suppressing basal ganglia outputs. Together, our data suggest that cell subtype- and synapse-specific adaptations in M1 contribute to altered cortical outputs in parkinsonism and are important aspects of PD pathophysiology.
Collapse
Affiliation(s)
- Liqiang Chen
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503 USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Samuel Daniels
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503 USA
| | - Rachel Dvorak
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503 USA
| | - Hong-Yuan Chu
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503 USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
12
|
Chambers NE, Millett M, Moehle MS. The muscarinic M4 acetylcholine receptor exacerbates symptoms of movement disorders. Biochem Soc Trans 2023; 51:691-702. [PMID: 37013974 PMCID: PMC10212540 DOI: 10.1042/bst20220525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023]
Abstract
Barbeau's seesaw hypothesis of dopamine-acetylcholine balance has predominated movement disorders literature for years. Both the simplicity of the explanation and the matching efficacy of anticholinergic treatment in movement disorders seem to support this hypothesis. However, evidence from translational and clinical studies in movement disorders indicates that many features of this simple balance are lost, broken, or absent from movement disorders models or in imaging studies of patients with these disorders. This review reappraises the dopamine-acetylcholine balance hypothesis in light of recent evidence and describes how the Gαi/o coupled muscarinic M4 receptor acts in opposition to dopamine signaling in the basal ganglia. We highlight how M4 signaling can ameliorate or exacerbate movement disorders symptoms and physiological correlates of these symptoms in specific disease states. Furthermore, we propose future directions for investigation of this mechanisms to fully understand the potential efficacy of M4 targeting therapeutics in movement disorders. Overall, initial evidence suggest that M4 is a promising pharmaceutical target to ameliorate motor symptoms of hypo- and hyper-dopaminergic disorders.
Collapse
Affiliation(s)
- Nicole E. Chambers
- Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - Michael Millett
- Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - Mark S. Moehle
- Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| |
Collapse
|
13
|
Esmaeilpour T, Lotfealian A, Anvari M, Namavar M, Karbalaei N, Shahedi A, Bokkon I, Salari V, Oblak D. Effect of methamphetamine on ultraweak photon emission and level of reactive oxygen species in male rat brain. Neurosci Lett 2023; 801:137136. [PMID: 36804571 DOI: 10.1016/j.neulet.2023.137136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/20/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
All living cells, including neurons, generate ultra-weak photon emission (UPE) during biological activity, and in particular, in the brain, it has been shown that UPE is correlated with neuronal activity and associated metabolic processes. Various intracellular factors, as well as external factors, can reduce or increase the intensity of UPE. In this study, we have used Methamphetamine (METH) as one potentially effective external factor, which is a substance that has the property of stimulating the central nervous system. METH can impair mitochondrial function by causing toxicity via various pathways, including an increase in the number of mitochondria, hyperthermia, the increased metabolic activity of the brain, and the production of glutamate and excess calcium. In addition to mitochondrial dysfunction, METH alters cellular homeostasis, leading to cell damage and the production of excess ROS. The aim of this study is to measure and compare the UPE intensity and reactive oxygen species (ROS) levels of the prefrontal, motor, and visual cortex before and after METH administration. Twenty male rats were randomly assigned to two groups, the control, and METH groups. In the control group, 2 h after injection of normal saline and without any intervention, and in the experimental group 2 h after IP injection of 20 mg/kg METH, sections were prepared from three areas: prefrontal, motor, and V1-V2 cortex, which were used to evaluate the emission of UPE using a photomultiplier tube (PMT) device and to evaluate the amount of ROS. The results showed that the amount of ROS and UPE in the experimental group in all three areas significantly increased compared to the control group. So, METH increases UPE and ROS in the prefrontal, motor, and visual regions, and there is a direct relationship between UPE intensity and ROS production. Therefore, UPE may be used as a dynamic reading tool to monitor oxidative metabolism in physiological processes related to ROS and METH research. Also, the results of this experiment may create a new avenue to test the hypothesis that the excess in UPE generation may lead to the phenomenon of phosphene and visual hallucinations.
Collapse
Affiliation(s)
- Tahereh Esmaeilpour
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azam Lotfealian
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Morteza Anvari
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammadreza Namavar
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Histomorphometry and Stereology Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Histomorphometry and Stereology Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Shahedi
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Istvan Bokkon
- Psychosomatic Outpatient Clinics, Budapest, Hungary; Vision Research Institute, Neuroscience and Consciousness Research Department, Lowell, MA, USA
| | - Vahid Salari
- Institute for Quantum Science and Technology, Department of Physics and Astronomy, University of Calgary, Alberta T2N 1N4, Canada.
| | - Daniel Oblak
- Institute for Quantum Science and Technology, Department of Physics and Astronomy, University of Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
14
|
Sun S, Wang X, Shi X, Fang H, Sun Y, Li M, Han H, He Q, Wang X, Zhang X, Zhu ZW, Chen F, Wang M. Neural pathway connectivity and discharge changes between M1 and STN in hemiparkinsonian rats. Brain Res Bull 2023; 196:1-19. [PMID: 36878325 DOI: 10.1016/j.brainresbull.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Alterations of electrophysiological activities, such as changed spike firing rates, reshaping the firing patterns, and aberrant frequency oscillations between the subthalamic nucleus (STN) and the primary motor cortex (M1), are thought to contribute to motor impairment in Parkinson's disease (PD). However, the alterations of electrophysiological characteristics of STN and M1 in PD are still unclear, especially under specific treadmill movement. To examine the relationship between electrophysiological activity in the STN-M1 pathway, extracellular spike trains and local field potential (LFPs) of STN and M1 were simultaneously recorded during resting and movement in unilateral 6-hydroxydopamine (6-OHDA) lesioned rats. The results showed that the identified STN neurons and M1 neurons exhibited abnormal neuronal activity after dopamine loss. The dopamine depletion altered the LFP power in STN and M1 whatever in rest or movement states. Furthermore, the enhanced synchronization of LFP oscillations after dopamine loss was found in 12-35 Hz (beta frequencies) between the STN and M1 during rest and movement. In addition, STN neurons were phase-locked firing to M1 oscillations at 12-35 Hz during rest epochs in 6-OHDA lesioned rats. The dopamine depletion also impaired the anatomical connectivity between the M1 and STN by injecting anterograde neuroanatomical tracing virus into M1 in control and PD rats. Collectively, impairment of' electrophysiological activity and anatomical connectivity in the M1-STN pathway may be the basis for dysfunction of the cortico-basal ganglia circuit, correlating with motor symptoms of PD.
Collapse
Affiliation(s)
- Shuang Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Xuenan Wang
- Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China
| | - Xiaoman Shi
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Heyi Fang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Yue Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Min Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Hongyu Han
- Weifang Middle School, Weifang 261031, China
| | - Qin He
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Xiaojun Wang
- The First Hospital Affiliated with Shandong First Medicine University, Jinan 250014, China
| | - Xiao Zhang
- Editorial Department of Journal, Shandong Jianzhu University, Jinan 250014, China
| | - Zhi Wei Zhu
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Feiyu Chen
- School of International Education, Qilu University of Technology, Jinan 250014, China.
| | - Min Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China.
| |
Collapse
|
15
|
Martel AC, Galvan A. Connectivity of the corticostriatal and thalamostriatal systems in normal and parkinsonian states: An update. Neurobiol Dis 2022; 174:105878. [PMID: 36183947 PMCID: PMC9976706 DOI: 10.1016/j.nbd.2022.105878] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 02/06/2023] Open
Abstract
The striatum receives abundant glutamatergic afferents from the cortex and thalamus. These inputs play a major role in the functions of the striatal neurons in normal conditions, and are significantly altered in pathological states, such as Parkinson's disease. This review summarizes the current knowledge of the connectivity of the corticostriatal and thalamostriatal pathways, with emphasis on the most recent advances in the field. We also discuss novel findings regarding structural changes in cortico- and thalamostriatal connections that occur in these connections as a consequence of striatal loss of dopamine in parkinsonism.
Collapse
Affiliation(s)
- Anne-Caroline Martel
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA
| | - Adriana Galvan
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA; Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
16
|
Parr-Brownlie LC, Itoga CA, Walters JR, Underwood CF. Oscillatory waveform sharpness asymmetry changes in motor thalamus and motor cortex in a rat model of Parkinson's disease. Exp Neurol 2022; 354:114089. [PMID: 35461830 PMCID: PMC11345867 DOI: 10.1016/j.expneurol.2022.114089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/17/2022] [Indexed: 11/23/2022]
Abstract
Parkinson's disease (PD) causes bursty and oscillatory activity in basal ganglia output that is thought to contribute to movement deficits through impact on motor thalamus and motor cortex (MCx). We examined the effect of dopamine loss on motor thalamus and motor cortex activity by recording neuronal and LFP activities in ventroanterior-ventrolateral (VAVL) thalamus and MCx in urethane-anesthetised control and parkinsonian rats. Dopamine lesion decreased the firing rate and increased the bursting of putative pyramidal neurons in layer V, but not layer VI, of the MCx without changing other aspects of firing pattern. In contrast, dopamine lesion did not affect VAVL firing rate, pattern or low threshold calcium spike bursts. Slow-wave (~1 Hz) oscillations in LFP recordings were analyzed with conventional power and waveform shape analyses. While dopamine lesion did not influence total power, it was consistently associated with an increase in oscillatory waveform sharpness asymmetry (i.e., sharper troughs vs. peaks) in both motor thalamus and MCx. Furthermore, we found that measures of sharpness asymmetry were positively correlated in paired motor thalamus-MCx recordings, and that correlation coefficients were larger in dopamine lesioned rats. These data support the idea that dysfunctional MCx activity in parkinsonism emerges from subsets of cell groups (e.g. layer V pyramidal neurons) and is evident in the shape but not absolute power of slow-wave oscillations. Hypoactive layer V pyramidal neuron firing in dopamine lesioned rats is unlikely to be driven by VAVL thalamus and may, therefore, reflect the loss of mesocortical dopaminergic afferents and/or changes in intrinsic excitability.
Collapse
Affiliation(s)
- Louise C Parr-Brownlie
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand; Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Building 35 Room 1C 903, Bethesda, MD 20892-3702, USA.
| | - Christy A Itoga
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Building 35 Room 1C 903, Bethesda, MD 20892-3702, USA
| | - Judith R Walters
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Building 35 Room 1C 903, Bethesda, MD 20892-3702, USA
| | - Conor F Underwood
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Chen L, Nagaraja C, Daniels S, Fisk ZA, Dvorak R, Meyerdirk L, Steiner JA, Escobar Galvis ML, Henderson MX, Rousseaux MWC, Brundin P, Chu HY. Synaptic location is a determinant of the detrimental effects of α-Synuclein pathology to glutamatergic transmission in the basolateral amygdala. eLife 2022; 11:78055. [PMID: 35775627 PMCID: PMC9286736 DOI: 10.7554/elife.78055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
The presynaptic protein α-synuclein (αSyn) has been suggested to be involved in the pathogenesis of Parkinson’s disease (PD). In PD, the amygdala is prone to develop insoluble αSyn aggregates, and it has been suggested that circuit dysfunction involving the amygdala contributes to the psychiatric symptoms. Yet, how αSyn aggregates affect amygdala function is unknown. In this study, we examined αSyn in glutamatergic axon terminals and the impact of its aggregation on glutamatergic transmission in the basolateral amygdala (BLA). We found that αSyn is primarily present in the vesicular glutamate transporter 1-expressing (vGluT1+) terminals in the mouse BLA, which is consistent with higher levels of αSyn expression in vGluT1+ glutamatergic neurons in the cerebral cortex relative to the vGluT2+ glutamatergic neurons in the thalamus. We found that αSyn aggregation selectively decreased the cortico-BLA, but not the thalamo-BLA, transmission; and that cortico-BLA synapses displayed enhanced short-term depression upon repetitive stimulation. In addition, using confocal microscopy, we found that vGluT1+ axon terminals exhibited decreased levels of soluble αSyn, which suggests that lower levels of soluble αSyn might underlie the enhanced short-term depression of cortico-BLA synapses. In agreement with this idea, we found that cortico-BLA synaptic depression was also enhanced in αSyn knockout mice. In conclusion, both basal and dynamic cortico-BLA transmission were disrupted by abnormal aggregation of αSyn and these changes might be relevant to the perturbed cortical control of the amygdala that has been suggested to play a role in psychiatric symptoms in PD.
Collapse
Affiliation(s)
- Liqiang Chen
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, United States
| | - Chetan Nagaraja
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, United States
| | - Samuel Daniels
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, United States
| | - Zoe A Fisk
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Rachel Dvorak
- Department of Neurodegenerative Science, Van Andel Institute, GRand Rapids, United States
| | - Lindsay Meyerdirk
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, United States
| | - Jennifer A Steiner
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, United States
| | | | - Michael X Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, United States
| | - Maxime W C Rousseaux
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Patrik Brundin
- Pharma Research and Early Development (pRED), F. Hoffmann-La Roche, Little Falls, United States
| | - Hong-Yuan Chu
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, United States
| |
Collapse
|
18
|
Fieblinger T, Li C, Espa E, Cenci MA. Non-Apoptotic Caspase-3 Activation Mediates Early Synaptic Dysfunction of Indirect Pathway Neurons in the Parkinsonian Striatum. Int J Mol Sci 2022; 23:ijms23105470. [PMID: 35628278 PMCID: PMC9141690 DOI: 10.3390/ijms23105470] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022] Open
Abstract
Non-apoptotic caspase-3 activation is critically involved in dendritic spine loss and synaptic dysfunction in Alzheimer’s disease. It is, however, not known whether caspase-3 plays similar roles in other pathologies. Using a mouse model of clinically manifest Parkinson’s disease, we provide the first evidence that caspase-3 is transiently activated in the striatum shortly after the degeneration of nigrostriatal dopaminergic projections. This caspase-3 activation concurs with a rapid loss of dendritic spines and deficits in synaptic long-term depression (LTD) in striatal projection neurons forming the indirect pathway. Interestingly, systemic treatment with a caspase inhibitor prevents both the spine pruning and the deficit of indirect pathway LTD without interfering with the ongoing dopaminergic degeneration. Taken together, our data identify transient and non-apoptotic caspase activation as a critical event in the early plastic changes of indirect pathway neurons following dopamine denervation.
Collapse
Affiliation(s)
- Tim Fieblinger
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 223 62 Lund, Sweden; (C.L.); (E.E.)
- University Medical Center Hamburg-Eppendorf, Institute for Synaptic Physiology, 20251 Hamburg, Germany
- Correspondence: (T.F.); (M.A.C.)
| | - Chang Li
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 223 62 Lund, Sweden; (C.L.); (E.E.)
| | - Elena Espa
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 223 62 Lund, Sweden; (C.L.); (E.E.)
| | - M. Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 223 62 Lund, Sweden; (C.L.); (E.E.)
- Correspondence: (T.F.); (M.A.C.)
| |
Collapse
|
19
|
Caubit X, Gubellini P, Roubertoux PL, Carlier M, Molitor J, Chabbert D, Metwaly M, Salin P, Fatmi A, Belaidouni Y, Brosse L, Kerkerian-Le Goff L, Fasano L. Targeted Tshz3 deletion in corticostriatal circuit components segregates core autistic behaviors. Transl Psychiatry 2022; 12:106. [PMID: 35292625 PMCID: PMC8924251 DOI: 10.1038/s41398-022-01865-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 01/15/2023] Open
Abstract
We previously linked TSHZ3 haploinsufficiency to autism spectrum disorder (ASD) and showed that embryonic or postnatal Tshz3 deletion in mice results in behavioral traits relevant to the two core domains of ASD, namely social interaction deficits and repetitive behaviors. Here, we provide evidence that cortical projection neurons (CPNs) and striatal cholinergic interneurons (SCINs) are two main and complementary players in the TSHZ3-linked ASD syndrome. In the cerebral cortex, TSHZ3 is expressed in CPNs and in a proportion of GABAergic interneurons, but not in cholinergic interneurons or glial cells. In the striatum, TSHZ3 is expressed in all SCINs, while its expression is absent or partial in the other main brain cholinergic systems. We then characterized two new conditional knockout (cKO) models generated by crossing Tshz3flox/flox with Emx1-Cre (Emx1-cKO) or Chat-Cre (Chat-cKO) mice to decipher the respective role of CPNs and SCINs. Emx1-cKO mice show altered excitatory synaptic transmission onto CPNs and impaired plasticity at corticostriatal synapses, with neither cortical neuron loss nor abnormal layer distribution. These animals present social interaction deficits but no repetitive patterns of behavior. Chat-cKO mice exhibit no loss of SCINs but changes in the electrophysiological properties of these interneurons, associated with repetitive patterns of behavior without social interaction deficits. Therefore, dysfunction in either CPNs or SCINs segregates with a distinct ASD behavioral trait. These findings provide novel insights onto the implication of the corticostriatal circuitry in ASD by revealing an unexpected neuronal dichotomy in the biological background of the two core behavioral domains of this disorder.
Collapse
Affiliation(s)
- Xavier Caubit
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Paolo Gubellini
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Pierre L. Roubertoux
- grid.5399.60000 0001 2176 4817Aix-Marseille Univ, INSERM, MMG, UMR1251 Marseille, France
| | - Michèle Carlier
- grid.463724.00000 0004 0385 2989Aix-Marseille Univ, CNRS, LPC, UMR7290 Marseille, France
| | - Jordan Molitor
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Dorian Chabbert
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Mehdi Metwaly
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Pascal Salin
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Ahmed Fatmi
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Yasmine Belaidouni
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Lucie Brosse
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | | | - Laurent Fasano
- Aix-Marseille Univ, CNRS, IBDM, UMR7288, Marseille, France.
| |
Collapse
|
20
|
Cousineau J, Plateau V, Baufreton J, Le Bon-Jégo M. Dopaminergic modulation of primary motor cortex: From cellular and synaptic mechanisms underlying motor learning to cognitive symptoms in Parkinson's disease. Neurobiol Dis 2022; 167:105674. [PMID: 35245676 DOI: 10.1016/j.nbd.2022.105674] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
The primary motor cortex (M1) is crucial for movement execution, especially dexterous ones, but also for cognitive functions like motor learning. The acquisition of motor skills to execute dexterous movements requires dopamine-dependent and -independent plasticity mechanisms within M1. In addition to the basal ganglia, M1 is disturbed in Parkinson's disease (PD). However, little is known about how the lack of dopamine (DA), characteristic of PD, directly or indirectly impacts M1 circuitry. Here we review data from studies of PD patients and the substantial research in non-human primate and rodent models of DA depletion. These models enable us to understand the importance of DA in M1 physiology at the behavioral, network, cellular, and synaptic levels. We first summarize M1 functions and neuronal populations in mammals. We then look at the origin of M1 DA and the cellular location of its receptors and explore the impact of DA loss on M1 physiology, motor, and executive functions. Finally, we discuss how PD treatments impact M1 functions.
Collapse
|
21
|
Huang R, Gao Y, Chen J, Duan Q, He P, Zhang J, Huang H, Zhang Q, Ma G, Zhang Y, Nie K, Wang L. TGR5 agonist INT-777 alleviates inflammatory neurodegeneration in parkinson’s disease mouse model by modulating mitochondrial dynamics in microglia. Neuroscience 2022; 490:100-119. [DOI: 10.1016/j.neuroscience.2022.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 11/24/2022]
|
22
|
Wang S, Chen H, Zhan Y. Novel Causal Relations between Neuronal Networks due to Synchronization. Cereb Cortex 2021; 32:429-438. [PMID: 34274974 DOI: 10.1093/cercor/bhab219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 11/14/2022] Open
Abstract
In the process of information transmission, information is thought to be transmitted from the networks that are activated by the input to the networks that are silent or nonactivated. Here, via numerical simulation of a 3-network motif, we show that the silent neuronal network when interconnected with other 2 networks can exert much stronger causal influences on the other networks. Such an unexpected causal relationship results from high degree of synchronization in this network. The predominant party is consistently the network whose noise is smaller when the noise level in each network is considered. Our results can shed lights on how the internal network dynamics can affect the information flow of interconnected neuronal networks.
Collapse
Affiliation(s)
- Sentao Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Hongbiao Chen
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Yang Zhan
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| |
Collapse
|