1
|
Mottarlini F, Miglioranza P, Rizzi B, Taddini S, Parolaro S, Caprioli D, Ciccocioppo R, Caffino L, Fumagalli F. Repeated cocaine exposure and prolonged withdrawal induce spatial memory impairment and dysregulate the glutamatergic synapse composition in the dorsal hippocampus of male rats. Neuropharmacology 2025; 273:110453. [PMID: 40187639 DOI: 10.1016/j.neuropharm.2025.110453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Adolescents are particularly susceptible to various forms of gratification, among which psychostimulants. During adolescence the hippocampus, a brain area relevant to spatial memory domain, undergoes maturational processes, such as structural and molecular reorganization of the excitatory synapses. Our goal was to reveal putatively enduring spatial memory deficits and molecular correlates in male rats exposed to repeated cocaine after a period of withdrawal. Towards this goal, adolescent Sprague-Dawley male rats were exposed to chronic cocaine treatment (5 mg/kg/day, subcutaneously) for 15 days and, after 2 weeks of withdrawal, were subjected to spatial order object recognition (SOOR) test, a memory task based on the rat's ability to recognize objects displacement. Next, we investigated subcellular specific expression of markers of the glutamate synapse in the dorsal hippocampus. Our findings show that withdrawal from repeated cocaine exposure during adolescence is associated with spatial memory impairment. Such deficit was correlated to a reduced expression and retention of NMDA receptor subunits, GluN1, GluN2A and GluN2B, at both synaptic and extra-synaptic sites, an effect indicative of impaired NMDA receptor trafficking. Analysis of endocytosis markers (Rab family of monomeric GTPase) revealed that cocaine-withdrawn rats favor the degradative pathway (Rab7-Rab9) over the recycling pathway (Rab11). In contrast, saline-treated rats primarily activate the recycling pathway. Our findings, mislocalization of glutamatergic receptors together with sorting of NMDA receptor towards degradation, rather than recycling, may contribute to the understanding of the mechanisms underlying the spatial memory deficits in male rats with an adolescent history of cocaine.
Collapse
Affiliation(s)
- Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy
| | - Paolo Miglioranza
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy; School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Sofia Taddini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy
| | - Susanna Parolaro
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy
| | - Daniele Caprioli
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy.
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
2
|
DePoy LM, Vadnie CA, Petersen KA, Scott MR, Zong W, Yin R, Matthaei RC, Anaya FJ, Kampe CI, Tseng GC, McClung CA. Adolescent circadian rhythm disruption increases reward and risk-taking. Front Neurosci 2024; 18:1478508. [PMID: 39737435 PMCID: PMC11683121 DOI: 10.3389/fnins.2024.1478508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/11/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Circadian rhythm disturbances have long been associated with the development of psychiatric disorders, including mood and substance use disorders. Adolescence is a particularly vulnerable time for the onset of psychiatric disorders and for circadian rhythm and sleep disruptions. Preclinical studies have found that circadian rhythm disruption (CRD) impacts the brain and behavior, but this research is largely focused on adult disruptions. Here, we hypothesized that adolescent CRD would have a greater effect on psychiatric-related behaviors, relative to adult disruption. Methods We determined the long-term behavioral and neurobiological effects of CRD during early adolescence by exposing mice to 12 h shifts in the light/dark cycle. Adult mice were exposed to the same CRD paradigm. Behavior testing began approximately 4 weeks later for both groups. To identify possible mechanisms, we also measured gene expression in brain regions relevant to circadian rhythms, mood and reward. Results CRD during early adolescence, but not adulthood, persistently increased exploratory drive (risk-taking behavior) and cocaine preference when tested later in life. Interestingly, we found sex differences when intravenous cocaine self-administration was tested. While female mice with a history of adolescent CRD had a greater propensity to self-administer cocaine, as well as increased motivation and cue-induced reinstatement, male adolescent CRD mice had reduced motivation and extinction responding. Importantly, we found that transcripts in the SCN were affected by adolescent CRD and these were largely distinct across sex. Conclusion Overall, adolescent CRD in mice caused persistent increases in risky behavior, cocaine reward and cocaine self-administration, which suggests that CRD during adolescence may predispose individuals toward substance use disorders. Future research is required to elucidate how adolescent CRD affects behaviors relevant to mood-and substance use-related disorders across the 24-h day, as well as to identify intervention strategies to alleviate disruption during adolescence and novel therapeutic approaches once symptoms have begun.
Collapse
Affiliation(s)
- Lauren M. DePoy
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chelsea A. Vadnie
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- David O. Robbins Neuroscience Program, Department of Psychology, Ohio Wesleyan University, Delaware, OH, United States
| | - Kaitlyn A. Petersen
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Madeline R. Scott
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Wei Zong
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - RuoFei Yin
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ross C. Matthaei
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Callie I. Kampe
- David O. Robbins Neuroscience Program, Department of Psychology, Ohio Wesleyan University, Delaware, OH, United States
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Colleen A. McClung
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- David O. Robbins Neuroscience Program, Department of Psychology, Ohio Wesleyan University, Delaware, OH, United States
| |
Collapse
|
3
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
4
|
Li DC, Hinton EA, Guo J, Knight KA, Sequeira MK, Wynne ME, Dighe NM, Gourley SL. Social experience in adolescence shapes prefrontal cortex structure and function in adulthood. Mol Psychiatry 2024; 29:2787-2798. [PMID: 38580810 PMCID: PMC11567502 DOI: 10.1038/s41380-024-02540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
During adolescence, the prefrontal cortex (PFC) undergoes dramatic reorganization. PFC development is profoundly influenced by the social environment, disruptions to which may prime the emergence of psychopathology across the lifespan. We investigated the neurobehavioral consequences of isolation experienced in adolescence in mice, and in particular, the long-term consequences that were detectable even despite normalization of the social milieu. Isolation produced biases toward habit-like behavior at the expense of flexible goal seeking, plus anhedonic-like reward deficits. Behavioral phenomena were accompanied by neuronal dendritic spine over-abundance and hyper-excitability in the ventromedial PFC (vmPFC), which was necessary for the expression of isolation-induced habits and sufficient to trigger behavioral inflexibility in socially reared controls. Isolation activated cytoskeletal regulatory pathways otherwise suppressed during adolescence, such that repression of constituent elements prevented long-term isolation-induced neurosequelae. Altogether, our findings unveil an adolescent critical period and multi-model mechanism by which social experiences facilitate prefrontal cortical maturation.
Collapse
Affiliation(s)
- Dan C Li
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
| | - Elizabeth A Hinton
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Jidong Guo
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry and Behavioral sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Michelle K Sequeira
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Meghan E Wynne
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Niharika M Dighe
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Shannon L Gourley
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Psychiatry and Behavioral sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
5
|
Sequeira MK, Stachowicz KM, Seo EH, Yount ST, Gourley SL. Cocaine disrupts action flexibility via glucocorticoid receptors. iScience 2024; 27:110148. [PMID: 38989467 PMCID: PMC11233908 DOI: 10.1016/j.isci.2024.110148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/22/2024] [Accepted: 05/27/2024] [Indexed: 07/12/2024] Open
Abstract
Many addictive drugs increase stress hormone levels. They also alter the propensity of organisms to prospectively select actions based on long-term consequences. We hypothesized that cocaine causes inflexible action by increasing circulating stress hormone levels, activating the glucocorticoid receptor (GR). We trained mice to generate two nose pokes for food and then required them to update action-consequence associations when one response was no longer reinforced. Cocaine delivered in adolescence or adulthood impaired the capacity of mice to update action strategies, and inhibiting CORT synthesis rescued action flexibility. Next, we reduced Nr3c1, encoding GR, in the orbitofrontal cortex (OFC), a region of the brain responsible for interlacing new information into established routines. Nr3c1 silencing preserved action flexibility and dendritic spine abundance on excitatory neurons, despite cocaine. Spines are often considered substrates for learning and memory, leading to the discovery that cocaine degrades the representation of new action memories, obstructing action flexibility.
Collapse
Affiliation(s)
- Michelle K. Sequeira
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Kathryn M. Stachowicz
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Esther H. Seo
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Sophie T. Yount
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, GA, USA
| | - Shannon L. Gourley
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
6
|
Zhou F, Ouyang L, Xie J, Liu S, Li Q, Yang S, Li J, Su R, Rao S, Yan L, Wan X, Cheng H, Liu P, Li L, Zhu Y, Du G, Feng C, Fan G. Co-exposure to low-dose lead, cadmium, and mercury promotes memory deficits in rats: Insights from the dynamics of dendritic spine pruning in brain development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115425. [PMID: 37660527 DOI: 10.1016/j.ecoenv.2023.115425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Lead (Pb), cadmium (Cd), and mercury (Hg) are environmentally toxic heavy metals that can be simultaneously detected at low levels in the blood of the general population. Although our previous studies have demonstrated neurodevelopmental toxicity upon co-exposure to these heavy metals at these low levels, the precise mechanisms remain largely unknown. Dendritic spines are the structural foundation of memory and undergo significant dynamic changes during development. This study focused on the dynamics of dendritic spines during brain development following Pb, Cd, and Hg co-exposure-induced memory impairment. First, the dynamic characteristics of dendritic spines in the prefrontal cortex were observed throughout the life cycle of normal rats. We observed that dendritic spines increased rapidly from birth to their peak value at weaning, followed by significant pruning and a decrease during adolescence. Dendritic spines tended to be stable until their loss in old age. Subsequently, a rat model of low-dose Pb, Cd, and Hg co-exposure from embryo to adolescence was established. The results showed that exposure to low doses of heavy metals equivalent to those detected in the blood of the general population impaired spatial memory and altered the dynamics of dendritic spine pruning from weaning to adolescence. Proteomic analysis of brain and blood samples suggested that differentially expressed proteins upon heavy metal exposure were enriched in dendritic spine-related cytoskeletal regulation and axon guidance signaling pathways and that cofilin was enriched in both of these pathways. Further experiments confirmed that heavy metal exposure altered actin cytoskeleton dynamics and disturbed the dendritic spine pruning-related LIM domain kinase 1-cofilin pathway in the rat prefrontal cortex. Our findings demonstrate that low-dose Pb, Cd, and Hg co-exposure may promote memory impairment by perturbing dendritic spine dynamics through dendritic spine pruning-related signaling pathways.
Collapse
Affiliation(s)
- Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lu Ouyang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Jie Xie
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Sisi Liu
- Jiangxi Academy of Medical Science, Nanchang 330006, PR China
| | - Qi Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Shuo Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Jiajun Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Rui Su
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Shaoqi Rao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lingyu Yan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Xin Wan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Hui Cheng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Peishan Liu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lingling Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Yanhui Zhu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guihua Du
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
7
|
Kabirova M, Reichenstein M, Borovok N, Sheinin A, Gorobets D, Michaelevski I. Abl2 Kinase Differentially Regulates iGluRs Current Activity and Synaptic Localization. Cell Mol Neurobiol 2023; 43:2785-2799. [PMID: 36689065 PMCID: PMC11410115 DOI: 10.1007/s10571-023-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
Abelson non-receptor tyrosine kinases (Abl1 and Abl2) are established cellular signaling proteins, implicated in cytoskeletal reorganization essential for modulation of cell morphology and motility. During development of the central nervous system, Abl kinases play fundamental roles in neurulation and neurite outgrowth, relaying information from axon guidance cues and growth factor receptors to promote cytoskeletal rearrangements. In mature neurons, Abl kinases localize to pre- and postsynaptic compartments and are involved in regulation of synaptic stability and plasticity. Although emerging evidence indicates interchangeability of these isoforms in managing of cellular functions, in healthy adult neurons, Abl1 contribution is less elucidated, while Abl2 is required for optimal synaptic functioning. Our previous study demonstrated compartmentalization of Abl1 to the presynapse and Abl2 to the postsynapse and characterized their modulatory effect on spontaneous excitatory synaptic transmission. Here, we further delineate the role of Abl2 on regulation of the postsynaptic component of miniature excitatory postsynaptic current (mEPSC). Our findings show that both acute and prolonged activation of Abl2, in line with reduction of mEPSC amplitude, also decrease AMPA and NMDA current amplitudes. In contrast with the current-detrimental effect, prolonged Abl2 activity stabilizes spines, particularly contributing to maintenance of active synapses at distal (perhaps apical) segments of dendrites. Hence, we propose that attenuation of ion currents via ionotropic glutamatergic receptors by Abl2 kinase derives from either reduction of the receptor sensitivity for glutamate or is due to alteration of channel gating mechanisms. Abl2 and excitatory postsynapses: Abl2 expression level affects active excitatory synapse density on distal dendrites, while Abl2 activity impacts current density through AMPA and NMDA receptors.
Collapse
Affiliation(s)
- M Kabirova
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, 4070000, Ariel, Israel
- Integrated Brain Science Center at Ariel University, 4070000, Ariel, Israel
| | - M Reichenstein
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, 4070000, Ariel, Israel
- Department of Biological Chemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, 69788, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 69788, Tel Aviv, Israel
| | - N Borovok
- Department of Biological Chemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, 69788, Tel Aviv, Israel
| | - A Sheinin
- Sagol School of Neuroscience, Tel Aviv University, 69788, Tel Aviv, Israel
| | - D Gorobets
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, 4070000, Ariel, Israel
- Integrated Brain Science Center at Ariel University, 4070000, Ariel, Israel
- The Adelson School of Medicine, Ariel University, 4070000, Ariel, Israel
| | - I Michaelevski
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, 4070000, Ariel, Israel.
- Integrated Brain Science Center at Ariel University, 4070000, Ariel, Israel.
- Department of Biological Chemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, 69788, Tel Aviv, Israel.
- The Adelson School of Medicine, Ariel University, 4070000, Ariel, Israel.
| |
Collapse
|
8
|
LaMarca EA, Saito A, Plaza-Jennings A, Espeso-Gil S, Hellmich A, Fernando MB, Javidfar B, Liao W, Estill M, Townsley K, Florio A, Ethridge JE, Do C, Tycko B, Shen L, Kamiya A, Tsankova NM, Brennand KJ, Akbarian S. R-loop landscapes in the developing human brain are linked to neural differentiation and cell-type specific transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549494. [PMID: 37503149 PMCID: PMC10370098 DOI: 10.1101/2023.07.18.549494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Here, we construct genome-scale maps for R-loops, three-stranded nucleic acid structures comprised of a DNA/RNA hybrid and a displaced single strand of DNA, in the proliferative and differentiated zones of the human prenatal brain. We show that R-loops are abundant in the progenitor-rich germinal matrix, with preferential formation at promoters slated for upregulated expression at later stages of differentiation, including numerous neurodevelopmental risk genes. RNase H1-mediated contraction of the genomic R-loop space in neural progenitors shifted differentiation toward the neuronal lineage and was associated with transcriptomic alterations and defective functional and structural neuronal connectivity in vivo and in vitro. Therefore, R-loops are important for fine-tuning differentiation-sensitive gene expression programs of neural progenitor cells.
Collapse
Affiliation(s)
- Elizabeth A LaMarca
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Atsushi Saito
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Amara Plaza-Jennings
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergio Espeso-Gil
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Allyse Hellmich
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael B Fernando
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Behnam Javidfar
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Will Liao
- New York Genome Center, New York, NY 10013, USA
| | - Molly Estill
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kayla Townsley
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna Florio
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - James E Ethridge
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catherine Do
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Benjamin Tycko
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Nadejda M Tsankova
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Current affiliation: Department of Psychiatry, Yale University, New Haven, CT 06511, USA
| | - Schahram Akbarian
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
9
|
Li DC, Pitts EG, Dighe NM, Gourley SL. GluN2B inhibition confers resilience against long-term cocaine-induced neurocognitive sequelae. Neuropsychopharmacology 2023; 48:1108-1117. [PMID: 36056105 PMCID: PMC10209078 DOI: 10.1038/s41386-022-01437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 01/02/2023]
Abstract
Cocaine self-administration can disrupt the capacity of humans and rodents to flexibly modify familiar behavioral routines, even when they become maladaptive or unbeneficial. However, mechanistic factors, particularly those driving long-term behavioral changes, are still being determined. Here, we capitalized on individual differences in oral cocaine self-administration patterns in adolescent mice and revealed that the post-synaptic protein PSD-95 was reduced in the orbitofrontal cortex (OFC) of escalating, but not stable, responders, which corresponded with later deficits in flexible decision-making behavior. Meanwhile, NMDA receptor GluN2B subunit content was lower in the OFC of mice that were resilient to escalatory oral cocaine seeking. This discovery led us to next co-administer the GluN2B-selective antagonist ifenprodil with cocaine, blocking the later emergence of cocaine-induced decision-making abnormalities. GluN2B inhibition also prevented cocaine-induced dysregulation of neuronal structure and function in the OFC, preserving mature, mushroom-shaped dendritic spine densities on deep-layer pyramidal neurons, which were otherwise lower with cocaine, and safeguarding functional BLA→OFC connections necessary for action flexibility. We posit that cocaine potentiates GluN2B-dependent signaling, which triggers a series of durable adaptations that result in the dysregulation of post-synaptic neuronal structure in the OFC and disruption of BLA→OFC connections, ultimately weakening the capacity for flexible choice. And thus, inhibiting GluN2B-NMDARs promotes resilience to long-term cocaine-related sequelae.
Collapse
Affiliation(s)
- Dan C Li
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Elizabeth G Pitts
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Niharika M Dighe
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Shannon L Gourley
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
10
|
Tanaka R, Liao J, Hada K, Mori D, Nagai T, Matsuzaki T, Nabeshima T, Kaibuchi K, Ozaki N, Mizoguchi H, Yamada K. Inhibition of Rho-kinase ameliorates decreased spine density in the medial prefrontal cortex and methamphetamine-induced cognitive dysfunction in mice carrying schizophrenia-associated mutations of the Arhgap10 gene. Pharmacol Res 2023; 187:106589. [PMID: 36462727 DOI: 10.1016/j.phrs.2022.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Copy-number variations in the ARHGAP10 gene encoding Rho GTPase-activating protein 10 are associated with schizophrenia. Model mice (Arhgap10 S490P/NHEJ mice) that carry "double-hit" mutations in the Arhgap10 gene mimic the schizophrenia in a Japanese patient, exhibiting altered spine density, methamphetamine-induced cognitive dysfunction, and activation of RhoA/Rho-kinase signaling. However, it remains unclear whether the activation of RhoA/Rho-kinase signaling due to schizophrenia-associated Arhgap10 mutations causes the phenotypes of these model mice. Here, we investigated the effects of fasudil, a brain permeable Rho-kinase inhibitor, on altered spine density in the medial prefrontal cortex (mPFC) and on methamphetamine-induced cognitive impairment in a touchscreen‑based visual discrimination task in Arhgap10 S490P/NHEJ mice. Fasudil (20 mg/kg, intraperitoneal) suppressed the increased phosphorylation of myosin phosphatase-targeting subunit 1, a substrate of Rho-kinase, in the striatum and mPFC of Arhgap10 S490P/NHEJ mice. In addition, daily oral administration of fasudil (20 mg/kg/day) for 7 days ameliorated the reduced spine density of layer 2/3 pyramidal neurons in the mPFC. Moreover, fasudil (3-20 mg/kg, intraperitoneal) rescued the methamphetamine (0.3 mg/kg)-induced cognitive impairment of visual discrimination in Arhgap10 S490P/NHEJ mice. Our results suggest that Rho-kinase plays significant roles in the neuropathological changes in spine morphology and in the vulnerability of cognition to methamphetamine in mice with schizophrenia-associated Arhgap10 mutations.
Collapse
Affiliation(s)
- Rinako Tanaka
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Jingzhu Liao
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Kazuhiro Hada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan; Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Tetsuo Matsuzaki
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Toshitaka Nabeshima
- Laboratory of Health and Medical Science Innovation, Fujita Health University Graduate School of Health Sciences, Toyoake, Aichi 470-1192, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi 468-0069, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan; International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1129, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi 468-0069, Japan.
| |
Collapse
|
11
|
Angarita GA, Worhunsky PD, Naganawa M, Toyonaga T, Nabulsi NB, Li CSR, Esterlis I, Skosnik PD, Radhakrishnan R, Pittman B, Gueorguieva R, Potenza MN, Finnema SJ, Huang Y, Carson RE, Malison RT. Lower prefrontal cortical synaptic vesicle binding in cocaine use disorder: An exploratory 11 C-UCB-J positron emission tomography study in humans. Addict Biol 2022; 27:e13123. [PMID: 34852401 PMCID: PMC8891080 DOI: 10.1111/adb.13123] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/22/2021] [Accepted: 11/12/2021] [Indexed: 12/22/2022]
Abstract
Preclinical studies have revealed robust and long-lasting alterations in dendritic spines in the brain following cocaine exposure. Such alterations are hypothesized to underlie enduring maladaptive behaviours observed in cocaine use disorder (CUD). The current study explored whether synaptic density is altered in CUD. Fifteen individuals with DSM-5 CUD and 15 demographically matched healthy control (HC) subjects participated in a single 11 C-UCB-J positron emission tomography scan to assess density of synaptic vesicle glycoprotein 2A (SV2A). The volume of distribution (VT ) and the plasma-free fraction-corrected form of the total volume of distribution (VT /fP ) were analysed in the anterior cingulate cortex (ACC), dorsomedial and ventromedial prefrontal cortex (PFC), lateral and medial orbitofrontal cortex (OFC) and ventral striatum. A significant diagnostic-group-by-region interaction was observed for VT and VT /fP . Post hoc analyses revealed no differences on VT , while for VT /fP showed lower values in CUD as compared with HC subjects in the ACC (-10.9%, p = 0.02), ventromedial PFC (-9.9%, p = 0.02) and medial OFC (-9.9%, p = 0.04). Regional VT /fP values in CUD, though unrelated to measures of lifetime cocaine use, were positively correlated with the frequency of recent cocaine use (p = 0.02-0.03) and negatively correlated with cocaine abstinence (p = 0.008-0.03). These findings provide initial preliminary in vivo evidence of altered (lower) synaptic density in the PFC of humans with CUD. Cross-sectional variation in SV2A availability as a function of recent cocaine use and abstinence suggests that synaptic density may be dynamically and plastically regulated by acute cocaine, an observation that merits direct testing by studies using more definitive longitudinal designs.
Collapse
Affiliation(s)
- Gustavo A. Angarita
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite # 901, New Haven, CT 06511
- Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519
| | - Patrick D. Worhunsky
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite # 901, New Haven, CT 06511
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Ave, New Haven, CT 06519
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Ave, New Haven, CT 06519
| | - Nabeel B. Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Ave, New Haven, CT 06519
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite # 901, New Haven, CT 06511
- Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519
| | - Irina Esterlis
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite # 901, New Haven, CT 06511
| | - Patrick D. Skosnik
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite # 901, New Haven, CT 06511
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite # 901, New Haven, CT 06511
| | - Brian Pittman
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite # 901, New Haven, CT 06511
| | - Ralitza Gueorguieva
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven CT 06520
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite # 901, New Haven, CT 06511
- Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519
- Connecticut Council on Problem Gambling, 100 Great Meadow Road, Wethersfield, CT 06109
- Child Study Center, Yale University School of Medicine, 234 South Frontage Road, New Haven, CT 06510
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510
| | - Sjoerd J. Finnema
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Ave, New Haven, CT 06519
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Ave, New Haven, CT 06519
| | - Richard E. Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Ave, New Haven, CT 06519
| | - Robert T. Malison
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite # 901, New Haven, CT 06511
- Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519
| |
Collapse
|
12
|
Qian H, Shang Q, Liang M, Gao B, Xiao J, Wang J, Li A, Yang C, Yin J, Chen G, Li T, Liu X. MicroRNA-31-3p/RhoA signaling in the dorsal hippocampus modulates methamphetamine-induced conditioned place preference in mice. Psychopharmacology (Berl) 2021; 238:3207-3219. [PMID: 34313802 DOI: 10.1007/s00213-021-05936-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022]
Abstract
RATIONALE MicroRNAs (miRNAs) regulate neuroplasticity-related proteins and are implicated in methamphetamine (METH) addiction. RhoA is a small Rho GTPase that regulates synaptic plasticity and addictive behaviors. Nevertheless, the functional relationship between RhoA and upstream miRNAs of METH addiction remains unclear. OBJECTIVE To explore the molecular biology and epigenetic mechanisms of the miR-31-3p/RhoA pathway in METH addiction. METHODS RhoA protein and its potential upstream regulator, miR-31-3p, were detected. A dual luciferase reporter was employed to determine whether RhoA constituted a specific target of miR-31-3p. Following adeno-associated virus (AAV)-mediated knockdown or overexpression of miR-31-3p or RhoA in the dorsal hippocampus (dHIP), mice were subjected to conditioned place preference (CPP) to investigate the effects of miR-31-3p and RhoA on METH-induced addictive behaviors. RESULTS RhoA protein was significantly decreased in the dHIP of CPP mice with a concomitant increase in miR-31-3p. RhoA was identified as a direct target of miR-31-3p. Knockdown of miR-31-3p in the dHIP was associated with increased RhoA protein and attenuation of METH-induced CPP. Conversely, overexpression of miR-31-3p was associated with decreased RhoA protein and enhancement of METH effects. Similarly, knockdown of RhoA in the dHIP enhanced METH-induced CPP, whereas RhoA overexpression attenuated the effects of METH. Parallel experiments using sucrose preference revealed that the effects of miR-31-3p/RhoA pathway modulation were specific to METH. CONCLUSIONS Our findings indicate that the miR-31-3p/RhoA pathway in the dHIP modulates METH-induced CPP in mice. Our results highlight the potential role of epigenetics represented by non-coding RNAs in the treatment of METH addiction.
Collapse
Affiliation(s)
- Hongyan Qian
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76 , Xi'an, 710061, Shaanxi, People's Republic of China
| | - Qing Shang
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76 , Xi'an, 710061, Shaanxi, People's Republic of China
| | - Min Liang
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76 , Xi'an, 710061, Shaanxi, People's Republic of China
| | - Baoyao Gao
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76 , Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jing Xiao
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76 , Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jing Wang
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76 , Xi'an, 710061, Shaanxi, People's Republic of China
| | - Axiang Li
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76 , Xi'an, 710061, Shaanxi, People's Republic of China
| | - Canyu Yang
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76 , Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jianmin Yin
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76 , Xi'an, 710061, Shaanxi, People's Republic of China
| | - Gang Chen
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76 , Xi'an, 710061, Shaanxi, People's Republic of China
| | - Tao Li
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China. .,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76 , Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Xinshe Liu
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China. .,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76 , Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
13
|
Trinoskey-Rice GE, Woon EP, Pitts EG, Gourley SL. Cocaine Elevates Calcium-Dependent Activator Protein for Secretion 2 in the Mouse Orbitofrontal Cortex. Dev Neurosci 2021; 43:376-382. [PMID: 34695821 DOI: 10.1159/000519681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022] Open
Abstract
Calcium-dependent activator protein for secretion 2 (CAPS2; also referred to as CADPS2) is a dense core vesicle-associated protein that promotes the activity-dependent release of neuropeptides including neurotrophins. Addictive drugs appear to prime neurotrophin release in multiple brain regions, but mechanistic factors are still being elucidated. Here, experimenters administered cocaine to adolescent mice at doses that potentiated later cocaine self-administration. Experimenter-administered cocaine elevated the CAPS2 protein content in the orbitofrontal cortex (OFC; but not striatum) multiple weeks after drug exposure. Meanwhile, proteins that are sensitive to brain-derived neurotrophic factor (BDNF) release and binding (phosphorylated protein kinase B and phosphoinositide 3-kinase, and GABAAα1 levels) did not differ between cocaine-exposed and naive mice in the OFC. This pattern is consistent with evidence that CAPS2 primes stimulated release of neurotrophins like BDNF, rather than basal levels. Thus, cocaine administered at behaviorally relevant doses elevates CAPS2 protein content in the OFC, and the effects are detected long after cocaine exposure.
Collapse
Affiliation(s)
- Gracy E Trinoskey-Rice
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, Georgia, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Ellen P Woon
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, Georgia, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Graduate Training Program in Neuroscience, Emory University, Atlanta, Georgia, USA
| | - Elizabeth G Pitts
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, Georgia, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Graduate Training Program in Neuroscience, Emory University, Atlanta, Georgia, USA
| | - Shannon L Gourley
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, Georgia, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Graduate Training Program in Neuroscience, Emory University, Atlanta, Georgia, USA.,Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Li DC, Hinton EA, Gourley SL. Persistent behavioral and neurobiological consequences of social isolation during adolescence. Semin Cell Dev Biol 2021; 118:73-82. [PMID: 34112579 PMCID: PMC8434983 DOI: 10.1016/j.semcdb.2021.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/05/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022]
Abstract
Meaningful social interactions are a fundamental human need, the lack of which can pose serious risks to an individual's physical and mental health. Across species, peer-oriented social behaviors are dramatically reshaped during adolescence, a developmental period characterized by dynamic changes in brain structure and function as individuals transition into adulthood. Thus, the experience of social isolation during this critical developmental stage may be especially pernicious, as it could permanently derail typical neurobiological processes that are necessary for establishing adaptive adult behaviors. The purpose of this review is to summarize investigations in which rodents were isolated during adolescence, then re-housed in typical social groups prior to testing, thus allowing the investigators to resolve the long-term consequences of social adversity experienced during adolescent sensitive periods, despite subsequent normalization of the social environment. Here, we discuss alterations in social, anxiety-like, cognitive, and decision-making behaviors in previously isolated adult rodents. We then explore corresponding neurobiological findings, focusing on the prefrontal cortex, including changes in synaptic densities and protein levels, white matter and oligodendrocyte function, and neuronal physiology. Made more urgent by the recent wave of social deprivation resulting from the COVID-19 pandemic, especially amongst school-aged adolescents, understanding the mechanisms by which even transient social adversity can negatively impact brain function across the lifespan is of paramount importance.
Collapse
Affiliation(s)
- Dan C Li
- Medical Scientist Training Program, Emory University School of Medicine, USA; Graduate Training Program in Neuroscience, Emory University, USA; Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, USA; Yerkes National Primate Research Center, Emory University, USA.
| | - Elizabeth A Hinton
- Graduate Training Program in Neuroscience, Emory University, USA; Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, USA; Yerkes National Primate Research Center, Emory University, USA
| | - Shannon L Gourley
- Graduate Training Program in Neuroscience, Emory University, USA; Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, USA; Yerkes National Primate Research Center, Emory University, USA.
| |
Collapse
|
15
|
Whyte AJ, Trinoskey-Rice G, Davies RA, Woon EP, Foster SL, Shapiro LP, Li DC, Srikanth KD, Gil-Henn H, Gourley SL. Cell Adhesion Factors in the Orbitofrontal Cortex Control Cue-Induced Reinstatement of Cocaine Seeking and Amygdala-Dependent Goal Seeking. J Neurosci 2021; 41:5923-5936. [PMID: 34074735 PMCID: PMC8265806 DOI: 10.1523/jneurosci.0781-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Repeated cocaine exposure causes dendritic spine loss in the orbitofrontal cortex, which might contribute to poor orbitofrontal cortical function following drug exposure. One challenge, however, has been verifying links between neuronal structural plasticity and behavior, if any. Here we report that cocaine self-administration triggers the loss of dendritic spines on excitatory neurons in the orbitofrontal cortex of male and female mice (as has been reported in rats). To understand functional consequences, we locally ablated neuronal β1-integrins, cell adhesion receptors that adhere cells to the extracellular matrix and thus support dendritic spine stability. Degradation of β1-integrin tone: (1) caused dendritic spine loss, (2) exaggerated cocaine-seeking responses in a cue-induced reinstatement test, and (3) impaired the ability of mice to integrate new learning into familiar routines, a key function of the orbitofrontal cortex. Stimulating Abl-related gene kinase, overexpressing Proline-rich tyrosine kinase, and inhibiting Rho-associated coiled-coil containing kinase corrected response strategies, uncovering a β1-integrin-mediated signaling axis that controls orbitofrontal cortical function. Finally, use of a combinatorial gene silencing/chemogenetic strategy revealed that β1-integrins support the ability of mice to integrate new information into established behaviors by sustaining orbitofrontal cortical connections with the basolateral amygdala.SIGNIFICANCE STATEMENT Cocaine degenerates dendritic spines in the orbitofrontal cortex, a region of the brain involved in interlacing new information into established behaviors. One challenge has been verifying links between cellular structural stability and behavior, if any. In this second of two related investigations, we study integrin family receptors, which adhere cells to the extracellular matrix and thereby stabilize dendritic spines (see also DePoy et al., 2019). We reveal that β1-integrins in the orbitofrontal cortex control food- and cocaine-seeking behaviors. For instance, β1-integrin loss amplifies cocaine-seeking behavior and impairs the ability of mice to integrate new learning into familiar routines. We identify likely intracellular signaling partners by which β1-integrins support orbitofrontal cortical function and connectivity with the basolateral amygdala.
Collapse
Affiliation(s)
- Alonzo J Whyte
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Gracy Trinoskey-Rice
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Rachel A Davies
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Ellen P Woon
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia 30329
| | - Stephanie L Foster
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia 30329
| | - Lauren P Shapiro
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia 30329
| | - Dan C Li
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia 30329
| | | | - Hava Gil-Henn
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Shannon L Gourley
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia 30329
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia 30329
- Children's Healthcare of Atlanta, Atlanta, Georgia 30329
| |
Collapse
|
16
|
Caffino L, Mottarlini F, Zita G, Gawliński D, Gawlińska K, Wydra K, Przegaliński E, Fumagalli F. The effects of cocaine exposure in adolescence: Behavioural effects and neuroplastic mechanisms in experimental models. Br J Pharmacol 2021; 179:4233-4253. [PMID: 33963539 PMCID: PMC9545182 DOI: 10.1111/bph.15523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 01/23/2023] Open
Abstract
Drug addiction is a devastating disorder with a huge economic and social burden for modern society. Although an individual may slip into drug abuse throughout his/her life, adolescents are at higher risk, but, so far, only a few studies have attempted to elucidate the underlying cellular and molecular bases of such vulnerability. Indeed, preclinical evidence indicates that psychostimulants and adolescence interact and contribute to promoting a dysfunctional brain. In this review, we have focused our attention primarily on changes in neuroplasticity brought about by cocaine, taking into account that there is much less evidence from exposure to cocaine in adolescence, compared with that from adults. This review clearly shows that exposure to cocaine during adolescence, acute or chronic, as well as contingent or non‐contingent, confers a vulnerable endophenotype, primarily, by causing changes in neuroplasticity. Given the close relationship between drug abuse and psychiatric disorders, we also discuss the translational implications providing an interpretative framework for clinical studies involving addictive as well as affective or psychotic behaviours.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Gianmaria Zita
- Dipartimento di Salute Mentale e Dipendenze, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Dawid Gawliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Kinga Gawlińska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Karolina Wydra
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Edmund Przegaliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
17
|
Abstract
Stressor exposure causes dendritic remodeling on excitatory neurons in multiple regions of the brain, including the orbitofrontal cortex (OFC). Additionally, stressor and exogenous stress hormone exposure impair cognitive functions that are dependent on the OFC. For this Special Issue on the OFC, we summarize current literature regarding how stress-prenatal, postnatal, and even inter-generational-affects OFC neuron structure in rodents. We discuss dendrite structure, dendritic spines, and gene expression. We aim to provide a focused resource for those interested in how stressors impact this heterogeneous brain region. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Michelle K. Sequeira
- Graduate Training Program in Neuroscience, Emory University, Yerkes National Primate Research Center, Emory University, Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Children’s Healthcare of Atlanta, 954 Gatewood Rd. NE, Atlanta GA 30329
| | - Shannon L. Gourley
- Graduate Training Program in Neuroscience, Emory University, Yerkes National Primate Research Center, Emory University, Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Children’s Healthcare of Atlanta, 954 Gatewood Rd. NE, Atlanta GA 30329
| |
Collapse
|
18
|
Gipson CD, Rawls S, Scofield MD, Siemsen BM, Bondy EO, Maher EE. Interactions of neuroimmune signaling and glutamate plasticity in addiction. J Neuroinflammation 2021; 18:56. [PMID: 33612110 PMCID: PMC7897396 DOI: 10.1186/s12974-021-02072-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/05/2021] [Indexed: 02/28/2023] Open
Abstract
Chronic use of drugs of abuse affects neuroimmune signaling; however, there are still many open questions regarding the interactions between neuroimmune mechanisms and substance use disorders (SUDs). Further, chronic use of drugs of abuse can induce glutamatergic changes in the brain, but the relationship between the glutamate system and neuroimmune signaling in addiction is not well understood. Therefore, the purpose of this review is to bring into focus the role of neuroimmune signaling and its interactions with the glutamate system following chronic drug use, and how this may guide pharmacotherapeutic treatment strategies for SUDs. In this review, we first describe neuroimmune mechanisms that may be linked to aberrant glutamate signaling in addiction. We focus specifically on the nuclear factor-kappa B (NF-κB) pathway, a potentially important neuroimmune mechanism that may be a key player in driving drug-seeking behavior. We highlight the importance of astroglial-microglial crosstalk, and how this interacts with known glutamatergic dysregulations in addiction. Then, we describe the importance of studying non-neuronal cells with unprecedented precision because understanding structure-function relationships in these cells is critical in understanding their role in addiction neurobiology. Here we propose a working model of neuroimmune-glutamate interactions that underlie drug use motivation, which we argue may aid strategies for small molecule drug development to treat substance use disorders. Together, the synthesis of this review shows that interactions between glutamate and neuroimmune signaling may play an important and understudied role in addiction processes and may be critical in developing more efficacious pharmacotherapies to treat SUDs.
Collapse
Affiliation(s)
- Cassandra D Gipson
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA.
| | - Scott Rawls
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Michael D Scofield
- Department of Anesthesiology, Medical University of South Carolina, Charleston, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, USA
| | - Benjamin M Siemsen
- Department of Anesthesiology, Medical University of South Carolina, Charleston, USA
| | - Emma O Bondy
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA
| | - Erin E Maher
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA
| |
Collapse
|
19
|
Kantak KM. Adolescent-onset vs. adult-onset cocaine use: Impact on cognitive functioning in animal models and opportunities for translation. Pharmacol Biochem Behav 2020; 196:172994. [PMID: 32659242 DOI: 10.1016/j.pbb.2020.172994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/25/2020] [Accepted: 07/02/2020] [Indexed: 01/03/2023]
Abstract
Animal models are poised to make key contributions to the study of cognitive deficits associated with chronic cocaine use in people. Advantages of animal models include use of a longitudinal experimental design that can control for drug use history and onset-age, sex, drug consumption, and abstinence duration. Twenty-two studies were reviewed (13 in adult male rats, 5 in adolescent vs. adult male rats, 3 in adult male monkeys, and 1 in adult female monkeys), and it was demonstrated repeatedly that male animals with adult-onset cocaine self-administration exposure had impairments in sustained attention, decision making, stimulus-reward learning, working memory, and cognitive flexibility, but not habit learning and spatial learning and memory. These findings have translational relevance because adult cocaine users exhibit a similar range of cognitive deficits. In the limited number of studies available, male rats self-administering cocaine during adolescence were less susceptible than adults to impairment in cognitive flexibility, stimulus-reward learning, and decision making, but were more susceptible than adults to impairment in working memory, a finding also reported in the few studies performed in early-onset cocaine users. These findings suggest that animal models can help fill an unmet need for investigating important but yet-to-be-fully-addressed research questions in people. Research priorities include further investigation of differences between adolescents and adults as well as between males and females following chronic cocaine self-administration. A comprehensive understanding of the broad range of cognitive consequences of chronic cocaine use and the role of developmental plasticity can be of value for improving neuropsychological recovery efforts.
Collapse
Affiliation(s)
- Kathleen M Kantak
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, United States of America.
| |
Collapse
|
20
|
Mallya AP, Wang HD, Lee HNR, Deutch AY. Microglial Pruning of Synapses in the Prefrontal Cortex During Adolescence. Cereb Cortex 2020; 29:1634-1643. [PMID: 29668872 DOI: 10.1093/cercor/bhy061] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 12/20/2022] Open
Abstract
Exaggerated synaptic elimination in the prefrontal cortex (PFC) during adolescence has been suggested to contribute to the neuropathological changes of schizophrenia. Recent data indicate that microglia (MG) sculpt synapses during early postnatal development. However, it is not known if MG contribute to the structural maturation of the PFC, which has a protracted postnatal development. We determined if MG are involved in developmentally specific synapse elimination in the PFC, focusing on adolescence. Layer 5 PFC pyramidal cells (PCs) were intracellularly filled with Lucifer Yellow for dendritic spine measurements in postnatal day (P) 24, P30, P35, P39, and P50 rats. In the contralateral PFC we evaluated if MG engulfed presynaptic (glutamatergic) and postsynaptic (dendritic spines) elements. Dendritic spine density increased from P24 to P35, when spine density peaked. There was a significant increase in MG engulfment of spines at P39 relative to earlier ages; this subsided by P50. MG also phagocytosed presynaptic glutamatergic terminals. These data indicate that MG transiently prune synapses of PFC PCs during adolescence, when the symptoms of schizophrenia typically first appear. An increase in MG-mediated synaptic remodeling of PFC PCs may contribute to the structural changes observed in schizophrenia.
Collapse
Affiliation(s)
| | - Hui-Dong Wang
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Han Noo Ri Lee
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Ariel Y Deutch
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
21
|
Repeated cocaine exposure during adolescence impairs recognition memory in early adulthood: A role for BDNF signaling in the perirhinal cortex. Dev Cogn Neurosci 2020; 43:100789. [PMID: 32510348 PMCID: PMC7200858 DOI: 10.1016/j.dcn.2020.100789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/31/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
The perirhinal cortex (PrhC) is critical for object recognition memory; however, information regarding the molecular mechanisms underlying this type of memory following repeated exposure to drugs of abuse during adolescence is unknown. To this end, adolescent or adult rats were exposed to cocaine from postnatal day (PND) 28 to PND 42 or PND 63 to PND 77, respectively. Two weeks later, rats were subjected to the cognitive test named Novel Object Recognition (NOR) test. We found that adolescent, but not adult, cocaine exposure caused a significant impairment in the NOR test, independently from changes in the stress response system. In adolescent saline-treated rats, NOR test up-regulated BDNF and its downstream signaling whereas a downregulation of the same pathway was observed in cocaine-treated rats together with a reduction of Arc/Arg3.1 and PSD95 expression, indicating reduced pro-cognitive structural adaptations in the PrhC. Of note, cocaine-treated adult rats correctly performed in the NOR test indicating intact recognition memory mechanisms, despite a significant cocaine-induced reduction of BDNF levels in the PrhC, suggesting that recognition memory is heavily dependent on BDNF during adolescence whereas during adulthood other mechanisms come into play.
Collapse
|
22
|
Delevich K, Okada NJ, Rahane A, Zhang Z, Hall CD, Wilbrecht L. Sex and Pubertal Status Influence Dendritic Spine Density on Frontal Corticostriatal Projection Neurons in Mice. Cereb Cortex 2020; 30:3543-3557. [PMID: 32037445 DOI: 10.1093/cercor/bhz325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In humans, nonhuman primates, and rodents, the frontal cortices exhibit grey matter thinning and dendritic spine pruning that extends into adolescence. This maturation is believed to support higher cognition but may also confer psychiatric vulnerability during adolescence. Currently, little is known about how specific cell types in the frontal cortex mature or whether puberty plays a role in the maturation of some cell types but not others. Here, we used mice to characterize the spatial topography and adolescent development of cross-corticostriatal (cSTR) neurons that project through the corpus collosum to the dorsomedial striatum. We found that apical spine density on cSTR neurons in the medial prefrontal cortex decreased significantly between late juvenile (P29) and young adult time points (P60), with females exhibiting higher spine density than males at both ages. Adult males castrated prior to puberty onset had higher spine density compared to sham controls. Adult females ovariectomized before puberty onset showed greater variance in spine density measures on cSTR cells compared to controls, but their mean spine density did not significantly differ from sham controls. Our findings reveal that these cSTR neurons, a subtype of the broader class of intratelencephalic-type neurons, exhibit significant sex differences and suggest that spine pruning on cSTR neurons is regulated by puberty in male mice.
Collapse
Affiliation(s)
- Kristen Delevich
- Department of Psychology, University of California, Berkeley, CA 94720, USA and.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Nana J Okada
- Department of Psychology, University of California, Berkeley, CA 94720, USA and.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Ameet Rahane
- Department of Psychology, University of California, Berkeley, CA 94720, USA and.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Zicheng Zhang
- Department of Psychology, University of California, Berkeley, CA 94720, USA and.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Christopher D Hall
- Department of Psychology, University of California, Berkeley, CA 94720, USA and.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, CA 94720, USA and.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Smith BL, Laaker CJ, Lloyd KR, Hiltz AR, Reyes TM. Adolescent microglia play a role in executive function in male mice exposed to perinatal high fat diet. Brain Behav Immun 2020; 84:80-89. [PMID: 31765789 PMCID: PMC8634520 DOI: 10.1016/j.bbi.2019.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/09/2019] [Accepted: 11/17/2019] [Indexed: 12/20/2022] Open
Abstract
In humans, excessive gestational weight gain during pregnancy is associated with an increased risk for executive function deficits in the offspring. Our previous work has confirmed this finding in mice, as offspring from dams fed a 60% high fat (HF) diet during breeding, gestation, and lactation demonstrate impulsive-like behavior in the 5 choice serial reaction time task (5CSRTT). Because the prefrontal cortex (PFC), which plays a key role in executive function, undergoes substantial postnatal adolescent pruning and microglia are actively involved in synaptic refinement, we hypothesized that microglia may play a role in mediating changes in brain development after maternal HF diet, with a specific focus on microglial activity during adolescence. Therefore, we treated male and female offspring from HF or control diet (CD) dams with PLX3397-formulated diet (PLX) to ablate microglia during postnatal days 23-45. After PLX removal and microglial repopulation, adult mice underwent testing to evaluate executive function. Adolescent PLX treatment did increase the control male dropout rate in learning the basic FR1 task, but otherwise had a minimal effect on behavior in control offspring. In males, HF offspring learned faster and performed better on a simple operant task (fixed ratio 1) without an effect of PLX. However, in HF offspring this increase in FR1 responding was associated with more impulsive errors in the 5CSRTT while PLX eliminated this association and decreased impulsive errors specifically in HF offspring. This suggests that adolescent PLX treatment improves executive function and particularly impulsive behavior in adult male HF offspring, without an overall effect of perinatal diet. In females, maternal HF diet impaired reversal learning but PLX had no effect on performance. We then measured gene expression in adult male PFC, nucleus accumbens (NAC), and amygdala (AMG), examining targets related to synaptic function, reward, and inflammation. Maternal HF diet increased PFC synaptophysin and AMG psd95 expression. PFC synaptophysin expression was correlated with more impulsive errors in the 5CSRTT in the HF offspring only and PLX treatment eliminated this correlation. These data suggest that adolescent microglia may play a critical role in mediating executive function after perinatal high fat diet in males.
Collapse
Affiliation(s)
- Brittany L Smith
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Collin J Laaker
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Kelsey R Lloyd
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Adam R Hiltz
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Teresa M Reyes
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
24
|
Salmanzadeh H, Ahmadi-Soleimani SM, Pachenari N, Azadi M, Halliwell RF, Rubino T, Azizi H. Adolescent drug exposure: A review of evidence for the development of persistent changes in brain function. Brain Res Bull 2020; 156:105-117. [PMID: 31926303 DOI: 10.1016/j.brainresbull.2020.01.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022]
Abstract
Over the past decade, many studies have indicated that adolescence is a critical period of brain development and maturation. The refinement and maturation of the central nervous system over this prolonged period, however, makes the adolescent brain highly susceptible to perturbations from acute and chronic drug exposure. Here we review the preclinical literature addressing the long-term consequences of adolescent exposure to common recreational drugs and drugs-of-abuse. These studies on adolescent exposure to alcohol, nicotine, opioids, cannabinoids and psychostimulant drugs, such as cocaine and amphetamine, reveal a variety of long-lasting behavioral and neurobiological consequences. These agents can affect development of the prefrontal cortex and mesolimbic dopamine pathways and modify the reward systems, socio-emotional processing and cognition. Other consequences include disruption in working memory, anxiety disorders and an increased risk of subsequent drug abuse in adult life. Although preventive and control policies are a valuable approach to reduce the detrimental effects of drugs-of-abuse on the adolescent brain, a more profound understanding of their neurobiological impact can lead to improved strategies for the treatment and attenuation of the detrimental neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Hamed Salmanzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | | | - Narges Pachenari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Robert F Halliwell
- TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA, Italy
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
25
|
Pitts EG, Barfield ET, Woon EP, Gourley SL. Action-Outcome Expectancies Require Orbitofrontal Neurotrophin Systems in Naïve and Cocaine-Exposed Mice. Neurotherapeutics 2020; 17:165-177. [PMID: 31218603 PMCID: PMC7007486 DOI: 10.1007/s13311-019-00752-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cocaine use during adolescence decreases the likelihood that individuals will seek treatment for recurrent drug use. In rodents, developmental cocaine exposure weakens action-consequence decision-making, causing a deferral to familiar, habit-like behavioral response strategies. Here, we aimed to improve action-outcome decision-making. We found that acute pharmacological stimulation of the tyrosine/tropomyosin receptor kinase B (trkB) via 7,8-dihydroxyflavone (7,8-DHF) or 3,4-methylenedioxymethamphetamine (MDMA) blocked cocaine-induced habit biases by strengthening memory for action-outcome associations. We believe that MDMA acts by stimulating neurotrophin/trkB systems in the orbitofrontal cortex (OFC), a region involved in prospectively evaluating the consequences of one's action, because 1) MDMA also increased brain-derived neurotrophic factor (BDNF) in the OFC, 2) MDMA corrected habit biases due to Bdnf loss in the OFC, and 3) overexpression of a truncated isoform of trkB occluded the memory-enhancing effects of MDMA. Thus, selecting actions based on their consequences requires BDNF-trkB in the OFC, the stimulation of which may improve goal attainment in both drug-naïve and cocaine-exposed individuals. SIGNIFICANCE STATEMENT: Cocaine use during adolescence decreases the likelihood that individuals will seek treatment for recurrent drug use, even as adults. Understanding how early-life cocaine exposure impacts goal-oriented action and prospective decision-making in adulthood is thus important. One key aspect of goal-directed decision-making is anticipating the consequences of one's actions, a process that likely involves the orbitofrontal cortex (OFC). In rodents, developmental cocaine exposure weakens action-consequence decision-making, causing a deferral to familiar, habit-like behavioral response strategies. Here, we report that we can improve memory for action-consequence relationships by stimulating neurotrophic factors, which support cell survival, development, and plasticity in the brain. With strengthened action-consequence associations, cocaine-exposed mice regain the ability to optimally select actions based on their likely outcomes. Brain region-selective manipulations reveal that neurotrophin systems in the OFC are necessary for stable memory of action-consequence relationships.
Collapse
Affiliation(s)
- Elizabeth G Pitts
- Graduate Program in Neuroscience, Yerkes National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Dr. NE, Atlanta, GA, 30329, USA
| | - Elizabeth T Barfield
- Graduate Program in Neuroscience, Yerkes National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Dr. NE, Atlanta, GA, 30329, USA
| | - Ellen P Woon
- Graduate Program in Neuroscience, Yerkes National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Dr. NE, Atlanta, GA, 30329, USA
| | - Shannon L Gourley
- Graduate Program in Neuroscience, Yerkes National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Dr. NE, Atlanta, GA, 30329, USA.
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
26
|
Hodges TE, Eltahir AM, Patel S, Bredewold R, Veenema AH, McCormick CM. Effects of oxytocin receptor antagonism on social function and corticosterone release after adolescent social instability in male rats. Horm Behav 2019; 116:104579. [PMID: 31449812 DOI: 10.1016/j.yhbeh.2019.104579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/23/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
Abstract
Oxytocin influences social behaviour and hypothalamic-pituitary-adrenal (HPA) function. We previously found that social instability stress (SS) from postnatal day 30 to 45 increased oxytocin receptor (OTR) densities in the lateral septum and nucleus accumbens of adolescent male rats. Here, we investigated social behaviour and HPA function in adolescent male SS rats compared with age- and sex-matched controls after intraperitoneal treatment with an OTR antagonist L-368,899 (OTR-A). Regardless of OTR antagonism, adolescent SS rats spent more time in social approach (investigation through wire mesh) but less time in social interaction (physical interaction) with unfamiliar same-sex and same-age peers than did controls. However, OTR-A-treatment caused SS rats to be more socially avoidant than OTR-A-treated controls and saline-treated rats of the same condition. Additionally, the predicted rise in plasma corticosterone in response to OTR-A treatment was blunted in SS rats. Fos immunoreactivity (IR) was used as a marker of neural activation in social brain regions and oxytocin-IR was examined in the paraventricular nucleus of the hypothalamus (PVN) in response to interacting with unfamiliar peers in SS and control rats after OTR-A treatment. OTR-A treatment had little effect on Fos-IR and oxytocin-IR in the analyzed brain regions, but SS rats had lower Fos-IR and oxytocin-IR in the PVN and greater Fos-IR in subregions of the prefrontal cortex, and hippocampus, and lateral septum than did controls. Finally, binding density of OTR was measured in the PVN and hippocampus, and greater OTR binding density was found in the PVN of SS rats. Together, these data demonstrate a greater influence of OTR antagonism on social behaviour and a reduced influence of OTR antagonism on HPA responses after adolescent SS in male rats. The results also suggest that differences in neural functioning in the prefrontal cortex, hippocampus and lateral septum of adolescent SS rats may be involved in their altered social behaviour relative to that of controls.
Collapse
Affiliation(s)
- Travis E Hodges
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, BC V6T 1Z3, Canada; Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Akif M Eltahir
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Smit Patel
- Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Remco Bredewold
- Neurobiology of Social Behavior Laboratory, Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Alexa H Veenema
- Neurobiology of Social Behavior Laboratory, Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Cheryl M McCormick
- Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
27
|
Hinton EA, Li DC, Allen AG, Gourley SL. Social Isolation in Adolescence Disrupts Cortical Development and Goal-Dependent Decision-Making in Adulthood, Despite Social Reintegration. eNeuro 2019; 6:ENEURO.0318-19.2019. [PMID: 31527057 PMCID: PMC6757188 DOI: 10.1523/eneuro.0318-19.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
The social environment influences neurodevelopment. Investigations using rodents to study this phenomenon commonly isolate subjects, then assess neurobehavioral consequences while animals are still isolated. This approach precludes one from dissociating the effects of on-going versus prior isolation, hindering our complete understanding of the consequences of social experience during particular developmental periods. Here, we socially isolated adolescent mice from postnatal day (P)31 to P60, then re-housed them into social groups. We tested their ability to select actions based on expected outcomes using multiple reinforcer devaluation and instrumental contingency degradation techniques. Social isolation in adolescence (but not adulthood) weakened instrumental response updating, causing mice to defer to habit-like behaviors. Habit biases were associated with glucocorticoid insufficiency in adolescence, oligodendrocyte marker loss throughout cortico-striatal regions, and dendritic spine and synaptic marker excess in the adult orbitofrontal cortex (OFC). Artificial, chemogenetic stimulation of the ventrolateral OFC in typical, healthy mice recapitulated response biases following isolation, causing habit-like behaviors. Meanwhile, correcting dendritic architecture by inhibiting the cytoskeletal regulatory protein ROCK remedied instrumental response updating defects in socially isolated mice. Our findings suggest that adolescence is a critical period during which social experience optimizes one's ability to seek and attain goals later in life. Age-typical dendritic spine elimination appears to be an essential factor, and in its absence, organisms may defer to habit-based behaviors.
Collapse
Affiliation(s)
- Elizabeth A Hinton
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, 30329
- Center for Translational and Social Neuroscience, Emory University, Atlanta, GA, 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329
- Department of Pediatrics, Emory University, Atlanta, GA, 30329
- Department of Psychiatry, Emory University, Atlanta, GA, 30329
| | - Dan C Li
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, 30329
- Center for Translational and Social Neuroscience, Emory University, Atlanta, GA, 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329
- Department of Pediatrics, Emory University, Atlanta, GA, 30329
- Department of Psychiatry, Emory University, Atlanta, GA, 30329
| | - Aylet G Allen
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329
- Department of Pediatrics, Emory University, Atlanta, GA, 30329
| | - Shannon L Gourley
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, 30329
- Center for Translational and Social Neuroscience, Emory University, Atlanta, GA, 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329
- Department of Pediatrics, Emory University, Atlanta, GA, 30329
- Department of Psychiatry, Emory University, Atlanta, GA, 30329
| |
Collapse
|
28
|
DePoy LM, Shapiro LP, Kietzman HW, Roman KM, Gourley SL. β1-Integrins in the Developing Orbitofrontal Cortex Are Necessary for Expectancy Updating in Mice. J Neurosci 2019; 39:6644-6655. [PMID: 31253753 PMCID: PMC6703883 DOI: 10.1523/jneurosci.3072-18.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/11/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022] Open
Abstract
Navigating a changing environment requires associating stimuli and actions with their likely outcomes and modifying these associations when they change. These processes involve the orbitofrontal cortex (OFC). Although some molecular mediators have been identified, developmental factors are virtually unknown. We hypothesized that the cell adhesion factor β1-integrin is essential to OFC function, anticipating developmental windows during which β1-integrins might be more influential than others. We discovered that OFC-selective β1-integrin silencing before adolescence, but not later, impaired the ability of mice to extinguish conditioned fear and select actions based on their likely outcomes. Early-life knock-down also reduced the densities of dendritic spines, the primary sites of excitatory plasticity in the brain, and weakened sensitivity to cortical inputs. Notwithstanding these defects in male mice, females were resilient to OFC (but not hippocampal) β1-integrin loss. Existing literature suggests that resilience may be explained by estradiol-mediated transactivation of β1-integrins and tropomyosin receptor kinase B (trkB). Accordingly, we discovered that a trkB agonist administered during adolescence corrected reward-related decision making in β1-integrin-deficient males. In sum, developmental β1-integrins are indispensable for OFC function later in life.SIGNIFICANCE STATEMENT The orbitofrontal cortex (OFC) is a subregion of the frontal cortex that allows organisms to link behaviors and stimuli with anticipated outcomes, and to make predictions about the consequences of one's behavior. Aspects of OFC development are particularly prolonged, extending well into adolescence, likely optimizing organisms' abilities to prospectively calculate the consequences of their actions and select behaviors appropriately; these decision making strategies improve as young individuals mature into adulthood. Molecular factors are not, however, well understood. Our experiments reveal that a cell adhesion protein termed "β1-integrin" is necessary for OFC neuronal maturation and function. Importantly, β1-integrins operate during a critical period equivalent to early adolescence in humans to optimize the ability of organisms to update expectancies later in life.
Collapse
Affiliation(s)
- Lauren M DePoy
- Department of Pediatrics
- Department of Psychiatry
- Yerkes National Primate Research Center
- Graduate Program in Neuroscience, and
| | - Lauren P Shapiro
- Department of Pediatrics
- Department of Psychiatry
- Yerkes National Primate Research Center
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia 30329
| | - Henry W Kietzman
- Department of Pediatrics
- Department of Psychiatry
- Yerkes National Primate Research Center
- Graduate Program in Neuroscience, and
| | - Kaitlyn M Roman
- Department of Pediatrics
- Department of Psychiatry
- Yerkes National Primate Research Center
- Graduate Program in Neuroscience, and
| | - Shannon L Gourley
- Department of Pediatrics,
- Department of Psychiatry
- Yerkes National Primate Research Center
- Graduate Program in Neuroscience, and
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia 30329
| |
Collapse
|
29
|
Whyte AJ, Kietzman HW, Swanson AM, Butkovich LM, Barbee BR, Bassell GJ, Gross C, Gourley SL. Reward-Related Expectations Trigger Dendritic Spine Plasticity in the Mouse Ventrolateral Orbitofrontal Cortex. J Neurosci 2019; 39:4595-4605. [PMID: 30940719 PMCID: PMC6554633 DOI: 10.1523/jneurosci.2031-18.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
An essential aspect of goal-directed decision-making is selecting actions based on anticipated consequences, a process that involves the orbitofrontal cortex (OFC) and potentially, the plasticity of dendritic spines in this region. To investigate this possibility, we trained male and female mice to nose poke for food reinforcers, or we delivered the same number of food reinforcers non-contingently to separate mice. We then decreased the likelihood of reinforcement for trained mice, requiring them to modify action-outcome expectations. In a separate experiment, we blocked action-outcome updating via chemogenetic inactivation of the OFC. In both cases, successfully selecting actions based on their likely consequences was associated with fewer immature, thin-shaped dendritic spines and a greater proportion of mature, mushroom-shaped spines in the ventrolateral OFC. This pattern was distinct from spine loss associated with aging, and we identified no effects on hippocampal CA1 neurons. Given that the OFC is involved in prospective calculations of likely outcomes, even when they are not observable, constraining spinogenesis while preserving mature spines may be important for solidifying durable expectations. To investigate causal relationships, we inhibited the RNA-binding protein fragile X mental retardation protein (encoded by Fmr1), which constrains dendritic spine turnover. Ventrolateral OFC-selective Fmr1 knockdown recapitulated the behavioral effects of inducible OFC inactivation (and lesions; also shown here), impairing action-outcome conditioning, and caused dendritic spine excess. Our findings suggest that a proper balance of dendritic spine plasticity within the OFC is necessary for one's ability to select actions based on anticipated consequences.SIGNIFICANCE STATEMENT Navigating a changing environment requires associating actions with their likely outcomes and updating these associations when they change. Dendritic spine plasticity is likely involved, yet relationships are unconfirmed. Using behavioral, chemogenetic, and viral-mediated gene silencing strategies and high-resolution microscopy, we find that modifying action-outcome expectations is associated with fewer immature spines and a greater proportion of mature spines in the ventrolateral orbitofrontal cortex (OFC). Given that the OFC is involved in prospectively calculating the likely outcomes of one's behavior, even when they are not observable, constraining spinogenesis while preserving mature spines may be important for maintaining durable expectations.
Collapse
Affiliation(s)
- Alonzo J Whyte
- Departments of Cell Biology
- Pediatrics, Emory School of Medicine
- Yerkes National Primate Research Center
| | - Henry W Kietzman
- Pediatrics, Emory School of Medicine
- Yerkes National Primate Research Center
- Graduate Program in Neuroscience
| | - Andrew M Swanson
- Pediatrics, Emory School of Medicine
- Yerkes National Primate Research Center
- Graduate Program in Neuroscience
| | - Laura M Butkovich
- Pediatrics, Emory School of Medicine
- Yerkes National Primate Research Center
- Graduate Program in Neuroscience
| | - Britton R Barbee
- Pediatrics, Emory School of Medicine
- Yerkes National Primate Research Center
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia 30329
| | - Gary J Bassell
- Departments of Cell Biology
- Graduate Program in Neuroscience
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, and
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267
| | - Shannon L Gourley
- Pediatrics, Emory School of Medicine,
- Yerkes National Primate Research Center
- Graduate Program in Neuroscience
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia 30329
| |
Collapse
|
30
|
Chronic adolescent stress sex-specifically alters the hippocampal transcriptome in adulthood. Neuropsychopharmacology 2019; 44:1207-1215. [PMID: 30710108 PMCID: PMC6785712 DOI: 10.1038/s41386-019-0321-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 11/08/2022]
Abstract
Chronic adolescent stress alters behavior in a sex-specific manner at the end of adolescence and in adulthood. Although prolonged behavioral repercussions of chronic adolescent stress have been documented, the potential underlying mechanisms are incompletely understood. In this study we demonstrate that a history of chronic adolescent stress modified the adult stress response, as measured by corticosterone concentration, such that a history of chronic adolescent stress resulted in a blunted response to a novel acute stressor. In order to begin to address potential mechanistic underpinnings, we assessed the extent to which chronic adolescent stress impacted global DNA methylation. Reduced global hippocampal methylation was evident in females with a history of chronic adolescent stress; thus, it was possible that chronic adolescent stress altered global transcription in the whole hippocampi of adult male and female rats. In addition, because acute stress can stimulate a genomic response, we assessed the transcriptome following exposure to an acute novel stressor to determine the extent to which a history of chronic adolescent stress modifies the adult transcriptional response to an acute stressor in males and females. In addition to the reduction in global methylation, chronic adolescent stress resulted in distinct patterns of gene expression in the adult hippocampus that differentiated by sex. Furthermore, both sex and a history of chronic adolescent stress influenced the transcriptional response to an acute novel stressor in adulthood, suggesting both latent and functional effects of chronic adolescent stress at the level of gene transcription. Pathway analysis indicated that ESR1 and IFN-α may be particularly influential transcription factors mediating these transcriptional differences and suggest candidate mechanisms for future studies. Collectively, these studies demonstrate sex-specific and enduring effects of adolescent stress exposure that are more pronounced in females than in males.
Collapse
|
31
|
Héraud C, Pinault M, Lagrée V, Moreau V. p190RhoGAPs, the ARHGAP35- and ARHGAP5-Encoded Proteins, in Health and Disease. Cells 2019; 8:cells8040351. [PMID: 31013840 PMCID: PMC6523970 DOI: 10.3390/cells8040351] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022] Open
Abstract
Small guanosine triphosphatases (GTPases) gathered in the Rat sarcoma (Ras) superfamily represent a large family of proteins involved in several key cellular mechanisms. Within the Ras superfamily, the Ras homolog (Rho) family is specialized in the regulation of actin cytoskeleton-based mechanisms. These proteins switch between an active and an inactive state, resulting in subsequent inhibiting or activating downstream signals, leading finally to regulation of actin-based processes. The On/Off status of Rho GTPases implicates two subsets of regulators: GEFs (guanine nucleotide exchange factors), which favor the active GTP (guanosine triphosphate) status of the GTPase and GAPs (GTPase activating proteins), which inhibit the GTPase by enhancing the GTP hydrolysis. In humans, the 20 identified Rho GTPases are regulated by over 70 GAP proteins suggesting a complex, but well-defined, spatio-temporal implication of these GAPs. Among the quite large number of RhoGAPs, we focus on p190RhoGAP, which is known as the main negative regulator of RhoA, but not exclusively. Two isoforms, p190A and p190B, are encoded by ARHGAP35 and ARHGAP5 genes, respectively. We describe here the function of each of these isoforms in physiological processes and sum up findings on their role in pathological conditions such as neurological disorders and cancers.
Collapse
Affiliation(s)
- Capucine Héraud
- INSERM, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.
- University of Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux F-33000, France.
- Equipe Labellisée Fondation pour la Recherche Médicale (FRM) 2018, 75007 Paris, France.
| | - Mathilde Pinault
- INSERM, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.
- University of Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux F-33000, France.
- Equipe Labellisée Fondation pour la Recherche Médicale (FRM) 2018, 75007 Paris, France.
| | - Valérie Lagrée
- INSERM, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.
- University of Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux F-33000, France.
- Equipe Labellisée Fondation pour la Recherche Médicale (FRM) 2018, 75007 Paris, France.
| | - Violaine Moreau
- INSERM, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.
- University of Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux F-33000, France.
- Equipe Labellisée Fondation pour la Recherche Médicale (FRM) 2018, 75007 Paris, France.
| |
Collapse
|
32
|
Shapiro LP, Kietzman HW, Guo J, Rainnie DG, Gourley SL. Rho-kinase inhibition has antidepressant-like efficacy and expedites dendritic spine pruning in adolescent mice. Neurobiol Dis 2019; 124:520-530. [PMID: 30593834 PMCID: PMC6365018 DOI: 10.1016/j.nbd.2018.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/15/2018] [Accepted: 12/21/2018] [Indexed: 12/29/2022] Open
Abstract
Adolescence represents a critical period of neurodevelopment, defined by structural and synaptic pruning within the prefrontal cortex. While characteristic of typical development, this structural instability may open a window of vulnerability to developing neuropsychiatric disorders, including depression. Thus, therapeutic interventions that support or expedite neural remodeling in adolescence may be advantageous. Here, we inhibited the neuronally-expressed cytoskeletal regulatory factor Rho-kinase (ROCK), focusing primarily on the clinically-viable ROCK inhibitor fasudil. ROCK inhibition had rapid antidepressant-like effects in adolescent mice, and its efficacy was comparable to ketamine and fluoxetine. It also modified levels of the antidepressant-related signaling factors, tropomyosin/tyrosine receptor kinase B and Akt, as well as the postsynaptic marker PSD-95, in the ventromedial prefrontal cortex (vmPFC). Meanwhile, adolescent-typical dendritic spine pruning on excitatory pyramidal neurons in the vmPFC was expedited. Further, vmPFC-specific shRNA-mediated reduction of ROCK2, the dominant ROCK isoform in the brain, had antidepressant-like consequences. We cautiously suggest that ROCK inhibitors may have therapeutic potential for adolescent-onset depression.
Collapse
Affiliation(s)
- Lauren P Shapiro
- Molecular and Systems Pharmacology, Emory University, Atlanta, GA, United States; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Henry W Kietzman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; Graduate Program in Neuroscience, Emory University, Atlanta, GA, United States
| | - Jidong Guo
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, United States
| | - Donald G Rainnie
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, United States
| | - Shannon L Gourley
- Molecular and Systems Pharmacology, Emory University, Atlanta, GA, United States; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; Graduate Program in Neuroscience, Emory University, Atlanta, GA, United States; Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
33
|
Caputi FF, Caffino L, Candeletti S, Fumagalli F, Romualdi P. Short-term withdrawal from repeated exposure to cocaine during adolescence modulates dynorphin mRNA levels and BDNF signaling in the rat nucleus accumbens. Drug Alcohol Depend 2019; 197:127-133. [PMID: 30818133 DOI: 10.1016/j.drugalcdep.2019.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Early-life stressful events affect the neurobiological maturation of cerebral circuitries including the endogenous opioid system and the effects elicited by adolescent cocaine exposure on this system have been poorly investigated. Here, we evaluated whether cocaine exposure during adolescence causes short- or long-term alterations in mRNAs codifying for selected elements belonging to the opioid system. Moreover, since brain-derived neurotrophic factor (BDNF) may undergo simultaneous alterations with the opioid peptide dynorphin, we also evaluated its signaling pathway as well. METHODS Adolescent male rats were exposed to cocaine (20 mg/kg/day) from post-natal day (PND) 28 to PND42, approximately corresponding to human adolescence. After short- (PND45) or long-term (PND90) abstinence, prodynorphin-κ-opioid receptor (pDYN-KOP) and pronociceptin-nociceptin receptor (pN/OFQ-NOP) gene expression were evaluated in the nucleus accumbens (NAc) and hippocampus (Hip) together with the analysis of BDNF signaling pathways. RESULTS In the NAc of PND45 rats, pDYN mRNA levels were up-regulated, an effect paralled by increased BDNF signaling. Differently from NAc, pDYN mRNA levels were down-regulated in the Hip of PND45 rats without significant changes of BDNF pathway. At variance from PND45 rats, we did not find any significant alteration of the investigated parameters either in NAc and Hip of PND90 rats. CONCLUSIONS Our results indicate that the short-term withdrawal from adolescent cocaine exposure is characterized by a parallel pDYN mRNA and BDNF signaling increase in the NAc. Given the depressive-like state experienced during short abstinence in humans, we hypothesize that such changes may contribute to promote the risk of cocaine abuse escalation and relapse.
Collapse
Affiliation(s)
- Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, 40126, Bologna, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, 40126, Bologna, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, 40126, Bologna, Italy.
| |
Collapse
|
34
|
Zimmermann KS, Richardson R, Baker KD. Maturational Changes in Prefrontal and Amygdala Circuits in Adolescence: Implications for Understanding Fear Inhibition during a Vulnerable Period of Development. Brain Sci 2019; 9:E65. [PMID: 30889864 PMCID: PMC6468701 DOI: 10.3390/brainsci9030065] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022] Open
Abstract
Anxiety disorders that develop in adolescence represent a significant burden and are particularly challenging to treat, due in no small part to the high occurrence of relapse in this age group following exposure therapy. This pattern of persistent fear is preserved across species; relative to those younger and older, adolescents consistently show poorer extinction, a key process underpinning exposure therapy. This suggests that the neural processes underlying fear extinction are temporarily but profoundly compromised during adolescence. The formation, retrieval, and modification of fear- and extinction-associated memories are regulated by a forebrain network consisting of the prefrontal cortex (PFC), the amygdala, and the hippocampus. These regions undergo robust maturational changes in early life, with unique alterations in structure and function occurring throughout adolescence. In this review, we focus primarily on two of these regions-the PFC and the amygdala-and discuss how changes in plasticity, synaptic transmission, inhibition/excitation, and connectivity (including modulation by hippocampal afferents to the PFC) may contribute to transient deficits in extinction retention. We end with a brief consideration of how exposure to stress during this adolescent window of vulnerability can permanently disrupt neurodevelopment, leading to lasting impairments in pathways of emotional regulation.
Collapse
Affiliation(s)
- Kelsey S Zimmermann
- School of Psychology, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Rick Richardson
- School of Psychology, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Kathryn D Baker
- School of Psychology, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| |
Collapse
|
35
|
Verma A, Bennett J, Örme AM, Polycarpou E, Rooney B. Cocaine addicted to cytoskeletal change and a fibrosis high. Cytoskeleton (Hoboken) 2019; 76:177-185. [PMID: 30623590 DOI: 10.1002/cm.21510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/05/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022]
Abstract
Cocaine is one of the most widely abused illicit drugs due to its euphoric and addictive properties. Cocaine-mediated cognitive impairments are the result of dynamic cytoskeletal rearrangements involved in mediating structural and behavioural plasticity. Cytoskeletal changes initiated following cocaine abuse are regulated by the Rho family of GTPases with significant downstream activity in key actin binding proteins. Moreover, signalling via the endoplasmic reticulum chaperone protein, sigma-1 receptor has highlighted the possibility of cocaine regulated pathology in other organ systems. However, the question of whether upstream stimulation of such a high affinity binding receptor is directly involved in cocaine-mediated cytoskeletal changes at present remains unknown. In this review, we describe the functional role of key cytoskeletal regulators in response to cocaine-induced signalling cues. In addition, we ascertain the extent of whether global cytoskeletal modulators involved in cocaine-induced neurological stimulation can be used as a platform for future studies into elucidating its fibrotic potential within the hepatic microenvironment. A focus on aspects still poorly understood relating to the nonneuronal pathological impact of cocaine is discussed in the sphere of hepatic dysregulation. Lastly, we suggest that cocaine may mediate its pathological capacity via the sigma1 receptor in regulating hepatoxicity, hepatic stellate cells activity, cytoskeletal dynamics, and the transcriptional regulation of key hepato-fibrogenic modulators.
Collapse
Affiliation(s)
- Avnish Verma
- Kingston University, Department of Applied and Human Sciences, School of Life Sciences, Pharmacy and Chemistry, Surrey, United Kingdom
| | - Jason Bennett
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
| | - Ayşe Merve Örme
- Kingston University, Department of Applied and Human Sciences, School of Life Sciences, Pharmacy and Chemistry, Surrey, United Kingdom
| | - Elena Polycarpou
- Kingston University, Department of Applied and Human Sciences, School of Life Sciences, Pharmacy and Chemistry, Surrey, United Kingdom
| | - Brian Rooney
- Kingston University, Department of Applied and Human Sciences, School of Life Sciences, Pharmacy and Chemistry, Surrey, United Kingdom
| |
Collapse
|
36
|
Moorman DE. The role of the orbitofrontal cortex in alcohol use, abuse, and dependence. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:85-107. [PMID: 29355587 PMCID: PMC6072631 DOI: 10.1016/j.pnpbp.2018.01.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/22/2017] [Accepted: 01/13/2018] [Indexed: 12/21/2022]
Abstract
One of the major functions of the orbitofrontal cortex (OFC) is to promote flexible motivated behavior. It is no surprise, therefore, that recent work has demonstrated a prominent impact of chronic drug use on the OFC and a potential role for OFC disruption in drug abuse and addiction. Among drugs of abuse, the use of alcohol is particularly salient with respect to OFC function. Although a number of studies in humans have implicated OFC dysregulation in alcohol use disorders, animal models investigating the association between OFC and alcohol use are only beginning to be developed, and there is still a great deal to be revealed. The goal of this review is to consider what is currently known regarding the role of the OFC in alcohol use and dependence. I will first provide a brief, general overview of current views of OFC function and its contributions to drug seeking and addiction. I will then discuss research to date related to the OFC and alcohol use, both in human clinical populations and in non-human models. Finally I will consider issues and strategies to guide future study that may identify this brain region as a key player in the transition from moderated to problematic alcohol use and dependence.
Collapse
Affiliation(s)
- David E. Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst MA 01003 USA
| |
Collapse
|
37
|
Barfield ET, Gourley SL. Prefrontal cortical trkB, glucocorticoids, and their interactions in stress and developmental contexts. Neurosci Biobehav Rev 2018; 95:535-558. [PMID: 30477984 PMCID: PMC6392187 DOI: 10.1016/j.neubiorev.2018.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
The tropomyosin/tyrosine receptor kinase B (trkB) and glucocorticoid receptor (GR) regulate neuron structure and function and the hormonal stress response. Meanwhile, disruption of trkB and GR activity (e.g., by chronic stress) can perturb neuronal morphology in cortico-limbic regions implicated in stressor-related illnesses like depression. Further, several of the short- and long-term neurobehavioral consequences of stress depend on the developmental timing and context of stressor exposure. We review how the levels and activities of trkB and GR in the prefrontal cortex (PFC) change during development, interact, are modulated by stress, and are implicated in depression. We review evidence that trkB- and GR-mediated signaling events impact the density and morphology of dendritic spines, the primary sites of excitatory synapses in the brain, highlighting effects in adolescents when possible. Finally, we review the role of neurotrophin and glucocorticoid systems in stress-related metaplasticity. We argue that better understanding the long-term effects of developmental stressors on PFC trkB, GR, and related factors may yield insights into risk for chronic, remitting depression and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Elizabeth T Barfield
- Department of Pediatrics, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Graduate Program in Neuroscience, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.
| | - Shannon L Gourley
- Department of Pediatrics, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Graduate Program in Neuroscience, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Molecular and Systems Pharmacology Program, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.
| |
Collapse
|
38
|
Hippocampal proBDNF facilitates place learning strategy associated with neural activity in rats. Brain Struct Funct 2018; 223:4099-4113. [PMID: 30151608 DOI: 10.1007/s00429-018-1742-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
Abstract
Mature brain-derived neurotrophic factor has been shown to have a promotive effect on synaptic plasticity and spatial memory. The precursor of BDNF (proBDNF) has emerged as a protein against its mature form. However, it is unknown whether and how proBDNF regulates neural excitability and spatial behavior. Through infusion of cleavage-resistant proBDNF or its antibody into HPC, we sought evidence for the influences by employing multiple behavioral tests and recording hippocampal single-unit activity. Our behavioral findings showed that proBDNF induced beneficial effects on spatial learning by facilitating the use of the place strategy and inhibiting the response strategy, including (1) using more place search strategies but less response strategies, and (2) increasing the number of rats in choosing place strategies but not response strategies. Intriguingly, infusion of an anti-proBDNF antibody did not affect rats' training process but rendered the adaption to learning reversal training more difficult, indicating deficits in choosing the proper learning strategy. The training-induced increase in proBDNF promoted the firing rate of pyramidal neurons but not fast-spiking (FS) interneurons. Importantly, endogenous proBDNF facilitated the neural correlate of spatial, but not response, learning behavior. However, the anti-proBDNF antibody effectively reversed the strategy preference and inhibited neural activity. We herein propose that proBDNF exerts pivotal effects on neural excitability and the use of cognitive strategies to facilitate the spatial learning process.
Collapse
|
39
|
Caffino L, Messa G, Fumagalli F. A single cocaine administration alters dendritic spine morphology and impairs glutamate receptor synaptic retention in the medial prefrontal cortex of adolescent rats. Neuropharmacology 2018; 140:209-216. [PMID: 30092246 DOI: 10.1016/j.neuropharm.2018.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 02/01/2023]
Abstract
The brain is still maturing during adolescence and interfering with such a vulnerable period may lead to structural and functional consequences. We investigated the effect of a single cocaine exposure on dendritic spine structure and glutamate dynamics in the medial prefrontal cortex (mPFC) of adolescent rats 7 days after a single cocaine administration. We found a reduced number of dendritic spines, suggesting that cocaine lowers the density of dendritic spines in the mPFC of adolescent rats. Since dendritic spines are postsynaptic glutamatergic protrusions, we investigated the main determinants of glutamate postsynaptic responsiveness. In the postsynaptic density, cocaine reduced the expression of the NMDA receptor subunits GluN1, GluN2A and GluN2B as well as of the AMPA GluA1 and GluA2 subunits. Cocaine also impaired their synaptic stability since the expression of the scaffolding proteins SAP102 and SAP97, critical for the anchoring of such receptors at the postsynaptic membrane, was reduced as well. The expression of PSD-95 and Arc/Arg3.1, which play structural and functional roles in glutamate neurons, was also similarly reduced. Such changes were not found in the whole homogenate, ruling out a translational effect of cocaine and implying, rather, an impaired synaptic retention at the active zones of the synapse. Notably, neither these critical glutamate determinants nor the density and morphology of the dendritic spines were altered in the mPFC of adult animals, suggesting that a single cocaine exposure selectively impairs the developmental trajectory of the glutamate synapse. These results indicate a dynamic impairment of mPFC glutamate homeostasis during a critical developmental window that persists for at least one week after a single cocaine administration. Our results identify dysfunctional glutamate synapse as a major contributor to the mechanisms that distinguish adolescent vs. adult outcomes of a single cocaine exposure.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Giulia Messa
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy.
| |
Collapse
|
40
|
Montesinos J, Pascual M, Millán-Esteban D, Guerri C. Binge-like ethanol treatment in adolescence impairs autophagy and hinders synaptic maturation: Role of TLR4. Neurosci Lett 2018; 682:85-91. [DOI: 10.1016/j.neulet.2018.05.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 01/06/2023]
|
41
|
Hodges TE, Baumbach JL, McCormick CM. Predictors of social instability stress effects on social interaction and anxiety in adolescent male rats. Dev Psychobiol 2018; 60:651-663. [DOI: 10.1002/dev.21626] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/02/2018] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Cheryl M. McCormick
- Department of Psychology; Brock University; Ontario Canada
- Centre for Neuroscience; Brock University; Ontario Canada
| |
Collapse
|
42
|
Barfield ET, Gourley SL. Adolescent Corticosterone and TrkB Pharmaco-Manipulations Sex-Dependently Impact Instrumental Reversal Learning Later in Life. Front Behav Neurosci 2017; 11:237. [PMID: 29270114 PMCID: PMC5725412 DOI: 10.3389/fnbeh.2017.00237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/14/2017] [Indexed: 02/01/2023] Open
Abstract
Early-life trauma can increase the risk for, and severity of, several psychiatric illnesses. These include drug use disorders, and some correlations appear to be stronger in women. Understanding the long-term consequences of developmental stressor or stress hormone exposure and possible sex differences is critically important. So-called “reversal learning” tasks are commonly used in rodents to model cognitive deficits in stress- and addiction-related illnesses in humans. Here, we exposed mice to the primary stress hormone corticosterone (CORT) during early adolescence (postnatal days 31–42), then tested behavioral flexibility in adulthood using an instrumental reversal learning task. CORT-exposed female, but not male, mice developed perseverative errors. Despite resilience to subchronic CORT exposure, males developed reversal performance impairments following exposure to physical stressors. Administration of a putative tyrosine kinase receptor B (trkB) agonist, 7,8-dihydroxyflavone (7,8-DHF), during adolescence blocked CORT-induced errors in females and improved performance in males. Conversely, blockade of trkB by ANA-12 impaired performance. These data suggest that trkB-based interventions could have certain protective benefits in the context of early-life stressor exposure. We consider the implications of our findings in an extended “Discussion” section.
Collapse
Affiliation(s)
- Elizabeth T Barfield
- Department of Pediatrics, Emory University, Atlanta, GA, United States.,Graduate Program in Neuroscience, Emory University, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Shannon L Gourley
- Department of Pediatrics, Emory University, Atlanta, GA, United States.,Graduate Program in Neuroscience, Emory University, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| |
Collapse
|
43
|
Swanson AM, DePoy LM, Gourley SL. Inhibiting Rho kinase promotes goal-directed decision making and blocks habitual responding for cocaine. Nat Commun 2017; 8:1861. [PMID: 29187752 PMCID: PMC5707361 DOI: 10.1038/s41467-017-01915-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 10/25/2017] [Indexed: 01/04/2023] Open
Abstract
The prelimbic prefrontal cortex is necessary for associating actions with their consequences, enabling goal-directed decision making. We find that the strength of action–outcome conditioning correlates with dendritic spine density in prelimbic cortex, suggesting that new action–outcome learning involves dendritic spine plasticity. To test this, we inhibited the cytoskeletal regulatory factor Rho kinase. We find that the inhibitor fasudil enhances action–outcome memory, resulting in goal-directed behavior in mice that would otherwise express stimulus-response habits. Fasudil transiently reduces prelimbic cortical dendritic spine densities during a period of presumed memory consolidation, but only when paired with new learning. Fasudil also blocks habitual responding for cocaine, an effect that persists over time, across multiple contexts, and depends on actin polymerization. We suggest that Rho kinase inhibition promotes goal-oriented action selection by augmenting the plasticity of prelimbic cortical dendritic spines during the formation of new action–outcome memories. Action-outcome learning requires the prelimbic prefrontal cortex. Here the authors report that fasudil, a Rho kinase inhibitor, reduces dendritic spine densities on prelimbic neurons in an activity-dependent manner, stimulating goal-directed actions, and reducing habitual responding for cocaine.
Collapse
Affiliation(s)
- Andrew M Swanson
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, 954 Gatewood Road NE, Atlanta, GA, 30329, USA.,Yerkes National Primate Research Center, Graduate Program in Neuroscience, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA
| | - Lauren M DePoy
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, 954 Gatewood Road NE, Atlanta, GA, 30329, USA.,Yerkes National Primate Research Center, Graduate Program in Neuroscience, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA
| | - Shannon L Gourley
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, 954 Gatewood Road NE, Atlanta, GA, 30329, USA. .,Yerkes National Primate Research Center, Graduate Program in Neuroscience, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA.
| |
Collapse
|
44
|
Gawlak M, Szulczyk B, Berłowski A, Grzelka K, Stachurska A, Pełka J, Czarzasta K, Małecki M, Kurowski P, Nurowska E, Szulczyk P. Age-dependent expression of Nav1.9 channels in medial prefrontal cortex pyramidal neurons in rats. Dev Neurobiol 2017; 77:1371-1384. [PMID: 28913981 DOI: 10.1002/dneu.22537] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 12/19/2022]
Abstract
Developmental changes that occur in the prefrontal cortex during adolescence alter behavior. These behavioral alterations likely stem from changes in prefrontal cortex neuronal activity, which may depend on the properties and expression of ion channels. Nav1.9 sodium channels conduct a Na+ current that is TTX resistant with a low threshold and noninactivating over time. The purpose of this study was to assess the presence of Nav1.9 channels in medial prefrontal cortex (mPFC) layer II and V pyramidal neurons in young (20-day old), late adolescent (60-day old), and adult (6- to 7-month old) rats. First, we demonstrated that layer II and V mPFC pyramidal neurons in slices obtained from young rats exhibited a TTX-resistant, low-threshold, noninactivating, and voltage-dependent Na+ current. The mRNA expression of the SCN11a gene (which encodes the Nav1.9 channel) in mPFC tissue was significantly higher in young rats than in late adolescent and adult rats. Nav1.9 protein was immunofluorescently labeled in mPFC cells in slices and analyzed via confocal microscopy. Nav1.9 immunolabeling was present in layer II and V mPFC pyramidal neurons and was more prominent in the neurons of young rats than in the neurons of late adolescent and adult rats. We conclude that Nav1.9 channels are expressed in layer II and V mPFC pyramidal neurons and that Nav1.9 protein expression in the mPFC pyramidal neurons of late adolescent and adult rats is lower than that in the neurons of young rats. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1371-1384, 2017.
Collapse
Affiliation(s)
- Maciej Gawlak
- Laboratory of Physiology and Pathophysiology, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Warsaw, Poland
| | - Bartłomiej Szulczyk
- Department of Drug Technology and Pharmaceutical Biotechnology, The Medical University of Warsaw, Warsaw, Poland
| | - Adam Berłowski
- Department of Physiology and Pathophysiology, The Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Grzelka
- Laboratory of Physiology and Pathophysiology, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Warsaw, Poland
| | - Anna Stachurska
- Department of Molecular Biology, The Medical University of Warsaw, Warsaw, Poland
| | - Justyna Pełka
- Department of Physiology and Pathophysiology, The Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Czarzasta
- Laboratory of Experimental and Clinical Physiology, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Małecki
- Department of Molecular Biology, The Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Kurowski
- Laboratory of Physiology and Pathophysiology, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Warsaw, Poland
| | - Ewa Nurowska
- Laboratory of Physiology and Pathophysiology, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Warsaw, Poland
| | - Paweł Szulczyk
- Laboratory of Physiology and Pathophysiology, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
45
|
Social instability stress in adolescent male rats reduces social interaction and social recognition performance and increases oxytocin receptor binding. Neuroscience 2017; 359:172-182. [DOI: 10.1016/j.neuroscience.2017.07.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 11/21/2022]
|
46
|
Disruption of Coordinated Presynaptic and Postsynaptic Maturation Underlies the Defects in Hippocampal Synapse Stability and Plasticity in Abl2/Arg-Deficient Mice. J Neurosci 2017; 36:6778-91. [PMID: 27335408 DOI: 10.1523/jneurosci.4092-15.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/13/2016] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Immature glutamatergic synapses in cultured neurons contain high-release probability (Pr) presynaptic sites coupled to postsynaptic sites bearing GluN2B-containing NMDA receptors (NMDARs), which mature into low-Pr, GluN2B-deficient synapses. Whether this coordinated maturation of high-Pr, GluN2B(+) synapses to low-Pr, GluN2B-deficient synapses actually occurs in vivo, and if so, what factors regulate it and what role it might play in long-term synapse function and plasticity are unknown. We report that loss of the integrin-regulated Abl2/Arg kinase in vivo yields a subpopulation of "immature" high-Pr, GluN2B(+) hippocampal synapses that are maintained throughout late postnatal development and early adulthood. These high-Pr, GluN2B(+) synapses are evident in arg(-/-) animals as early as postnatal day 21 (P21), a time that precedes any observable defects in synapse or dendritic spine number or structure in arg(-/-) mice. Using focal glutamate uncaging at individual synapses, we find only a subpopulation of arg(-/-) spines exhibits increased GluN2B-mediated responses at P21. As arg(-/-) mice age, these synapses increase in proportion, and their associated spines enlarge. These changes coincide with an overall loss of spines and synapses in the Arg-deficient mice. We also demonstrate that, although LTP and LTD are normal in P21 arg(-/-) slices, both forms of plasticity are significantly altered by P42. These data demonstrate that the integrin-regulated Arg kinase coordinates the maturation of presynaptic and postsynaptic compartments in a subset of hippocampal synapses in vivo, and this coordination is critical for NMDAR-dependent long-term synaptic stability and plasticity. SIGNIFICANCE STATEMENT Synapses mature in vitro from high-release probability (Pr) GluN2B(+) to low-Pr, GluN2B(-), but it is unknown why this happens or whether it occurs in vivo High-Pr, GluN2B(+) synapses persist into early adulthood in Arg-deficient mice in vivo and have elevated NMDA receptor currents and increased structural plasticity. The persistence of these high-Pr, GluN2B(+) synapses is associated with a net synapse loss and significant disruption of normal synaptic plasticity by early adulthood. Together, these observations suggest that the maturation of high-Pr, GluN2B(+) synapses to predominantly low-Pr, GluN2B(-) synapses may be essential to preserving a larger dynamic range for plasticity while ensuring that connectivity is distributed among a greater number of synapses for optimal circuit function.
Collapse
|
47
|
Jury NJ, Pollack GA, Ward MJ, Bezek JL, Ng AJ, Pinard CR, Bergstrom HC, Holmes A. Chronic Ethanol During Adolescence Impacts Corticolimbic Dendritic Spines and Behavior. Alcohol Clin Exp Res 2017; 41:1298-1308. [PMID: 28614590 PMCID: PMC5509059 DOI: 10.1111/acer.13422] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/13/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Risk for alcohol use disorders (AUDs) in adulthood is linked to alcohol drinking during adolescence, but understanding of the neural and behavioral consequences of alcohol exposure during adolescence remains incomplete. Here, we examined the neurobehavioral impact of adolescent chronic intermittent EtOH (CIE) vapor exposure in mice. METHODS C57BL/6J-background Thy1-EGFP mice were CIE-exposed during adolescence or adulthood and examined, as adults, for alterations in the density and morphology of dendritic spines in infralimbic (IL) cortex, prelimbic (PL) cortex, and basolateral amygdala (BLA). In parallel, adolescent- and adult-exposed C57BL/6J mice were tested as adults for 2-bottle EtOH drinking, sensitivity to EtOH intoxication (loss of righting reflex [LORR]), blood EtOH clearance, and measures of operant responding for food reward. RESULTS CIE during adolescence decreased IL neuronal spine density and increased the head width of relatively wide-head IL and BLA spines, whereas CIE decreased head width of relatively narrow-head BLA spines. Adolescents had higher EtOH consumption prior to CIE than adults, while CIE during adulthood, but not adolescence, increased EtOH consumption relative to pre-CIE baseline. CIE produced a tolerance-like decrease in LORR sensitivity to EtOH challenge, irrespective of the age at which mice received CIE exposure. Mice exposed to CIE during adolescence, but not adulthood, required more sessions than AIR controls to reliably respond for food reward on a fixed-ratio (FR) 1, but not subsequent FR3, reinforcement schedule. On a progressive ratio reinforcement schedule, break point responding was higher in the adolescent- than the adult-exposed mice, regardless of CIE. Finally, footshock punishment markedly suppressed responding for reward in all groups. CONCLUSIONS Exposure to CIE during adolescence altered dendritic spine density and morphology in IL and BLA neurons, in parallel with a limited set of behavioral alterations. Together, these data add to growing evidence that key corticolimbic circuits are vulnerable to the effects of alcohol during adolescence, with lasting, potentially detrimental, consequences for behavior.
Collapse
Affiliation(s)
- Nicholas J Jury
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Gabrielle A Pollack
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York
| | - Meredith J Ward
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York
| | - Jessica L Bezek
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York
| | - Alexandra J Ng
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York
| | - Courtney R Pinard
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Hadley C Bergstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
48
|
Shapiro LP, Parsons RG, Koleske AJ, Gourley SL. Differential expression of cytoskeletal regulatory factors in the adolescent prefrontal cortex: Implications for cortical development. J Neurosci Res 2017; 95:1123-1143. [PMID: 27735056 PMCID: PMC5352542 DOI: 10.1002/jnr.23960] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/04/2016] [Accepted: 09/12/2016] [Indexed: 12/27/2022]
Abstract
The prevalence of depression, anxiety, schizophrenia, and drug and alcohol use disorders peaks during adolescence. Further, up to 50% of "adult" mental health disorders emerge in adolescence. During adolescence, the prefrontal cortex (PFC) undergoes dramatic structural reorganization, in which dendritic spines and synapses are refined, pruned, and stabilized. Understanding the molecular mechanisms that underlie these processes should help to identify factors that influence the development of psychiatric illness. Here we briefly discuss the anatomical connections of the medial and orbital prefrontal cortex (mPFC and OFC, respectively). We then present original findings suggesting that dendritic spines on deep-layer excitatory neurons in the mouse mPFC and OFC prune at different adolescent ages, with later pruning in the OFC. In parallel, we used Western blotting to define levels of several cytoskeletal regulatory proteins during early, mid-, and late adolescence, focusing on tropomyosin-related kinase receptor B (TrkB) and β1-integrin-containing receptors and select signaling partners. We identified regional differences in the levels of several proteins in early and midadolescence that then converged in early adulthood. We also observed age-related differences in TrkB levels, both full-length and truncated isoforms, Rho-kinase 2, and synaptophysin in both PFC subregions. Finally, we identified changes in protein levels in the dorsal and ventral hippocampus that were distinct from those in the PFC. We conclude with a general review of the manner in which TrkB- and β1-integrin-mediated signaling influences neuronal structure in the postnatal brain. Elucidating the role of cytoskeletal regulatory factors throughout adolescence may identify critical mechanisms of PFC development. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lauren P Shapiro
- Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Ryan G Parsons
- Department of Psychology and Neuroscience Institute, Graduate Program in Integrative Neuroscience, Program in Neuroscience, Stony Brook University, Stony Brook, New York
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Department of Neurobiology, Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Shannon L Gourley
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia
| |
Collapse
|
49
|
Trantham-Davidson H, Centanni SW, Garr SC, New NN, Mulholland PJ, Gass JT, Glover EJ, Floresco SB, Crews FT, Krishnan HR, Pandey SC, Chandler LJ. Binge-Like Alcohol Exposure During Adolescence Disrupts Dopaminergic Neurotransmission in the Adult Prelimbic Cortex. Neuropsychopharmacology 2017; 42:1024-1036. [PMID: 27620551 PMCID: PMC5506791 DOI: 10.1038/npp.2016.190] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/05/2016] [Accepted: 09/07/2016] [Indexed: 11/28/2022]
Abstract
Repeated binge-like exposure to alcohol during adolescence has been reported to perturb prefrontal cortical development, yet the mechanisms underlying these effects are unknown. Here we report that adolescent intermittent ethanol exposure induces cellular and dopaminergic abnormalities in the adult prelimbic cortex (PrL-C). Exposing rats to alcohol during early-mid adolescence (PD28-42) increased the density of long/thin dendritic spines of layer 5 pyramidal neurons in the adult PrL-C. Interestingly, although AIE exposure did not alter the expression of glutamatergic proteins in the adult PrL-C, there was a pronounced reduction in dopamine (DA) D1 receptor modulation of both intrinsic firing and evoked NMDA currents in pyramidal cells, whereas D2 receptor function was unaltered. Recordings from fast-spiking interneurons also revealed that AIE reduced intrinsic excitability, glutamatergic signaling, and D1 receptor modulation of these cells. Analysis of PrL-C tissue of AIE-exposed rats further revealed persistent changes in the expression of DA-related proteins, including reductions in the expression of tyrosine hydroxylase and catechol-O-methyltransferase (COMT). AIE exposure was associated with hypermethylation of the COMT promoter at a conserved CpG site in exon II. Taken together, these findings demonstrate that AIE exposure disrupts DA and GABAergic transmission in the adult medial prefrontal cortex (mPFC). As DA and GABA work in concert to shape and synchronize neuronal ensembles in the PFC, these alterations could contribute to deficits in behavioral control and decision-making in adults who abused alcohol during adolescence.
Collapse
Affiliation(s)
| | - Samuel W Centanni
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - S Corrin Garr
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Natasha N New
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Justin T Gass
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Elizabeth J Glover
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Stan B Floresco
- Department of Psychology and Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Harish R Krishnan
- Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Subhash C Pandey
- Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL, USA
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
50
|
DePoy LM, Zimmermann KS, Marvar PJ, Gourley SL. Induction and Blockade of Adolescent Cocaine-Induced Habits. Biol Psychiatry 2017; 81:595-605. [PMID: 27871669 PMCID: PMC5359769 DOI: 10.1016/j.biopsych.2016.09.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 09/14/2016] [Accepted: 09/25/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cocaine use during adolescence increases vulnerability to drug dependence and decreases the likelihood that individuals will seek treatment as adults. Understanding how early-life cocaine exposure influences decision-making processes in adulthood is thus critically important. METHODS Adolescent or adult mice were exposed to subchronic cocaine, then behavioral sensitivity to changes in the predictive relationship between actions and their consequences was tested. Dendritic spines on the principal pyramidal neurons of the orbitofrontal prefrontal cortex (oPFC) were also imaged and enumerated. To determine whether cytoskeletal regulatory systems in the oPFC influenced decision-making strategies, we then inhibited the activity of Abl family and Rho kinases as well as NR2B-containing N-methyl-D-aspartate receptors. We also attempted to block the reinstatement of cocaine seeking in cocaine self-administering mice. RESULTS Adult mice with a history of subchronic cocaine exposure in adolescence engaged habit-based response strategies at the expense of goal-directed decision-making strategies and had fewer dendritic spines in the oPFC. Inhibition of the cytoskeletal regulatory Abl family kinases in the oPFC recapitulated these neurobehavioral deficiencies, whereas Rho kinase inhibition corrected response strategies. Additionally, the NR2B-selective N-methyl-D-aspartate receptor antagonists ifenprodil and CP-101,606 blocked cocaine-induced habits; this was dependent on Abl family signaling in the oPFC. Ifenprodil also mitigated cue-induced reinstatement of cocaine seeking in mice self-administering cocaine. CONCLUSIONS We suggest that adolescent cocaine exposure confers a bias toward habit-based behavior in adulthood via long-term cellular structural modifications in the oPFC. Treatments aimed at mitigating the durable consequences of early-life cocaine use may benefit from targeting cytoskeletal regulatory systems.
Collapse
Affiliation(s)
- Lauren M. DePoy
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine,Yerkes National Primate Research Center, Graduate Program in Neuroscience, Emory University
| | - Kelsey S. Zimmermann
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine,Yerkes National Primate Research Center, Graduate Program in Neuroscience, Emory University
| | - Paul J. Marvar
- Department of Pharmacology and Physiology, Department of Psychiatry and Behavioral Sciences, GW Institute for Neuroscience, The George Washington University
| | - Shannon L. Gourley
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine,Yerkes National Primate Research Center, Graduate Program in Neuroscience, Emory University,Contact: Shannon L. Gourley, PhD, Department of Pediatrics
- Graduate Program in Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta GA 30329, 404-727-2482,
| |
Collapse
|