1
|
Ciampelli C, Galleri G, Galioto M, Mereu P, Pirastru M, Bernardoni R, Albani D, Crosio C, Iaccarino C. LRRK2 in Drosophila Melanogaster Model: Insights into Cellular Dysfunction and Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2025; 26:2093. [PMID: 40076730 PMCID: PMC11900240 DOI: 10.3390/ijms26052093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Parkinson's disease (PD) is a fatal neurodegenerative disease for which there are no still effective treatments able to stop or slow down neurodegeneration. To date, pathological mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified as the major genetic cause of PD, although the molecular mechanism responsible for the loss of dopaminergic neurons is still cryptic. In this review, we explore the contribution of Drosophila models to the elucidation of LRRK2 function in different cellular pathways in either neurons or glial cells. Importantly, recent studies have shown that LRRK2 is highly expressed in immunocompetent cells, including astrocytes and microglia in the brain, compared to neuronal expression. LRRK2 mutations are also strongly associated with the development of inflammatory diseases and the production of inflammatory molecules. Using Drosophila models, this paper shows that a genetic reduction of the inflammatory response protects flies from the neurodegeneration induced by LRRK2 pathological mutant expression.
Collapse
Affiliation(s)
- Cristina Ciampelli
- Department of Biomedical Sciences, University of Sassari, via Francesco Muroni 25, 07100 Sassari, Italy; (C.C.); (P.M.); (M.P.); (C.C.)
| | - Grazia Galleri
- Department of Biomedical Sciences, University of Sassari, via Francesco Muroni 25, 07100 Sassari, Italy; (C.C.); (P.M.); (M.P.); (C.C.)
| | - Manuela Galioto
- Department of Biomedical Sciences, University of Sassari, via Francesco Muroni 25, 07100 Sassari, Italy; (C.C.); (P.M.); (M.P.); (C.C.)
| | - Paolo Mereu
- Department of Biomedical Sciences, University of Sassari, via Francesco Muroni 25, 07100 Sassari, Italy; (C.C.); (P.M.); (M.P.); (C.C.)
| | - Monica Pirastru
- Department of Biomedical Sciences, University of Sassari, via Francesco Muroni 25, 07100 Sassari, Italy; (C.C.); (P.M.); (M.P.); (C.C.)
| | - Roberto Bernardoni
- Department Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Diego Albani
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Claudia Crosio
- Department of Biomedical Sciences, University of Sassari, via Francesco Muroni 25, 07100 Sassari, Italy; (C.C.); (P.M.); (M.P.); (C.C.)
| | - Ciro Iaccarino
- Department of Biomedical Sciences, University of Sassari, via Francesco Muroni 25, 07100 Sassari, Italy; (C.C.); (P.M.); (M.P.); (C.C.)
| |
Collapse
|
2
|
Kumar S, Malviya R, Sundram S. Nutritional neurology: Unraveling cellular mechanisms of natural supplements in brain health. HUMAN NUTRITION & METABOLISM 2024; 35:200232. [DOI: 10.1016/j.hnm.2023.200232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Wang D, Feng Y, Yang M, Sun H, Zhang Q, Wang R, Tong S, Su R, Jin Y, Wang Y, Lu Z, Han L, Sun Y. Variations in the oral microbiome and metabolome of methamphetamine users. mSystems 2024; 9:e0099123. [PMID: 38112416 PMCID: PMC10804968 DOI: 10.1128/msystems.00991-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
Drug addiction can seriously damage human physical and mental health, while detoxification is a long and difficult process. Although studies have reported changes in the oral microbiome of methamphetamine (METH) users, the role that the microbiome plays in the process of drug addiction is still unknown. This study aims to explore the function of the microbiome based on analysis of the variations in the oral microbiome and metabolome of METH users. We performed the 16S rRNA sequencing analysis based on the oral saliva samples collected from 278 METH users and 105 healthy controls (CTL). In addition, the untargeted metabolomic profiling was conducted based on 220 samples. Compared to the CTL group, alpha diversity was reduced in the group of METH users and the relative abundances of Peptostreptococcus and Gemella were significantly increased, while the relative abundances of Campylobacter and Aggregatibacter were significantly decreased. Variations were also detected in oral metabolic pathways, including enhanced tryptophan metabolism, lysine biosynthesis, purine metabolism, and steroid biosynthesis. Conversely, the metabolic pathways of porphyrin metabolism, glutathione metabolism, and pentose phosphate were significantly reduced. It was speculated that four key microbial taxa, i.e., Peptostreptococcus, Gemella, Campylobacter, and Aggregatibacter, could be involved in the toxicity and addiction mechanisms of METH by affecting the above metabolic pathways. It was found that with the increase of drug use years, the content of tryptamine associated with neuropsychiatric disorders was gradually increased. Our study provides novel insights into exploring the toxic damage and addiction mechanisms underlying the METH addiction.IMPORTANCEIt was found that with the increase of drug use years, the content of tryptamine associated with neuropsychiatric disorders gradually increased. The prediction models based on oral microbiome and metabolome could effectively predict the methamphetamine (METH) smoking. Our study provides novel insights into the exploration of the molecular mechanisms regulating the toxic damage and addiction of METH as well as new ideas for early prevention and treatment strategies of METH addiction.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Orthopedic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yu Feng
- Department of Orthopedic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Min Yang
- Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Haihui Sun
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qingchen Zhang
- Department of Orthopedics, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Rongrong Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Shuqing Tong
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Rui Su
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lihui Han
- Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yundong Sun
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Zhang W, Ju Y, Ren Y, Miao Y, Wang Y. Exploring the Efficient Natural Products for the Therapy of Parkinson's Disease via Drosophila Melanogaster (Fruit Fly) Models. Curr Drug Targets 2024; 25:77-93. [PMID: 38213160 DOI: 10.2174/0113894501281402231218071641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 01/13/2024]
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disorder, partly attributed to mutations, environmental toxins, oxidative stress, abnormal protein aggregation, and mitochondrial dysfunction. However, the precise pathogenesis of PD and its treatment strategy still require investigation. Fortunately, natural products have demonstrated potential as therapeutic agents for alleviating PD symptoms due to their neuroprotective properties. To identify promising lead compounds from herbal medicines' natural products for PD management and understand their modes of action, suitable animal models are necessary. Drosophila melanogaster (fruit fly) serves as an essential model for studying genetic and cellular pathways in complex biological processes. Diverse Drosophila PD models have been extensively utilized in PD research, particularly for discovering neuroprotective natural products. This review emphasizes the research progress of natural products in PD using the fruit fly PD model, offering valuable insights into utilizing invertebrate models for developing novel anti-PD drugs.
Collapse
Affiliation(s)
- Wen Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yingjie Ju
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yunuo Ren
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300250, Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
5
|
Huang J, Li J, Ning Y, Ren Y, Shao Y, Zhang H, Zong X, Shi H. Enhancement of PPARα-Inhibited Leucine Metabolism-Stimulated β-Casein Synthesis and Fatty Acid Synthesis in Primary Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16184-16193. [PMID: 37853551 DOI: 10.1021/acs.jafc.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Leucine, a kind of branched-chain amino acid, plays a regulatory role in the milk production of mammalian mammary glands, but its regulatory functions and underlying molecular mechanisms remain unknown. This work showed that a leucine-enriched mixture (LEUem) supplementation increased the levels of milk protein and milk fat synthesis in primary bovine mammary epithelial cells (BMECs). RNA-seq of leucine-treated BMECs indicated alterations in lipid metabolism, translation, ribosomal structure and biogenesis, and inflammatory response signaling pathways. Meanwhile, the supplementation of leucine resulted in mTOR activation and increased the expression of BCKDHA, FASN, ACC, and SCD1. Interestingly, the expression of PPARα was independently correlated with the leucine-supplemented dose. PPARα activated by WY-14643 caused significant suppression of lipogenic genes expression. Furthermore, WY-14643 attenuated leucine-induced β-casein synthesis and enhanced the level of BCKDHA expression. Moreover, promoter analysis revealed a peroxisome-proliferator-response element (PPRE) site in the bovine BCKDHA promoter, and WY-14643 promoted the recruitment of PPARα onto the BCKDHA promoter. Together, the present data indicate that leucine promotes the synthesis of β-casein and fatty acid and that PPARα-involved leucine catabolism is the key target.
Collapse
Affiliation(s)
- Jiangtao Huang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jintao Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yong Ning
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yalun Ren
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuexin Shao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Huawen Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xueyang Zong
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Huaiping Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
6
|
Villalobos-Cantor S, Barrett RM, Condon AF, Arreola-Bustos A, Rodriguez KM, Cohen MS, Martin I. Rapid cell type-specific nascent proteome labeling in Drosophila. eLife 2023; 12:83545. [PMID: 37092974 PMCID: PMC10125018 DOI: 10.7554/elife.83545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 04/09/2023] [Indexed: 04/25/2023] Open
Abstract
Controlled protein synthesis is required to regulate gene expression and is often carried out in a cell type-specific manner. Protein synthesis is commonly measured by labeling the nascent proteome with amino acid analogs or isotope-containing amino acids. These methods have been difficult to implement in vivo as they require lengthy amino acid replacement procedures. O-propargyl-puromycin (OPP) is a puromycin analog that incorporates into nascent polypeptide chains. Through its terminal alkyne, OPP can be conjugated to a fluorophore-azide for directly visualizing nascent protein synthesis, or to a biotin-azide for capture and identification of newly-synthesized proteins. To achieve cell type-specific OPP incorporation, we developed phenylacetyl-OPP (PhAc-OPP), a puromycin analog harboring an enzyme-labile blocking group that can be removed by penicillin G acylase (PGA). Here, we show that cell type-specific PGA expression in Drosophila can be used to achieve OPP labeling of newly-synthesized proteins in targeted cell populations within the brain. Following a brief 2 hr incubation of intact brains with PhAc-OPP, we observe robust imaging and affinity purification of OPP-labeled nascent proteins in PGA-targeted cell populations. We apply this method to show a pronounced age-related decline in neuronal protein synthesis in the fly brain, demonstrating the capability of PhAc-OPP to quantitatively capture in vivo protein synthesis states. This method, which we call POPPi (PGA-dependent OPP incorporation), should be applicable for rapidly visualizing protein synthesis and identifying nascent proteins synthesized under diverse physiological and pathological conditions with cellular specificity in vivo.
Collapse
Affiliation(s)
- Stefanny Villalobos-Cantor
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, United States
| | - Ruth M Barrett
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, United States
| | - Alec F Condon
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, United States
| | - Alicia Arreola-Bustos
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, United States
| | - Kelsie M Rodriguez
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, United States
| | - Michael S Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, United States
| | - Ian Martin
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, United States
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, United States
- Parkinson Center of Oregon, Oregon Health and Science University, Portland, United States
| |
Collapse
|
7
|
Coleman C, Martin I. Unraveling Parkinson's Disease Neurodegeneration: Does Aging Hold the Clues? JOURNAL OF PARKINSON'S DISEASE 2022; 12:2321-2338. [PMID: 36278358 PMCID: PMC9837701 DOI: 10.3233/jpd-223363] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aging is the greatest risk factor for Parkinson's disease (PD), suggesting that mechanisms driving the aging process promote PD neurodegeneration. Several lines of evidence support a role for aging in PD. First, hallmarks of brain aging such as mitochondrial dysfunction and oxidative stress, loss of protein homeostasis, and neuroinflammation are centrally implicated in PD development. Second, mutations that cause monogenic PD are present from conception, yet typically only cause disease following a period of aging. Third, lifespan-extending genetic, dietary, or pharmacological interventions frequently attenuate PD-related neurodegeneration. These observations support a central role for aging in disease development and suggest that new discoveries in the biology of aging could be leveraged to elucidate novel mechanisms of PD pathophysiology. A recent rapid growth in our understanding of conserved molecular pathways that govern model organism lifespan and healthspan has highlighted a key role for metabolism and nutrient sensing pathways. Uncovering how metabolic pathways involving NAD+ consumption, insulin, and mTOR signaling link to the development of PD is underway and implicates metabolism in disease etiology. Here, we assess areas of convergence between nervous system aging and PD, evaluate the link between metabolism, aging, and PD and address the potential of metabolic interventions to slow or halt the onset of PD-related neurodegeneration drawing on evidence from cellular and animal models.
Collapse
Affiliation(s)
- Colin Coleman
- Department of Neurology, Jungers Center for Neurosciences, Oregon Health and Science University, Portland, OR, USA
| | - Ian Martin
- Department of Neurology, Jungers Center for Neurosciences, Oregon Health and Science University, Portland, OR, USA,Correspondence to: Ian Martin, Jungers Center for Neurosciences Research, Department of Neurology - Mail Code L623, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. Tel.: +1 503 494 9140; E-mail:
| |
Collapse
|
8
|
Razali K, Algantri K, Loh SP, Cheng SH, Mohamed W. Integrating nutriepigenomics in Parkinson's disease management: New promising strategy in the omics era. IBRO Neurosci Rep 2022; 13:364-372. [PMID: 36590101 PMCID: PMC9795299 DOI: 10.1016/j.ibneur.2022.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease (PD) is the most prevalent brain motor disorder and is frequently regarded as an idiopathic and sporadic disease due to its unclear etiology. Although the pathological mechanisms of PD have already been investigated at various omics levels, no disease-modifying drugs are currently available. At the moment, treatments can only provide symptomatic relief to control or improve motor symptoms. Parkinson's disease is a multifactorial disease, the development and progression of which are influenced by multiple factors, including the genetic markups and the environment. As an indispensable component of our daily life, nutrition is considered one of the most robust environmental factors affecting our health. Consequently, depending on our dietary habits, nutrition can either induce or reduce our susceptibility to PD. Epigenetic mechanisms regulate gene expression through DNA methylation, histone modifications, and non-coding RNAs (ncRNAs) activity. Accumulating evidence from nutriepigenomics studies has reported altered epigenetic mechanisms in clinical and pre-clinical PD models, and the potential role of nutrition in modifying the changes. In addition, through nutrigenetics and nutrigenomics studies, the diet-gene, and gene-diet interactions concerning PD development and progression have been investigated. Herein, current findings on the roles of nutrition in epigenetic mechanisms underpinning PD development and progression are discussed. Recent advancements in the multi-omics approach in PD nutrition research are also underlined. The ability of nutrients to influence epigenetic mechanisms and the availability of multi-omics applications compel the immediate use of personalized nutrition as adjuvant therapy for PD.
Collapse
Affiliation(s)
- Khairiah Razali
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), 25200 Kuantan, Pahang, Malaysia
| | - Khaled Algantri
- Faculty of Medicine, Anatomy Department, Widad University College, BIM Point, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| | - Su Peng Loh
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Shi-Hui Cheng
- Faculty of Science and Engineering, School of Biosciences, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Wael Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), 25200 Kuantan, Pahang, Malaysia
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Menoufia, Egypt
| |
Collapse
|
9
|
Zheng Y, Yu Z, Zhang W, Sun T. Lactobacillus rhamnosus Probio-M9 Improves the Quality of Life in Stressed Adults by Gut Microbiota. Foods 2021; 10:foods10102384. [PMID: 34681433 PMCID: PMC8535744 DOI: 10.3390/foods10102384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: To evaluate the effect of the probiotic, Lactobacillus rhamnosus Probio-M9 (Probio-M9), on the quality of life in stressed adults. Methods: Twelve postgraduate student volunteers were recruited. Six volunteers received oral Probio-M9 for 21 days, while the remaining six received a placebo instead. Fecal samples were collected from the volunteers before and after the intervention. Metagenomic sequencing, nontargeted metabonomics, and quality-of-life follow-up questionnaires were used to evaluate the impact of Probio-M9 consumption on the gut microbiota and life quality of the volunteers. Results: Probio-M9 improved the psychological and physiological quality-of-life symptoms significantly in stressed adults (p < 0.05). The probiotic intervention was beneficial in increasing and maintaining the diversity of gut microbiota. The abundance of Barnesiella and Akkermansia increased in the probiotics group. The feature metabolites of pyridoxamine, dopamine, and 5-hydroxytryptamine (5-HT) were positively correlated with Barnesiella and Akkermansia levels, which might be why the mental state of the volunteers in the probiotic group improved after taking Probio-M9. Conclusions: We identified that oral Probio-M9 can regulate the stability of gut microbiota and affect the related beneficial metabolites, thereby affecting the quality of life (QoL) of stressed adults. Probio-M9 might improve the psychological and physiological quality of life in stressed adults via the gut-brain axis pathway. The causal relationship should be further explored in future studies.
Collapse
Affiliation(s)
- Yan Zheng
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (Z.Y.); (W.Z.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhongjie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (Z.Y.); (W.Z.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (Z.Y.); (W.Z.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tiansong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (Z.Y.); (W.Z.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Correspondence:
| |
Collapse
|
10
|
|
11
|
Pallos J, Jeng S, McWeeney S, Martin I. Dopamine neuron-specific LRRK2 G2019S effects on gene expression revealed by translatome profiling. Neurobiol Dis 2021; 155:105390. [PMID: 33984508 DOI: 10.1016/j.nbd.2021.105390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common genetic cause of late-onset Parkinson's disease. The pathogenic G2019S mutation enhances LRRK2 kinase activity and induces neurodegeneration in C. elegans, Drosophila and rodent models through unclear mechanisms. Gene expression profiling has the potential to provide detailed insight into the biological pathways modulated by LRRK2 kinase activity. Prior in vivo studies have surveyed the effects of LRRK2 G2019S on genome-wide mRNA expression in complex brain tissues with high cellular heterogeneity, limiting their power to detect more restricted gene expression changes occurring in a cell type-specific manner. Here, we used translating ribosome affinity purification (TRAP) coupled to RNA-seq to profile dopamine neuron-specific gene expression changes caused by LRRK2 G2019S in the Drosophila CNS. A number of genes were differentially expressed in the presence of mutant LRRK2 that represent a broad range of molecular functions including DNA repair (RfC3), mRNA metabolism and translation (Ddx1 and lin-28), calcium homeostasis (MCU), and other categories (Ugt37c1, disp, l(1)G0196, CG6602, CG1126 and CG11068). Further analysis on a subset of these genes revealed that LRRK2 G2019S did not alter their expression across the whole brain, consistent with dopamine neuron-specific effects uncovered by the TRAP approach that may yield insight into the neurodegenerative process. To our knowledge, this is the first study to profile the effects of LRRK2 G2019S specifically on DA neuron gene expression in vivo. Beyond providing a set of differentially expressed gene candidates relevant to LRRK2, we demonstrate the effective use of TRAP to perform high-resolution assessment of dopamine neuron gene expression for the study of PD.
Collapse
Affiliation(s)
- Judit Pallos
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Sophia Jeng
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Shannon McWeeney
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, OR 97239, USA; Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ian Martin
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
12
|
Mao XY, Yin XX, Guan QW, Xia QX, Yang N, Zhou HH, Liu ZQ, Jin WL. Dietary nutrition for neurological disease therapy: Current status and future directions. Pharmacol Ther 2021; 226:107861. [PMID: 33901506 DOI: 10.1016/j.pharmthera.2021.107861] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Adequate food intake and relative abundance of dietary nutrients have undisputed effects on the brain function. There is now substantial evidence that dietary nutrition aids in the prevention and remediation of neurologic symptoms in diverse pathological conditions. The newly described influences of dietary factors on the alterations of mitochondrial dysfunction, epigenetic modification and neuroinflammation are important mechanisms that are responsible for the action of nutrients on the brain health. In this review, we discuss the state of evidence supporting that distinct dietary interventions including dietary supplement and dietary restriction have the ability to tackle neurological disorders using Alzheimer's disease, Parkinson's disease, stroke, epilepsy, traumatic brain injury, amyotrophic lateral sclerosis, Huntington's disease and multiple sclerosis as examples. Additionally, it is also highlighting that diverse potential mechanisms such as metabolic control, epigenetic modification, neuroinflammation and gut-brain axis are of utmost importance for nutrient supply to the risk of neurologic condition and therapeutic response. Finally, we also highlight the novel concept that dietary nutrient intervention reshapes metabolism-epigenetics-immunity cycle to remediate brain dysfunction. Targeting metabolism-epigenetics-immunity network will delineate a new blueprint for combating neurological weaknesses.
Collapse
Affiliation(s)
- Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| | - Xi-Xi Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Qi-Wen Guan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Qin-Xuan Xia
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Nan Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
13
|
Song Z, Zhou Y, Han X, Qin J, Tang X. Recent advances in enzymeless-based electrochemical sensors to diagnose neurodegenerative diseases. J Mater Chem B 2021; 9:1175-1188. [PMID: 33458727 DOI: 10.1039/d0tb02745f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of sensitive electrochemical sensors to detect biomarkers is an effective method for the early diagnosis of several neurodegenerative diseases (NDs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, etc. However, the commercialization of enzyme/aptamer-based sensors is still hampered owing to the historic drawbacks of biorecognition elements including high cost, poor stability, and complex integration technology. Non-enzymatic electrochemical sensors are more attractive compared to their traditional counterparts and can be widely harnessed owing to their low cost, high stability, sensitivity, and ease of miniaturization. This review summarizes recent research progress focusing on the construction of non-enzymatic electrochemical sensors and analyzes their present use in the early diagnosis of NDs. Additionally, this review addresses the limitations and challenges of the use of current non-enzymatic electrochemical sensor technologies for the diagnosis of NDs and highlights the possible directions for future research.
Collapse
Affiliation(s)
- Zeyu Song
- Institute of Engineering Medicine, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Ying Zhou
- Institute of Engineering Medicine, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiao Han
- Institute of Engineering Medicine, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Jieling Qin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xiaoying Tang
- Institute of Engineering Medicine, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
14
|
Chittoor-Vinod VG, Nichols RJ, Schüle B. Genetic and Environmental Factors Influence the Pleomorphy of LRRK2 Parkinsonism. Int J Mol Sci 2021; 22:1045. [PMID: 33494262 PMCID: PMC7864502 DOI: 10.3390/ijms22031045] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/25/2022] Open
Abstract
Missense mutations in the LRRK2 gene were first identified as a pathogenic cause of Parkinson's disease (PD) in 2004. Soon thereafter, a founder mutation in LRRK2, p.G2019S (rs34637584), was described, and it is now estimated that there are approximately 100,000 people worldwide carrying this risk variant. While the clinical presentation of LRRK2 parkinsonism has been largely indistinguishable from sporadic PD, disease penetrance and age at onset can be quite variable. In addition, its neuropathological features span a wide range from nigrostriatal loss with Lewy body pathology, lack thereof, or atypical neuropathology, including a large proportion of cases with concomitant Alzheimer's pathology, hailing LRRK2 parkinsonism as the "Rosetta stone" of parkinsonian disorders, which provides clues to an understanding of the different neuropathological trajectories. These differences may result from interactions between the LRRK2 mutant protein and other proteins or environmental factors that modify LRRK2 function and, thereby, influence pathobiology. This review explores how potential genetic and biochemical modifiers of LRRK2 function may contribute to the onset and clinical presentation of LRRK2 parkinsonism. We review which genetic modifiers of LRRK2 influence clinical symptoms, age at onset, and penetrance, what LRRK2 mutations are associated with pleomorphic LRRK2 neuropathology, and which environmental modifiers can augment LRRK2 mutant pathophysiology. Understanding how LRRK2 function is influenced and modulated by other interactors and environmental factors-either increasing toxicity or providing resilience-will inform targeted therapeutic development in the years to come. This will allow the development of disease-modifying therapies for PD- and LRRK2-related neurodegeneration.
Collapse
Affiliation(s)
| | - R. Jeremy Nichols
- Department Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Birgitt Schüle
- Department Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| |
Collapse
|