1
|
Liu W, Gao T, Li N, Shao S, Liu B. Vesicle fusion and release in neurons under dynamic mechanical equilibrium. iScience 2024; 27:109793. [PMID: 38736547 PMCID: PMC11088343 DOI: 10.1016/j.isci.2024.109793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Vesicular fusion plays a pivotal role in cellular processes, involving stages like vesicle trafficking, fusion pore formation, content release, and membrane integration or separation. This dynamic process is regulated by a complex interplay of protein assemblies, osmotic forces, and membrane tension, which together maintain a mechanical equilibrium within the cell. Changes in cellular mechanics or external pressures prompt adjustments in this equilibrium, highlighting the system's adaptability. This review delves into the synergy between intracellular proteins, structural components, and external forces in facilitating vesicular fusion and release. It also explores how cells respond to mechanical stress, maintaining equilibrium and offering insights into vesicle fusion mechanisms and the development of neurological disorders.
Collapse
Affiliation(s)
- Wenhao Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
| | - Tianyu Gao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
| | - Na Li
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Shuai Shao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Wei S, Wu F, Liu J, Ji W, He X, Liu R, Yu P, Mao L. Direct Quantification of Nanoplastics Neurotoxicity by Single-Vesicle Electrochemistry. Angew Chem Int Ed Engl 2023; 62:e202315681. [PMID: 37950108 DOI: 10.1002/anie.202315681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Nanoplastics are recently recognized as neurotoxic factors for the nervous systems. However, whether and how they affect vesicle chemistry (i.e., vesicular catecholamine content and exocytosis) remains unclear. This study offers the first direct evidence for the nanoplastics-induced neurotoxicity by single-vesicle electrochemistry. We observe the cellular uptake of polystyrene (PS) nanoplastics into model neuronal cells and mouse primary neurons, leading to cell viability loss depending on nanoplastics exposure time and concentration. By using single-vesicle electrochemistry, we find the reductions in the vesicular catecholamine content, the frequency of stimulated exocytotic spikes, the neurotransmitter release amount of single exocytotic event, and the membrane-vesicle fusion pore opening-closing speed. Mechanistic investigations suggest that PS nanoplastics can cause disruption of filamentous actin (F-actin) assemblies at cytomembrane zones and change the kinetic patterns of vesicle exocytosis. Our finding shapes the first quantitative picture of neurotoxicity induced by high-concentration nanoplastics exposure at a single-cell level.
Collapse
Affiliation(s)
- Shiyi Wei
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North 1st St, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Beijing, 101408, China
| | - Fei Wu
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai St, Beijing, 100875, China
| | - Jing Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North 1st St, Beijing, 100190, China
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, No.27, West 3rd Ring North Rd, Beijing, 100089, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai St, Beijing, 100875, China
| | - Xiulan He
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North 1st St, Beijing, 100190, China
| | - Ran Liu
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai St, Beijing, 100875, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North 1st St, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Beijing, 101408, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North 1st St, Beijing, 100190, China
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai St, Beijing, 100875, China
| |
Collapse
|
3
|
Wei L, Wang X, Wu LG. How micron-sized exocrine vesicles release content: A comparison with sub-micron endocrine vesicles. J Cell Biol 2023; 222:e202310047. [PMID: 37861746 PMCID: PMC10588754 DOI: 10.1083/jcb.202310047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Exocytosis releases vesicular contents to mediate physiological functions. In this issue, Biton et al. (https://doi.org/10.1083/jcb.202302112) found four modes of releasing micron-sized exocrine vesicles and the underlying mechanisms involving actomyosin and BAR domain proteins. We highlight their discovery, compare it with much smaller/faster neuroendocrine vesicle fusion, and draw distinct and conserved principles regarding their membrane transformations, pore dynamics, and underlying mechanisms.
Collapse
Affiliation(s)
- Lisi Wei
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Xin Wang
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
4
|
Kodja KG, Onzivua S, Kitara DL, Fong A, Kim P, Pollanen MS. Nodding syndrome is unlikely to be an autoimmune reaction to leiomodin-1 after infection by Onchocerca volvulus. Biochem Biophys Rep 2023; 35:101498. [PMID: 37601452 PMCID: PMC10439352 DOI: 10.1016/j.bbrep.2023.101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 08/22/2023] Open
Abstract
Nodding syndrome is a neurological disease of children in northern Uganda. Infection with the nematode parasite Onchocerca volvulus has been epidemiologically implicated as the cause of the disease. It has been proposed that an autoantibody directed against the human protein leiomodin-1 cross reacts with a tropomyosin-like nematode protein, thus suggesting that nodding syndrome is an autoimmune brain disease due to extra-cerebral parasitism. This hypothesis is dependent on constitutive neuronal expression of leiomodin-1. We tested this hypothesis by studying the distribution of leiomodin-1 in the normal human brain and other human tissues using immunohistochemistry. We found that immunostaining for leiomodin-1 follows a smooth muscle cell specific pattern. In the brain, it is confined to the smooth muscle cells of cerebral blood vessels and is not generally present in neurons or glia. However, immunoreactivity was identified in human Purkinje cell membrane and the body wall of C. elegans (as a proxy for Onchocerca volvulus) but only when immunostained with an antibody recognizing the N-terminal of leiomodin-1. Homology between leiomodin-1 and tropomodulin, specifically at the N-terminus, could explain why leiomodin-1 antibody cross reactivity between human Purkinje cells and C. elegans. However, we cannot provide proof confirming that the immunoreactivity in the membranes of Purkinje cells is specifically caused by the expression of tropomodulin. To overcome this limitation, further investigations using additional immunohistochemical and biochemical studies are required to corroborate our findings and provide more comprehensive evidence. Nevertheless, our findings do not support to the autoimmunity hypothesis involving Onchocerca volvulus and leiomodin-1. To gain a more comprehensive understanding of the cause and pathogenesis of NS, it is essential to explore alternative hypotheses.
Collapse
Affiliation(s)
- Kenneth G. Kodja
- Department of Pathobiology and Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada
- Ontario Forensic Pathology Service, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Sylvester Onzivua
- Department of Pathology, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Amanda Fong
- Ontario Forensic Pathology Service, Toronto, Ontario, Canada
| | - Patrick Kim
- Ontario Forensic Pathology Service, Toronto, Ontario, Canada
| | - Michael S. Pollanen
- Department of Pathobiology and Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada
- Ontario Forensic Pathology Service, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
High-speed imaging reveals the bimodal nature of dense core vesicle exocytosis. Proc Natl Acad Sci U S A 2023; 120:e2214897120. [PMID: 36574702 PMCID: PMC9910497 DOI: 10.1073/pnas.2214897120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During exocytosis, the fusion of secretory vesicle with plasma membrane forms a pore that regulates release of neurotransmitter and peptide. Heterogeneity of fusion pore behavior has been attributed to stochastic variation in a common exocytic mechanism, implying a lack of biological control. Using a fluorescent false neurotransmitter (FFN), we imaged dense core vesicle (DCV) exocytosis in primary mouse adrenal chromaffin cells by total internal reflection fluorescence microscopy at millisecond resolution and observed strikingly divergent modes of release, with fast events lasting <30 ms and slow events persisting for seconds. Dual imaging of slow events shows a delay in the entry of external dye relative to FFN release, suggesting exclusion by an extremely narrow pore <1 nm in diameter. Unbiased comprehensive analysis shows that the observed variation cannot be explained by stochasticity alone, but rather involves distinct mechanisms, revealing the bimodal nature of DCV exocytosis. Further, loss of calcium sensor synaptotagmin 7 increases the proportion of slow events without changing the intrinsic properties of either class, indicating the potential for independent regulation. The identification of two distinct mechanisms for release capable of independent regulation suggests a biological basis for the diversity of fusion pore behavior.
Collapse
|
6
|
Bademosi AT, Meunier FA. Unveiling the Nanoscale Dynamics of the Exocytic Machinery in Chromaffin Cells with Single-Molecule Imaging. Methods Mol Biol 2023; 2565:311-327. [PMID: 36205903 DOI: 10.1007/978-1-0716-2671-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Neuronal and hormonal communication relies on the exocytic fusion of vesicles containing neurotransmitters and hormones with the plasma membrane. This process is tightly regulated by key protein-protein and protein-lipid interactions and culminates in the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex formation and zippering that promotes vesicular fusion. Located on both sides of the vesicle and the plasma membrane, the zippering of the SNARE complex acts to overcome the energy barrier afforded by the repulsive electrostatic force stemming from apposing two negatively charged phospholipid membranes. Another component opposing the timely organization of the fusion machinery is thermal Brownian energy that tends to homogenize all cellular molecules by constantly switching their motions and directions through short-lived molecular interactions. Much less is known of the mechanisms counteracting these chaotic forces, allowing seamless cellular functions such as exocytic fusion. Super-resolution microscopy techniques such as single-molecule imaging have proven useful to start uncovering these nanoscale mechanisms. Here, we used single-particle tracking photoactivatable localization microscopy (sptPALM) to track syntaxin-1-mEos, a SNARE protein located on the plasma membrane of cultured bovine chromaffin cells. We demonstrate that syntaxin-1-mEos undergoes dramatic change in its mobility in response to secretagogue stimulation leading to increased nanoclustering. These nanoclusters are transient in nature and likely to provide docked vesicles with a molecular environment conducive to exocytic fusion.
Collapse
Affiliation(s)
- Adekunle T Bademosi
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia.
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia.
| |
Collapse
|
7
|
Illuminating membrane structural dynamics of fusion and endocytosis with advanced light imaging techniques. Biochem Soc Trans 2022; 50:1157-1167. [PMID: 35960003 PMCID: PMC9444071 DOI: 10.1042/bst20210263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Visualization of cellular dynamics using fluorescent light microscopy has become a reliable and indispensable source of experimental evidence for biological studies. Over the past two decades, the development of super-resolution microscopy platforms coupled with innovations in protein and molecule labeling led to significant biological findings that were previously unobservable due to the barrier of the diffraction limit. As a result, the ability to image the dynamics of cellular processes is vastly enhanced. These imaging tools are extremely useful in cellular physiology for the study of vesicle fusion and endocytosis. In this review, we will explore the power of stimulated emission depletion (STED) and confocal microscopy in combination with various labeling techniques in real-time observation of the membrane transformation of fusion and endocytosis, as well as their underlying mechanisms. We will review how STED and confocal imaging are used to reveal fusion and endocytic membrane transformation processes in live cells, including hemi-fusion; hemi-fission; hemi-to-full fusion; fusion pore opening, expansion, constriction and closure; shrinking or enlargement of the Ω-shape membrane structure after vesicle fusion; sequential compound fusion; and the sequential endocytic membrane transformation from flat- to O-shape via the intermediate Λ- and Ω-shape transition. We will also discuss how the recent development of imaging techniques would impact future studies in the field.
Collapse
|
8
|
Ge L, Shin W, Arpino G, Wei L, Chan CY, Bleck CKE, Zhao W, Wu LG. Sequential compound fusion and kiss-and-run mediate exo- and endocytosis in excitable cells. SCIENCE ADVANCES 2022; 8:eabm6049. [PMID: 35714180 PMCID: PMC9205584 DOI: 10.1126/sciadv.abm6049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Vesicle fusion at preestablished plasma membrane release sites releases transmitters and hormones to mediate fundamental functions like neuronal network activities and fight-or-flight responses. This half-a-century-old concept-fusion at well-established release sites in excitable cells-needs to be modified to include the sequential compound fusion reported here-vesicle fusion at previously fused Ω-shaped vesicular membrane. With superresolution STED microscopy in excitable neuroendocrine chromaffin cells, we real-time visualized sequential compound fusion pore openings and content releases in generating multivesicular and asynchronous release from single release sites, which enhances exocytosis strength and dynamic ranges in excitable cells. We also visualized subsequent compound fusion pore closure, a new mode of endocytosis termed compound kiss-and-run that enhances vesicle recycling capacity. These results suggest modifying current exo-endocytosis concepts by including rapid release-site assembly at fused vesicle membrane, where sequential compound fusion and kiss-and-run take place to enhance exo-endocytosis capacity and dynamic ranges.
Collapse
Affiliation(s)
- Lihao Ge
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Wonchul Shin
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Gianvito Arpino
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Lisi Wei
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Chung Yu Chan
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | | | - Weidong Zhao
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Wang M, Liu Y, Du J, Zhou J, Cao L, Li X. Cisplatin Inhibits Neurotransmitter Release during Exocytosis from Single Chromaffin Cells Monitored with Single Cell Amperometry. ELECTROANAL 2022. [DOI: 10.1002/elan.202100398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mengying Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Yuying Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Jinchang Du
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Junlan Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Lijiao Cao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Xianchan Li
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| |
Collapse
|
10
|
Wu LG, Chan CY. Multiple Roles of Actin in Exo- and Endocytosis. Front Synaptic Neurosci 2022; 14:841704. [PMID: 35308832 PMCID: PMC8931529 DOI: 10.3389/fnsyn.2022.841704] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/11/2022] [Indexed: 11/20/2022] Open
Abstract
Cytoskeletal filamentous actin (F-actin) has long been considered a molecule that may regulate exo- and endocytosis. However, its exact roles remained elusive. Recent studies shed new light on many crucial roles of F-actin in regulating exo- and endocytosis. Here, this progress is reviewed from studies of secretory cells, particularly neurons and endocrine cells. These studies reveal that F-actin is involved in mediating all kinetically distinguishable forms of endocytosis, including ultrafast, fast, slow, bulk, and overshoot endocytosis, likely via membrane pit formation. F-actin promotes vesicle replenishment to the readily releasable pool most likely via active zone clearance, which may sustain synaptic transmission and overcome short-term depression of synaptic transmission during repetitive firing. By enhancing plasma membrane tension, F-actin promotes fusion pore expansion, vesicular content release, and a fusion mode called shrink fusion involving fusing vesicle shrinking. Not only F-actin, but also the F-actin assembly pathway, including ATP hydrolysis, N-WASH, and formin, are involved in mediating these roles of exo- and endocytosis. Neurological disorders, including spinocerebellar ataxia 13 caused by Kv3.3 channel mutation, may involve impairment of F-actin and its assembly pathway, leading in turn to impairment of exo- and endocytosis at synapses that may contribute to neurological disorders.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | | |
Collapse
|
11
|
Schechter M, Sharon R. An Emerging Role for Phosphoinositides in the Pathophysiology of Parkinson’s Disease. JOURNAL OF PARKINSON'S DISEASE 2021; 11:1725-1750. [PMID: 34151859 PMCID: PMC8609718 DOI: 10.3233/jpd-212684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Recent data support an involvement of defects in homeostasis of phosphoinositides (PIPs) in the pathophysiology of Parkinson’s disease (PD). Genetic mutations have been identified in genes encoding for PIP-regulating and PIP-interacting proteins, that are associated with familial and sporadic PD. Many of these proteins are implicated in vesicular membrane trafficking, mechanisms that were recently highlighted for their close associations with PD. PIPs are phosphorylated forms of the membrane phospholipid, phosphatidylinositol. Their composition in the vesicle’s membrane of origin, as well as membrane of destination, controls vesicular membrane trafficking. We review the converging evidence that points to the involvement of PIPs in PD. The review describes PD- and PIP-associated proteins implicated in clathrin-mediated endocytosis and autophagy, and highlights the involvement of α-synuclein in these mechanisms.
Collapse
Affiliation(s)
- Meir Schechter
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, Jerusalem, Israel
| | - Ronit Sharon
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, Jerusalem, Israel
| |
Collapse
|
12
|
Fusion pores with low conductance are cation selective. Cell Rep 2021; 36:109580. [PMID: 34433034 PMCID: PMC8500334 DOI: 10.1016/j.celrep.2021.109580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/01/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022] Open
Abstract
Many neurotransmitters are organic ions that carry a net charge, and their release from secretory vesicles is therefore an electrodiffusion process. The selectivity of early exocytotic fusion pores is investigated by combining electrodiffusion theory, measurements of amperometric foot signals from chromaffin cells with anion substitution, and molecular dynamics simulation. The results reveal that very narrow fusion pores are cation selective, but more dilated fusion pores become anion permeable. The transition occurs around a fusion pore conductance of ~300 pS. The cation selectivity of a narrow fusion pore accelerates the release of positively charged transmitters such as dopamine, noradrenaline, adrenaline, serotonin, and acetylcholine, while glutamate release may require a more dilated fusion pore. For transmission, a fusion pore forms when vesicle and target membranes are brought together by SNARE proteins. Delacruz et al. demonstrate that selectivity of the pore accelerates release of positively charged transmitters such as dopamine, noradrenaline, adrenaline, serotonin, and acetylcholine, while glutamate release may require a more dilated fusion pore.
Collapse
|
13
|
Wu Z, Dharan N, McDargh ZA, Thiyagarajan S, O'Shaughnessy B, Karatekin E. The neuronal calcium sensor Synaptotagmin-1 and SNARE proteins cooperate to dilate fusion pores. eLife 2021; 10:68215. [PMID: 34190041 PMCID: PMC8294851 DOI: 10.7554/elife.68215] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
All membrane fusion reactions proceed through an initial fusion pore, including calcium-triggered release of neurotransmitters and hormones. Expansion of this small pore to release cargo is energetically costly and regulated by cells, but the mechanisms are poorly understood. Here, we show that the neuronal/exocytic calcium sensor Synaptotagmin-1 (Syt1) promotes expansion of fusion pores induced by SNARE proteins. Pore dilation relied on calcium-induced insertion of the tandem C2 domain hydrophobic loops of Syt1 into the membrane, previously shown to reorient the C2 domain. Mathematical modelling suggests that C2B reorientation rotates a bound SNARE complex so that it exerts force on the membranes in a mechanical lever action that increases the height of the fusion pore, provoking pore dilation to offset the bending energy penalty. We conclude that Syt1 exerts novel non-local calcium-dependent mechanical forces on fusion pores that dilate pores and assist neurotransmitter and hormone release.
Collapse
Affiliation(s)
- Zhenyong Wu
- Department of Cellular and Molecular Physiology, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States
| | - Nadiv Dharan
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Zachary A McDargh
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Sathish Thiyagarajan
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France
| |
Collapse
|
14
|
Runwal G, Edwards RH. The Membrane Interactions of Synuclein: Physiology and Pathology. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:465-485. [PMID: 33497259 DOI: 10.1146/annurev-pathol-031920-092547] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Specific proteins accumulate in neurodegenerative disease, and human genetics has indicated a causative role for many. In most cases, however, the mechanisms remain poorly understood. Degeneration is thought to involve a gain of abnormal function, although we do not know the normal function of many proteins implicated. The protein α-synuclein accumulates in the Lewy pathology of Parkinson's disease and related disorders, and mutations in α-synuclein cause degeneration, but we have not known its normal function or how it triggers disease. α-Synuclein localizes to presynaptic boutons and interacts with membranes in vitro. Overexpression slows synaptic vesicle exocytosis, and recent data suggest a normal role for the endogenous synucleins in dilation of the exocytic fusion pore. Disrupted membranes also appear surprisingly prominent in Lewy pathology. Synuclein thus interacts with membranes under both physiological and pathological conditions, suggesting that the normal function of synuclein may illuminate its role in degeneration.
Collapse
Affiliation(s)
- Gautam Runwal
- Departments of Neurology and Physiology, Graduate Programs in Cell Biology, Biomedical Sciences and Neuroscience, School of Medicine, University of California, San Francisco, California 94143, USA;
| | - Robert H Edwards
- Departments of Neurology and Physiology, Graduate Programs in Cell Biology, Biomedical Sciences and Neuroscience, School of Medicine, University of California, San Francisco, California 94143, USA;
| |
Collapse
|
15
|
Schechter M, Atias M, Abd Elhadi S, Davidi D, Gitler D, Sharon R. α-Synuclein facilitates endocytosis by elevating the steady-state levels of phosphatidylinositol 4,5-bisphosphate. J Biol Chem 2020; 295:18076-18090. [PMID: 33087443 PMCID: PMC7939461 DOI: 10.1074/jbc.ra120.015319] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
α-Synuclein (α-Syn) is a protein implicated in the pathogenesis of Parkinson's disease (PD). It is an intrinsically disordered protein that binds acidic phospholipids. Growing evidence supports a role for α-Syn in membrane trafficking, including, mechanisms of endocytosis and exocytosis, although the exact role of α-Syn in these mechanisms is currently unclear. Here we investigate the associations of α-Syn with the acidic phosphoinositides (PIPs), phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). Our results show that α-Syn colocalizes with PIP2 and the phosphorylated active form of the clathrin adaptor protein 2 (AP2) at clathrin-coated pits. Using endocytosis of transferrin as an indicator for clathrin-mediated endocytosis (CME), we find that α-Syn involvement in endocytosis is specifically mediated through PI(4,5)P2 levels on the plasma membrane. In accord with their effects on PI(4,5)P2 levels, the PD associated A30P, E46K, and A53T mutations in α-Syn further enhance CME in neuronal and nonneuronal cells. However, lysine to glutamic acid substitutions at the KTKEGV repeat domain of α-Syn, which interfere with phospholipid binding, are ineffective in enhancing CME. We further show that the rate of synaptic vesicle (SV) endocytosis is differentially affected by the α-Syn mutations and associates with their effects on PI(4,5)P2 levels, however, with the exception of the A30P mutation. This study provides evidence for a critical involvement of PIPs in α-Syn-mediated membrane trafficking.
Collapse
Affiliation(s)
- Meir Schechter
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Merav Atias
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Suaad Abd Elhadi
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Dana Davidi
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronit Sharon
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
16
|
Hormones Secretion and Rho GTPases in Neuroendocrine Tumors. Cancers (Basel) 2020; 12:cancers12071859. [PMID: 32664294 PMCID: PMC7408961 DOI: 10.3390/cancers12071859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroendocrine tumors (NETs) belong to a heterogeneous group of neoplasms arising from hormone secreting cells. These tumors are often associated with a dysfunction of their secretory activity. Neuroendocrine secretion occurs through calcium-regulated exocytosis, a process that is tightly controlled by Rho GTPases family members. In this review, we compiled the numerous mutations and modification of expression levels of Rho GTPases or their regulators (Rho guanine nucleotide-exchange factors and Rho GTPase-activating proteins) that have been identified in NETs. We discussed how they might regulate neuroendocrine secretion.
Collapse
|
17
|
Meir S, Merav A, Suaad AE, Dana D, Daniel G, Ronit S. α-Synuclein facilitates endocytosis by elevating the steady-state levels of phosphatidylinositol 4,5-bisphosphate.. [DOI: 10.1101/2020.06.18.158709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstractα-Synuclein (α-Syn) is a protein implicated in the pathogenesis of Parkinson’s disease (PD). It is an intrinsically disordered protein that binds acidic phospholipids. Growing evidence supports a role for α-Syn in membrane trafficking, including, mechanisms of endocytosis and exocytosis, although the exact role of α-Syn in these mechanisms is currently unclear. Here we have investigated the role of α-Syn in membrane trafficking through its association with acidic phosphoinositides (PIPs), such as phosphatidylinositol 4,5-bisphosphate (PI4,5P2) and phosphatidylinositol 3,4-bisphosphate (PI3,4P2). Our results show that α-Syn colocalizes with PIP2 and the phosphorylated active form of the clathrin adaptor AP2 at clathrin-coated pits. Using endocytosis of transferrin, an indicator of clathrin mediated endocytosis (CME), we find that α-Syn involvement in endocytosis is specifically mediated through PI4,5P2 levels. We further show that the rate of synaptic vesicle (SV) endocytosis is differentially affected by α-Syn mutations. In accord with their effects on PI4,5P2 levels at the plasma membrane, the PD associated E46K and A53T mutations further enhance SV endocytosis. However, neither A30P mutation, nor Lysine to Glutamic acid substitutions at the KTKEGV repeat domain of α-Syn, that interfere with phospholipid binding, affect SV endocytosis. This study provides evidence for a critical involvement of PIPs in α-Syn-mediated membrane trafficking.Significance Statementα-Synuclein (α-Syn) protein is known for its causative role in Parkinson’s disease. α-Syn is normally involved in mechanisms of membrane trafficking, including endocytosis, exocytosis and synaptic vesicles cycling. However, a certain degree of controversy regarding the exact role of α-Syn in these mechanisms persists. Here we show that α-Syn acts to increase plasma membrane levels PI4,5P2 and PI3,4P2 to facilitate clathrin mediated and synaptic vesicles endocytosis. Based on the results, we suggest that α-Syn interactions with the acidic phosphoinositides facilitate a shift in their homeostasis to support endocytosis.
Collapse
|
18
|
Miklavc P, Frick M. Actin and Myosin in Non-Neuronal Exocytosis. Cells 2020; 9:cells9061455. [PMID: 32545391 PMCID: PMC7348895 DOI: 10.3390/cells9061455] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular secretion depends on exocytosis of secretory vesicles and discharge of vesicle contents. Actin and myosin are essential for pre-fusion and post-fusion stages of exocytosis. Secretory vesicles depend on actin for transport to and attachment at the cell cortex during the pre-fusion phase. Actin coats on fused vesicles contribute to stabilization of large vesicles, active vesicle contraction and/or retrieval of excess membrane during the post-fusion phase. Myosin molecular motors complement the role of actin. Myosin V is required for vesicle trafficking and attachment to cortical actin. Myosin I and II members engage in local remodeling of cortical actin to allow vesicles to get access to the plasma membrane for membrane fusion. Myosins stabilize open fusion pores and contribute to anchoring and contraction of actin coats to facilitate vesicle content release. Actin and myosin function in secretion is regulated by a plethora of interacting regulatory lipids and proteins. Some of these processes have been first described in non-neuronal cells and reflect adaptations to exocytosis of large secretory vesicles and/or secretion of bulky vesicle cargoes. Here we collate the current knowledge and highlight the role of actomyosin during distinct phases of exocytosis in an attempt to identify unifying molecular mechanisms in non-neuronal secretory cells.
Collapse
Affiliation(s)
- Pika Miklavc
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, UK
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| |
Collapse
|
19
|
Sulzer D, Edwards RH. The physiological role of α-synuclein and its relationship to Parkinson's Disease. J Neurochem 2019; 150:475-486. [PMID: 31269263 PMCID: PMC6707892 DOI: 10.1111/jnc.14810] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/03/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022]
Abstract
The protein α-synuclein has a central role in the pathogenesis of Parkinson's disease (PD). In this review, we discuss recent results concerning its primary function, which appears to be on cell membranes. The pre-synaptic location of synuclein has suggested a role in neurotransmitter release and it apparently associates with synaptic vesicles because of their high curvature. Indeed, synuclein over-expression inhibits synaptic vesicle exocytosis. However, loss of synuclein has not yet been shown to have a major effect on synaptic transmission. Consistent with work showing that synuclein can promote as well as sense membrane curvature, recent analysis of synuclein triple knockout mice now shows that synuclein accelerates dilation of the exocytic fusion pore. This form of regulation affects primarily the release of slowly discharged lumenal cargo such as neural peptides, but presumably also contributes to maintenance of the release site. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- David Sulzer
- Departments of Psychiatry, Neurology and Pharmacology, Columbia University Medical Center, New York State Psychiatric Institute
| | - Robert H Edwards
- Departments of Neurology and Physiology, Graduate Programs in Cell Biology, Biomedical Sciences and Neuroscience, UCSF School of Medicine
| |
Collapse
|
20
|
Jiang ZJ, Delaney TL, Zanin MP, Haberberger RV, Pitson SM, Huang J, Alford S, Cologna SM, Keating DJ, Gong LW. Extracellular and intracellular sphingosine-1-phosphate distinctly regulates exocytosis in chromaffin cells. J Neurochem 2019; 149:729-746. [PMID: 30963576 DOI: 10.1111/jnc.14703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/28/2018] [Accepted: 03/27/2019] [Indexed: 01/18/2023]
Abstract
Sphingosine-1-phosphate (S1P) is an essential bioactive sphingosine lipid involved in many neurological disorders. Sphingosine kinase 1 (SphK1), a key enzyme for S1P production, is concentrated in presynaptic terminals. However, the role of S1P/SphK1 signaling in exocytosis remains elusive. By detecting catecholamine release from single vesicles in chromaffin cells, we show that a dominant negative SphK1 (SphK1DN ) reduces the number of amperometric spikes and increases the duration of foot, which reflects release through a fusion pore, implying critical roles for S1P in regulating the rate of exocytosis and fusion pore expansion. Similar phenotypes were observed in chromaffin cells obtained from SphK1 knockout mice compared to those from wild-type mice. In addition, extracellular S1P treatment increased the number of amperometric spikes, and this increase, in turn, was inhibited by a selective S1P3 receptor blocker, suggesting extracellular S1P may regulate the rate of exocytosis via activation of S1P3. Furthermore, intracellular S1P application induced a decrease in foot duration of amperometric spikes in control cells, indicating intracellular S1P may regulate fusion pore expansion during exocytosis. Taken together, our study represents the first demonstration that S1P regulates exocytosis through distinct mechanisms: extracellular S1P may modulate the rate of exocytosis via activation of S1P receptors while intracellular S1P may directly control fusion pore expansion during exocytosis. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Zhong-Jiao Jiang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Taylor L Delaney
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark P Zanin
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Rainer V Haberberger
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Jian Huang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Damien J Keating
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Liu X, Tong Y, Fang PP. Recent development in amperometric measurements of vesicular exocytosis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Zhu W, Gu C, Dunevall J, Ren L, Zhou X, Ewing AG. Combined Amperometry and Electrochemical Cytometry Reveal Differential Effects of Cocaine and Methylphenidate on Exocytosis and the Fraction of Chemical Release. Angew Chem Int Ed Engl 2019; 58:4238-4242. [PMID: 30688389 PMCID: PMC6519382 DOI: 10.1002/anie.201813717] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/08/2019] [Indexed: 11/18/2022]
Abstract
Amperometry with nanotip electrodes has been applied to show cocaine and methylphenidate not only trigger declines in vesicle content and exocytotic catecholamine release in a model cell line but also differentially change the fraction of transmitter released from each individual vesicle. In addition, cocaine accelerates exocytotic release dynamics while they remain unchanged after methylphenidate treatment. The parameters from pre-spike feet for the two drugs are also in opposition, suggesting this aspect of release is affected differentially. As cocaine and methylphenidate are psychostimulants with similar pharmacologic action but have opposite effects on cognition, these results might provide a missing link between the regulation of exocytosis and vesicles and the effect of this regulation on cognition, learning, and memory. A speculative chemical mechanism of the effect of these drugs on vesicle content and exocytosis is presented.
Collapse
Affiliation(s)
- Wanying Zhu
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
- School of PharmacyNanjing Medical UniversityLongmian Avenue 101Nanjing210029China
| | - Chaoyi Gu
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| | - Johan Dunevall
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyKemivägen 1041296GothenburgSweden
| | - Lin Ren
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyKemivägen 1041296GothenburgSweden
| | - Xuemin Zhou
- School of PharmacyNanjing Medical UniversityLongmian Avenue 101Nanjing210029China
| | - Andrew G. Ewing
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| |
Collapse
|
23
|
Zhu W, Gu C, Dunevall J, Ren L, Zhou X, Ewing AG. Combined Amperometry and Electrochemical Cytometry Reveal Differential Effects of Cocaine and Methylphenidate on Exocytosis and the Fraction of Chemical Release. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813717] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wanying Zhu
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
- School of PharmacyNanjing Medical University Longmian Avenue 101 Nanjing 210029 China
| | - Chaoyi Gu
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| | - Johan Dunevall
- Department of Chemistry and Chemical EngineeringChalmers University of Technology Kemivägen 10 41296 Gothenburg Sweden
| | - Lin Ren
- Department of Chemistry and Chemical EngineeringChalmers University of Technology Kemivägen 10 41296 Gothenburg Sweden
| | - Xuemin Zhou
- School of PharmacyNanjing Medical University Longmian Avenue 101 Nanjing 210029 China
| | - Andrew G. Ewing
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| |
Collapse
|
24
|
Hubrich R, Park Y, Mey I, Jahn R, Steinem C. SNARE-Mediated Fusion of Single Chromaffin Granules with Pore-Spanning Membranes. Biophys J 2018; 116:308-318. [PMID: 30598283 DOI: 10.1016/j.bpj.2018.11.3138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/15/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023] Open
Abstract
Pore-spanning membranes (PSMs) composed of supported membrane parts as well as freestanding membrane parts are shown to be very versatile to investigate SNARE-mediated fusion on the single-particle level. They provide a planar geometry readily accessible by confocal fluorescence microscopy, which enabled us for the first time, to our knowledge, to investigate the fusion of individual natural secretory granules (i.e., chromaffin granules (CGs)) on the single-particle level by two-color fluorescence microscopy in a time-resolved manner. The t-SNARE acceptor complex ΔN49 was reconstituted into PSMs containing 2 mol % 1,2-dipalmitoyl-sn-glycero-3-phosphatidylinositol-4,5-bisphosphate and Atto488-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, and CGs were fluorescently labeled with 2-((1E,3E)-5-((Z)-3,3-dimethyl-1-octadecylindolin-2-ylidene)penta-1,3-dien-1-yl)-3,3-dimethyl-1-octadecyl-3H-indol-1-ium perchlorate. We compared the dynamics of docked and hemifused CGs as well as their fusion efficacy and kinetics with the results obtained for synthetic synaptobrevin 2-doped vesicles fusing with PSMs of the same composition. Whereas the synthetic vesicles were fully immobile on supported PSMs, docked as well as hemifused CGs were mobile on both PSM parts, which suggests that this system resembles more closely the natural situation. The fusion process of CGs proceeded through three-dimensional post-lipid-mixing structures, which were readily resolved on the gold-covered pore rims of the PSMs and which are discussed in the context of intermediate states observed in live cells.
Collapse
Affiliation(s)
- Raphael Hubrich
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Yongsoo Park
- Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany; Department of Molecular Biology and Genetics, Koc University, Sarıyer, Istanbul, Turkey
| | - Ingo Mey
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Reinhard Jahn
- Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; Max-Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.
| |
Collapse
|
25
|
Tse A, Lee AK, Takahashi N, Gong A, Kasai H, Tse FW. Strong stimulation triggers full fusion exocytosis and very slow endocytosis of the small dense core granules in carotid glomus cells. J Neurogenet 2018; 32:267-278. [PMID: 30484390 DOI: 10.1080/01677063.2018.1497629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chemosensory glomus cells of the carotid bodies release transmitters, including ATP and dopamine mainly via the exocytosis of small dense core granules (SDCGs, vesicular diameter of ∼100 nm). Using carbon-fiber amperometry, we showed previously that with a modest uniform elevation in cytosolic Ca2+ concentration ([Ca2+]i of ∼0.5 µM), SDCGs of rat glomus cells predominantly underwent a "kiss-and-run" mode of exocytosis. Here, we examined whether a larger [Ca2+]i rise influenced the mode of exocytosis. Activation of voltage-gated Ca2+ channels by a train of voltage-clamped depolarizations which elevated [Ca2+]i to ∼1.6 μM increased the cell membrane capacitance by ∼2.5%. At 30 s after such a stimulus, only 5% of the added membrane was retrieved. Flash photolysis of caged-Ca2+ (which elevated [Ca2+]i to ∼16 μM) increased cell membrane capacitance by ∼13%, and only ∼30% of the added membrane was retrieved at 30 s after the UV flash. When exocytosis and endocytosis were monitored using the two-photon excitation and extracellular polar tracer (TEP) imaging of FM1-43 fluorescence in conjunction with photolysis of caged Ca2+, almost uniform exocytosis was detected over the cell's entire surface and it was followed by slow endocytosis. Immunocytochemistry showed that the cytoplasmic densities of dynamin I, II and clathrin (key proteins that mediate endocytosis) in glomus cells were less than half of those in adrenal chromaffin cells, suggesting that a lower expression of endocytotic machinery may underlie the slow endocytosis in glomus cells. An analysis of the relative change in the signals from two fluorescent dyes that simultaneously monitored the addition of vesicular volume and plasma membrane surface area, suggested that with an intense stimulus, SDCGs of glomus cells underwent full fusion without any significant "compound" exocytosis. Therefore, during a severe hypoxic challenge, glomus granules undergo full fusion for a more complete release of transmitters.
Collapse
Affiliation(s)
- Amy Tse
- a Department of Pharmacology and Neuroscience and Metal Health Institute , University of Alberta , Edmonton , Canada
| | - Andy K Lee
- a Department of Pharmacology and Neuroscience and Metal Health Institute , University of Alberta , Edmonton , Canada
| | - Noriko Takahashi
- b Department of Physiology , Kitasato University School of Medicine , Sagamihara , Japan
| | - Alex Gong
- a Department of Pharmacology and Neuroscience and Metal Health Institute , University of Alberta , Edmonton , Canada
| | - Haruo Kasai
- c Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine , The University of Tokyo , Bunkyo-ku , Japan.,d International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo , Bunkyo-ku , Japan
| | - Frederick W Tse
- a Department of Pharmacology and Neuroscience and Metal Health Institute , University of Alberta , Edmonton , Canada
| |
Collapse
|
26
|
Actin Remodeling in Regulated Exocytosis: Toward a Mesoscopic View. Trends Cell Biol 2018; 28:685-697. [DOI: 10.1016/j.tcb.2018.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/05/2018] [Accepted: 04/13/2018] [Indexed: 01/10/2023]
|
27
|
Sharma S, Lindau M. The fusion pore, 60 years after the first cartoon. FEBS Lett 2018; 592:3542-3562. [PMID: 29904915 DOI: 10.1002/1873-3468.13160] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 11/10/2022]
Abstract
Neurotransmitter release occurs in the form of quantal events by fusion of secretory vesicles with the plasma membrane, and begins with the formation of a fusion pore that has a conductance similar to that of a large ion channel or gap junction. In this review, we propose mechanisms of fusion pore formation and discuss their implications for fusion pore structure and function. Accumulating evidence indicates a direct role of soluble N-ethylmaleimide-sensitive-factor attachment receptor proteins in the opening of fusion pores. Fusion pores are likely neither protein channels nor purely lipid, but are of proteolipidic composition. Future perspectives to gain better insight into the molecular structure of fusion pores are discussed.
Collapse
Affiliation(s)
- Satyan Sharma
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Manfred Lindau
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
28
|
MacDougall DD, Lin Z, Chon NL, Jackman SL, Lin H, Knight JD, Anantharam A. The high-affinity calcium sensor synaptotagmin-7 serves multiple roles in regulated exocytosis. J Gen Physiol 2018; 150:783-807. [PMID: 29794152 PMCID: PMC5987875 DOI: 10.1085/jgp.201711944] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
MacDougall et al. review the structure and function of the calcium sensor synaptotagmin-7 in exocytosis. Synaptotagmin (Syt) proteins comprise a 17-member family, many of which trigger exocytosis in response to calcium. Historically, most studies have focused on the isoform Syt-1, which serves as the primary calcium sensor in synchronous neurotransmitter release. Recently, Syt-7 has become a topic of broad interest because of its extreme calcium sensitivity and diversity of roles in a wide range of cell types. Here, we review the known and emerging roles of Syt-7 in various contexts and stress the importance of its actions. Unique functions of Syt-7 are discussed in light of recent imaging, electrophysiological, and computational studies. Particular emphasis is placed on Syt-7–dependent regulation of synaptic transmission and neuroendocrine cell secretion. Finally, based on biochemical and structural data, we propose a mechanism to link Syt-7’s role in membrane fusion with its role in subsequent fusion pore expansion via strong calcium-dependent phospholipid binding.
Collapse
Affiliation(s)
| | - Zesen Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Nara L Chon
- Department of Chemistry, University of Colorado, Denver, CO
| | - Skyler L Jackman
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Hai Lin
- Department of Chemistry, University of Colorado, Denver, CO
| | | | - Arun Anantharam
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
29
|
Shin W, Ge L, Arpino G, Villarreal SA, Hamid E, Liu H, Zhao WD, Wen PJ, Chiang HC, Wu LG. Visualization of Membrane Pore in Live Cells Reveals a Dynamic-Pore Theory Governing Fusion and Endocytosis. Cell 2018; 173:934-945.e12. [PMID: 29606354 PMCID: PMC5935532 DOI: 10.1016/j.cell.2018.02.062] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 01/03/2023]
Abstract
Fusion is thought to open a pore to release vesicular cargoes vital for many biological processes, including exocytosis, intracellular trafficking, fertilization, and viral entry. However, fusion pores have not been observed and thus proved in live cells. Its regulatory mechanisms and functions remain poorly understood. With super-resolution STED microscopy, we observed dynamic fusion pore behaviors in live (neuroendocrine) cells, including opening, expansion, constriction, and closure, where pore size may vary between 0 and 490 nm within 26 milliseconds to seconds (vesicle size: 180-720 nm). These pore dynamics crucially determine the efficiency of vesicular cargo release and vesicle retrieval. They are generated by competition between pore expansion and constriction. Pharmacology and mutation experiments suggest that expansion and constriction are mediated by F-actin-dependent membrane tension and calcium/dynamin, respectively. These findings provide the missing live-cell evidence, proving the fusion-pore hypothesis, and establish a live-cell dynamic-pore theory accounting for fusion, fission, and their regulation.
Collapse
Affiliation(s)
- Wonchul Shin
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Lihao Ge
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Gianvito Arpino
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Seth A Villarreal
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Edaeni Hamid
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Huisheng Liu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Wei-Dong Zhao
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Peter J Wen
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Hsueh-Cheng Chiang
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
30
|
How does the stimulus define exocytosis in adrenal chromaffin cells? Pflugers Arch 2017; 470:155-167. [DOI: 10.1007/s00424-017-2052-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022]
|
31
|
Gutiérrez LM, Villanueva J. The role of F-actin in the transport and secretion of chromaffin granules: an historic perspective. Pflugers Arch 2017; 470:181-186. [PMID: 28730385 PMCID: PMC5748413 DOI: 10.1007/s00424-017-2040-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/23/2022]
Abstract
Actin is one of the most ubiquitous protein playing fundamental roles in a variety of cellular processes. Since early in the 1980s, it was evident that filamentous actin (F-actin) formed a peripheral cortical barrier that prevented vesicles to access secretory sites in chromaffin cells in culture. Later, around 2000, it was described that the F-actin structure accomplishes a dual role serving both vesicle transport and retentive purposes and undergoing dynamic transient changes during cell stimulation. The complex role of the F-actin cytoskeleton in neuroendocrine secretion was further evidenced when it has been proved to participate in the scaffold structure holding together the secretory machinery at active sites and participate in the generation of mechanical forces that drive the opening of the fusion pore, during the first decade of the present century. The complex vision of the multiple roles of F-actin in secretion we have acquired to date comes largely from studies performed on traditional 2D cultures of primary cells; however, recent evidences suggest that these may not accurately mimic the 3D in vivo environment, and thus, more work is now needed on adrenomedullary cells kept in a more “native” configuration to fully understand the role of F-actin in regulating chromaffin granule transport and secretion under physiological conditions.
Collapse
Affiliation(s)
- Luis M Gutiérrez
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Alicante, Spain.
| | - José Villanueva
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Alicante, Spain
| |
Collapse
|
32
|
González-Jamett AM, Guerra MJ, Olivares MJ, Haro-Acuña V, Baéz-Matus X, Vásquez-Navarrete J, Momboisse F, Martinez-Quiles N, Cárdenas AM. The F-Actin Binding Protein Cortactin Regulates the Dynamics of the Exocytotic Fusion Pore through its SH3 Domain. Front Cell Neurosci 2017; 11:130. [PMID: 28522963 PMCID: PMC5415606 DOI: 10.3389/fncel.2017.00130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/18/2017] [Indexed: 11/20/2022] Open
Abstract
Upon cell stimulation, the network of cortical actin filaments is rearranged to facilitate the neurosecretory process. This actin rearrangement includes both disruption of the preexisting actin network and de novo actin polymerization. However, the mechanism by which a Ca2+ signal elicits the formation of new actin filaments remains uncertain. Cortactin, an actin-binding protein that promotes actin polymerization in synergy with the nucleation promoting factor N-WASP, could play a key role in this mechanism. We addressed this hypothesis by analyzing de novo actin polymerization and exocytosis in bovine adrenal chromaffin cells expressing different cortactin or N-WASP domains, or cortactin mutants that fail to interact with proline-rich domain (PRD)-containing proteins, including N-WASP, or to be phosphorylated by Ca2+-dependent kinases, such as ERK1/2 and Src. Our results show that the activation of nicotinic receptors in chromaffin cells promotes cortactin translocation to the cell cortex, where it colocalizes with actin filaments. We further found that, in association with PRD-containing proteins, cortactin contributes to the Ca2+-dependent formation of F-actin, and regulates fusion pore dynamics and the number of exocytotic events induced by activation of nicotinic receptors. However, whereas the actions of cortactin on the fusion pore dynamics seems to depend on the availability of monomeric actin and its phosphorylation by ERK1/2 and Src kinases, cortactin regulates the extent of exocytosis by a mechanism independent of actin polymerization. Together our findings point out a role for cortactin as a critical modulator of actin filament formation and exocytosis in neuroendocrine cells.
Collapse
Affiliation(s)
- Arlek M González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - María J Guerra
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - María J Olivares
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Valentina Haro-Acuña
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Ximena Baéz-Matus
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Jacqueline Vásquez-Navarrete
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Fanny Momboisse
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Narcisa Martinez-Quiles
- Departamento de Microbiología (Inmunología), Facultad de Medicina, Universidad Complutense de MadridMadrid, Spain
| | - Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| |
Collapse
|
33
|
Ren L, Pour MD, Majdi S, Li X, Malmberg P, Ewing AG. Zinc Regulates Chemical-Transmitter Storage in Nanometer Vesicles and Exocytosis Dynamics as Measured by Amperometry. Angew Chem Int Ed Engl 2017; 56:4970-4975. [PMID: 28319311 PMCID: PMC5540326 DOI: 10.1002/anie.201700095] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Indexed: 01/12/2023]
Abstract
We applied electrochemical techniques with nano-tip electrodes to show that micromolar concentrations of zinc not only trigger changes in the dynamics of exocytosis, but also vesicle content in a model cell line. The vesicle catecholamine content in PC12 cells is significantly decreased after 100 μm zinc treatment, but, catecholamine release during exocytosis remains nearly the same. This contrasts with the number of molecules stored in the exocytosis vesicles, which decreases, and we find that the amount of catecholamine released from zinc-treated cells reaches nearly 100 % content expelled. Further investigation shows that zinc slows down exocytotic release. Our results provide the missing link between zinc and the regulation of neurotransmitter release processes, which might be important in memory formation and storage.
Collapse
Affiliation(s)
- Lin Ren
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Masoumeh Dowlatshahi Pour
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
- National Center for Imaging Mass Spectrometry, Chalmers University of Technology and Gothenburg University, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Soodabeh Majdi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Xianchan Li
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Per Malmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
- National Center for Imaging Mass Spectrometry, Chalmers University of Technology and Gothenburg University, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
- National Center for Imaging Mass Spectrometry, Chalmers University of Technology and Gothenburg University, Kemivägen 10, 412 96, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96, Gothenburg, Sweden
| |
Collapse
|
34
|
Ren L, Pour MD, Majdi S, Li X, Malmberg P, Ewing AG. Zinc Regulates Chemical-Transmitter Storage in Nanometer Vesicles and Exocytosis Dynamics as Measured by Amperometry. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lin Ren
- Department of Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 412 96 Gothenburg Sweden
| | - Masoumeh Dowlatshahi Pour
- Department of Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 412 96 Gothenburg Sweden
- National Center for Imaging Mass Spectrometry; Chalmers University of Technology and Gothenburg University; Kemivägen 10 412 96 Gothenburg Sweden
| | - Soodabeh Majdi
- Department of Chemistry and Molecular Biology; University of Gothenburg; Kemivägen 10 412 96 Gothenburg Sweden
| | - Xianchan Li
- Department of Chemistry and Molecular Biology; University of Gothenburg; Kemivägen 10 412 96 Gothenburg Sweden
| | - Per Malmberg
- Department of Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 412 96 Gothenburg Sweden
- National Center for Imaging Mass Spectrometry; Chalmers University of Technology and Gothenburg University; Kemivägen 10 412 96 Gothenburg Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 412 96 Gothenburg Sweden
- National Center for Imaging Mass Spectrometry; Chalmers University of Technology and Gothenburg University; Kemivägen 10 412 96 Gothenburg Sweden
- Department of Chemistry and Molecular Biology; University of Gothenburg; Kemivägen 10 412 96 Gothenburg Sweden
| |
Collapse
|
35
|
Meunier FA, Gutiérrez LM. Captivating New Roles of F-Actin Cortex in Exocytosis and Bulk Endocytosis in Neurosecretory Cells. Trends Neurosci 2016; 39:605-613. [DOI: 10.1016/j.tins.2016.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 12/01/2022]
|
36
|
Wen PJ, Grenklo S, Arpino G, Tan X, Liao HS, Heureaux J, Peng SY, Chiang HC, Hamid E, Zhao WD, Shin W, Näreoja T, Evergren E, Jin Y, Karlsson R, Ebert SN, Jin A, Liu AP, Shupliakov O, Wu LG. Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane. Nat Commun 2016; 7:12604. [PMID: 27576662 PMCID: PMC5013665 DOI: 10.1038/ncomms12604] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 07/13/2016] [Indexed: 01/22/2023] Open
Abstract
Vesicle fusion is executed via formation of an Ω-shaped structure (Ω-profile), followed by closure (kiss-and-run) or merging of the Ω-profile into the plasma membrane (full fusion). Although Ω-profile closure limits release but recycles vesicles economically, Ω-profile merging facilitates release but couples to classical endocytosis for recycling. Despite its crucial role in determining exocytosis/endocytosis modes, how Ω-profile merging is mediated is poorly understood in endocrine cells and neurons containing small ∼30–300 nm vesicles. Here, using confocal and super-resolution STED imaging, force measurements, pharmacology and gene knockout, we show that dynamic assembly of filamentous actin, involving ATP hydrolysis, N-WASP and formin, mediates Ω-profile merging by providing sufficient plasma membrane tension to shrink the Ω-profile in neuroendocrine chromaffin cells containing ∼300 nm vesicles. Actin-directed compounds also induce Ω-profile accumulation at lamprey synaptic active zones, suggesting that actin may mediate Ω-profile merging at synapses. These results uncover molecular and biophysical mechanisms underlying Ω-profile merging. As vesicles fuse to the plasma membrane, they form intermediate Ω-shaped structures followed by either closure of the pore or full merging with the plasma membrane. Here Wen et al. show that dynamic actin assembly provides membrane tension to promote Ω merging in neuroendocrine cells and synapses.
Collapse
Affiliation(s)
- Peter J Wen
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, Maryland 20892, USA
| | - Staffan Grenklo
- Center of Excellence in Developmental Biology, Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden.,Department of Cell Biology, WGI, Stockholm University, 106 91 Stockholm, Sweden
| | - Gianvito Arpino
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, Maryland 20892, USA.,Center of Excellence in Developmental Biology, Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Xinyu Tan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Hsien-Shun Liao
- National Institute of Biomedical Imaging and Bioengineering (NIBIB), Bethesda, Maryland 20892, USA
| | - Johanna Heureaux
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shi-Yong Peng
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, Maryland 20892, USA
| | - Hsueh-Cheng Chiang
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, Maryland 20892, USA
| | - Edaeni Hamid
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, Maryland 20892, USA
| | - Wei-Dong Zhao
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, Maryland 20892, USA
| | - Wonchul Shin
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, Maryland 20892, USA
| | - Tuomas Näreoja
- Center of Excellence in Developmental Biology, Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Emma Evergren
- Center of Excellence in Developmental Biology, Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Yinghui Jin
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, Maryland 20892, USA
| | - Roger Karlsson
- Department of Cell Biology, WGI, Stockholm University, 106 91 Stockholm, Sweden
| | - Steven N Ebert
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, Florida 32827, USA
| | - Albert Jin
- National Institute of Biomedical Imaging and Bioengineering (NIBIB), Bethesda, Maryland 20892, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Oleg Shupliakov
- Center of Excellence in Developmental Biology, Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, Maryland 20892, USA
| |
Collapse
|
37
|
Sulzer D, Cragg SJ, Rice ME. Striatal dopamine neurotransmission: regulation of release and uptake. ACTA ACUST UNITED AC 2016; 6:123-148. [PMID: 27141430 DOI: 10.1016/j.baga.2016.02.001] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dopamine (DA) transmission is governed by processes that regulate release from axonal boutons in the forebrain and the somatodendritic compartment in midbrain, and by clearance by the DA transporter, diffusion, and extracellular metabolism. We review how axonal DA release is regulated by neuronal activity and by autoreceptors and heteroreceptors, and address how quantal release events are regulated in size and frequency. In brain regions densely innervated by DA axons, DA clearance is due predominantly to uptake by the DA transporter, whereas in cortex, midbrain, and other regions with relatively sparse DA inputs, the norepinephrine transporter and diffusion are involved. We discuss the role of DA uptake in restricting the sphere of influence of DA and in temporal accumulation of extracellular DA levels upon successive action potentials. The tonic discharge activity of DA neurons may be translated into a tonic extracellular DA level, whereas their bursting activity can generate discrete extracellular DA transients.
Collapse
Affiliation(s)
- David Sulzer
- Depts of Psychiatry, Neurology, & Pharmacology, NY State Psychiatric Institute, Columbia University, New York, NY, USA
| | - Stephanie J Cragg
- Dept Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Margaret E Rice
- Depts of Neurosurgery & Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
38
|
Abstract
Exocytosis is the fundamental process by which cells communicate with each other. The events that lead up to the fusion of a vesicle loaded with chemical messenger with the cell membrane were the subject of a Nobel Prize in 2013. However, the processes occurring after the initial formation of a fusion pore are very much still in debate. The release of chemical messenger has traditionally been thought to occur through full distention of the vesicle membrane, hence assuming exocytosis to be all or none. In contrast to the all or none hypothesis, here we discuss the evidence that during exocytosis the vesicle-membrane pore opens to release only a portion of the transmitter content during exocytosis and then close again. This open and closed exocytosis is distinct from kiss-and-run exocytosis, in that it appears to be the main content released during regular exocytosis. The evidence for this partial release via open and closed exocytosis is presented considering primarily the quantitative evidence obtained with amperometry.
Collapse
|
39
|
Gabel M, Chasserot-Golaz S. Annexin A2, an essential partner of the exocytotic process in chromaffin cells. J Neurochem 2016; 137:890-6. [DOI: 10.1111/jnc.13628] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/09/2016] [Accepted: 03/30/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Marion Gabel
- INCI; UPR3212 CNRS; Université de Strasbourg; Strasbourg France
| | | |
Collapse
|
40
|
ALPK1 phosphorylates myosin IIA modulating TNF-α trafficking in gout flares. Sci Rep 2016; 6:25740. [PMID: 27169898 PMCID: PMC4864424 DOI: 10.1038/srep25740] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 04/21/2016] [Indexed: 01/07/2023] Open
Abstract
Gout is characterized by the monosodium urate monohydrate (MSU)-induced arthritis. Alpha kinase-1 (ALPK1) has shown to be associated with MSU-induced inflammation and gout. Here, we used bioinformatics, proteomics, cell models, and twenty in vitro human assays to clarify some of its role in the inflammatory response to MSU. We found myosin IIA to be a frequent interacting protein partner of ALPK1, binding to its N-terminal and forming a protein complex with calmodulin and F-actin, and that MSU-induced ALPK1 phosphorylated the myosin IIA. A knockdown of endogenous ALPK1 or myosin IIA significantly reduced the MSU-induced secretion of tumour necrosis factor (TNF)-α. Furthermore, all gouty patients expressed higher basal protein levels of ALPK1, myosin IIA, and plasma TNF-α, however those medicated with colchicine has shown reduced myosin IIA and TNF-α but not ALPK1. The findings suggest ALPK1 is a kinase that participates in the regulation of Golgi-derived TNF-α trafficking through myosin IIA phosphorylation in the inflammation of gout. This novel pathway could be blocked at the level of myosin by colchicine in gout treatment.
Collapse
|
41
|
Cárdenas AM, Marengo FD. How the stimulus defines the dynamics of vesicle pool recruitment, fusion mode, and vesicle recycling in neuroendocrine cells. J Neurochem 2016; 137:867-79. [DOI: 10.1111/jnc.13565] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/05/2016] [Accepted: 01/25/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Ana María Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso; Universidad de Valparaíso; Valparaíso Chile
| | - Fernando D. Marengo
- Laboratorio de Fisiología y Biología Molecular; Instituto de Fisiología; Biología Molecular y Neurociencias (CONICET); Departamento de Fisiología y Biología Molecular y Celular; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
42
|
Villanueva J, Gimenez-Molina Y, Viniegra S, Gutiérrez LM. F-actin cytoskeleton and the fate of organelles in chromaffin cells. J Neurochem 2016; 137:860-6. [PMID: 26843469 DOI: 10.1111/jnc.13560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 12/31/2022]
Abstract
In addition to playing a fundamental structural role, the F-actin cytoskeleton in neuroendocrine chromaffin cells has a prominent influence on governing the molecular mechanism and regulating the secretory process. Performing such roles, the F-actin network might be essential to first transport, and later locate the cellular organelles participating in the secretory cycle. Chromaffin granules are transported from the internal cytosolic regions to the cell periphery along microtubular and F-actin structures. Once in the cortical region, they are embedded in the F-actin network where these vesicles experience restrictions in motility. Similarly, mitochondria transport is affected by both microtubule and F-actin inhibitors and suffers increasing motion restrictions when they are located in the cortical region. Therefore, the F-actin cortex is a key factor in defining the existence of two populations of cortical and perinuclear granules and mitochondria which could be distinguished by their different location and mobility. Interestingly, other important organelles for controlling intracellular calcium levels, such as the endoplasmic reticulum network, present clear differences in distribution and much lower mobility than chromaffin vesicles and mitochondria. Nevertheless, both mitochondria and the endoplasmic reticulum appear to distribute in the proximity of secretory sites to fulfill a pivotal role, forming triads with calcium channels ensuring the fine tuning of the secretory response. This review presents the contributions that provide the basis for our current view regarding the influence that F-actin has on the distribution of organelles participating in the release of catecholamines in chromaffin cells, and summarizes this knowledge in simple models. In chromaffin cells, organelles such as granules and mitochondria distribute forming cortical and perinuclear populations whereas others like the ER present homogenous distributions. In the present review we discuss the role of transport systems and the existence of an F-actin cortical structure as the main factors behind the formation of organelle subpopulations in this neuroendocrine cell model. This article is part of a mini review series on Chromaffin cells (ISCCB Meeting, 2015). Cover image for this issue: doi: 10.1111/jnc.13322.
Collapse
Affiliation(s)
- José Villanueva
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant (Alicante), Spain
| | - Yolanda Gimenez-Molina
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant (Alicante), Spain
| | - Salvador Viniegra
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant (Alicante), Spain
| | - Luis M Gutiérrez
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant (Alicante), Spain
| |
Collapse
|
43
|
Gabel M, Delavoie F, Demais V, Royer C, Bailly Y, Vitale N, Bader MF, Chasserot-Golaz S. Annexin A2-dependent actin bundling promotes secretory granule docking to the plasma membrane and exocytosis. J Cell Biol 2015; 210:785-800. [PMID: 26323692 PMCID: PMC4555831 DOI: 10.1083/jcb.201412030] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Annexin A2, a calcium-, actin-, and lipid-binding protein involved in exocytosis, mediates the formation of lipid microdomains required for the structural and spatial organization of fusion sites at the plasma membrane. To understand how annexin A2 promotes this membrane remodeling, the involvement of cortical actin filaments in lipid domain organization was investigated. 3D electron tomography showed that cortical actin bundled by annexin A2 connected docked secretory granules to the plasma membrane and contributed to the formation of GM1-enriched lipid microdomains at the exocytotic sites in chromaffin cells. When an annexin A2 mutant with impaired actin filament-bundling activity was expressed, the formation of plasma membrane lipid microdomains and the number of exocytotic events were decreased and the fusion kinetics were slower, whereas the pharmacological activation of the intrinsic actin-bundling activity of endogenous annexin A2 had the opposite effects. Thus, annexin A2-induced actin bundling is apparently essential for generating active exocytotic sites.
Collapse
Affiliation(s)
- Marion Gabel
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212 Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Franck Delavoie
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099 Centre National de la Recherche Scientifique-Université de Toulouse III Paul Sabatier, F-31000 Toulouse, France
| | - Valérie Demais
- Plateforme Imagerie In Vitro, Neuropôle de Strasbourg, F-67084 Strasbourg, France
| | - Cathy Royer
- Plateforme Imagerie In Vitro, Neuropôle de Strasbourg, F-67084 Strasbourg, France
| | - Yannick Bailly
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212 Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212 Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Marie-France Bader
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212 Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Sylvette Chasserot-Golaz
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212 Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| |
Collapse
|
44
|
Oligophrenin-1 Connects Exocytotic Fusion to Compensatory Endocytosis in Neuroendocrine Cells. J Neurosci 2015; 35:11045-55. [PMID: 26245966 DOI: 10.1523/jneurosci.4048-14.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Oligophrenin-1 (OPHN1) is a protein with multiple domains including a Rho family GTPase-activating (Rho-GAP) domain, and a Bin-Amphiphysin-Rvs (BAR) domain. Involved in X-linked intellectual disability, OPHN1 has been reported to control several synaptic functions, including synaptic plasticity, synaptic vesicle trafficking, and endocytosis. In neuroendocrine cells, hormones and neuropeptides stored in large dense core vesicles (secretory granules) are released through calcium-regulated exocytosis, a process that is tightly coupled to compensatory endocytosis, allowing secretory granule recycling. We show here that OPHN1 is expressed and mainly localized at the plasma membrane and in the cytosol in chromaffin cells from adrenal medulla. Using carbon fiber amperometry, we found that exocytosis is impaired at the late stage of membrane fusion in Ophn1 knock-out mice and OPHN1-silenced bovine chromaffin cells. Experiments performed with ectopically expressed OPHN1 mutants indicate that OPHN1 requires its Rho-GAP domain to control fusion pore dynamics. On the other hand, compensatory endocytosis assessed by measuring dopamine-β-hydroxylase (secretory granule membrane) internalization is severely inhibited in Ophn1 knock-out chromaffin cells. This inhibitory effect is mimicked by the expression of a truncated OPHN1 mutant lacking the BAR domain, demonstrating that the BAR domain implicates OPHN1 in granule membrane recapture after exocytosis. These findings reveal for the first time that OPHN1 is a bifunctional protein that is able, through distinct mechanisms, to regulate and most likely link exocytosis to compensatory endocytosis in chromaffin cells.
Collapse
|
45
|
Positively charged amino acids at the SNAP-25 C terminus determine fusion rates, fusion pore properties, and energetics of tight SNARE complex zippering. J Neurosci 2015; 35:3230-9. [PMID: 25698757 DOI: 10.1523/jneurosci.2905-14.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
SNAP-25 is a Q-SNARE protein mediating exocytosis of neurosecretory vesicles including chromaffin granules. Previous results with a SNAP-25 construct lacking the nine C terminal residues (SNAP-25Δ9) showed changed fusion pore properties (Fang et al., 2008), suggesting a model for fusion pore mechanics that couple C terminal zipping of the SNARE complex to the opening of the fusion pore. The deleted fragment contains the positively charged residues R198 and K201, adjacent to layers 7 and 8 of the SNARE complex. To determine how fusion pore conductance and dynamics depend on these residues, single exocytotic events in bovine chromaffin cells expressing R198Q, R198E, K201Q, or K201E mutants were investigated by carbon fiber amperometry and cell-attached patch capacitance measurements. Coarse grain molecular dynamics simulations revealed spontaneous transitions between a loose and tightly zippered state at the SNARE complex C terminus. The SNAP-25 K201Q mutant showed no changes compared with SNAP-25 wild-type. However, K201E, R198Q, and R198E displayed reduced release frequencies, slower release kinetics, and prolonged fusion pore duration that were correlated with reduced probability to engage in the tightly zippered state. The results show that the positively charged amino acids at the SNAP-25 C terminus promote tight SNARE complex zippering and are required for high release frequency and rapid release in individual fusion events.
Collapse
|
46
|
An acto-myosin II constricting ring initiates the fission of activity-dependent bulk endosomes in neurosecretory cells. J Neurosci 2015; 35:1380-9. [PMID: 25632116 DOI: 10.1523/jneurosci.3228-14.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activity-dependent bulk endocytosis allows neurons to internalize large portions of the plasma membrane in response to stimulation. However, whether this critical type of compensatory endocytosis is unique to neurons or also occurs in other excitable cells is currently unknown. Here we used fluorescent 70 kDa dextran to demonstrate that secretagogue-induced bulk endocytosis also occurs in bovine chromaffin cells. The relatively large size of the bulk endosomes found in this model allowed us to investigate how the neck of the budding endosomes constricts to allow efficient recruitment of the fission machinery. Using time-lapse imaging of Lifeact-GFP-transfected chromaffin cells in combination with fluorescent 70 kDa dextran, we detected acto-myosin II rings surrounding dextran-positive budding endosomes. Importantly, these rings were transient and contracted before disappearing, suggesting that they might be involved in restricting the size of the budding endosome neck. Based on the complete recovery of dextran fluorescence after photobleaching, we demonstrated that the actin ring-associated budding endosomes were still connected with the extracellular fluid. In contrast, no such recovery was observed following the constriction and disappearance of the actin rings, suggesting that these structures were pinched-off endosomes. Finally, we showed that the rings were initiated by a circular array of phosphatidylinositol(4,5)bisphosphate microdomains, and that their constriction was sensitive to both myosin II and dynamin inhibition. The acto-myosin II rings therefore play a key role in constricting the neck of budding bulk endosomes before dynamin-dependent fission from the plasma membrane of neurosecretory cells.
Collapse
|
47
|
Papadopulos A, Gomez GA, Martin S, Jackson J, Gormal RS, Keating DJ, Yap AS, Meunier FA. Activity-driven relaxation of the cortical actomyosin II network synchronizes Munc18-1-dependent neurosecretory vesicle docking. Nat Commun 2015; 6:6297. [DOI: 10.1038/ncomms7297] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 01/14/2015] [Indexed: 01/08/2023] Open
|
48
|
Actin-myosin network is required for proper assembly of influenza virus particles. Virology 2015; 476:141-150. [DOI: 10.1016/j.virol.2014.12.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/02/2014] [Accepted: 12/08/2014] [Indexed: 01/06/2023]
|
49
|
Bretou M, Jouannot O, Fanget I, Pierobon P, Larochette N, Gestraud P, Guillon M, Emiliani V, Gasman S, Desnos C, Lennon-Duménil AM, Darchen F. Cdc42 controls the dilation of the exocytotic fusion pore by regulating membrane tension. Mol Biol Cell 2014; 25:3195-209. [PMID: 25143404 PMCID: PMC4196869 DOI: 10.1091/mbc.e14-07-1229] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
On exocytosis, membrane fusion starts with the formation of a narrow fusion pore that must expand to allow the release of secretory compounds. The GTPase Cdc42 promotes fusion pore dilation in neuroendocrine cells by controlling membrane tension. Membrane fusion underlies multiple processes, including exocytosis of hormones and neurotransmitters. Membrane fusion starts with the formation of a narrow fusion pore. Radial expansion of this pore completes the process and allows fast release of secretory compounds, but this step remains poorly understood. Here we show that inhibiting the expression of the small GTPase Cdc42 or preventing its activation with a dominant negative Cdc42 construct in human neuroendocrine cells impaired the release process by compromising fusion pore enlargement. Consequently the mode of vesicle exocytosis was shifted from full-collapse fusion to kiss-and-run. Remarkably, Cdc42-knockdown cells showed reduced membrane tension, and the artificial increase of membrane tension restored fusion pore enlargement. Moreover, inhibiting the motor protein myosin II by blebbistatin decreased membrane tension, as well as fusion pore dilation. We conclude that membrane tension is the driving force for fusion pore dilation and that Cdc42 is a key regulator of this force.
Collapse
Affiliation(s)
- Marine Bretou
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France Institut National de la Santé et de la Recherche Médicale, U932, Institut Curie, 75005 Paris, France
| | - Ouardane Jouannot
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Isabelle Fanget
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Paolo Pierobon
- Institut National de la Santé et de la Recherche Médicale, U932, Institut Curie, 75005 Paris, France
| | - Nathanaël Larochette
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Pierre Gestraud
- Institut Curie, Paris 75248, France Institut National de la Santé et de la Recherche Médicale, U900, Paris 75248, France Ecole des Mines ParisTech, Fontainebleau, 77300 France
| | - Marc Guillon
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Valentina Emiliani
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique/UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Université Strasbourg, 67084 Strasbourg, France
| | - Claire Desnos
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Ana-Maria Lennon-Duménil
- Institut National de la Santé et de la Recherche Médicale, U932, Institut Curie, 75005 Paris, France
| | - François Darchen
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| |
Collapse
|
50
|
Kurps J, Broeke JH, Cijsouw T, Kompatscher A, van Weering JRT, de Wit H. Quantitative image analysis tool to study the plasma membrane localization of proteins and cortical actin in neuroendocrine cells. J Neurosci Methods 2014; 236:1-10. [PMID: 25109903 DOI: 10.1016/j.jneumeth.2014.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Adrenal chromaffin cells are a widely used model system to study regulated exocytosis and other membrane-associated processes. Alterations in the amount and localization of the proteins involved in these processes can be visualized with fluorescent probes that report the effect of different stimuli or genetic modifications. However, the quantitative analysis of such images remains difficult, especially when focused on specific locations, such as the plasma membrane. NEW METHOD We developed an image analysis algorithm, named plasma membrane analysis in chromaffin cells (PlasMACC). PlasMACC enables automatic detection of the plasma membrane region and quantitative analysis of multi-fluorescent signals from spherical cells. PlasMACC runs in the image analysis software ImageJ environment, it is user-friendly and freely available. RESULTS PlasMACC delivers detailed information about intensity, thickness and density of fluorescent signals at the plasma membrane of both living and fixed cells. Individual signals can be compared between cells and different signals within one cell can be correlated. PlasMACC can process conventional laser-scanning confocal images as well as data obtained by super-resolution methods such as structured illumination microscopy. COMPARISON WITH EXISTING METHOD(S) By comparing PlasMACC to methods currently used in the field, we show more consistent quantitative data due to the fully automated algorithm. PlasMACC also provides an expanded set of novel analysis parameters. CONCLUSION PlasMACC enables a detailed quantification of fluorescent signals at the plasma membrane of spherical cells in an unbiased and reliable fashion.
Collapse
Affiliation(s)
- Julia Kurps
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, Netherlands
| | - Jurjen H Broeke
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, Netherlands
| | - Tony Cijsouw
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, Netherlands
| | - Andreas Kompatscher
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, Netherlands
| | - Jan R T van Weering
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, Netherlands.
| | - Heidi de Wit
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, Netherlands
| |
Collapse
|