1
|
Souza GMPR, Stornetta DS, Abbott SBG. Interactions between Arousal State and CO 2 Determine the Activity of Central Chemoreceptor Neurons That Drive Breathing. J Neurosci 2025; 45:e1587242024. [PMID: 39510833 DOI: 10.1523/jneurosci.1587-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
The homeostatic regulation of pulmonary ventilation, and ultimately arterial PCO2, depends on interactions between respiratory chemoreflexes and arousal state. The ventilatory response to CO2 is triggered by neurons in the retrotrapezoid nucleus (RTN) that function as sensors of central pH, which can be identified in adulthood by the expression of Phox2b and neuromedin B. Here, we examine the dynamic response of genetically defined RTN neurons to hypercapnia and arousal state in freely behaving adult male and female mice using the calcium indicator jGCaMP7 and fiber photometry. We found that hypercapnia vigorously activates RTN neurons with a low CO2 recruitment threshold and with response kinetics that match respiratory activity whereas hypoxia had little effect. RTN activity increased transiently during wakefulness and respiratory-related arousals and rose persistently during rapid eye movement sleep, and their CO2 response persisted under anesthesia. Complementary studies using inhibitory optogenetics show that RTN activity supports eupneic breathing under anesthesia as well as during states of high arousal, but their activity is redundant for voluntary breathing patterns. Collectively, this study demonstrates that CO2-activated RTN neurons are exquisitely sensitive to the arousal state, which determines their contribution to alveolar ventilation in relation to arterial PCO2.
Collapse
Affiliation(s)
- George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Daniel S Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
2
|
Flor KC, Maia OAC, Takakura AC, Moreira TS. The pontine Kölliker-Fuse nucleus is important for reduced postinspiratory airflow elicited by stimulation of the ventral respiratory parafacial region. Am J Physiol Lung Cell Mol Physiol 2024; 327:L452-L463. [PMID: 39104318 DOI: 10.1152/ajplung.00155.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
Considering that the retrotrapezoid nucleus/respiratory parafacial region (RTN/pFRG) would be an important center in the central nervous system involved in the maintenance and modulation of respiratory activity, we hypothesized that neurons in this nucleus would also be involved in the postinspiratory (post-I) phase of the respiratory cycle through a connection with the pontine Kölliker-Fuse (KF) region. Here, we performed pharmacogenetic manipulation (AAV-hM3D(Gq)-mCherry or AAV-hM4D(Gi)-mCherry) in VGlut2-cre, Ai6 conscious mice to evaluate breathing parameters through whole body plethysmography under baseline conditions (normoxia: [Formula: see text] = 0.21) or under hypercapnia or hypoxia challenges ([Formula: see text] = 0.07 or [Formula: see text] = 0.08). Under normoxia, selective stimulation of RTN/pFRG resulted in a smaller increase in V̇e (1,272 ± 102.5, vs. RTN/pFRG stimulation: 1,878 ± 122.1 mL/kg/min), due to a smaller increase in VT (5.4 ± 0.35, vs. RTN/pFRG stimulation: 7.77 ± 0.21 mL/kg) without changing fR in a condition of KF inhibition. However, inhibition of the VGlut2 neurons in the KF did affect the TE1 produced by selective activation of RTN/pFRG (119.9 ± 2.53, vs. RTN/pFRG stimulation: 104 ± 2.46 ms). Both the hypercapnia and hypoxia ventilatory response were reduced after inhibition of VGlut2-expressing KF neurons. Therefore, consistent with anatomical projections RTN/pFRG neurons regulate lung ventilation by controlling all aspects of breathing, i.e., breathing frequency, inspiration, postinspiration, and active expiration. All the modulation seems to be dependent on the integrity of the glutamatergic neurons in the KF region.NEW & NOTEWORTHY Our research reveals specific roles and interactions between the retrotrapezoid nucleus/respiratory parafacial region (RTN/pFRG) and the pontine Kölliker-Fuse (KF) region in controlling respiratory phases. RTN/pFRG neurons are key in regulating all aspects of breathing, including frequency, inspiration, postinspiration, and active expiration. This regulation depends on the functional integrity of glutamatergic neurons in the KF region, aligning with anatomical projections.
Collapse
Affiliation(s)
- Karine C Flor
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Octavio A C Maia
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Cui K, Xia Y, Patnaik A, Salivara A, Lowenstein ED, Isik EG, Knorz AL, Airaghi L, Crotti M, Garratt AN, Meng F, Schmitz D, Studer M, Rijli FM, Nothwang HG, Rost BR, Strauß U, Hernandez-Miranda LR. Genetic identification of medullary neurons underlying congenital hypoventilation. SCIENCE ADVANCES 2024; 10:eadj0720. [PMID: 38896627 PMCID: PMC11186509 DOI: 10.1126/sciadv.adj0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Mutations in the transcription factors encoded by PHOX2B or LBX1 correlate with congenital central hypoventilation disorders. These conditions are typically characterized by pronounced hypoventilation, central apnea, and diminished chemoreflexes, particularly to abnormally high levels of arterial PCO2. The dysfunctional neurons causing these respiratory disorders are largely unknown. Here, we show that distinct, and previously undescribed, sets of medullary neurons coexpressing both transcription factors (dB2 neurons) account for specific respiratory functions and phenotypes seen in congenital hypoventilation. By combining intersectional chemogenetics, intersectional labeling, lineage tracing, and conditional mutagenesis, we uncovered subgroups of dB2 neurons with key functions in (i) respiratory tidal volumes, (ii) the hypercarbic reflex, (iii) neonatal respiratory stability, and (iv) neonatal survival. These data provide functional evidence for the critical role of distinct medullary dB2 neurons in neonatal respiratory physiology. In summary, our work identifies distinct subgroups of dB2 neurons regulating breathing homeostasis, dysfunction of which causes respiratory phenotypes associated with congenital hypoventilation.
Collapse
Affiliation(s)
- Ke Cui
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yiling Xia
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Abhisarika Patnaik
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Aikaterini Salivara
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Eser G. Isik
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adrian L. Knorz
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura Airaghi
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michela Crotti
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alistair N. Garratt
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fanqi Meng
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michèle Studer
- Université Côte d'Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France
| | - Filippo M. Rijli
- Laboratory of Developmental Neuroepigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hans G. Nothwang
- Division of Neurogenetics, Cluster of Excellence Hearing4all, Carl von Ossietzky University, Oldenburg, Germany
| | - Benjamin R. Rost
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulf Strauß
- Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Luis R. Hernandez-Miranda
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Cardani S, Janes TA, Betzner W, Pagliardini S. Knockdown of PHOX2B in the retrotrapezoid nucleus reduces the central CO 2 chemoreflex in rats. eLife 2024; 13:RP94653. [PMID: 38727716 PMCID: PMC11087052 DOI: 10.7554/elife.94653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
PHOX2B is a transcription factor essential for the development of different classes of neurons in the central and peripheral nervous system. Heterozygous mutations in the PHOX2B coding region are responsible for the occurrence of Congenital Central Hypoventilation Syndrome (CCHS), a rare neurological disorder characterised by inadequate chemosensitivity and life-threatening sleep-related hypoventilation. Animal studies suggest that chemoreflex defects are caused in part by the improper development or function of PHOX2B expressing neurons in the retrotrapezoid nucleus (RTN), a central hub for CO2 chemosensitivity. Although the function of PHOX2B in rodents during development is well established, its role in the adult respiratory network remains unknown. In this study, we investigated whether reduction in PHOX2B expression in chemosensitive neuromedin-B (NMB) expressing neurons in the RTN altered respiratory function. Four weeks following local RTN injection of a lentiviral vector expressing the short hairpin RNA (shRNA) targeting Phox2b mRNA, a reduction of PHOX2B expression was observed in Nmb neurons compared to both naive rats and rats injected with the non-target shRNA. PHOX2B knockdown did not affect breathing in room air or under hypoxia, but ventilation was significantly impaired during hypercapnia. PHOX2B knockdown did not alter Nmb expression but it was associated with reduced expression of both Task2 and Gpr4, two CO2/pH sensors in the RTN. We conclude that PHOX2B in the adult brain has an important role in CO2 chemoreception and reduced PHOX2B expression in CCHS beyond the developmental period may contribute to the impaired central chemoreflex function.
Collapse
Affiliation(s)
- Silvia Cardani
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
- Women and Children’s Health Research Institute, University of AlbertaEdmontonCanada
| | - Tara A Janes
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
- Women and Children’s Health Research Institute, University of AlbertaEdmontonCanada
| | - William Betzner
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
| | - Silvia Pagliardini
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
- Women and Children’s Health Research Institute, University of AlbertaEdmontonCanada
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
| |
Collapse
|
5
|
Janes TA, Cardani S, Saini JK, Pagliardini S. Etonogestrel promotes respiratory recovery in an in vivo rat model of central chemoreflex impairment. Acta Physiol (Oxf) 2024; 240:e14093. [PMID: 38258900 DOI: 10.1111/apha.14093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024]
Abstract
AIM The central CO2 chemoreflex is a vital component of respiratory control networks, providing excitatory drive during resting conditions and challenges to blood gas homeostasis. The retrotrapezoid nucleus is a crucial hub for CO2 chemosensitivity; its ablation or inhibition attenuates CO2 chemoreflexes and diminishes restful breathing. Similar phenotypes characterize certain hypoventilation syndromes, suggesting underlying retrotrapezoid nucleus impairment in these disorders. Progesterone stimulates restful breathing and CO2 chemoreflexes. However, its mechanisms and sites of actions remain unknown and the experimental use of synthetic progestins in patients and animal models have been met with mixed respiratory outcomes. METHODS We investigated whether acute or chronic administration of the progestinic drug, etonogestrel, could rescue respiratory chemoreflexes following selective lesion of the retrotrapezoid nucleus with saporin toxin. Adult female Sprague Dawley rats were grouped based on lesion size determined by the number of surviving chemosensitive neurons, and ventilatory responses were measured by whole body plethysmography. RESULTS Ventilatory responses to hypercapnia (but not hypoxia) were compromised in a lesion-dependent manner. Chronic etonogestrel treatment improved CO2 chemosensitivity selectively in rats with moderate lesion, suggesting that a residual number of chemosensitive neurons are required for etonogestrel-induced CO2 chemoreflex recovery. CONCLUSION This study provides new evidence for the use of progestins as respiratory stimulants under conditions of central hypoventilation and provides a new testable model for assessing the mechanism of action of progestins in the respiratory network.
Collapse
Affiliation(s)
- Tara A Janes
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Silvia Cardani
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jasmeen K Saini
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Silvia Pagliardini
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Souza GMPR, Abbott SBG. Loss-of-function of chemoreceptor neurons in the retrotrapezoid nucleus: What have we learned from it? Respir Physiol Neurobiol 2024; 322:104217. [PMID: 38237884 PMCID: PMC10922619 DOI: 10.1016/j.resp.2024.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Central respiratory chemoreceptors are cells in the brain that regulate breathing in relation to arterial pH and PCO2. Neurons located at the retrotrapezoid nucleus (RTN) have been hypothesized to be central chemoreceptors and/or to be part of the neural network that drives the central respiratory chemoreflex. The inhibition or ablation of RTN chemoreceptor neurons has offered important insights into the role of these cells on central respiratory chemoreception and the neural control of breathing over almost 60 years since the original identification of acid-sensitive properties of this ventral medullary site. Here, we discuss the current definition of chemoreceptor neurons in the RTN and describe how this definition has evolved over time. We then summarize the results of studies that use loss-of-function approaches to evaluate the effects of disrupting the function of RTN neurons on respiration. These studies offer evidence that RTN neurons are indispensable for the central respiratory chemoreflex in mammals and exert a tonic drive to breathe at rest. Moreover, RTN has an interdependent relationship with oxygen sensing mechanisms for the maintenance of the neural drive to breathe and blood gas homeostasis. Collectively, RTN neurons are a genetically-defined group of putative central respiratory chemoreceptors that generate CO2-dependent drive that supports eupneic breathing and stimulates the hypercapnic ventilatory reflex.
Collapse
|
7
|
Cleary CM, Browning JL, Armbruster M, Sobrinho CR, Strain ML, Jahanbani S, Soto-Perez J, Hawkins VE, Dulla CG, Olsen ML, Mulkey DK. Kir4.1 channels contribute to astrocyte CO 2/H +-sensitivity and the drive to breathe. Commun Biol 2024; 7:373. [PMID: 38548965 PMCID: PMC10978993 DOI: 10.1038/s42003-024-06065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
Astrocytes in the retrotrapezoid nucleus (RTN) stimulate breathing in response to CO2/H+, however, it is not clear how these cells detect changes in CO2/H+. Considering Kir4.1/5.1 channels are CO2/H+-sensitive and important for several astrocyte-dependent processes, we consider Kir4.1/5.1 a leading candidate CO2/H+ sensor in RTN astrocytes. To address this, we show that RTN astrocytes express Kir4.1 and Kir5.1 transcripts. We also characterized respiratory function in astrocyte-specific inducible Kir4.1 knockout mice (Kir4.1 cKO); these mice breathe normally under room air conditions but show a blunted ventilatory response to high levels of CO2, which could be partly rescued by viral mediated re-expression of Kir4.1 in RTN astrocytes. At the cellular level, astrocytes in slices from astrocyte-specific inducible Kir4.1 knockout mice are less responsive to CO2/H+ and show a diminished capacity for paracrine modulation of respiratory neurons. These results suggest Kir4.1/5.1 channels in RTN astrocytes contribute to respiratory behavior.
Collapse
Affiliation(s)
- Colin M Cleary
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Jack L Browning
- School of Neuroscience and Genetics, Genomics and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Cleyton R Sobrinho
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Monica L Strain
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Sarvin Jahanbani
- School of Neuroscience and Genetics, Genomics and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Jaseph Soto-Perez
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Virginia E Hawkins
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Michelle L Olsen
- School of Neuroscience and Genetics, Genomics and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
8
|
SheikhBahaei S, Marina N, Rajani V, Kasparov S, Funk GD, Smith JC, Gourine AV. Contributions of carotid bodies, retrotrapezoid nucleus neurons and preBötzinger complex astrocytes to the CO 2 -sensitive drive for breathing. J Physiol 2024; 602:223-240. [PMID: 37742121 PMCID: PMC10841148 DOI: 10.1113/jp283534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/06/2023] [Indexed: 09/25/2023] Open
Abstract
Current models of respiratory CO2 chemosensitivity are centred around the function of a specific population of neurons residing in the medullary retrotrapezoid nucleus (RTN). However, there is significant evidence suggesting that chemosensitive neurons exist in other brainstem areas, including the rhythm-generating region of the medulla oblongata - the preBötzinger complex (preBötC). There is also evidence that astrocytes, non-neuronal brain cells, contribute to central CO2 chemosensitivity. In this study, we reevaluated the relative contributions of the RTN neurons, the preBötC astrocytes, and the carotid body chemoreceptors in mediating the respiratory responses to CO2 in experimental animals (adult laboratory rats). To block astroglial signalling via exocytotic release of transmitters, preBötC astrocytes were targeted to express the tetanus toxin light chain (TeLC). Bilateral expression of TeLC in preBötC astrocytes was associated with ∼20% and ∼30% reduction of the respiratory response to CO2 in conscious and anaesthetized animals, respectively. Carotid body denervation reduced the CO2 respiratory response by ∼25%. Bilateral inhibition of RTN neurons transduced to express Gi-coupled designer receptors exclusively activated by designer drug (DREADDGi ) by application of clozapine-N-oxide reduced the CO2 response by ∼20% and ∼40% in conscious and anaesthetized rats, respectively. Combined blockade of astroglial signalling in the preBötC, inhibition of RTN neurons and carotid body denervation reduced the CO2 -induced respiratory response by ∼70%. These data further support the hypothesis that the CO2 -sensitive drive to breathe requires inputs from the peripheral chemoreceptors and several central chemoreceptor sites. At the preBötC level, astrocytes modulate the activity of the respiratory network in response to CO2 , either by relaying chemosensory information (i.e. they act as CO2 sensors) or by enhancing the preBötC network excitability to chemosensory inputs. KEY POINTS: This study reevaluated the roles played by the carotid bodies, neurons of the retrotrapezoid nucleus (RTN) and astrocytes of the preBötC in mediating the CO2 -sensitive drive to breathe. The data obtained show that disruption of preBötC astroglial signalling, blockade of inputs from the peripheral chemoreceptors or inhibition of RTN neurons similarly reduce the respiratory response to hypercapnia. These data provide further support for the hypothesis that the CO2 -sensitive drive to breathe is mediated by the inputs from the peripheral chemoreceptors and several central chemoreceptor sites.
Collapse
Affiliation(s)
- Shahriar SheikhBahaei
- Centre for Cardiovascular and Metabolic Neuroscience, Research Department of Neuroscience Physiology and Pharmacology, University College London, London WC1E 6BT, UK
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
- present address: Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Nephtali Marina
- Centre for Cardiovascular and Metabolic Neuroscience, Research Department of Neuroscience Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Vishaal Rajani
- Department of Physiology, Neuroscience & Mental Health Institute, Women and Children’s Health Research Institute, University of Alberta, T6G 2E1, Canada
- present address: Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - Sergey Kasparov
- Department of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Gregory D. Funk
- Department of Physiology, Neuroscience & Mental Health Institute, Women and Children’s Health Research Institute, University of Alberta, T6G 2E1, Canada
| | - Jeffrey C. Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Alexander V. Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Research Department of Neuroscience Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
9
|
Gonye EC, Bayliss DA. Criteria for central respiratory chemoreceptors: experimental evidence supporting current candidate cell groups. Front Physiol 2023; 14:1241662. [PMID: 37719465 PMCID: PMC10502317 DOI: 10.3389/fphys.2023.1241662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
An interoceptive homeostatic system monitors levels of CO2/H+ and provides a proportionate drive to respiratory control networks that adjust lung ventilation to maintain physiologically appropriate levels of CO2 and rapidly regulate tissue acid-base balance. It has long been suspected that the sensory cells responsible for the major CNS contribution to this so-called respiratory CO2/H+ chemoreception are located in the brainstem-but there is still substantial debate in the field as to which specific cells subserve the sensory function. Indeed, at the present time, several cell types have been championed as potential respiratory chemoreceptors, including neurons and astrocytes. In this review, we advance a set of criteria that are necessary and sufficient for definitive acceptance of any cell type as a respiratory chemoreceptor. We examine the extant evidence supporting consideration of the different putative chemoreceptor candidate cell types in the context of these criteria and also note for each where the criteria have not yet been fulfilled. By enumerating these specific criteria we hope to provide a useful heuristic that can be employed both to evaluate the various existing respiratory chemoreceptor candidates, and also to focus effort on specific experimental tests that can satisfy the remaining requirements for definitive acceptance.
Collapse
Affiliation(s)
- Elizabeth C. Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| | | |
Collapse
|
10
|
Li K, Gonye EC, Stornetta RL, Bayliss CB, Yi G, Stornetta DS, Baca SM, Abbott SB, Guyenet PG, Bayliss DA. The astrocytic Na + -HCO 3 - cotransporter, NBCe1, is dispensable for respiratory chemosensitivity. J Physiol 2023; 601:3667-3686. [PMID: 37384821 PMCID: PMC10528273 DOI: 10.1113/jp284960] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
The interoceptive homeostatic mechanism that controls breathing, blood gases and acid-base balance in response to changes in CO2 /H+ is exquisitely sensitive, with convergent roles proposed for chemosensory brainstem neurons in the retrotrapezoid nucleus (RTN) and their supporting glial cells. For astrocytes, a central role for NBCe1, a Na+ -HCO3 - cotransporter encoded by Slc4a4, has been envisaged in multiple mechanistic models (i.e. underlying enhanced CO2 -induced local extracellular acidification or purinergic signalling). We tested these NBCe1-centric models by using conditional knockout mice in which Slc4a4 was deleted from astrocytes. In GFAP-Cre;Slc4a4fl/fl mice we found diminished expression of Slc4a4 in RTN astrocytes by comparison to control littermates, and a concomitant reduction in NBCe1-mediated current. Despite disrupted NBCe1 function in RTN-adjacent astrocytes from these conditional knockout mice, CO2 -induced activation of RTN neurons or astrocytes in vitro and in vivo, and CO2 -stimulated breathing, were indistinguishable from NBCe1-intact littermates; hypoxia-stimulated breathing and sighs were likewise unaffected. We obtained a more widespread deletion of NBCe1 in brainstem astrocytes by using tamoxifen-treated Aldh1l1-Cre/ERT2;Slc4a4fl/fl mice. Again, there was no difference in effects of CO2 or hypoxia on breathing or on neuron/astrocyte activation in NBCe1-deleted mice. These data indicate that astrocytic NBCe1 is not required for the respiratory responses to these chemoreceptor stimuli in mice, and that any physiologically relevant astrocytic contributions must involve NBCe1-independent mechanisms. KEY POINTS: The electrogenic NBCe1 transporter is proposed to mediate local astrocytic CO2 /H+ sensing that enables excitatory modulation of nearby retrotrapezoid nucleus (RTN) neurons to support chemosensory control of breathing. We used two different Cre mouse lines for cell-specific and/or temporally regulated deletion of the NBCe1 gene (Slc4a4) in astrocytes to test this hypothesis. In both mouse lines, Slc4a4 was depleted from RTN-associated astrocytes but CO2 -induced Fos expression (i.e. cell activation) in RTN neurons and local astrocytes was intact. Likewise, respiratory chemoreflexes evoked by changes in CO2 or O2 were unaffected by loss of astrocytic Slc4a4. These data do not support the previously proposed role for NBCe1 in respiratory chemosensitivity mediated by astrocytes.
Collapse
Affiliation(s)
- Keyong Li
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Elizabeth C. Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Ruth L. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | | | - Grace Yi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Daniel S. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Serapio M. Baca
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Stephen B.G. Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Patrice G. Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Douglas A. Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| |
Collapse
|
11
|
Souza GMPR, Stornetta DS, Shi Y, Lim E, Berry FE, Bayliss DA, Abbott SBG. Neuromedin B-Expressing Neurons in the Retrotrapezoid Nucleus Regulate Respiratory Homeostasis and Promote Stable Breathing in Adult Mice. J Neurosci 2023; 43:5501-5520. [PMID: 37290937 PMCID: PMC10376939 DOI: 10.1523/jneurosci.0386-23.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
Respiratory chemoreceptor activity encoding arterial Pco2 and Po2 is a critical determinant of ventilation. Currently, the relative importance of several putative chemoreceptor mechanisms for maintaining eupneic breathing and respiratory homeostasis is debated. Transcriptomic and anatomic evidence suggests that bombesin-related peptide Neuromedin-B (Nmb) expression identifies chemoreceptor neurons in the retrotrapezoid nucleus (RTN) that mediate the hypercapnic ventilatory response, but functional support is missing. In this study, we generated a transgenic Nmb-Cre mouse and used Cre-dependent cell ablation and optogenetics to test the hypothesis that RTN Nmb neurons are necessary for the CO2-dependent drive to breathe in adult male and female mice. Selective ablation of ∼95% of RTN Nmb neurons causes compensated respiratory acidosis because of alveolar hypoventilation, as well as profound breathing instability and respiratory-related sleep disruption. Following RTN Nmb lesion, mice were hypoxemic at rest and were prone to severe apneas during hyperoxia, suggesting that oxygen-sensitive mechanisms, presumably the peripheral chemoreceptors, compensate for the loss of RTN Nmb neurons. Interestingly, ventilation following RTN Nmb -lesion was unresponsive to hypercapnia, but behavioral responses to CO2 (freezing and avoidance) and the hypoxia ventilatory response were preserved. Neuroanatomical mapping shows that RTN Nmb neurons are highly collateralized and innervate the respiratory-related centers in the pons and medulla with a strong ipsilateral preference. Together, this evidence suggests that RTN Nmb neurons are dedicated to the respiratory effects of arterial Pco2/pH and maintain respiratory homeostasis in intact conditions and suggest that malfunction of these neurons could underlie the etiology of certain forms of sleep-disordered breathing in humans.SIGNIFICANCE STATEMENT Respiratory chemoreceptors stimulate neural respiratory motor output to regulate arterial Pco2 and Po2, thereby maintaining optimal gas exchange. Neurons in the retrotrapezoid nucleus (RTN) that express the bombesin-related peptide Neuromedin-B are proposed to be important in this process, but functional evidence has not been established. Here, we developed a transgenic mouse model and demonstrated that RTN neurons are fundamental for respiratory homeostasis and mediate the stimulatory effects of CO2 on breathing. Our functional and anatomic data indicate that Nmb-expressing RTN neurons are an integral component of the neural mechanisms that mediate CO2-dependent drive to breathe and maintain alveolar ventilation. This work highlights the importance of the interdependent and dynamic integration of CO2- and O2-sensing mechanisms in respiratory homeostasis of mammals.
Collapse
Affiliation(s)
- George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Daniel S Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Eunu Lim
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Faye E Berry
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
12
|
Casarrubios AM, Pérez-Atencio LF, Martín C, Ibarz JM, Mañas E, Paul DL, Barrio LC. Neural bases for the genesis and CO 2 therapy of periodic Cheyne-Stokes breathing in neonatal male connexin-36 knockout mice. Front Neurosci 2023; 17:1045269. [PMID: 36845442 PMCID: PMC9944137 DOI: 10.3389/fnins.2023.1045269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Periodic Cheyne-Stokes breathing (CSB) oscillating between apnea and crescendo-decrescendo hyperpnea is the most common central apnea. Currently, there is no proven therapy for CSB, probably because the fundamental pathophysiological question of how the respiratory center generates this form of breathing instability is still unresolved. Therefore, we aimed to determine the respiratory motor pattern of CSB resulting from the interaction of inspiratory and expiratory oscillators and identify the neural mechanism responsible for breathing regularization induced by the supplemental CO2 administration. Analysis of the inspiratory and expiratory motor pattern in a transgenic mouse model lacking connexin-36 electrical synapses, the neonatal (P14) Cx36 knockout male mouse, with a persistent CSB, revealed that the reconfigurations recurrent between apnea and hyperpnea and vice versa result from cyclical turn on/off of active expiration driven by the expiratory oscillator, which acts as a master pacemaker of respiration and entrains the inspiratory oscillator to restore ventilation. The results also showed that the suppression of CSB by supplemental 12% CO2 in inhaled air is due to the stabilization of coupling between expiratory and inspiratory oscillators, which causes the regularization of respiration. CSB rebooted after washout of CO2 excess when the inspiratory activity depressed again profoundly, indicating that the disability of the inspiratory oscillator to sustain ventilation is the triggering factor of CSB. Under these circumstances, the expiratory oscillator activated by the cyclic increase of CO2 behaves as an "anti-apnea" center generating the crescendo-decrescendo hyperpnea and periodic breathing. The neurogenic mechanism of CSB identified highlights the plasticity of the two-oscillator system in the neural control of respiration and provides a rationale base for CO2 therapy.
Collapse
Affiliation(s)
- Ana M. Casarrubios
- Units of Experimental Neurology and Sleep Apnea, Hospital “Ramón y Cajal” (IRYCIS), Madrid, Spain,Ph.D. Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Leonel F. Pérez-Atencio
- Units of Experimental Neurology and Sleep Apnea, Hospital “Ramón y Cajal” (IRYCIS), Madrid, Spain
| | - Cristina Martín
- Units of Experimental Neurology and Sleep Apnea, Hospital “Ramón y Cajal” (IRYCIS), Madrid, Spain
| | - José M. Ibarz
- Units of Experimental Neurology and Sleep Apnea, Hospital “Ramón y Cajal” (IRYCIS), Madrid, Spain
| | - Eva Mañas
- Sleep Apnea Unit, Respiratory Department, Hospital “Ramón y Cajal” (IRYCIS), Madrid, Spain
| | - David L. Paul
- Department of Neurobiology, Medical School, Harvard University, Boston, MA, United States
| | - Luis C. Barrio
- Units of Experimental Neurology and Sleep Apnea, Hospital “Ramón y Cajal” (IRYCIS), Madrid, Spain,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,*Correspondence: Luis C. Barrio, ; orcid.org/0000-0002-9016-3510
| |
Collapse
|
13
|
MacMillan S, Evans AM. AMPK facilitates the hypoxic ventilatory response through non-adrenergic mechanisms at the brainstem. Pflugers Arch 2023; 475:89-99. [PMID: 35680670 PMCID: PMC9816276 DOI: 10.1007/s00424-022-02713-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/29/2022] [Indexed: 01/31/2023]
Abstract
We recently demonstrated that the hypoxic ventilatory response (HVR) is facilitated by the AMP-activated protein kinase (AMPK) in catecholaminergic neural networks that likely lie downstream of the carotid bodies within the caudal brainstem. Here, we further subcategorise the neurons involved, by cross-comparison of mice in which the genes encoding the AMPK-α1 (Prkaa1) and AMPK-α2 (Prkaa2) catalytic subunits were deleted in catecholaminergic (TH-Cre) or adrenergic (PNMT-Cre) neurons. As expected, the HVR was markedly attenuated in mice with AMPK-α1/α2 deletion in catecholaminergic neurons, but surprisingly was modestly augmented in mice with AMPK-α1/α2 deletion in adrenergic neurons when compared against a variety of controls (TH-Cre, PNMT-Cre, AMPK-α1/α2 floxed). Moreover, AMPK-α1/α2 deletion in catecholaminergic neurons precipitated marked hypoventilation and apnoea during poikilocapnic hypoxia, relative to controls, while mice with AMPK-α1/α2 deletion in adrenergic neurons entered relative hyperventilation with reduced apnoea frequency and duration. We conclude, therefore, that AMPK-dependent modulation of non-adrenergic networks may facilitate increases in ventilatory drive that shape the classical HVR, whereas AMPK-dependent modulation of adrenergic networks may provide some form of negative feedback or inhibitory input to moderate HVR, which could, for example, protect against hyperventilation-induced hypocapnia and respiratory alkalosis.
Collapse
Affiliation(s)
- Sandy MacMillan
- Centre for Discovery Brain Sciences, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - A. Mark Evans
- Centre for Discovery Brain Sciences, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD UK
| |
Collapse
|
14
|
Shi Y, Sobrinho CR, Soto-Perez J, Milla BM, Stornetta DS, Stornetta RL, Takakura AC, Mulkey DK, Moreira TS, Bayliss DA. 5-HT7 receptors expressed in the mouse parafacial region are not required for respiratory chemosensitivity. J Physiol 2022; 600:2789-2811. [PMID: 35385139 PMCID: PMC9167793 DOI: 10.1113/jp282279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract A brainstem homeostatic system senses CO2/H+ to regulate ventilation, blood gases and acid–base balance. Neurons of the retrotrapezoid nucleus (RTN) and medullary raphe are both implicated in this mechanism as respiratory chemosensors, but recent pharmacological work suggested that the CO2/H+ sensitivity of RTN neurons is mediated indirectly, by raphe‐derived serotonin acting on 5‐HT7 receptors. To investigate this further, we characterized Htr7 transcript expression in phenotypically identified RTN neurons using multiplex single cell qRT‐PCR and RNAscope. Although present in multiple neurons in the parafacial region of the ventrolateral medulla, Htr7 expression was undetectable in most RTN neurons (Nmb+/Phox2b+) concentrated in the densely packed cell group ventrolateral to the facial nucleus. Where detected, Htr7 expression was modest and often associated with RTN neurons that extend dorsolaterally to partially encircle the facial nucleus. These dorsolateral Nmb+/Htr7+ neurons tended to express Nmb at high levels and the intrinsic RTN proton detectors Gpr4 and Kcnk5 at low levels. In mouse brainstem slices, CO2‐stimulated firing in RTN neurons was mostly unaffected by a 5‐HT7 receptor antagonist, SB269970 (n = 11/13). At the whole animal level, microinjection of SB269970 into the RTN of conscious mice blocked respiratory stimulation by co‐injected LP‐44, a 5‐HT7 receptor agonist, but had no effect on CO2‐stimulated breathing in those same mice. We conclude that Htr7 is expressed by a minor subset of RTN neurons with a molecular profile distinct from the established chemoreceptors and that 5‐HT7 receptors have negligible effects on CO2‐evoked firing activity in RTN neurons or on CO2‐stimulated breathing in mice. Key points Neurons of the retrotrapezoid nucleus (RTN) are intrinsic CO2/H+ chemosensors and serve as an integrative excitatory hub for control of breathing. Serotonin can activate RTN neurons, in part via 5‐HT7 receptors, and those effects have been implicated in conferring an indirect CO2 sensitivity. Multiple single cell molecular approaches revealed low levels of 5‐HT7 receptor transcript expression restricted to a limited population of RTN neurons. Pharmacological experiments showed that 5‐HT7 receptors in RTN are not required for CO2/H+‐stimulation of RTN neuronal activity or CO2‐stimulated breathing. These data do not support a role for 5‐HT7 receptors in respiratory chemosensitivity mediated by RTN neurons.
Collapse
Affiliation(s)
- Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jaseph Soto-Perez
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Brenda M Milla
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Daniel S Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
15
|
Salvati KA, Souza GMPR, Lu AC, Ritger ML, Guyenet P, Abbott SB, Beenhakker MP. Respiratory alkalosis provokes spike-wave discharges in seizure-prone rats. eLife 2022; 11:e72898. [PMID: 34982032 PMCID: PMC8860449 DOI: 10.7554/elife.72898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperventilation reliably provokes seizures in patients diagnosed with absence epilepsy. Despite this predictable patient response, the mechanisms that enable hyperventilation to powerfully activate absence seizure-generating circuits remain entirely unknown. By utilizing gas exchange manipulations and optogenetics in the WAG/Rij rat, an established rodent model of absence epilepsy, we demonstrate that absence seizures are highly sensitive to arterial carbon dioxide, suggesting that seizure-generating circuits are sensitive to pH. Moreover, hyperventilation consistently activated neurons within the intralaminar nuclei of the thalamus, a structure implicated in seizure generation. We show that intralaminar thalamus also contains pH-sensitive neurons. Collectively, these observations suggest that hyperventilation activates pH-sensitive neurons of the intralaminar nuclei to provoke absence seizures.
Collapse
Affiliation(s)
- Kathryn A Salvati
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
| | - George MPR Souza
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Adam C Lu
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
| | - Matthew L Ritger
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
| | - Patrice Guyenet
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Stephen B Abbott
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Mark P Beenhakker
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
16
|
Abstract
Breathing is a critical, complex, and highly integrated behavior. Normal rhythmic breathing, also referred to as eupnea, is interspersed with different breathing related behaviors. Sighing is one of such behaviors, essential for maintaining effective gas exchange by preventing the gradual collapse of alveoli in the lungs, known as atelectasis. Critical for the generation of both sighing and eupneic breathing is a region of the medulla known as the preBötzinger Complex (preBötC). Efforts are underway to identify the cellular pathways that link sighing as well as sneezing, yawning, and hiccupping with other brain regions to better understand how they are integrated and regulated in the context of other behaviors including chemosensation, olfaction, and cognition. Unraveling these interactions may provide important insights into the diverse roles of these behaviors in the initiation of arousal, stimulation of vigilance, and the relay of certain behavioral states. This chapter focuses primarily on the function of the sigh, how it is locally generated within the preBötC, and what the functional implications are for a potential link between sighing and cognitive regulation. Furthermore, we discuss recent insights gained into the pathways and mechanisms that control yawning, sneezing, and hiccupping.
Collapse
|
17
|
Abstract
Brain PCO2 is sensed primarily via changes in [H+]. Small pH changes are detected in the medulla oblongata and trigger breathing adjustments that help maintain arterial PCO2 constant. Larger perturbations of brain CO2/H+, possibly also sensed elsewhere in the CNS, elicit arousal, dyspnea, and stress, and cause additional breathing modifications. The retrotrapezoid nucleus (RTN), a rostral medullary cluster of glutamatergic neurons identified by coexpression of Phoxb and Nmb transcripts, is the lynchpin of the central respiratory chemoreflex. RTN regulates breathing frequency, inspiratory amplitude, and active expiration. It is exquisitely responsive to acidosis in vivo and maintains breathing autorhythmicity during quiet waking, slow-wave sleep, and anesthesia. The RTN response to [H+] is partly an intrinsic neuronal property mediated by proton sensors TASK-2 and GPR4 and partly a paracrine effect mediated by astrocytes and the vasculature. The RTN also receives myriad excitatory or inhibitory synaptic inputs including from [H+]-responsive neurons (e.g., serotonergic). RTN is silenced by moderate hypoxia. RTN inactivity (periodic or sustained) contributes to periodic breathing and, likely, to central sleep apnea. RTN development relies on transcription factors Egr2, Phox2b, Lbx1, and Atoh1. PHOX2B mutations cause congenital central hypoventilation syndrome; they impair RTN development and consequently the central respiratory chemoreflex.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States.
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
18
|
Proczka M, Przybylski J, Cudnoch-Jędrzejewska A, Szczepańska-Sadowska E, Żera T. Vasopressin and Breathing: Review of Evidence for Respiratory Effects of the Antidiuretic Hormone. Front Physiol 2021; 12:744177. [PMID: 34867449 PMCID: PMC8637824 DOI: 10.3389/fphys.2021.744177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Vasopressin (AVP) is a key neurohormone involved in the regulation of body functions. Due to its urine-concentrating effect in the kidneys, it is often referred to as antidiuretic hormone. Besides its antidiuretic renal effects, AVP is a potent neurohormone involved in the regulation of arterial blood pressure, sympathetic activity, baroreflex sensitivity, glucose homeostasis, release of glucocorticoids and catecholamines, stress response, anxiety, memory, and behavior. Vasopressin is synthesized in the paraventricular (PVN) and supraoptic nuclei (SON) of the hypothalamus and released into the circulation from the posterior lobe of the pituitary gland together with a C-terminal fragment of pro-vasopressin, known as copeptin. Additionally, vasopressinergic neurons project from the hypothalamus to the brainstem nuclei. Increased release of AVP into the circulation and elevated levels of its surrogate marker copeptin are found in pulmonary diseases, arterial hypertension, heart failure, obstructive sleep apnoea, severe infections, COVID-19 due to SARS-CoV-2 infection, and brain injuries. All these conditions are usually accompanied by respiratory disturbances. The main stimuli that trigger AVP release include hyperosmolality, hypovolemia, hypotension, hypoxia, hypoglycemia, strenuous exercise, and angiotensin II (Ang II) and the same stimuli are known to affect pulmonary ventilation. In this light, we hypothesize that increased AVP release and changes in ventilation are not coincidental, but that the neurohormone contributes to the regulation of the respiratory system by fine-tuning of breathing in order to restore homeostasis. We discuss evidence in support of this presumption. Specifically, vasopressinergic neurons innervate the brainstem nuclei involved in the control of respiration. Moreover, vasopressin V1a receptors (V1aRs) are expressed on neurons in the respiratory centers of the brainstem, in the circumventricular organs (CVOs) that lack a blood-brain barrier, and on the chemosensitive type I cells in the carotid bodies. Finally, peripheral and central administrations of AVP or antagonists of V1aRs increase/decrease phrenic nerve activity and pulmonary ventilation in a site-specific manner. Altogether, the findings discussed in this review strongly argue for the hypothesis that vasopressin affects ventilation both as a blood-borne neurohormone and as a neurotransmitter within the central nervous system.
Collapse
Affiliation(s)
- Michał Proczka
- Department of Experimental and Clinical Physiology, Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Jacek Przybylski
- Department of Biophysics, Physiology, and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Szczepańska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Tymoteusz Żera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
19
|
Oliveira LM, Takakura AC, Moreira TS. Forebrain and Hindbrain Projecting-neurons Target the Post-inspiratory Complex Cholinergic Neurons. Neuroscience 2021; 476:102-115. [PMID: 34582982 DOI: 10.1016/j.neuroscience.2021.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023]
Abstract
The postinspiratory complex (PiCo) is a region located in the ventromedial medulla involved with the post-inspiratory activity. PiCo neurons are excitatory (VGlut2+) and express the enzyme choline acetyl transferase (ChAT+). Evidence also suggests that PiCo is coupled to two additional groups of neurons involved in breathing process, i.e. the pre-Bötzinger complex (preBötC, inspiration) and the retrotrapezoid nucleus (RTN, active expiration), composing all together, the hypothesized triple respiratory oscillator. Here, our main objective is to demonstrate the afferent connections to PiCo region. We mapped projecting-neurons to PiCo by injecting Fluorogold (FG) retrograde tracer into the PiCo of adult Long-Evans Chat-cre male rats. We reported extensive projections from periaqueductal grey matter and Kölliker-Fuse regions and mild projections from the nucleus of the solitary tract, ventrolateral medulla and hypothalamus. We also injected a cre-dependent vector expressing channelrhodopsin 2 (AAV5-ChR2) fused with enhanced mCherry into the PiCo of ChAT-cre rats to optogenetic activate those neurons and investigate the role of PiCo for inspiratory/postinspiratory activity. Both in urethane-anesthetized and unrestrained conscious rats the response of ChR2-transduced neurons to light induced an increase in postinspiratory activity. Our data confirmed that PiCo seems to be dedicated to postinspiratory activity and represent a site of integration for autonomic and motor components of respiratory and non-respiratory pathways.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, 05508-000 Sao Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, 05508-000 Sao Paulo, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, 05508-000 Sao Paulo, SP, Brazil.
| |
Collapse
|
20
|
Pérez‐Atencio LF, Casarrubios AM, Ibarz JM, Barios JA, Medrano C, Pestaña D, Paul DL, Barrio LC. Respiratory disturbances and high risk of sudden death in the neonatal connexin-36 knockout mouse. Physiol Rep 2021; 9:e15109. [PMID: 34755471 PMCID: PMC8579078 DOI: 10.14814/phy2.15109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 11/24/2022] Open
Abstract
Neural circuits at the brainstem involved in the central generation of the motor patterns of respiration and cardiorespiratory chemoreflexes organize as cell assemblies connected by chemical and electrical synapses. However, the role played by the electrical connectivity mainly mediated by connexin36 (Cx36), which expression reaches peak value during the postnatal period, is still unknown. To address this issue, we analyzed here the respiratory phenotype of a mouse strain devoid constitutively of Cx36 at P14. Male Cx36-knockout mice at rest showed respiratory instability of variable degree, including a periodic Cheyne-Stokes breathing. Moreover, mice lacking Cx36 exhibited exacerbated chemoreflexes to normoxic and hypoxic hypercapnia characterized by a stronger inspiratory/expiratory coupling due to an increased sensitivity to CO2 . Deletion of Cx36 also impaired the generation of the recurrent episodes of transient bradycardia (ETBs) evoked during hypercapnic chemoreflexes; these EBTs constituted a powerful mechanism of cardiorespiratory coupling capable of improving alveolar gaseous exchange under hypoxic hypercapnia conditions. Approximately half of the homo- and heterozygous Cx36KO, but none WT, mice succumbed by respiratory arrest when submitted to hypoxia-hypercapnia, the principal exogenous stressor causing sudden infant death syndrome (SIDS). The early suppression of EBTs, which worsened arterial O2 saturation, and the generation of a paroxysmal generalized clonic-tonic activity, which provoked the transition from eupneic to gasping respiration, were the critical events causing sudden death in the Cx36KO mice. These results indicate that Cx36 expression plays a pivotal role in respiratory control, cardiorespiratory coordination, and protection against SIDS at the postnatal period.
Collapse
Affiliation(s)
| | - Ana M. Casarrubios
- Unit of Experimental Neurology“Ramón y Cajal” Hospital (IRYCIS)MadridSpain
| | - José M. Ibarz
- Unit of Experimental Neurology“Ramón y Cajal” Hospital (IRYCIS)MadridSpain
| | - Juan A. Barios
- Biomedical Neuroengineering Research Group (nBio)Systems Engineering and Automation Department of Miguel Hernández UniversityElcheSpain
| | - Cristina Medrano
- Anesthesiology Service“Ramón y Cajal” Hospital (IRYCIS)MadridSpain
| | - David Pestaña
- Anesthesiology Service“Ramón y Cajal” Hospital (IRYCIS)MadridSpain
| | - David L. Paul
- Department of NeurobiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Luis C. Barrio
- Unit of Experimental Neurology“Ramón y Cajal” Hospital (IRYCIS)MadridSpain
- Centro de Tecnología Biomédica de la Universidad PolitécnicaMadridSpain
| |
Collapse
|
21
|
Acute intermittent hypoxia evokes ventilatory long-term facilitation and active expiration in unanesthetized rats. Respir Physiol Neurobiol 2021; 294:103768. [PMID: 34343692 DOI: 10.1016/j.resp.2021.103768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022]
Abstract
Acute intermittent hypoxia (AIH) modifies the functioning of the respiratory network, causing respiratory motor facilitation in anesthetized animals and a compensatory increase in pulmonary ventilation in freely behaving animals. However, it is still unclear whether the ventilatory facilitation induced by AIH in unanesthetized animals is associated with changes in the respiratory pattern. We found that Holtzman male rats (80-150 g) exposed to AIH (10 × 6% O2 for 30-40 s every 5 min, n = 9) exhibited a prolonged (30 min) increase in baseline minute ventilation (P < 0.05) compared to control animals (n = 13), combined with the occurrence of late expiratory peak flow events, suggesting the presence of active expiration. The increase in ventilation after AIH was also accompanied by reductions in arterial CO2 and body temperature (n = 5-6, P < 0.05). The systemic treatment with ketanserin (a 5-HT2 receptor antagonist) before AIH prevented the changes in ventilation and active expiration (n = 11) but potentiated the hypothermic response (n = 5, P < 0.05) when compared to appropriate control rats (n = 13). Our findings indicate that the ventilatory long-term facilitation elicited by AIH exposure in unanesthetized rats is linked to the generation of active expiration by mechanisms that may depend on the activation of serotonin receptors. In contrast, the decrease in body temperature induced by AIH may not require 5-HT2 receptor activation.
Collapse
|
22
|
Saha M, Sun QJ, Hildreth CM, Burke PGR, Phillips JK. Augmented Respiratory-Sympathetic Coupling and Hemodynamic Response to Acute Mild Hypoxia in Female Rodents With Chronic Kidney Disease. Front Physiol 2021; 12:623599. [PMID: 34113258 PMCID: PMC8185289 DOI: 10.3389/fphys.2021.623599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/15/2021] [Indexed: 11/15/2022] Open
Abstract
Carotid body feedback and hypoxia may serve to enhance respiratory–sympathetic nerve coupling (respSNA) and act as a driver of increased blood pressure. Using the Lewis polycystic kidney (LPK) rat model of chronic kidney disease, we examined respSNA in adult female rodents with CKD and their response to acute hypoxia or hypercapnia compared to Lewis control animals. Under urethane anesthesia, phrenic nerve activity, splanchnic sympathetic nerve activity (sSNA), and renal sympathetic nerve activity (rSNA) were recorded under baseline conditions and during mild hypoxic or hypercapnic challenges. At baseline, tonic SNA and blood pressure were greater in female LPK rats versus Lewis rats (all P < 0.05) and respSNA was at least two-fold larger [area under the curve (AUC), sSNA: 7.8 ± 1.1 vs. 3.4 ± 0.7 μV s, rSNA: 11.5 ± 3 vs. 4.8 ± 0.7 μV s, LPK vs. Lewis, both P < 0.05]. Mild hypoxia produced a larger pressure response in LPK [Δ mean arterial pressure (MAP) 30 ± 6 vs. 12 ± 6 mmHg] and augmented respSNA (ΔAUC, sSNA: 8.9 ± 3.4 vs. 2 ± 0.7 μV s, rSNA: 6.1 ± 1.2 vs. 3.1 ± 0.7 μV s, LPK vs. Lewis, all P ≤ 0.05). In contrast, central chemoreceptor stimulation produced comparable changes in blood pressure and respSNA (ΔMAP 13 ± 3 vs. 9 ± 5 mmHg; respSNA ΔAUC, sSNA: 2.5 ± 1 vs. 1.3 ± 0.7 μV s, rSNA: 4.2 ± 0.9 vs. 3.5 ± 1.4 μV s, LPK vs. Lewis, all P > 0.05). These results demonstrate that female rats with CKD exhibit heightened respSNA coupling at baseline that is further augmented by mild hypoxia, and not by hypercapnia. This mechanism may be a contributing driver of hypertension in this animal model of CKD.
Collapse
Affiliation(s)
- Manash Saha
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Nephrology, National Institute of Kidney Disease and Urology, Dhaka, Bangladesh.,Graduate School of Medicine, Wollongong University, Wollongong, NSW, Australia
| | - Qi-Jian Sun
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Cara M Hildreth
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter G R Burke
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia
| | | |
Collapse
|
23
|
Abbott SBG, Souza GMPR. Chemoreceptor mechanisms regulating CO 2 -induced arousal from sleep. J Physiol 2021; 599:2559-2571. [PMID: 33759184 DOI: 10.1113/jp281305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Arousal from sleep in response to CO2 is a life-preserving reflex that enhances ventilatory drive and facilitates behavioural adaptations to restore eupnoeic breathing. Recurrent activation of the CO2 -arousal reflex is associated with sleep disruption in obstructive sleep apnoea. In this review we examine the role of chemoreceptors in the carotid bodies, the retrotrapezoid nucleus and serotonergic neurons in the dorsal raphe in the CO2 -arousal reflex. We also provide an overview of the supra-medullary structures that mediate CO2 -induced arousal. We propose a framework for the CO2 -arousal reflex in which the activity of the chemoreceptors converges in the parabrachial nucleus to trigger cortical arousal.
Collapse
Affiliation(s)
- Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 29903, USA
| | - George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 29903, USA
| |
Collapse
|
24
|
Li K, Abbott SBG, Shi Y, Eggan P, Gonye EC, Bayliss DA. TRPM4 mediates a subthreshold membrane potential oscillation in respiratory chemoreceptor neurons that drives pacemaker firing and breathing. Cell Rep 2021; 34:108714. [PMID: 33535052 PMCID: PMC7888550 DOI: 10.1016/j.celrep.2021.108714] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/04/2020] [Accepted: 01/12/2021] [Indexed: 12/01/2022] Open
Abstract
Brainstem networks that control regular tidal breathing depend on excitatory drive, including from tonically active, CO2/H+-sensitive neurons of the retrotrapezoid nucleus (RTN). Here, we examine intrinsic ionic mechanisms underlying the metronomic firing activity characteristic of RTN neurons. In mouse brainstem slices, large-amplitude membrane potential oscillations are evident in synaptically isolated RTN neurons after blocking action potentials. The voltage-dependent oscillations are abolished by sodium replacement; blocking calcium channels (primarily L-type); chelating intracellular Ca2+; and inhibiting TRPM4, a Ca2+-dependent cationic channel. Likewise, oscillation voltage waveform currents are sensitive to calcium and TRPM4 channel blockers. Extracellular acidification and serotonin (5-HT) evoke membrane depolarization that augments TRPM4-dependent oscillatory activity and action potential discharge. Finally, inhibition of TRPM4 channels in the RTN of anesthetized mice reduces central respiratory output. These data implicate TRPM4 in a subthreshold oscillation that supports the pacemaker-like firing of RTN neurons required for basal, CO2-stimulated, and state-dependent breathing.
Collapse
Affiliation(s)
- Keyong Li
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Pierce Eggan
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Elizabeth C Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
25
|
Shi Y, Stornetta DS, Reklow RJ, Sahu A, Wabara Y, Nguyen A, Li K, Zhang Y, Perez-Reyes E, Ross RA, Lowell BB, Stornetta RL, Funk GD, Guyenet PG, Bayliss DA. A brainstem peptide system activated at birth protects postnatal breathing. Nature 2021; 589:426-430. [PMID: 33268898 PMCID: PMC7855323 DOI: 10.1038/s41586-020-2991-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 09/29/2020] [Indexed: 01/29/2023]
Abstract
Among numerous challenges encountered at the beginning of extrauterine life, the most celebrated is the first breath that initiates a life-sustaining motor activity1. The neural systems that regulate breathing are fragile early in development, and it is not clear how they adjust to support breathing at birth. Here we identify a neuropeptide system that becomes activated immediately after birth and supports breathing. Mice that lack PACAP selectively in neurons of the retrotrapezoid nucleus (RTN) displayed increased apnoeas and blunted CO2-stimulated breathing; re-expression of PACAP in RTN neurons corrected these breathing deficits. Deletion of the PACAP receptor PAC1 from the pre-Bötzinger complex-an RTN target region responsible for generating the respiratory rhythm-phenocopied the breathing deficits observed after RTN deletion of PACAP, and suppressed PACAP-evoked respiratory stimulation in the pre-Bötzinger complex. Notably, a postnatal burst of PACAP expression occurred in RTN neurons precisely at the time of birth, coinciding with exposure to the external environment. Neonatal mice with deletion of PACAP in RTN neurons displayed increased apnoeas that were further exacerbated by changes in ambient temperature. Our findings demonstrate that well-timed PACAP expression by RTN neurons provides an important supplementary respiratory drive immediately after birth and reveal key molecular components of a peptidergic neural circuit that supports breathing at a particularly vulnerable period in life.
Collapse
Affiliation(s)
- Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel S. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Robert J. Reklow
- Department of Physiology, Women & Children’s Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Alisha Sahu
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Yvonne Wabara
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Ashley Nguyen
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Keyong Li
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Yong Zhang
- Department of Physiology, Women & Children’s Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Rachel A. Ross
- Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA,McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Bradford B. Lowell
- Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Ruth L. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Gregory D. Funk
- Department of Physiology, Women & Children’s Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Patrice G. Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Douglas A. Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
26
|
Moreira TS, Sobrinho CR, Falquetto B, Oliveira LM, Lima JD, Mulkey DK, Takakura AC. The retrotrapezoid nucleus and the neuromodulation of breathing. J Neurophysiol 2020; 125:699-719. [PMID: 33427575 DOI: 10.1152/jn.00497.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.
Collapse
Affiliation(s)
- Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Janayna D Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| |
Collapse
|
27
|
Differential Contribution of the Retrotrapezoid Nucleus and C1 Neurons to Active Expiration and Arousal in Rats. J Neurosci 2020; 40:8683-8697. [PMID: 32973046 DOI: 10.1523/jneurosci.1006-20.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 12/31/2022] Open
Abstract
Collectively, the retrotrapezoid nucleus (RTN) and adjacent C1 neurons regulate breathing, circulation and the state of vigilance, but previous methods to manipulate the activity of these neurons have been insufficiently selective to parse out their relative roles. We hypothesize that RTN and C1 neurons regulate distinct aspects of breathing (e.g., frequency, amplitude, active expiration, sighing) and differ in their ability to produce arousal from sleep. Here we use optogenetics and a combination of viral vectors in adult male and female Th-Cre rats to transduce selectively RTN (Phox2b+ /Nmb +) or C1 neurons (Phox2b+/Th +) with Channelrhodopsin-2. RTN photostimulation modestly increased the probability of arousal. RTN stimulation robustly increased breathing frequency and amplitude; it also triggered strong active expiration but not sighs. Consistent with these responses, RTN innervates the entire pontomedullary respiratory network, including expiratory premotor neurons in the caudal ventral respiratory group, but RTN has very limited projections to brainstem regions that regulate arousal (locus ceruleus, CGRP+ parabrachial neurons). C1 neuron stimulation produced robust arousals and similar increases in breathing frequency and amplitude compared with RTN stimulation, but sighs were elicited and active expiration was absent. Unlike RTN, C1 neurons innervate the locus ceruleus, CGRP+ processes within the parabrachial complex, and lack projections to caudal ventral respiratory group. In sum, stimulating C1 or RTN activates breathing robustly, but only RTN neuron stimulation produces active expiration, consistent with their role as central respiratory chemoreceptors. Conversely, C1 stimulation strongly stimulates ascending arousal systems and sighs, consistent with their postulated role in acute stress responses.SIGNIFICANCE STATEMENT The C1 neurons and the retrotrapezoid nucleus (RTN) reside in the rostral ventrolateral medulla. Both regulate breathing and the cardiovascular system but in ways that are unclear because of technical limitations (anesthesia, nonselective neuronal actuators). Using optogenetics in unanesthetized rats, we found that selective stimulation of either RTN or C1 neurons activates breathing. However, only RTN triggers active expiration, presumably because RTN, unlike C1, has direct excitatory projections to abdominal premotor neurons. The arousal potential of the C1 neurons is far greater than that of the RTN, however, consistent with C1's projections to brainstem wake-promoting structures. In short, C1 neurons orchestrate cardiorespiratory and arousal responses to somatic stresses, whereas RTN selectively controls lung ventilation and arterial Pco2 stability.
Collapse
|
28
|
Dempsey JA, Smith CA. Update on Chemoreception: Influence on Cardiorespiratory Regulation and Pathophysiology. Clin Chest Med 2020; 40:269-283. [PMID: 31078209 DOI: 10.1016/j.ccm.2019.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We examine recent findings that have revealed interdependence of function within the chemoreceptor pathway regulating breathing and sympathetic vasomotor activity and the hypersensitization of these reflexes in chronic disease states. Recommendations are made as to how these states of hyperreflexia in chemoreceptors and muscle afferents might be modified in treating sleep apnea, drug-resistant hypertension, chronic heart failure-induced sympathoexcitation, and the exertional dyspnea of chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Jerome A Dempsey
- Department Population Health Sciences, University of Wisconsin-Madison, 707 WARF Building, 610 N. Walnut Street, WI 53726, USA.
| | - Curtis A Smith
- Department Population Health Sciences, University of Wisconsin-Madison, 707 WARF Building, 610 N. Walnut Street, WI 53726, USA
| |
Collapse
|
29
|
Xu X, Mee T, Jia X. New era of optogenetics: from the central to peripheral nervous system. Crit Rev Biochem Mol Biol 2020; 55:1-16. [PMID: 32070147 DOI: 10.1080/10409238.2020.1726279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Optogenetics has recently gained recognition as a biological technique to control the activity of cells using light stimulation. Many studies have applied optogenetics to cell lines in the central nervous system because it has the potential to elucidate neural circuits, treat neurological diseases and promote nerve regeneration. There have been fewer studies on the application of optogenetics in the peripheral nervous system. This review introduces the basic principles and approaches of optogenetics and summarizes the physiology and mechanism of opsins and how the technology enables bidirectional control of unique cell lines with superior spatial and temporal accuracy. Further, this review explores and discusses the therapeutic potential for the development of optogenetics and its capacity to revolutionize treatment for refractory epilepsy, depression, pain, and other nervous system disorders, with a focus on neural regeneration, especially in the peripheral nervous system. Additionally, this review synthesizes the latest preclinical research on optogenetic stimulation, including studies on non-human primates, summarizes the challenges, and highlights future perspectives. The potential of optogenetic stimulation to optimize therapy for peripheral nerve injuries (PNIs) is also highlighted. Optogenetic technology has already generated exciting, preliminary evidence, supporting its role in applications to several neurological diseases, including PNIs.
Collapse
Affiliation(s)
- Xiang Xu
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Thomas Mee
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Souza GMPR, Stornetta RL, Stornetta DS, Abbott SBG, Guyenet PG. Contribution of the Retrotrapezoid Nucleus and Carotid Bodies to Hypercapnia- and Hypoxia-induced Arousal from Sleep. J Neurosci 2019; 39:9725-9737. [PMID: 31641048 PMCID: PMC6891059 DOI: 10.1523/jneurosci.1268-19.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/03/2019] [Accepted: 10/16/2019] [Indexed: 11/21/2022] Open
Abstract
The combination of hypoxia and hypercapnia during sleep produces arousal, which helps restore breathing and normalizes blood gases. Hypercapnia and hypoxia produce arousal in mammals by activating central (pH-sensitive) and peripheral (primarily O2-sensitive) chemoreceptors. The relevant chemoreceptors and the neuronal circuits responsible for arousal are largely unknown. Here we examined the contribution of two lower brainstem nuclei that could be implicated in CO2 and hypoxia-induced arousal: the retrotrapezoid nucleus (RTN), a CO2-responsive nucleus, which mediates the central respiratory chemoreflex; and the C1 neurons, which are hypoxia activated and produce arousal and blood pressure increases when directly stimulated. Additionally, we assessed the contribution of the carotid bodies (CBs), the main peripheral chemoreceptors in mammals, to hypoxia and CO2-induced arousal. In unanesthetized male rats, we tested whether ablation of the RTN, CBs, or C1 neurons affects arousal from sleep and respiratory responses to hypercapnia or hypoxia. The sleep-wake pattern was monitored by EEG and neck EMG recordings and breathing by whole-body plethysmography. The latency to arousal in response to hypoxia or hypercapnia was determined along with changes in ventilation coincident with the arousal. RTN lesions impaired CO2-induced arousal but had no effect on hypoxia-induced arousal. CB ablation impaired arousal to hypoxia and, to a lesser extent, hypercapnia. C1 neuron ablation had no effect on arousal. Thus, the RTN contributes to CO2-induced arousal, whereas the CBs contribute to both hypoxia and CO2-induced arousal. Asphyxia-induced arousal likely requires the combined activation of RTN, CBs and other central chemoreceptors.SIGNIFICANCE STATEMENT Hypercapnia and hypoxia during sleep elicit arousal, which facilitates airway clearing in the case of obstruction and reinstates normal breathing in the case of hypoventilation or apnea. Arousal can also be detrimental to health by interrupting sleep. We sought to clarify how CO2 and hypoxia cause arousal. We show that the retrotrapezoid nucleus, a brainstem nucleus that mediates the effect of brain acidification on breathing, also contributes to arousal elicited by CO2 but not hypoxia. We also show that the carotid bodies contribute predominantly to hypoxia-induced arousal. Lesions of the retrotrapezoid nucleus or carotid bodies attenuate, but do not eliminate, arousal to CO2 or hypoxia; therefore, we conclude that these structures are not the sole trigger of CO2 or hypoxia-induced arousal.
Collapse
Affiliation(s)
- George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Daniel S Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
31
|
Souza GMPR, Kanbar R, Stornetta DS, Abbott SBG, Stornetta RL, Guyenet PG. Breathing regulation and blood gas homeostasis after near complete lesions of the retrotrapezoid nucleus in adult rats. J Physiol 2019; 596:2521-2545. [PMID: 29667182 DOI: 10.1113/jp275866] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS The retrotrapezoid nucleus (RTN) drives breathing proportionally to brain PCO2 but its role during various states of vigilance needs clarification. Under normoxia, RTN lesions increased the arterial PCO2 set-point, lowered the PO2 set-point and reduced alveolar ventilation relative to CO2 production. Tidal volume was reduced and breathing frequency increased to a comparable degree during wake, slow-wave sleep and REM sleep. RTN lesions did not produce apnoeas or disordered breathing during sleep. RTN lesions in rats virtually eliminated the central respiratory chemoreflex (CRC) while preserving the cardiorespiratory responses to hypoxia; the relationship between CRC and number of surviving RTN Nmb neurons was an inverse exponential. The CRC does not function without the RTN. In the quasi-complete absence of the RTN and CRC, alveolar ventilation is reduced despite an increased drive to breathe from the carotid bodies. ABSTRACT The retrotrapezoid nucleus (RTN) is one of several CNS nuclei that contribute, in various capacities (e.g. CO2 detection, neuronal modulation) to the central respiratory chemoreflex (CRC). Here we test how important the RTN is to PCO2 homeostasis and breathing during sleep or wake. RTN Nmb-positive neurons were killed with targeted microinjections of substance P-saporin conjugate in adult rats. Under normoxia, rats with large RTN lesions (92 ± 4% cell loss) had normal blood pressure and arterial pH but were hypoxic (-8 mmHg PaO2 ) and hypercapnic (+10 mmHg ). In resting conditions, minute volume (VE ) was normal but breathing frequency (fR ) was elevated and tidal volume (VT ) reduced. Resting O2 consumption and CO2 production were normal. The hypercapnic ventilatory reflex in 65% FiO2 had an inverse exponential relationship with the number of surviving RTN neurons and was decreased by up to 92%. The hypoxic ventilatory reflex (HVR; FiO2 21-10%) persisted after RTN lesions, hypoxia-induced sighing was normal and hypoxia-induced hypotension was reduced. In rats with RTN lesions, breathing was lowest during slow-wave sleep, especially under hyperoxia, but apnoeas and sleep-disordered breathing were not observed. In conclusion, near complete RTN destruction in rats virtually eliminates the CRC but the HVR persists and sighing and the state dependence of breathing are unchanged. Under normoxia, RTN lesions cause no change in VE but alveolar ventilation is reduced by at least 21%, probably because of increased physiological dead volume. RTN lesions do not cause sleep apnoea during slow-wave sleep, even under hyperoxia.
Collapse
Affiliation(s)
- George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Roy Kanbar
- Department of Pharmaceutical Sciences, Lebanese American University, Beyrouth, Lebanon
| | - Daniel S Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
32
|
Optogenetic analysis of respiratory neuronal networks in the ventral medulla of neonatal rats producing channelrhodopsin in Phox2b-positive cells. Pflugers Arch 2019; 471:1419-1439. [DOI: 10.1007/s00424-019-02317-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/06/2019] [Accepted: 10/04/2019] [Indexed: 12/19/2022]
|
33
|
Guyenet PG, Stornetta RL, Souza GMPR, Abbott SBG, Shi Y, Bayliss DA. The Retrotrapezoid Nucleus: Central Chemoreceptor and Regulator of Breathing Automaticity. Trends Neurosci 2019; 42:807-824. [PMID: 31635852 DOI: 10.1016/j.tins.2019.09.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
The ventral surface of the rostral medulla oblongata has been suspected since the 1960s to harbor central respiratory chemoreceptors [i.e., acid-activated neurons that regulate breathing to maintain a constant arterial PCO2 (PaCO2)]. The key neurons, a.k.a. the retrotrapezoid nucleus (RTN), have now been identified. In this review we describe their transcriptome, developmental lineage, and anatomical projections. We also review their contribution to CO2 homeostasis and to the regulation of breathing automaticity during sleep and wake. Finally, we discuss several mechanisms that contribute to the activation of RTN neurons by CO2in vivo: cell-autonomous effects of protons; paracrine effects of pH mediated by surrounding astrocytes and blood vessels; and excitatory inputs from other CO2-responsive CNS neurons.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
34
|
MacMillan S, Evans AM. The Hypoxic Ventilatory Response is Blocked by AMPK Deletion in Catecholaminergic, but not Adrenergic Cells. FASEB J 2019. [DOI: 10.1096/fasebj.2019.33.1_supplement.551.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sandy MacMillan
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - A. Mark Evans
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
35
|
Lindsey BG, Nuding SC, Segers LS, Morris KF. Carotid Bodies and the Integrated Cardiorespiratory Response to Hypoxia. Physiology (Bethesda) 2019; 33:281-297. [PMID: 29897299 DOI: 10.1152/physiol.00014.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Advances in our understanding of brain mechanisms for the hypoxic ventilatory response, coordinated changes in blood pressure, and the long-term consequences of chronic intermittent hypoxia as in sleep apnea, such as hypertension and heart failure, are giving impetus to the search for therapies to "erase" dysfunctional memories distributed in the carotid bodies and central nervous system. We review current network models, open questions, sex differences, and implications for translational research.
Collapse
Affiliation(s)
- Bruce G Lindsey
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Sarah C Nuding
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Lauren S Segers
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| |
Collapse
|
36
|
Basting T, Xu J, Mukerjee S, Epling J, Fuchs R, Sriramula S, Lazartigues E. Glutamatergic neurons of the paraventricular nucleus are critical contributors to the development of neurogenic hypertension. J Physiol 2018; 596:6235-6248. [PMID: 30151830 PMCID: PMC6292814 DOI: 10.1113/jp276229] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Recurrent periods of over-excitation in the paraventricular nucleus (PVN) of the hypothalamus could contribute to chronic over-activation of this nucleus and thus enhanced sympathetic drive. Stimulation of the PVN glutamatergic population utilizing channelrhodopsin-2 leads to an immediate frequency-dependent increase in baseline blood pressure. Partial lesions of glutamatergic neurons of the PVN (39.3%) result in an attenuated rise in blood pressure following Deoxycorticosterone acetate (DOCA)-salt treatment and reduced index of sympathetic activity. These data suggest that stimulation of PVN glutamatergic neurons is sufficient to cause autonomic dysfunction and drive the increase in blood pressure during hypertension. ABSTRACT Neuro-cardiovascular dysregulation leads to increased sympathetic activity and neurogenic hypertension. The paraventricular nucleus (PVN) of the hypothalamus is a key hub for blood pressure (BP) control, producing or relaying the increased sympathetic tone in hypertension. We hypothesize that increased central sympathetic drive is caused by chronic over-excitation of glutamatergic PVN neurons. We tested how stimulation or lesioning of excitatory PVN neurons in conscious mice affects BP, baroreflex and sympathetic activity. Glutamatergic PVN neurons were unilaterally transduced with channelrhodopsin-2 using an adeno-associated virus (CamKII-ChR2-eYFP-AAV2) in wildtype mice (n = 7) to assess the impact of acute stimulation of excitatory PVN neurons selectively on resting BP in conscious mice. Stimulation of the PVN glutamatergic population resulted in an immediate frequency-dependent (2, 10 and 20 Hz) increase in BP from baseline by ∼9 mmHg at 20 Hz stimulation (P < 0.001). Additionally, in vGlut2-cre mice glutamatergic neurons of the PVN were bilaterally lesioned utilizing a cre-dependent caspase (AAV2-flex-taCASP3-TEVp). Resting BP and urinary noradrenaline (norepinephrine) levels were then recorded in conscious mice before and after DOCA-salt hypertension. Partial lesions of glutamatergic neurons of the PVN (39.3%, P < 0.05) resulted in an attenuated rise in BP following DOCA-salt treatment (P < 0.05 at 7 day time point, n = 8). Noradrenaline levels as an index of sympathetic activity between the lesion and wildtype groups showed a significant reduction after DOCA-salt treatment in the lesioned animals (P < 0.05). These experiments suggest that stimulation of PVN glutamatergic neurons is sufficient to cause autonomic dysfunction and drive the increase in BP.
Collapse
Affiliation(s)
- Tyler Basting
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLA70112USA
| | - Jiaxi Xu
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLA70112USA
| | - Snigdha Mukerjee
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLA70112USA
| | - Joel Epling
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLA70112USA
| | - Robert Fuchs
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLA70112USA
| | - Srinivas Sriramula
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLA70112USA
- Department of Pharmacology and Toxicology, Brody School of MedicineEast Carolina UniversityGreenvilleNC27834USA
| | - Eric Lazartigues
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLA70112USA
- Cardiovascular Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLA70112USA
- Neuroscience Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLA70112USA
- Southeast Louisiana Veterans Health Care SystemNew OrleansLAUSA
| |
Collapse
|
37
|
Ikeda K, Kaneko R, Yanagawa Y, Ogawa M, Kobayashi K, Arata S, Kawakami K, Onimaru H. Analysis of the neuronal network of the medullary respiratory center in transgenic rats expressing archaerhodopsin-3 in Phox2b-expressing cells. Brain Res Bull 2018; 144:39-45. [PMID: 30448454 DOI: 10.1016/j.brainresbull.2018.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 11/18/2022]
Abstract
Preinspiratory (Pre-I) neurons in the parafacial respiratory group (pFRG) comprise one of the respiratory rhythm generators in the medulla of the neonatal rat. A subgroup of pFRG/Pre-I neurons expresses the transcription factor Phox2b. To further analyze detailed neuronal mechanisms of respiratory rhythm generation in the neonatal rat, we developed a transgenic (Tg) rat line in which Phox2b-positive cells expressed archaerhodopsin-3 (Arch). Brainstem-spinal cord preparations were isolated from 0-2-day-old Tg newborn rats and were superfused with artificial cerebrospinal fluid equilibrated with 95% O2 and 5% CO2, pH 7.4, at 25-26 °C. Inspiratory fourth cervical ventral root (C4) activity was monitored, and membrane potentials of neurons in the pFRG including Pre-I and inspiratory neurons were recorded. Phox2b-positive cells in the Tg rats were essentially positive for enhanced green fluorescent protein (EGFP) signals (reporter for Arch) in the pFRG. Continuous photo-stimulation of the rostral ventral medulla for up to 90 s by covering the pFRG with green laser light (532 nm) induced a decrease of respiratory rate measured at C4 accompanied by membrane hyperpolarization of Phox2b-positive pFRG/Pre-I neurons. In contrast, Phox2b-negative inspiratory neurons were not hyperpolarized during the photo-stimulation. Our findings showed that Phox2b-expressing pFRG/Pre-I neurons are involved in the maintenance of the basic respiratory rhythm in neonatal rat.
Collapse
Affiliation(s)
- Keiko Ikeda
- Department of Physiology, International University of Health and Welfare (IUHW), 4-3 Kozunomori, Narita City, Chiba 286-8686, Japan
| | - Ryosuke Kaneko
- Bioresource Center, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| | - Yuchio Yanagawa
- Department of Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| | - Masaaki Ogawa
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Satoru Arata
- Center for Biotechnology, Showa University, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo 142-8555, Japan.
| |
Collapse
|
38
|
Guyenet PG, Bayliss DA, Stornetta RL, Kanbar R, Shi Y, Holloway BB, Souza GMPR, Basting TM, Abbott SBG, Wenker IC. Interdependent feedback regulation of breathing by the carotid bodies and the retrotrapezoid nucleus. J Physiol 2017; 596:3029-3042. [PMID: 29168167 DOI: 10.1113/jp274357] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022] Open
Abstract
The retrotrapezoid nucleus (RTN) regulates breathing in a CO2 - and state-dependent manner. RTN neurons are glutamatergic and innervate principally the respiratory pattern generator; they regulate multiple aspects of breathing, including active expiration, and maintain breathing automaticity during non-REM sleep. RTN neurons encode arterial PCO2 /pH via cell-autonomous and paracrine mechanisms, and via input from other CO2 -responsive neurons. In short, RTN neurons are a pivotal structure for breathing automaticity and arterial PCO2 homeostasis. The carotid bodies stimulate the respiratory pattern generator directly and indirectly by activating RTN via a neuronal projection originating within the solitary tract nucleus. The indirect pathway operates under normo- or hypercapnic conditions; under respiratory alkalosis (e.g. hypoxia) RTN neurons are silent and the excitatory input from the carotid bodies is suppressed. Also, silencing RTN neurons optogenetically quickly triggers a compensatory increase in carotid body activity. Thus, in conscious mammals, breathing is subject to a dual and interdependent feedback regulation by chemoreceptors. Depending on the circumstance, the activity of the carotid bodies and that of RTN vary in the same or the opposite directions, producing additive or countervailing effects on breathing. These interactions are mediated either via changes in blood gases or by brainstem neuronal connections, but their ultimate effect is invariably to minimize arterial PCO2 fluctuations. We discuss the potential relevance of this dual chemoreceptor feedback to cardiorespiratory abnormalities present in diseases in which the carotid bodies are hyperactive at rest, e.g. essential hypertension, obstructive sleep apnoea and heart failure.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Roy Kanbar
- Department of Pharmaceutical Sciences, Lebanese American University, Beyrouth, Lebanon
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Benjamin B Holloway
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Tyler M Basting
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University, New Orleans, Louisiana 70112, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Ian C Wenker
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
39
|
Gozal D. The Energy Crisis Revisited: AMP-activated Protein Kinase and the Mammalian Hypoxic Ventilatory Response. Am J Respir Crit Care Med 2017; 193:945-6. [PMID: 27128704 DOI: 10.1164/rccm.201512-2323ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- David Gozal
- 1 Department of Pediatrics University of Chicago Chicago, Illinois
| |
Collapse
|
40
|
Neuromedin B Expression Defines the Mouse Retrotrapezoid Nucleus. J Neurosci 2017; 37:11744-11757. [PMID: 29066557 DOI: 10.1523/jneurosci.2055-17.2017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/09/2017] [Indexed: 11/21/2022] Open
Abstract
The retrotrapezoid nucleus (RTN) consists, by definition, of Phox2b-expressing, glutamatergic, non-catecholaminergic, noncholinergic neurons located in the parafacial region of the medulla oblongata. An unknown proportion of RTN neurons are central respiratory chemoreceptors and there is mounting evidence for biochemical diversity among these cells. Here, we used multiplexed in situ hybridization and single-cell RNA-Seq in male and female mice to provide a more comprehensive view of the phenotypic diversity of RTN neurons. We now demonstrate that the RTN of mice can be identified with a single and specific marker, Neuromedin B mRNA (Nmb). Most (∼75%) RTN neurons express low-to-moderate levels of Nmb and display chemoreceptor properties. Namely they are activated by hypercapnia, but not by hypoxia, and express proton sensors, TASK-2 and Gpr4. These Nmb-low RTN neurons also express varying levels of transcripts for Gal, Penk, and Adcyap1, and receptors for substance P, orexin, serotonin, and ATP. A subset of RTN neurons (∼20-25%), typically larger than average, express very high levels of Nmb mRNA. These Nmb-high RTN neurons do not express Fos after hypercapnia and have low-to-undetectable levels of Kcnk5 or Gpr4 transcripts; they also express Adcyap1, but are essentially devoid of Penk and Gal transcripts. In male rats, Nmb is also a marker of the RTN but, unlike in mice, this gene is expressed by other types of nearby neurons located within the ventromedial medulla. In sum, Nmb is a selective marker of the RTN in rodents; Nmb-low neurons, the vast majority, are central respiratory chemoreceptors, whereas Nmb-high neurons likely have other functions.SIGNIFICANCE STATEMENT Central respiratory chemoreceptors regulate arterial PCO2 by adjusting lung ventilation. Such cells have recently been identified within the retrotrapezoid nucleus (RTN), a brainstem nucleus defined by genetic lineage and a cumbersome combination of markers. Using single-cell RNA-Seq and multiplexed in situ hybridization, we show here that a single marker, Neuromedin B mRNA (Nmb), identifies RTN neurons in rodents. We also suggest that >75% of these Nmb neurons are chemoreceptors because they are strongly activated by hypercapnia and express high levels of proton sensors (Kcnk5 and Gpr4). The other RTN neurons express very high levels of Nmb, but low levels of Kcnk5/Gpr4/pre-pro-galanin/pre-pro-enkephalin, and do not respond to hypercapnia. Their function is unknown.
Collapse
|
41
|
Impaired chemosensory control of breathing after depletion of bulbospinal catecholaminergic neurons in rats. Pflugers Arch 2017; 470:277-293. [PMID: 29032505 DOI: 10.1007/s00424-017-2078-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/11/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023]
Abstract
Bulbospinal catecholaminergic neurons located in the rostral aspect of the ventrolateral medulla (C1 neurons) or within the ventrolateral pons (A5 neurons) are involved in the regulation of blood pressure and sympathetic outflow. A stimulus that commonly activates the C1 or A5 neurons is hypoxia, which is also involved in breathing activation. Although pharmacological and optogenetic evidence suggests that catecholaminergic neurons also regulate breathing, a specific contribution of the bulbospinal neurons to respiratory control has not been demonstrated. Therefore, in the present study, we evaluated whether the loss of bulbospinal catecholaminergic C1 and A5 cells affects cardiorespiratory control during resting, hypoxic (8% O2), and hypercapnic (7% CO2) conditions in unanesthetized rats. Thoracic spinal cord (T4-T8) injections of the immunotoxin anti-dopamine β-hydroxylase-saporin (anti-DβH-SAP-2.4 ng/100 nl) and the retrograde tracer Fluor-Gold or ventrolateral pontine injections of 6-OHDA were performed in adult male Wistar rats (250-280 g, N = 7-9/group). Anti-DβH-SAP or 6-OHDA eliminated most bulbospinal C1 and A5 neurons or A5 neurons, respectively. Serotonergic neurons and astrocytes were spared. Depletion of the bulbospinal catecholaminergic cells did not change cardiorespiratory variables under resting condition, but it did affect the response to hypoxia and hypercapnia. Specifically, the increase in the ventilation, the number of sighs, and the tachycardia were reduced, but the MAP increased during hypoxia in anti-DβH-SAP-treated rats. Our data reveal that the bulbospinal catecholaminergic neurons (A5 and C1) facilitate the ventilatory reflex to hypoxia and hypercapnia.
Collapse
|
42
|
Wiegert JS, Mahn M, Prigge M, Printz Y, Yizhar O. Silencing Neurons: Tools, Applications, and Experimental Constraints. Neuron 2017; 95:504-529. [PMID: 28772120 DOI: 10.1016/j.neuron.2017.06.050] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 12/16/2022]
Abstract
Reversible silencing of neuronal activity is a powerful approach for isolating the roles of specific neuronal populations in circuit dynamics and behavior. In contrast with neuronal excitation, for which the majority of studies have used a limited number of optogenetic and chemogenetic tools, the number of genetically encoded tools used for inhibition of neuronal activity has vastly expanded. Silencing strategies vary widely in their mechanism of action and in their spatial and temporal scales. Although such manipulations are commonly applied, the design and interpretation of neuronal silencing experiments present unique challenges, both technically and conceptually. Here, we review the most commonly used tools for silencing neuronal activity and provide an in-depth analysis of their mechanism of action and utility for particular experimental applications. We further discuss the considerations that need to be given to experimental design, analysis, and interpretation of collected data. Finally, we discuss future directions for the development of new silencing approaches in neuroscience.
Collapse
Affiliation(s)
- J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, Falkenried 94, 20251 Hamburg, Germany
| | - Mathias Mahn
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Matthias Prigge
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoav Printz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ofer Yizhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
43
|
Nalcn Is a "Leak" Sodium Channel That Regulates Excitability of Brainstem Chemosensory Neurons and Breathing. J Neurosci 2017; 36:8174-87. [PMID: 27488637 DOI: 10.1523/jneurosci.1096-16.2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/15/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED The activity of background potassium and sodium channels determines neuronal excitability, but physiological roles for "leak" Na(+) channels in specific mammalian neurons have not been established. Here, we show that a leak Na(+) channel, Nalcn, is expressed in the CO2/H(+)-sensitive neurons of the mouse retrotrapezoid nucleus (RTN) that regulate breathing. In RTN neurons, Nalcn expression correlated with higher action potential discharge over a more alkalized range of activity; shRNA-mediated depletion of Nalcn hyperpolarized RTN neurons, and reduced leak Na(+) current and firing rate. Nalcn depletion also decreased RTN neuron activation by the neuropeptide, substance P, without affecting pH-sensitive background K(+) currents or activation by a cotransmitter, serotonin. In vivo, RTN-specific knockdown of Nalcn reduced CO2-evoked neuronal activation and breathing; hypoxic hyperventilation was unchanged. Thus, Nalcn regulates RTN neuronal excitability and stimulation by CO2, independent of direct pH sensing, potentially contributing to respiratory effects of Nalcn mutations; transmitter modulation of Nalcn may underlie state-dependent changes in breathing and respiratory chemosensitivity. SIGNIFICANCE STATEMENT Breathing is an essential, enduring rhythmic motor activity orchestrated by dedicated brainstem circuits that require tonic excitatory drive for their persistent function. A major source of drive is from a group of CO2/H(+)-sensitive neurons in the retrotrapezoid nucleus (RTN), whose ongoing activity is critical for breathing. The ionic mechanisms that support spontaneous activity of RTN neurons are unknown. We show here that Nalcn, a unique channel that generates "leak" sodium currents, regulates excitability and neuromodulation of RTN neurons and CO2-stimulated breathing. Thus, this work defines a specific function for this enigmatic channel in an important physiological context.
Collapse
|
44
|
Depletion of rostral ventrolateral medullary catecholaminergic neurons impairs the hypoxic ventilatory response in conscious rats. Neuroscience 2017; 351:1-14. [DOI: 10.1016/j.neuroscience.2017.03.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
|
45
|
Blood Pressure Regulation by the Rostral Ventrolateral Medulla in Conscious Rats: Effects of Hypoxia, Hypercapnia, Baroreceptor Denervation, and Anesthesia. J Neurosci 2017; 37:4565-4583. [PMID: 28363984 DOI: 10.1523/jneurosci.3922-16.2017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/23/2017] [Accepted: 03/26/2017] [Indexed: 02/07/2023] Open
Abstract
Current understanding of the contribution of C1 neurons to blood pressure (BP) regulation derives predominantly from experiments performed in anesthetized animals or reduced ex vivo preparations. Here, we use ArchaerhodopsinT3.0 (ArchT) loss-of-function optogenetics to explore BP regulation by C1 neurons in intact, unanesthetized rats. Using a lentivirus that expresses ArchT under the Phox2b-activated promoter PRSx8 (PRSx8-ArchT), ∼65% of transduced neurons were C1 (balance retrotrapezoid nucleus, RTN). Other rats received CaMKII-ArchT3.0 AAV2 (CaMKII-ArchT), which transduced C1 neurons and larger numbers of unidentified glutamatergic and GABAergic cells. Under anesthesia, ArchT photoactivation reduced sympathetic nerve activity and BP and silenced/strongly inhibited most (7/12) putative C1 neurons. In unanesthetized PRSx8-ArchT-treated rats breathing room air, bilateral ArchT photoactivation caused a very small BP reduction that was only slightly larger under hypercapnia (6% FiCO2), but was greatly enhanced during hypoxia (10 and 12% FiO2), after sino-aortic denervation, or during isoflurane anesthesia. The degree of hypotension correlated with percentage of ArchT-transduced C1 neurons. ArchT photoactivation produced similar BP changes in CaMKII-ArchT-treated rats. Photoactivation in PRSX8-ArchT rats reduced breathing frequency (FR), whereas FR increased in CaMKII-ArchT rats. We conclude that the BP drop elicited by ArchT activation resulted from C1 neuron inhibition and was unrelated to breathing changes. C1 neurons have low activity under normoxia, but their activation is important to BP stability during hypoxia or anesthesia and contributes greatly to the hypertension caused by baroreceptor deafferentation. Finally, C1 neurons are marginally activated by hypercapnia and the large breathing stimulation caused by this stimulus has very little impact on resting BP.SIGNIFICANCE STATEMENT C1 neurons are glutamatergic/peptidergic/catecholaminergic neurons located in the medulla oblongata, which may operate as a switchboard for differential, behavior-appropriate activation of selected sympathetic efferents. Based largely on experimentation in anesthetized or reduced preparations, a rostrally located subset of C1 neurons may contribute to both BP stabilization and dysregulation (hypertension). Here, we used Archaerhodopsin-based loss-of-function optogenetics to explore the contribution of these neurons to BP in conscious rats. The results suggest that C1 neurons contribute little to resting BP under normoxia or hypercapnia, C1 neuron discharge is restrained continuously by arterial baroreceptors, and C1 neuron activation is critical to stabilize BP under hypoxia or anesthesia. This optogenetic approach could also be useful to explore the role of C1 neurons during specific behaviors or in hypertensive models.
Collapse
|
46
|
Totola LT, Takakura AC, Oliveira JAC, Garcia-Cairasco N, Moreira TS. Impaired central respiratory chemoreflex in an experimental genetic model of epilepsy. J Physiol 2016; 595:983-999. [PMID: 27633663 DOI: 10.1113/jp272822] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS It is recognized that seizures commonly cause apnoea and oxygen desaturation, but there is still a lack in the literature about the respiratory impairments observed ictally and in the post-ictal period. Respiratory disorders may involve changes in serotonergic transmission at the level of the retrotrapezoid nucleus (RTN). In this study, we evaluated breathing activity and the role of serotonergic transmission in the RTN with a rat model of tonic-clonic seizures, the Wistar audiogenic rat (WAR). We conclude that the respiratory impairment in the WAR could be correlated to an overall decrease in the number of neurons located in the respiratory column. ABSTRACT Respiratory disorders may involve changes in serotonergic neurotransmission at the level of the chemosensitive neurons located in the retrotrapezoid nucleus (RTN). Here, we investigated the central respiratory chemoreflex and the role of serotonergic neurotransmission in the RTN with a rat model of tonic-clonic seizures, the Wistar audiogenic rat (WAR). We found that naive or kindled WARs have reduced resting ventilation and ventilatory response to hypercapnia (7% CO2 ). The number of chemically coded (Phox2b+ /TH- ) RTN neurons, as well as the serotonergic innervation to the RTN, was reduced in WARs. We detected that the ventilatory response to serotonin (1 mm, 50 nl) within the RTN region was significantly reduced in WARs. Our results uniquely demonstrated a respiratory impairment in a genetic model of tonic-clonic seizures, the WAR strain. More importantly, we demonstrated an overall decrease in the number of neurons located in the ventral respiratory column (VRC), as well as a reduction in serotonergic neurons in the midline medulla. This is an important step forward to demonstrate marked changes in neuronal activity and breathing impairment in the WAR strain, a genetic model of epilepsy.
Collapse
Affiliation(s)
- Leonardo T Totola
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - José Antonio C Oliveira
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
47
|
Kanbar R, Stornetta RL, Guyenet PG. Sciatic nerve stimulation activates the retrotrapezoid nucleus in anesthetized rats. J Neurophysiol 2016; 116:2081-2092. [PMID: 27512023 DOI: 10.1152/jn.00543.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/03/2016] [Indexed: 11/22/2022] Open
Abstract
Retrotrapezoid nucleus (RTN) neurons sustain breathing automaticity. These neurons have chemoreceptor properties, but their firing is also regulated by multiple synaptic inputs of uncertain function. Here we test whether RTN neurons, like neighboring presympathetic neurons, are excited by somatic afferent stimulation. Experiments were performed in Inactin-anesthetized, bilaterally vagotomized, paralyzed, mechanically ventilated Sprague-Dawley rats. End-expiratory CO2 (eeCO2) was varied between 4% and 10% to modify rate and amplitude of phrenic nerve discharge (PND). RTN and presympathetic neurons were recorded extracellularly below the facial motor nucleus with established criteria. Sciatic nerve stimulation (SNstim, 1 ms, 0.5 Hz) slightly increased blood pressure (6.6 ± 1.6 mmHg) and heart rate and, at low eeCO2 (<5.5%), entrained PND. Ipsi- and contralateral SNstim produced the known biphasic activation of presympathetic neurons. SNstim evoked a similar but weaker biphasic response in up to 67% of RTN neurons and monophasic excitation in the rest. At low eeCO2, RTN neurons were silent and responded more weakly to SNstim than at high eeCO2 RTN neuron firing was respiratory modulated to various degrees. The phasic activation of RTN neurons elicited by SNstim was virtually unchanged at high eeCO2 when PND entrainment to the stimulus was disrupted. Thus RTN neuron response to SNstim did not result from entrainment to the central pattern generator. Overall, SNstim shifted the relationship between RTN firing and eeCO2 upward. In conclusion, somatic afferent stimulation increases RTN neuron firing probability without altering their response to CO2. This pathway may contribute to the hyperpnea triggered by nociception, exercise (muscle metabotropic reflex), or hyperthermia.
Collapse
Affiliation(s)
- Roy Kanbar
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon; and
| | - Ruth L Stornetta
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Patrice G Guyenet
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
48
|
Toledo C, Andrade DC, Lucero C, Schultz HD, Marcus N, Retamal M, Madrid C, Del Rio R. Contribution of peripheral and central chemoreceptors to sympatho-excitation in heart failure. J Physiol 2016; 595:43-51. [PMID: 27218485 DOI: 10.1113/jp272075] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/20/2016] [Indexed: 12/18/2022] Open
Abstract
Chronic heart failure (CHF) is a major public health problem. Tonic hyper-activation of sympathetic neural outflow is commonly observed in patients with CHF. Importantly, sympatho-excitation in CHF exacerbates its progression and is strongly related to poor prognosis and high mortality risk. Increases in both peripheral and central chemoreflex drive are considered markers of the severity of CHF. The principal peripheral chemoreceptors are the carotid bodies (CBs) and alteration in their function has been described in CHF. Mainly, during CHF the CB chemosensitivity is enhanced leading to increases in ventilation and sympathetic outflow. In addition to peripheral control of breathing, central chemoreceptors (CCs) are considered a dominant mechanism in ventilatory regulation. Potentiation of the ventilatory and sympathetic drive in response to CC activation has been shown in patients with CHF as well as in animal models. Therefore, improving understanding of the contribution of the peripheral and central chemoreflexes to augmented sympathetic discharge in CHF could help in developing new therapeutic approaches intended to attenuate the progression of CHF. Accordingly, the main focus of this review is to discuss recent evidence that peripheral and central chemoreflex function are altered in CHF and that they contribute to autonomic imbalance and progression of CHF.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Noah Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Mauricio Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Carlos Madrid
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
49
|
Silva JN, Lucena EV, Silva TM, Damasceno RS, Takakura AC, Moreira TS. Inhibition of the pontine Kölliker-Fuse nucleus reduces genioglossal activity elicited by stimulation of the retrotrapezoid chemoreceptor neurons. Neuroscience 2016; 328:9-21. [PMID: 27126558 DOI: 10.1016/j.neuroscience.2016.04.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 01/06/2023]
Abstract
The Kölliker-Fuse (KF) region, located in the dorsolateral pons, projects to several brainstem areas involved in respiratory regulation, including the chemoreceptor neurons within the retrotrapezoid nucleus (RTN). Several lines of evidence indicate that the pontine KF region plays an important role in the control of the upper airways for the maintenance of appropriate airflow to and from the lungs. Specifically, we hypothesized that the KF region is involved in mediating the response of the hypoglossal motor activity to central respiratory chemoreflex activation and to stimulation of the chemoreceptor neurons within the RTN region. To test this hypothesis, we combined immunohistochemistry and physiological experiments. We found that in the KF, the majority of biotinylated dextran amine (BDA)-labeled axonal varicosities contained detectable levels of vesicular glutamate transporter-2 (VGLUT2), but few contained glutamic acid decarboxylase-67 (GAD67). The majority of the RTN neurons that were FluorGold (FG)-immunoreactive (i.e., projected to the KF) contained hypercapnia-induced Fos, but did not express tyrosine hydroxylase. In urethane-anesthetized sino-aortic denervated and vagotomized male Wistar rats, hypercapnia (10% CO2) or N-methyl-d-aspartate (NMDA) injection (0.1mM) in the RTN increased diaphragm (DiaEMG) and genioglossus muscle (GGEMG) activities and elicited abdominal (AbdEMG) activity. Bilateral injection of muscimol (GABA-A agonist; 2mM) into the KF region reduced the increase in DiaEMG and GGEMG produced by hypercapnia or NMDA into the RTN. Our data suggest that activation of chemoreceptor neurons in the RTN produces a significant increase in the genioglossus muscle activity and the excitatory pathway is dependent on the neurons located in the dorsolateral pontine KF region.
Collapse
Affiliation(s)
- Josiane N Silva
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo (USP), 05508-000 São Paulo/SP, Brazil
| | - Elvis V Lucena
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo (USP), 05508-000 São Paulo/SP, Brazil
| | - Talita M Silva
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo (USP), 05508-000 São Paulo/SP, Brazil
| | - Rosélia S Damasceno
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo (USP), 05508-000 São Paulo/SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo (USP), 05508-000 São Paulo/SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo (USP), 05508-000 São Paulo/SP, Brazil.
| |
Collapse
|
50
|
Guyenet PG, Bayliss DA, Stornetta RL, Ludwig MG, Kumar NN, Shi Y, Burke PGR, Kanbar R, Basting TM, Holloway BB, Wenker IC. Proton detection and breathing regulation by the retrotrapezoid nucleus. J Physiol 2016; 594:1529-51. [PMID: 26748771 PMCID: PMC4799966 DOI: 10.1113/jp271480] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/04/2016] [Indexed: 01/26/2023] Open
Abstract
We discuss recent evidence which suggests that the principal central respiratory chemoreceptors are located within the retrotrapezoid nucleus (RTN) and that RTN neurons are directly sensitive to [H(+) ]. RTN neurons are glutamatergic. In vitro, their activation by [H(+) ] requires expression of a proton-activated G protein-coupled receptor (GPR4) and a proton-modulated potassium channel (TASK-2) whose transcripts are undetectable in astrocytes and the rest of the lower brainstem respiratory network. The pH response of RTN neurons is modulated by surrounding astrocytes but genetic deletion of RTN neurons or deletion of both GPR4 and TASK-2 virtually eliminates the central respiratory chemoreflex. Thus, although this reflex is regulated by innumerable brain pathways, it seems to operate predominantly by modulating the discharge rate of RTN neurons, and the activation of RTN neurons by hypercapnia may ultimately derive from their intrinsic pH sensitivity. RTN neurons increase lung ventilation by stimulating multiple aspects of breathing simultaneously. They stimulate breathing about equally during quiet wake and non-rapid eye movement (REM) sleep, and to a lesser degree during REM sleep. The activity of RTN neurons is regulated by inhibitory feedback and by excitatory inputs, notably from the carotid bodies. The latter input operates during normo- or hypercapnia but fails to activate RTN neurons under hypocapnic conditions. RTN inhibition probably limits the degree of hyperventilation produced by hypocapnic hypoxia. RTN neurons are also activated by inputs from serotonergic neurons and hypothalamic neurons. The absence of RTN neurons probably underlies the sleep apnoea and lack of chemoreflex that characterize congenital central hypoventilation syndrome.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | | | - Natasha N Kumar
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Peter G R Burke
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Roy Kanbar
- Department of Pharmaceutical Sciences, Lebanese American University, Beyrouth, Lebanon
| | - Tyler M Basting
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Benjamin B Holloway
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ian C Wenker
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|