1
|
Koban F, Freissmuth M. The cell cycle protein MAD2 facilitates endocytosis of the serotonin transporter in the neuronal soma. EMBO Rep 2023; 24:e53408. [PMID: 37530743 PMCID: PMC10561363 DOI: 10.15252/embr.202153408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023] Open
Abstract
Monoamine transporters retrieve serotonin (SERT), dopamine (DAT), and norepinephrine (NET) from the synaptic cleft. Transporter internalization contributes to the regulation of their surface expression. Clathrin-mediated endocytosis of plasma membrane proteins requires adaptor protein-2 (AP2), which recruits cargo to the nascent clathrin cage. However, the intracellular portions of monoamine transporters are devoid of a conventional AP2-binding site. Here, we identify a MAD2 (mitotic arrest deficient-2) interaction motif in the C-terminus of SERT, which binds the closed conformation of MAD2 and allows for the recruitment of two additional mitotic spindle assembly checkpoint (SAC) proteins, BubR1 and p31comet , and of AP2. We visualize MAD2, BubR1, and p31comet in dorsal raphe neurons, and depletion of MAD2 in primary serotonergic rat neurons decreases SERT endocytosis in the soma. Our findings do not only provide mechanistic insights into transporter internalization but also allow for rationalizing why SAC proteins are present in post-mitotic neurons.
Collapse
Affiliation(s)
- Florian Koban
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
2
|
Fox LC, Scholl JL, Watt MJ, Forster GL. GABA A Receptor and Serotonin Transporter Expression Changes Dissociate Following Mild Traumatic Brain Injury: Influence of Sex and Estrus Cycle Phase in Rats. Neuroscience 2023; 514:38-55. [PMID: 36736883 DOI: 10.1016/j.neuroscience.2023.01.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
Mild traumatic brain injuries (mild TBIs) can affect both males and females, but females are more likely to report long-term psychological complications, including changes in mood and generalized anxiety. Additionally, reproductive cycle phase has been shown to affect mild TBI symptom expression within females. These variances may result from sex differences in mild TBI-induced alterations to neurotransmission in brain regions that influence mood and emotion, possibly mediated by sex steroids. The hippocampus and amygdala are implicated in stress responses and anxiety, and within these regions, gamma-aminobutyric acid (GABA) and serotonin modulate output and behavioral expression. Metabolites of progesterone can allosterically enhance GABAergic signaling, and sex steroids are suggested to regulate the expression of the serotonin transporter (SERT). To determine how mild TBI might alter GABA receptor and SERT expression in males and females, immunocytochemistry was used to quantify expression of the alpha-1 subunit of the GABAA receptor (α1-GABAA), SERT, and a neuronal marker (NeuN) in the brains of adult male and naturally-cycling female rats, both with and without mild TBI, 17 days after injury. Mild TBI altered the expression of α1-GABAA in the amygdala and hippocampus in both sexes, but the direction of change observed depended on sex and reproductive cycle phase. In contrast, mild TBI had little effect on SERT expression. However, SERT expression differed between sexes and varied with the cycle phase. These findings demonstrate that regulation of neurotransmission following mild TBI differs between males and females, with implications for behavioral outcomes and the efficacy of therapeutic strategies.
Collapse
Affiliation(s)
- Laura C Fox
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark St, Vermillion, SD, USA.
| | - Jamie L Scholl
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark St, Vermillion, SD, USA.
| | - Michael J Watt
- Center for Brain and Behavior Research, Department of Anatomy, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Gina L Forster
- Center for Brain and Behavior Research, Department of Anatomy, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
3
|
Kasture AS, Fischer FP, Kunert L, Burger ML, Burgstaller AC, El-Kasaby A, Hummel T, Sucic S. Drosophila melanogaster as a model for unraveling unique molecular features of epilepsy elicited by human GABA transporter 1 variants. Front Neurosci 2023; 16:1074427. [PMID: 36741049 PMCID: PMC9893286 DOI: 10.3389/fnins.2022.1074427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
Mutations in the human γ-aminobutyric acid (GABA) transporter 1 (hGAT-1) can instigate myoclonic-atonic and other generalized epilepsies in the afflicted individuals. We systematically examined fifteen hGAT-1 disease variants, all of which dramatically reduced or completely abolished GABA uptake activity. Many of these loss-of-function variants were absent from their regular site of action at the cell surface, due to protein misfolding and/or impaired trafficking machinery (as verified by confocal microscopy and de-glycosylation experiments). A modest fraction of the mutants displayed correct targeting to the plasma membrane, but nonetheless rendered the mutated proteins devoid of GABA transport, possibly due to structural alterations in the GABA binding site/translocation pathway. We here focused on a folding-deficient A288V variant. In flies, A288V reiterated its impeded expression pattern, closely mimicking the ER-retention demonstrated in transfected HEK293 cells. Functionally, A288V presented a temperature-sensitive seizure phenotype in fruit flies. We employed diverse small molecules to restore the expression and activity of folding-deficient hGAT-1 epilepsy variants, in vitro (in HEK293 cells) and in vivo (in flies). We identified three compounds (chemical and pharmacological chaperones) conferring moderate rescue capacity for several variants. Our data grant crucial new insights into: (i) the molecular basis of epilepsy in patients harboring hGAT-1 mutations, and (ii) a proof-of-principle that protein folding deficits in disease-associated hGAT-1 variants can be corrected using the pharmacochaperoning approach. Such innovative pharmaco-therapeutic prospects inspire the rational design of novel drugs for alleviating the clinical symptoms triggered by the numerous emerging pathogenic mutations in hGAT-1.
Collapse
Affiliation(s)
- Ameya S. Kasture
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Florian P. Fischer
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Epileptology and Neurology, University of Aachen, Aachen, Germany
| | - Lisa Kunert
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Melanie L. Burger
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Ali El-Kasaby
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Hummel
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Tian J, Stucky CS, Wang T, Muma NA, Johnson M, Du H. Mitochondrial Dysfunction Links to Impaired Hippocampal Serotonin Release in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2023; 93:605-619. [PMID: 37066917 PMCID: PMC10416312 DOI: 10.3233/jad-230072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Deprivation of extracellular serotonin has been linked to cognitive decline and neuropsychiatric disturbances in Alzheimer's disease (AD). However, despite degeneration of serotonin-producing neurons, whether serotonin release is affected in AD-sensitive brain regions is unknown. OBJECTIVE This study investigated the impact of mitochondrial dysfunction in decreased hippocampal serotonin release in AD amyloidosis mouse model 5xFAD mice. METHODS Electrochemical assays were applied to examine hippocampal serotonin release. We also employed multidisciplinary techniques to determine the role of oligomeric amyloid-β (Aβ) in hippocampal mitochondrial deficits and serotonin release deficiency. RESULTS 5xFAD mice exhibited serotonin release decrease and relatively moderate downregulation of serotonergic fiber density as well as serotonin content in the hippocampal region. Further experiments showed an inhibitory effect of oligomeric amyloid-β (Aβ) on hippocampal serotonin release without affecting the density of serotonergic fibers. Pharmaceutical uncoupling of mitochondrial oxidative phosphorylation (OXPHOS) disrupted hippocampal serotonin release in an ex vivo setting. This echoes the mitochondrial defects in serotonergic fibers in 5xFAD mice and oligomeric Aβ-challenged primary serotonergic neuron cultures and implicates a link between mitochondrial dysfunction and serotonin transmission defects in AD-relevant pathological settings. CONCLUSION The most parsimonious interpretation of our findings is that mitochondrial dysfunction is a phenotypic change of serotonergic neurons, which potentially plays a role in the development of serotonergic failure in AD-related conditions.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | | | - Tienju Wang
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Nancy A. Muma
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Michael Johnson
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Heng Du
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA
- Alzheimer’s Disease Center, University of Kansas Medical Center, Lawrence, KS, USA
| |
Collapse
|
5
|
Hingorani M, Viviani AML, Sanfilippo JE, Janušonis S. High-resolution spatiotemporal analysis of single serotonergic axons in an in vitro system. Front Neurosci 2022; 16:994735. [PMID: 36353595 PMCID: PMC9638127 DOI: 10.3389/fnins.2022.994735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/28/2022] [Indexed: 12/04/2022] Open
Abstract
Vertebrate brains have a dual structure, composed of (i) axons that can be well-captured with graph-theoretical methods and (ii) axons that form a dense matrix in which neurons with precise connections operate. A core part of this matrix is formed by axons (fibers) that store and release 5-hydroxytryptamine (5-HT, serotonin), an ancient neurotransmitter that supports neuroplasticity and has profound implications for mental health. The self-organization of the serotonergic matrix is not well understood, despite recent advances in experimental and theoretical approaches. In particular, individual serotonergic axons produce highly stochastic trajectories, fundamental to the construction of regional fiber densities, but further advances in predictive computer simulations require more accurate experimental information. This study examined single serotonergic axons in culture systems (co-cultures and monolayers), by using a set of complementary high-resolution methods: confocal microscopy, holotomography (refractive index-based live imaging), and super-resolution (STED) microscopy. It shows that serotonergic axon walks in neural tissue may strongly reflect the stochastic geometry of this tissue and it also provides new insights into the morphology and branching properties of serotonergic axons. The proposed experimental platform can support next-generation analyses of the serotonergic matrix, including seamless integration with supercomputing approaches.
Collapse
|
6
|
Khan S. Endoplasmic Reticulum in Metaplasticity: From Information Processing to Synaptic Proteostasis. Mol Neurobiol 2022; 59:5630-5655. [PMID: 35739409 DOI: 10.1007/s12035-022-02916-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
The ER (endoplasmic reticulum) is a Ca2+ reservoir and the unique protein-synthesizing machinery which is distributed throughout the neuron and composed of multiple different structural domains. One such domain is called EMC (endoplasmic reticulum membrane protein complex), pleiotropic nature in cellular functions. The ER/EMC position inside the neurons unmasks its contribution to synaptic plasticity via regulating various cellular processes from protein synthesis to Ca2+ signaling. Since presynaptic Ca2+ channels and postsynaptic ionotropic receptors are organized into the nanodomains, thus ER can be a crucial player in establishing TMNCs (transsynaptic molecular nanocolumns) to shape efficient neural communications. This review hypothesized that ER is not only involved in stress-mediated neurodegeneration but also axon regrowth, remyelination, neurotransmitter switching, information processing, and regulation of pre- and post-synaptic functions. Thus ER might not only be a protein-synthesizing and quality control machinery but also orchestrates plasticity of plasticity (metaplasticity) within the neuron to execute higher-order brain functions and neural repair.
Collapse
Affiliation(s)
- Shumsuzzaman Khan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Fischer FP, Kasture AS, Hummel T, Sucic S. Molecular and Clinical Repercussions of GABA Transporter 1 Variants Gone Amiss: Links to Epilepsy and Developmental Spectrum Disorders. Front Mol Biosci 2022; 9:834498. [PMID: 35295842 PMCID: PMC7612498 DOI: 10.3389/fmolb.2022.834498] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
The human γ-aminobutyric acid (GABA) transporter 1 (hGAT-1) is the first member of the solute carrier 6 (SLC6) protein superfamily. GAT-1 (SLC6A1) is one of the main GABA transporters in the central nervous system. Its principal physiological role is retrieving GABA from the synapse into neurons and astrocytes, thus swiftly terminating neurotransmission. GABA is a key inhibitory neurotransmitter and shifts in GABAergic signaling can lead to pathological conditions, from anxiety and epileptic seizures to schizophrenia. Point mutations in the SLC6A1 gene frequently give rise to epilepsy, intellectual disability or autism spectrum disorders in the afflicted individuals. The mechanistic routes underlying these are still fairly unclear. Some loss-of-function variants impair the folding and intracellular trafficking of the protein (thus retaining the transporter in the endoplasmic reticulum compartment), whereas others, despite managing to reach their bona fide site of action at the cell surface, nonetheless abolish GABA transport activity (plausibly owing to structural/conformational defects). Whatever the molecular culprit(s), the physiological aftermath transpires into the absence of functional transporters, which in turn perturbs GABAergic actions. Dozens of mutations in the kin SLC6 family members are known to exhort protein misfolding. Such events typically elicit severe ailments in people, e.g., infantile parkinsonism-dystonia or X-linked intellectual disability, in the case of dopamine and creatine transporters, respectively. Flaws in protein folding can be rectified by small molecules known as pharmacological and/or chemical chaperones. The search for such apt remedies calls for a systematic investigation and categorization of the numerous disease-linked variants, by biochemical and pharmacological means in vitro (in cell lines and primary neuronal cultures) and in vivo (in animal models). We here give special emphasis to the utilization of the fruit fly Drosophila melanogaster as a versatile model in GAT-1-related studies. Jointly, these approaches can portray indispensable insights into the molecular factors underlying epilepsy, and ultimately pave the way for contriving efficacious therapeutic options for patients harboring pathogenic mutations in hGAT-1.
Collapse
Affiliation(s)
- Florian P. Fischer
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Epileptology and Neurology, University of Aachen, Aachen, Germany
| | - Ameya S. Kasture
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Thomas Hummel
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Tomlinson ID, Kovtun O, Torres R, Bellocchio LG, Josephs T, Rosenthal SJ. A Novel Biotinylated Homotryptamine Derivative for Quantum Dot Imaging of Serotonin Transporter in Live Cells. Front Cell Neurosci 2021; 15:667044. [PMID: 34867196 PMCID: PMC8637195 DOI: 10.3389/fncel.2021.667044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
The serotonin transporter (SERT) is the primary target for selective serotonin reuptake inhibitor (SSRI) antidepressants that are thought to exert their therapeutic effects by increasing the synaptic concentration of serotonin. Consequently, probes that can be utilized to study cellular trafficking of SERT are valuable research tools. We have developed a novel ligand (IDT785) that is composed of a SERT antagonist (a tetrahydro pyridyl indole derivative) conjugated to a biotinylated poly ethylene glycol (PEG) via a phenethyl linker. This compound was determined to be biologically active and inhibited SERT-mediated reuptake of IDT307 with the half-maximal inhibitory concentration of 7.2 ± 0.3 μM. We demonstrated that IDT785 enabled quantum dot (QD) labeling of membrane SERT in transfected HEK-293 cultures that could be blocked using the high affinity serotonin reuptake inhibitor paroxetine. Molecular docking studies suggested that IDT785 might be binding to the extracellular vestibule binding site rather than the orthosteric substrate binding site, which could be attributable to the hydrophilicity of the PEG chain and the increased loss of degrees of freedom that would be required to penetrate into the orthosteric binding site. Using IDT785, we were able to study the membrane localization and membrane dynamics of YFP-SERT heterologously expressed in HEK-293 cells and demonstrated that SERT expression was enriched in the membrane edge and in thin cellular protrusions.
Collapse
Affiliation(s)
- Ian D. Tomlinson
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Oleg Kovtun
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Ruben Torres
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States
| | | | - Travis Josephs
- Neuroscience Program, Vanderbilt University, Nashville, TN, United States
| | - Sandra J. Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
9
|
Saha K, Yang JW, Hofmaier T, Venkatesan S, Steinkellner T, Kudlacek O, Sucic S, Freissmuth M, Sitte HH. Constitutive Endocytosis of the Neuronal Glutamate Transporter Excitatory Amino Acid Transporter-3 Requires ARFGAP1. Front Physiol 2021; 12:671034. [PMID: 34040545 PMCID: PMC8141794 DOI: 10.3389/fphys.2021.671034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The eukaryotic endocytic pathway regulates protein levels available at the plasma membrane by recycling them into specific endosomal compartments. ARFGAP1 is a component of the coat protein I (COPI) complex but it also plays a role in promoting adapter protein-2 (AP-2) mediated endocytosis. The excitatory amino acid transporter-3 (EAAT3) mediates the reuptake of glutamate from the synaptic cleft to achieve rapid termination of synaptic transmission at glutamatergic synapses. In this study, we identified two interacting proteins of EAAT3 by mass spectrometry (MS) ARFGAP1 and ARF6. We explored the role of ARFGAP1 and ARF6 in the endocytosis of EAAT3. Our data revealed that ARFGAP1 plays a role in the recycling of EAAT3, by utilizing its GTPase activating protein (GAP) activity and ARF6 acting as the substrate. ARFGAP1 promotes cargo sorting of EAAT3 via a single phenylalanine residue (F508) located at the C-terminus of the transporter. ARFGAP1-promoted AP-2 dependent endocytosis is abolished upon neutralizing F508. We utilized a heterologous expression system to identify an additional motif in the C-terminus of EAAT3 that regulates its endocytosis. Impairment in endocytosis did not affect somatodendritic targeting in cultured hippocampal neurons. Our findings support a model where endocytosis of EAAT3 is a multifactorial event regulated by ARFGAP1, occurring via the C-terminus of the transporter, and is the first study to examine the role of ARFGAP1 in the endocytosis of a transport protein.
Collapse
Affiliation(s)
- Kusumika Saha
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.,Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - Jae-Won Yang
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Tina Hofmaier
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - SanthoshKannan Venkatesan
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Steinkellner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Kudlacek
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Bhat S, El-Kasaby A, Freissmuth M, Sucic S. Functional and Biochemical Consequences of Disease Variants in Neurotransmitter Transporters: A Special Emphasis on Folding and Trafficking Deficits. Pharmacol Ther 2020; 222:107785. [PMID: 33310157 PMCID: PMC7612411 DOI: 10.1016/j.pharmthera.2020.107785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
Neurotransmitters, such as γ-aminobutyric acid, glutamate, acetyl choline, glycine and the monoamines, facilitate the crosstalk within the central nervous system. The designated neurotransmitter transporters (NTTs) both release and take up neurotransmitters to and from the synaptic cleft. NTT dysfunction can lead to severe pathophysiological consequences, e.g. epilepsy, intellectual disability, or Parkinson’s disease. Genetic point mutations in NTTs have recently been associated with the onset of various neurological disorders. Some of these mutations trigger folding defects in the NTT proteins. Correct folding is a prerequisite for the export of NTTs from the endoplasmic reticulum (ER) and the subsequent trafficking to their pertinent site of action, typically at the plasma membrane. Recent studies have uncovered some of the key features in the molecular machinery responsible for transporter protein folding, e.g., the role of heat shock proteins in fine-tuning the ER quality control mechanisms in cells. The therapeutic significance of understanding these events is apparent from the rising number of reports, which directly link different pathological conditions to NTT misfolding. For instance, folding-deficient variants of the human transporters for dopamine or GABA lead to infantile parkinsonism/dystonia and epilepsy, respectively. From a therapeutic point of view, some folding-deficient NTTs are amenable to functional rescue by small molecules, known as chemical and pharmacological chaperones.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
11
|
Khan JA, Sohail A, Jayaraman K, Szöllősi D, Sandtner W, Sitte HH, Stockner T. The Amino Terminus of LeuT Changes Conformation in an Environment Sensitive Manner. Neurochem Res 2020; 45:1387-1398. [PMID: 31858375 PMCID: PMC7260283 DOI: 10.1007/s11064-019-02928-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022]
Abstract
Neurotransmitter:sodium symporters are highly expressed in the human brain and catalyze the uptake of substrate through the plasma membrane by using the electrochemical gradient of sodium as the energy source. The bacterial homolog LeuT, a small amino acid transporter isolated from the bacteria Aquifex aeolicus, is the founding member of the family and has been crystallized in three conformations. The N-terminus is structurally well defined and strongly interacts with the transporter core in the outward-facing conformations. However, it could not be resolved in the inward-facing conformation, which indicates enhanced mobility. Here we investigate conformations and dynamics of the N-terminus, by combining molecular dynamics simulations with experimental verification using distance measurements and accessibility studies. We found strongly increased dynamics of the N-terminus, but also that helix TM1A is subject to enhanced mobility. TM1A moves towards the transporter core in the membrane environment, reaching a conformation that is closer to the structure of LeuT with wild type sequence, indicating that the mutation introduced to create the inward-facing structure might have altered the position of helix TM1A. The mobile N-terminus avoids entering the open vestibule of the inward-facing state, as accessibility studies do not show any reduction of quenching by iodide of a fluorophore attached to the N-terminus.
Collapse
Affiliation(s)
- Jawad A Khan
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstr. 13a, 1090, Vienna, Austria
| | - Azmat Sohail
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstr. 13a, 1090, Vienna, Austria
| | - Kumaresan Jayaraman
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstr. 13a, 1090, Vienna, Austria
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dániel Szöllősi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstr. 13a, 1090, Vienna, Austria
| | - Walter Sandtner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstr. 13a, 1090, Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstr. 13a, 1090, Vienna, Austria
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstr. 13a, 1090, Vienna, Austria.
| |
Collapse
|
12
|
Codina-Sola M, Costa-Roger M, Pérez-García D, Flores R, Palacios-Verdú MG, Cusco I, Pérez-Jurado LA. Genetic factors contributing to autism spectrum disorder in Williams-Beuren syndrome. J Med Genet 2019; 56:801-808. [PMID: 31413120 PMCID: PMC6929708 DOI: 10.1136/jmedgenet-2019-106080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND The hallmark of the neurobehavioural phenotype of Williams-Beuren syndrome (WBS) is increased sociability and relatively preserved language skills, often described as opposite to autism spectrum disorders (ASD). However, the prevalence of ASD in WBS is 6-10 times higher than in the general population. We have investigated the genetic factors that could contribute to the ASD phenotype in individuals with WBS. METHODS We studied four males and four females with WBS and a confirmed diagnosis of ASD by the Autism Diagnostic Interview-Revised. We performed a detailed molecular characterisation of the deletion and searched for genomic variants using exome sequencing. RESULTS A de novo deletion of 1.55 Mb (6 cases) or 1.83 Mb (2 cases) at 7q11.23 was detected, being in 7/8 patients of paternal origin. No common breakpoint, deletion mechanism or size was found. Two cases were hemizygous for the rare T allele at rs12539160 in MLXIPL, previously associated with ASD. Inherited rare variants in ASD-related or functionally constrained genes and a de novo nonsense mutation in the UBR5 gene were identified in six cases, with higher burden in females compared with males (p=0.016). CONCLUSIONS The increased susceptibility to ASD in patients with WBS might be due to additive effects of the common WBS deletion, inherited and de novo rare sequence variants in ASD-related genes elsewhere in the genome, with higher burden of deleterious mutations required for females, and possible hypomorphic variants in the hemizygous allele or cis-acting mechanisms on imprinting.
Collapse
Affiliation(s)
- Marta Codina-Sola
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat Pompeu Fabra Departament de Ciences Experimentals i de la Salut, Barcelona, Spain
- Clinical and Molecular Genetics Area, Vall Hebrón Hospital Research Institute (VHIR), Hospital Vall d'Hebron, Barcelona, Spain
| | - Mar Costa-Roger
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat Pompeu Fabra Departament de Ciences Experimentals i de la Salut, Barcelona, Spain
| | - Debora Pérez-García
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat Pompeu Fabra Departament de Ciences Experimentals i de la Salut, Barcelona, Spain
| | - Raquel Flores
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat Pompeu Fabra Departament de Ciences Experimentals i de la Salut, Barcelona, Spain
| | - Maria Gabriela Palacios-Verdú
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat Pompeu Fabra Departament de Ciences Experimentals i de la Salut, Barcelona, Spain
- Fundacio Dexeus Salut de la Dona, Barcelona, Spain
| | - Ivon Cusco
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat Pompeu Fabra Departament de Ciences Experimentals i de la Salut, Barcelona, Spain
- Clinical and Molecular Genetics Area, Vall Hebrón Hospital Research Institute (VHIR), Hospital Vall d'Hebron, Barcelona, Spain
| | - Luis Alberto Pérez-Jurado
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat Pompeu Fabra Departament de Ciences Experimentals i de la Salut, Barcelona, Spain
- SA Clinical Genetics, Women's and Children's Hospital, South Australian Health and Medical Research Institute (SAHMRI) and University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Rescue by 4-phenylbutyrate of several misfolded creatine transporter-1 variants linked to the creatine transporter deficiency syndrome. Neuropharmacology 2019; 161:107572. [PMID: 30885608 DOI: 10.1016/j.neuropharm.2019.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022]
Abstract
Diseases arising from misfolding of SLC6 transporters have been reported over recent years, e.g. folding-deficient mutants of the dopamine transporter and of the glycine transporter-2 cause infantile/juvenile Parkinsonism dystonia and hyperekplexia, respectively. Mutations in the coding sequence of the human creatine transporter-1 (hCRT-1/SLC6A8) gene result in a creatine transporter deficiency syndrome, which varies in its clinical manifestation from epilepsy, mental retardation, autism, development delay and motor dysfunction to gastrointestinal symptoms. Some of the mutations in hCRT-1 occur at residues, which are highly conserved across the SLC6 family. Here, we examined 16 clinically relevant hCRT-1 variants to verify the conjecture that they were misfolded and that this folding defect was amenable to correction. Confocal microscopy imaging revealed that the heterologously expressed YFP-tagged mutant CRTs were trapped in the endoplasmic reticulum (ER), co-localised with the ER-resident chaperone calnexin. In contrast, the wild type hCRT-1 reached the plasma membrane. Preincubation of transiently transfected HEK293 cells with the chemical chaperone 4-phenylbutyrate (4-PBA) restored ER export and surface expression of as well as substrate uptake by several folding-deficient CRT-1 mutants. A representative mutant (hCRT-1-P544L) was expressed in rat primary hippocampal neurons to verify pharmacochaperoning in a target cell: 4-PBA promoted the delivery of hCRT-1-P544L to the neurite extensions. These observations show that several folding-deficient hCRT-1 mutants can be rescued. This proof-of-principle justifies the search for additional pharmacochaperones to restore folding of 4PBA-unresponsive hCRT-1 mutants. Finally, 4-PBA is an approved drug in paediatric use: this provides a rationale for translating the current insights into clinical trials. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
|
14
|
Kasture AS, Bartel D, Steinkellner T, Sucic S, Hummel T, Freissmuth M. Distinct contribution of axonal and somatodendritic serotonin transporters in drosophila olfaction. Neuropharmacology 2019; 161:107564. [PMID: 30851308 DOI: 10.1016/j.neuropharm.2019.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/11/2019] [Accepted: 03/03/2019] [Indexed: 01/07/2023]
Abstract
The serotonin transporter (SERT) regulates serotonergic neurotransmission by retrieving released serotonin and replenishing vesicular stores. SERT is not only delivered to axons but it is also present on the neuronal soma and on dendrites. It has not been possible to restrict the distribution of SERT without affecting transporter function. Hence, the physiological role of somatodendritic SERT remains enigmatic. The SERT C-terminus harbors a conserved RI-motif, which recruits SEC24C, a cargo receptor in the coatomer protein-II coat. Failure to engage SEC24C precludes axonal enrichment of SERT. Here we introduced a point mutation into the RI-motif of human SERT causing confinement of the resulting - otherwise fully functional - hSERT-R607A on the somatodendritic membrane of primary rat dorsal raphe neurons. Transgenic expression of the corresponding Drosophila mutant dSERT-R599A led to its enrichment in the somatodendritic compartment of serotonergic neurons in the fly brain. We explored the possible physiological role of somatodendritic SERT by comparing flies harboring wild type SERT and dSERT-R599A in a behavioral paradigm for serotonin-modulated odor perception. When globally re-expressed in serotonergic neurons, wild type SERT but not dSERT-R599A restored ethanol preference. In contrast, dSERT-R599A restored ethanol preference after targeted expression in contralaterally projecting, serotonin-immunoreactive deuterocerebral (CSD) interneurons, while expression of wild type SERT caused ethanol aversion. We conclude that, in CSD neurons, (i) somatodendritic SERT supports ethanol attraction, (ii) axonal SERT specifies ethanol aversion, (iii) the effect of axonal SERT can override that of somatodendritic SERT. These observations demonstrate a distinct biological role of somatodendritic and axonal serotonin transport. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Ameya Sanjay Kasture
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria; Department of Neurobiology, University of Vienna, A-1090 Vienna, Austria
| | - Daniela Bartel
- Department of Neurobiology, University of Vienna, A-1090 Vienna, Austria
| | - Thomas Steinkellner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Thomas Hummel
- Department of Neurobiology, University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
15
|
PET imaging of the mouse brain reveals a dynamic regulation of SERT density in a chronic stress model. Transl Psychiatry 2019; 9:80. [PMID: 30745564 PMCID: PMC6370816 DOI: 10.1038/s41398-019-0416-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/08/2018] [Accepted: 01/17/2019] [Indexed: 01/15/2023] Open
Abstract
The serotonin transporter (SERT, Slc6a4) plays an important role in the regulation of serotonergic neurotransmission and its aberrant expression has been linked to several psychiatric conditions. While SERT density has been proven to be amenable to in vivo quantitative evaluation by positron emission tomography (PET) in humans, this approach is in its infancy for rodents. Here we set out to evaluate the feasibility of using small-animal PET employing [11C]DASB ([11C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile) as a radiotracer to measure SERT density in designated areas of the mouse brain. Using Slc6a4+/+, Slc6a4+/-, and Slc6a4-/- mice as a genetic model of different SERT expression levels, we showed the feasibility of SERT imaging in the mouse brain with [11C]DASB-PET. The PET analysis was complemented by an evaluation of SERT protein expression using western blot, which revealed a highly significant correlation between in vivo and ex vivo measurements. [11C]DASB-PET was then applied to the examination of dynamic changes of SERT levels in different brain areas in the chronic corticosterone mouse model of chronic stress. The observed significant reduction in SERT density in corticosterone-treated mice was independently validated by and correlated with western blot analysis. This is the first demonstration of a quantitative in vivo evaluation of SERT density in subregions of the mouse brain using [11C]DASB-PET. The evidenced decrease in SERT density in response to chronic corticosterone treatment adds a new dimension to the complex involvement of SERT in the pathophysiology of stress-induced mental illnesses.
Collapse
|
16
|
Bailey DM, Catron MA, Kovtun O, Macdonald RL, Zhang Q, Rosenthal SJ. Single Quantum Dot Tracking Reveals Serotonin Transporter Diffusion Dynamics are Correlated with Cholesterol-Sensitive Threonine 276 Phosphorylation Status in Primary Midbrain Neurons. ACS Chem Neurosci 2018; 9:2534-2541. [PMID: 29787674 DOI: 10.1021/acschemneuro.8b00214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Serotonin transporter (SERT) terminates serotonin signaling in the brain by enabling rapid clearance of the neurotransmitter. SERT dysfunction has been associated with a variety of psychiatric disorders, including depression, anxiety, and autism. Visualizing SERT behavior at the single molecule level in endogenous systems remains a challenge. In this study, we utilize quantum dot (QD) single particle tracking (SPT) to capture SERT dynamics in primary rat midbrain neurons. Membrane microenvironment, specifically membrane cholesterol, plays a key role in SERT regulation and has been found to affect SERT conformational state. We sought to determine how reduced cholesterol content affects both lateral mobility and phosphorylation of conformationally sensitive threonine 276 (Thr276) in endogenous SERT using two different methods of cholesterol manipulation, statins and methyl-β-cyclodextrin. Both chronic and acute cholesterol depletion increased SERT lateral diffusion, radial displacement along the membrane, mobile fraction, and Thr276 phosphorylation levels. Overall, this work has provided new insights about endogenous neuronal SERT mobility and its associations with membrane cholesterol and SERT phosphorylation status.
Collapse
|
17
|
Kovalchuk V, Samluk Ł, Juraszek B, Jurkiewicz-Trząska D, Sucic S, Freissmuth M, Nałęcz KA. Trafficking of the amino acid transporter B 0,+ (SLC6A14) to the plasma membrane involves an exclusive interaction with SEC24C for its exit from the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:252-263. [PMID: 30445147 PMCID: PMC6314439 DOI: 10.1016/j.bbamcr.2018.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 11/02/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
A plasma membrane amino acid transporter B0,+ (ATB0,+), encoded by the SLC6A14 gene, is specific for neutral and basic amino acids. It is up-regulated in several types of malignant cancers. Neurotransmitter transporters of the SLC6 family interact with specific SEC24 proteins of the COPII complex along their pathway from the endoplasmic reticulum (ER) to Golgi. This study focused on the possible role of SEC24 proteins in ATB0,+ trafficking. Rat ATB0,+ was expressed in HEK293 cells, its localization and trafficking were examined by Western blot, deglycosylation, immunofluorescence (co-localization with ER and trans-Golgi markers) and biotinylation. The expression of ATB0,+ at the plasma membrane was decreased by dominant negative mutants of SAR1, a GTPase, whose activity triggers the formation of the COPII complex. ATB0,+ co-precipitated with SEC24C (but not with the remaining isoforms A, B and D). This interaction was confirmed by immunocytochemistry and the proximity ligation assay. Co-localization of SEC24C with endogenous ATB0,+ was also observed in MCF-7 breast cancer cells. Contrary to the endogenous transporter, part of the overexpressed ATB0,+ is directed to proteolysis, a process significantly reversed by a proteasome inhibitor bortezomib. Co-transfection with a SEC24C dominant negative mutant attenuated ATB0,+ expression at the plasma membrane, due to proteolytic degradation. These results support a hypothesis that lysine at position +2 downstream of the ER export "RI" motif on the cargo protein is crucial for SEC24C binding and for further trafficking to the Golgi. Moreover, there is an equilibrium between ER export and degradation mechanisms in case of overexpressed transporter.
Collapse
Affiliation(s)
- Vasylyna Kovalchuk
- Laboratory of Transport through Biomembranes, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Łukasz Samluk
- Laboratory of Transport through Biomembranes, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Barbara Juraszek
- Laboratory of Transport through Biomembranes, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Dominika Jurkiewicz-Trząska
- Laboratory of Transport through Biomembranes, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Katarzyna A Nałęcz
- Laboratory of Transport through Biomembranes, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
18
|
Big Lessons from Tiny Flies: Drosophila melanogaster as a Model to Explore Dysfunction of Dopaminergic and Serotonergic Neurotransmitter Systems. Int J Mol Sci 2018; 19:ijms19061788. [PMID: 29914172 PMCID: PMC6032372 DOI: 10.3390/ijms19061788] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
Abstract
The brain of Drosophila melanogaster is comprised of some 100,000 neurons, 127 and 80 of which are dopaminergic and serotonergic, respectively. Their activity regulates behavioral functions equivalent to those in mammals, e.g., motor activity, reward and aversion, memory formation, feeding, sexual appetite, etc. Mammalian dopaminergic and serotonergic neurons are known to be heterogeneous. They differ in their projections and in their gene expression profile. A sophisticated genetic tool box is available, which allows for targeting virtually any gene with amazing precision in Drosophila melanogaster. Similarly, Drosophila genes can be replaced by their human orthologs including disease-associated alleles. Finally, genetic manipulation can be restricted to single fly neurons. This has allowed for addressing the role of individual neurons in circuits, which determine attraction and aversion, sleep and arousal, odor preference, etc. Flies harboring mutated human orthologs provide models which can be interrogated to understand the effect of the mutant protein on cell fate and neuronal connectivity. These models are also useful for proof-of-concept studies to examine the corrective action of therapeutic strategies. Finally, experiments in Drosophila can be readily scaled up to an extent, which allows for drug screening with reasonably high throughput.
Collapse
|
19
|
Identification and characterization of the Fasciola hepatica sodium- and chloride-dependent taurine transporter. PLoS Negl Trop Dis 2018; 12:e0006428. [PMID: 29702654 PMCID: PMC5942844 DOI: 10.1371/journal.pntd.0006428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/09/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023] Open
Abstract
The parasitic liver fluke Fasciola hepatica infests mainly ruminants, but it can also cause fasciolosis in people, who ingest the metacercariae encysted on plants. The drug of choice to treat fasciolosis is triclabendazole (TBZ), which has been on the market for several decades. This is also true for the other available drugs. Accordingly, drug-resistant flukes have been emerging at an increasing rate making it desirable to identify alternative drug targets. Here, we focused on the fact that adult F. hepatica persists in the hostile environment of the bile ducts of infected organisms. A common way to render bile acids less toxic is to conjugate them to taurine (2-aminoethanesulfonic acid). We cloned a transporter from the solute carrier-6 (SLC6) family, which was most closely related to the GABA-transporter-2 of other organisms. When heterologously expressed, this F. hepatica transporter supported the high-affinity cellular uptake of taurine (KM = 12.0 ± 0.5 μM) but not of GABA. Substrate uptake was dependent on Na+- and Cl- (calculated stoichiometry 2:1). Consistent with the low chloride concentration in mammalian bile, the F. hepatica transporter had a higher apparent affinity for Cl- (EC50 = 14±3 mM) than the human taurine transporter (EC50 = 55±7 mM). We incubated flukes with unconjugated bile acids in the presence and absence of taurine: taurine promoted survival of flukes; the taurine transporter inhibitor guanidinoethansulfonic acid abolished this protective effect of taurine. Based on these observations, we conclude that the taurine transporter is critical for the survival of liver flukes in the bile. Thus, the taurine transporter represents a candidate drug target.
Collapse
|
20
|
Joo JH, Wang B, Frankel E, Ge L, Xu L, Iyengar R, Li-Harms X, Wright C, Shaw TI, Lindsten T, Green DR, Peng J, Hendershot LM, Kilic F, Sze JY, Audhya A, Kundu M. The Noncanonical Role of ULK/ATG1 in ER-to-Golgi Trafficking Is Essential for Cellular Homeostasis. Mol Cell 2017; 62:491-506. [PMID: 27203176 DOI: 10.1016/j.molcel.2016.04.020] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/07/2016] [Accepted: 04/19/2016] [Indexed: 01/08/2023]
Abstract
ULK1 and ULK2 are thought to be essential for initiating autophagy, and Ulk1/2-deficient mice die perinatally of autophagy-related defects. Therefore, we used a conditional knockout approach to investigate the roles of ULK1/2 in the brain. Although the mice showed neuronal degeneration, the neurons showed no accumulation of P62(+)/ubiquitin(+) inclusions or abnormal membranous structures, which are observed in mice lacking other autophagy genes. Rather, neuronal death was associated with activation of the unfolded protein response (UPR) pathway. An unbiased proteomics approach identified SEC16A as an ULK1/2 interaction partner. ULK-mediated phosphorylation of SEC16A regulated the assembly of endoplasmic reticulum (ER) exit sites and ER-to-Golgi trafficking of specific cargo, and did not require other autophagy proteins (e.g., ATG13). The defect in ER-to-Golgi trafficking activated the UPR pathway in ULK-deficient cells; both processes were reversed upon expression of SEC16A with a phosphomimetic substitution. Thus, the regulation of ER-to-Golgi trafficking by ULK1/2 is essential for cellular homeostasis.
Collapse
Affiliation(s)
- Joung Hyuck Joo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bo Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Integrated Biomedical Sciences Program, the University of Tennessee Health Science Center, Memphis, TN, USA
| | - Elisa Frankel
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Medical School, Madison, WI, USA
| | - Liang Ge
- Department of Molecular and Cellular Biology, University of California Berkeley, Berkeley, CA, USA
| | - Lu Xu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rekha Iyengar
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - XiuJie Li-Harms
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher Wright
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Timothy I Shaw
- St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tullia Lindsten
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN, USA.,Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Fusun Kilic
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ji Ying Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Medical School, Madison, WI, USA
| | - Mondira Kundu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
21
|
Kern C, Erdem FA, El-Kasaby A, Sandtner W, Freissmuth M, Sucic S. The N Terminus Specifies the Switch between Transport Modes of the Human Serotonin Transporter. J Biol Chem 2017; 292:3603-3613. [PMID: 28104804 PMCID: PMC5339746 DOI: 10.1074/jbc.m116.771360] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/18/2017] [Indexed: 10/25/2022] Open
Abstract
The serotonin transporter (SERT) and other monoamine transporters operate in either a forward transport mode where the transporter undergoes a full transport cycle or an exchange mode where the transporter seesaws through half-cycles. Amphetamines trigger the exchange mode, leading to substrate efflux. This efflux was proposed to rely on the N terminus, which was suggested to adopt different conformations in the inward facing, outward facing and amphetamine-bound states. This prediction was verified by tryptic digestion of SERT-expressing membranes: in the absence of Na+, the N terminus was rapidly digested. Amphetamine conferred protection against cleavage, suggesting a relay between the conformational states of the hydrophobic core and the N terminus. We searched for a candidate segment that supported the conformational switch by serial truncation removing 22 (ΔN22), 32 (ΔN32), or 42 (ΔN42) N-terminal residues. This did not affect surface expression, inhibitor binding, and substrate influx. However, amphetamine-induced efflux by SERT-ΔN32 or SERT-ΔN42 (but not by SERT-ΔN22) was markedly diminished. We examined the individual steps in the transport cycle by recording transporter-associated currents: the recovery rate of capacitive peak, but not of steady state, currents was significantly lower for SERT-ΔN32 than that of wild type SERT and SERT-ΔN22. Thus, the exchange mode of SERT-ΔN32 was selectively impaired. Our observations show that the N terminus affords the switch between transport modes. The findings are consistent with a model where the N terminus acts as a lever to support amphetamine-induced efflux by SERT.
Collapse
Affiliation(s)
- Carina Kern
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Fatma Asli Erdem
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Walter Sandtner
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Sucic
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
22
|
Sucic S, Kasture A, Mazhar Asjad HM, Kern C, El-Kasaby A, Freissmuth M. When transporters fail to be transported: how to rescue folding-deficient SLC6 transporters. ACTA ACUST UNITED AC 2016; 1:34-40. [PMID: 28405636 PMCID: PMC5386142 DOI: 10.29245/2572.942x/2016/9.1098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The human dopamine transporter (hDAT) belongs to the solute carrier 6 (SLC6) gene family. Point mutations in hDAT (SLC6A3) have been linked to a syndrome of dopamine transporter deficiency or infantile dystonia/parkinsonism. The mutations impair DAT folding, causing retention of variant DATs in the endoplasmic reticulum and subsequently impair transport activity. The folding trajectory of DAT itself is not understood, though many insights have been gained from studies of folding-deficient mutants of the closely related serotonin transporter (SERT); i.e. their functional rescue by pharmacochaperoning with (nor)ibogaine or heat-shock protein inhibitors. We recently provided a proof-of-principle that folding-deficits in DAT are amenable to rescue in vitro and in vivo. As a model we used the Drosophila melanogaster DAT mutant dDAT-G108Q, which phenocopies the fumin/sleepless DAT-knockout. Treatment with noribogaine and/or HSP70 inhibitor pifithrin-μ restored folding of, and dopamine transport by, dDAT-G108Q, its axonal delivery and normal sleep time in mutant flies. The possibility of functional rescue of misfolded DATs in living flies by pharmacochaperoning grants new therapeutic prospects in the remedy of folding diseases, not only in hDAT, but also in other SLC6 transporters, in particular mutants of the creatine transporter-1, which give rise to X-linked mental retardation.
Collapse
Affiliation(s)
- Sonja Sucic
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ameya Kasture
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - H M Mazhar Asjad
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Carina Kern
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
23
|
Kasture A, El-Kasaby A, Szöllősi D, Asjad HMM, Grimm A, Stockner T, Hummel T, Freissmuth M, Sucic S. Functional Rescue of a Misfolded Drosophila melanogaster Dopamine Transporter Mutant Associated with a Sleepless Phenotype by Pharmacological Chaperones. J Biol Chem 2016; 291:20876-20890. [PMID: 27481941 PMCID: PMC5076501 DOI: 10.1074/jbc.m116.737551] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/13/2016] [Indexed: 12/15/2022] Open
Abstract
Folding-defective mutants of the human dopamine transporter (DAT) cause a syndrome of infantile dystonia/parkinsonism. Here, we provide a proof-of-principle that the folding deficit is amenable to correction in vivo by two means, the cognate DAT ligand noribogaine and the HSP70 inhibitor, pifithrin-μ. We examined the Drosophila melanogaster (d) mutant dDAT-G108Q, which leads to a sleepless phenotype in flies harboring this mutation. Molecular dynamics simulations suggested an unstable structure of dDAT-G108Q consistent with a folding defect. This conjecture was verified; heterologously expressed dDAT-G108Q and the human (h) equivalent hDAT-G140Q were retained in the endoplasmic reticulum in a complex with endogenous folding sensors (calnexin and HSP70-1A). Incubation of the cells with noribogaine (a DAT ligand selective for the inward-facing state) and/or pifithrin-μ (an HSP70 inhibitor) restored folding of, and hence dopamine transport by, dDAT-G108Q and hDAT-G140Q. The mutated versions of DAT were confined to the cell bodies of the dopaminergic neurons in the fly brain and failed to reach the axonal compartments. Axonal delivery was restored, and sleep time was increased to normal length (from 300 to 1000 min/day) if the dDAT-G108Q-expressing flies were treated with noribogaine and/or pifithrin-μ. Rescuing misfolded versions of DAT by pharmacochaperoning is of therapeutic interest; it may provide opportunities to remedy disorders arising from folding-defective mutants of human DAT and of other related SLC6 transporters.
Collapse
Affiliation(s)
- Ameya Kasture
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.,the Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt, and
| | - Daniel Szöllősi
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - H M Mazhar Asjad
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Alexandra Grimm
- the Department of Neurobiology, University of Vienna, A-1090 Vienna, Austria
| | - Thomas Stockner
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Thomas Hummel
- the Department of Neurobiology, University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria,
| | - Sonja Sucic
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
24
|
Physical and functional interactions between the serotonin transporter and the neutral amino acid transporter ASCT2. Biochem J 2016; 473:1953-65. [DOI: 10.1042/bcj20160315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/03/2016] [Indexed: 01/23/2023]
Abstract
The activity of serotonergic systems depends on the reuptake of extracellular serotonin via its plasma membrane serotonin [5-HT (5-hydroxytryptamine)] transporter (SERT), a member of the Na+/Cl−-dependent solute carrier 6 family. SERT is finely regulated by multiple molecular mechanisms including its physical interaction with intracellular proteins. The majority of previously identified SERT partners that control its functional activity are soluble proteins, which bind to its intracellular domains. SERT also interacts with transmembrane proteins, but its association with other plasma membrane transporters remains to be established. Using a proteomics strategy, we show that SERT associates with ASCT2 (alanine–serine–cysteine–threonine 2), a member of the solute carrier 1 family co-expressed with SERT in serotonergic neurons and involved in the transport of small neutral amino acids across the plasma membrane. Co-expression of ASCT2 with SERT in HEK (human embryonic kidney)-293 cells affects glycosylation and cell-surface localization of SERT with a concomitant reduction in its 5-HT uptake activity. Conversely, depletion of cellular ASCT2 by RNAi enhances 5-HT uptake in both HEK-293 cells and primary cultured mesencephalon neurons. Mimicking the effect of ASCT2 down-regulation, treatment of HEK-293 cells and neurons with the ASCT2 inhibitor D-threonine also increases 5-HT uptake. Moreover, D-threonine does not enhance further the maximal velocity of 5-HT uptake in cells depleted of ASCT2. Collectively, these findings provide evidence for a complex assembly involving SERT and a member of another solute carrier family, which strongly influences the subcellular distribution of SERT and the reuptake of 5-HT.
Collapse
|
25
|
Amphetamine action at the cocaine- and antidepressant-sensitive serotonin transporter is modulated by αCaMKII. J Neurosci 2015; 35:8258-71. [PMID: 26019340 DOI: 10.1523/jneurosci.4034-14.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Serotonergic neurotransmission is terminated by reuptake of extracellular serotonin (5-HT) by the high-affinity serotonin transporter (SERT). Selective 5-HT reuptake inhibitors (SSRIs) such as fluoxetine or escitalopram inhibit SERT and are currently the principal treatment for depression and anxiety disorders. In addition, SERT is a major molecular target for psychostimulants such as cocaine and amphetamines. Amphetamine-induced transport reversal at the closely related dopamine transporter (DAT) has been shown previously to be contingent upon modulation by calmodulin kinase IIα (αCaMKII). Here, we show that not only DAT, but also SERT, is regulated by αCaMKII. Inhibition of αCaMKII activity markedly decreased amphetamine-triggered SERT-mediated substrate efflux in both cells coexpressing SERT and αCaMKII and brain tissue preparations. The interaction between SERT and αCaMKII was verified using biochemical assays and FRET analysis and colocalization of the two molecules was confirmed in primary serotonergic neurons in culture. Moreover, we found that genetic deletion of αCaMKII impaired the locomotor response of mice to 3,4-methylenedioxymethamphetamine (also known as "ecstasy") and blunted d-fenfluramine-induced prolactin release, substantiating the importance of αCaMKII modulation for amphetamine action at SERT in vivo as well. SERT-mediated substrate uptake was neither affected by inhibition of nor genetic deficiency in αCaMKII. This finding supports the concept that uptake and efflux at monoamine transporters are asymmetric processes that can be targeted separately. Ultimately, this may provide a molecular mechanism for putative drug developments to treat amphetamine addiction.
Collapse
|
26
|
[Researcher of the month]. Wien Klin Wochenschr 2015; 127:408-9. [PMID: 25990532 DOI: 10.1007/s00508-015-0806-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Koban F, El-Kasaby A, Häusler C, Stockner T, Simbrunner BM, Sitte HH, Freissmuth M, Sucic S. A salt bridge linking the first intracellular loop with the C terminus facilitates the folding of the serotonin transporter. J Biol Chem 2015; 290:13263-78. [PMID: 25869136 PMCID: PMC4505579 DOI: 10.1074/jbc.m115.641357] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 12/13/2022] Open
Abstract
The folding trajectory of solute carrier 6 (SLC6) family members is of interest because point mutations result in misfolding and thus cause clinically relevant phenotypes in people. Here we examined the contribution of the C terminus in supporting folding of the serotonin transporter (SERT; SLC6A4). Our working hypothesis posited that the amphipathic nature of the C-terminal α-helix (Thr603–Thr613) was important for folding of SERT. Accordingly, we disrupted the hydrophobic moment of the α-helix by replacing Phe604, Ile608, or Ile612 by Gln. The bulk of the resulting mutants SERT-F604Q, SERT-I608Q, and SERT-I612Q were retained in the endoplasmic reticulum, but their residual delivery to the cell surface still depended on SEC24C. This indicates that the amphipathic nature of the C-terminal α-helix was dispensable to endoplasmic reticulum export. The folding trajectory of SERT is thought to proceed through the inward facing conformation. Consistent with this conjecture, cell surface expression of the misfolded mutants was restored by (i) introducing second site suppressor mutations, which trap SERT in the inward facing state, or (ii) by the pharmacochaperone noribogaine, which binds to the inward facing conformation. Finally, mutation of Glu615 at the end of the C-terminal α-helix to Lys reduced surface expression of SERT-E615K. A charge reversal mutation in intracellular loop 1 restored surface expression of SERT-R152E/E615K to wild type levels. These observations support a mechanistic model where the C-terminal amphipathic helix is stabilized by an intramolecular salt bridge between residues Glu615 and Arg152. This interaction acts as a pivot in the conformational search associated with folding of SERT.
Collapse
Affiliation(s)
- Florian Koban
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Ali El-Kasaby
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and the Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Cornelia Häusler
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Thomas Stockner
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Benedikt M Simbrunner
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Harald H Sitte
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Michael Freissmuth
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Sonja Sucic
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| |
Collapse
|