1
|
Dittman AH, May D, Johnson MA, Baldwin DH, Scholz NL. Odor exposure during imprinting periods increases odorant-specific sensitivity and receptor gene expression in coho salmon (Oncorhynchus kisutch). J Exp Biol 2024; 227:jeb247786. [PMID: 39238479 DOI: 10.1242/jeb.247786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
Pacific salmon are well known for their homing migrations; juvenile salmon learn odors associated with their natal streams prior to seaward migration, and then use these retained odor memories to guide them back from oceanic feeding grounds to their river of origin to spawn several years later. This memory formation, termed olfactory imprinting, involves (at least in part) sensitization of the peripheral olfactory epithelium to specific odorants. We hypothesized that this change in peripheral sensitivity is due to exposure-dependent increases in the expression of odorant receptor (OR) proteins that are activated by specific odorants experienced during imprinting. To test this hypothesis, we exposed juvenile coho salmon, Oncorhynchus kisutch, to the basic amino acid odorant l-arginine during the parr-smolt transformation (PST), when imprinting occurs, and assessed sensitivity of the olfactory epithelium to this and other odorants. We then identified the coho salmon ortholog of a basic amino acid odorant receptor (BAAR) and determined the mRNA expression levels of this receptor and other transcripts representing different classes of OR families. Exposure to l-arginine during the PST resulted in increased sensitivity to that odorant and a specific increase in BAAR mRNA expression in the olfactory epithelium relative to other ORs. These results suggest that specific increases in ORs activated during imprinting may be an important component of home stream memory formation and this phenomenon may ultimately be useful as a marker of successful imprinting to assess management strategies and hatchery practices that may influence straying in salmon.
Collapse
Affiliation(s)
- Andrew H Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd East, Seattle, WA 98112, USA
| | - Darran May
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Marc A Johnson
- Oregon Department of Fish and Wildlife Corvallis Research Laboratory, 28655 Highway 34, Corvallis, OR 97333, USA
| | - David H Baldwin
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd East, Seattle, WA 98112, USA
| | - Nathaniel L Scholz
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd East, Seattle, WA 98112, USA
| |
Collapse
|
2
|
Qu M, Zhang Y, Gao Z, Zhang Z, Liu Y, Wan S, Wang X, Yu H, Zhang H, Liu Y, Schneider R, Meyer A, Lin Q. The genetic basis of the leafy seadragon's unique camouflage morphology and avenues for its efficient conservation derived from habitat modeling. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2317-6. [PMID: 37204606 DOI: 10.1007/s11427-022-2317-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/03/2023] [Indexed: 05/20/2023]
Abstract
The leafy seadragon certainly is among evolution's most "beautiful and wonderful" species aptly named for its extraordinary camouflage mimicking its coastal seaweed habitat. However, limited information is known about the genetic basis of its phenotypes and conspicuous camouflage. Here, we revealed genomic signatures of rapid evolution and positive selection in core genes related to its camouflage, which allowed us to predict population dynamics for this species. Comparative genomic analysis revealed that seadragons have the smallest olfactory repertoires among all ray-finned fishes, suggesting adaptations to the highly specialized habitat. Other positively selected and rapidly evolving genes that serve in bone development and coloration are highly expressed in the leaf-like appendages, supporting a recent adaptive shift in camouflage appendage formation. Knock-out of bmp6 results in dysplastic intermuscular bones with a significantly reduced number in zebrafish, implying its important function in bone formation. Global climate change-induced loss of seagrass beds now severely threatens the continued existence of this enigmatic species. The leafy seadragon has a historically small population size likely due to its specific habitat requirements that further exacerbate its vulnerability to climate change. Therefore, taking climate change-induced range shifts into account while developing future protection strategies.
Collapse
Affiliation(s)
- Meng Qu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingyi Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zexia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhixin Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
- Global Ocean and Climate Research Center, South China Sea Institute of Oceanology, Guangzhou, 510301, China
| | - Yali Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiming Wan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
| | - Haiyan Yu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
| | - Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
| | - Yuhong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
| | - Ralf Schneider
- Marine Evolutionary Ecology, Zoological Institute, Kiel University, 24118, Kiel, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany.
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China.
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Heraud C, Hirschinger T, Baranek E, Larroquet L, Surget A, Sandres F, Lanuque A, Terrier F, Roy J. Detection and Modulation of Olfactory Sensing Receptors in Carnivorous Rainbow Trout ( Oncorhynchus mykiss) Fed from First Feeding with Plant-Based Diet. Int J Mol Sci 2022; 23:ijms23042123. [PMID: 35216238 PMCID: PMC8876700 DOI: 10.3390/ijms23042123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/17/2022] Open
Abstract
Sense of smell is mediated by diverse families of olfactory sensing receptors, conveying important dietary information, fundamental for growth and survival. The aim of this study was to elucidate the role of the sensory olfactory pathways in the regulation of feeding behavior of carnivorous rainbow trout (RT, Oncorhynchus mykiss), from first feeding until 8 months. Compared to a commercial diet, RT fed with a total plant-based diet showed drastically altered growth performance associated with feed intake from an early stage. Exhaustive examination of an RT genome database identified three vomeronasal type 1 receptor-like (ORA), 10 vomeronasal type 2 receptor-like (OLFC) and 14 main olfactory receptor (MOR) genes, all highly expressed in sensory organs, indicating their potential functionality. Gene expression after feeding demonstrated the importance in olfactory sensing perception of some OLFC (olfcg6) and MOR (mor103, -107, -112, -113, -133) receptor family genes in RT. The gene ora1a showed evidence of involvement in olfactory sensing perception for fish fed with a commercial-like diet, while ora5b, mor118, mor124 and olfch1 showed evidence of involvement in fish fed with a plant-based diet. Results indicated an impact of a plant-based diet on the regulation of olfactory sensing pathways as well as influence on monoaminergic neurotransmission in brain areas related to olfactory-driven behaviors. The overall findings suggest that feeding behavior is mediated through olfactory sensing detection and olfactory-driven behavior pathways in RT.
Collapse
|
4
|
Ye. M. Makogonenko RYM, Hrabovskyi OO, Bereznytskyj GK, Pyrogova LV, Gogolinskaya GK, Makogonenko YM. Chlorine-binding structures: role and organization in different proteins. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The review focuses on chloride-binding structures in the proteins of bacteria, plants, viruses and animals. The structure and amino acid composition of the chloride-binding site and its role in the functioning of structural, regulatory, transport, receptor, channel proteins, transcription factors and enzymes are considered. Data on the important role of chloride-binding structures and chloride anions in the polymerization of fibrin are presented.
Collapse
|
5
|
Tirindelli R. Coding of pheromones by vomeronasal receptors. Cell Tissue Res 2021; 383:367-386. [PMID: 33433690 DOI: 10.1007/s00441-020-03376-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023]
Abstract
Communication between individuals is critical for species survival, reproduction, and expansion. Most terrestrial species, with the exception of humans who predominantly use vision and phonation to create their social network, rely on the detection and decoding of olfactory signals, which are widely known as pheromones. These chemosensory cues originate from bodily fluids, causing attractive or avoidance behaviors in subjects of the same species. Intraspecific pheromone signaling is then crucial to identify sex, social ranking, individuality, and health status, thus establishing hierarchies and finalizing the most efficient reproductive strategies. Indeed, all these features require fine tuning of the olfactory systems to detect molecules containing this information. To cope with this complexity of signals, tetrapods have developed dedicated olfactory subsystems that refer to distinct peripheral sensory detectors, called the main olfactory and the vomeronasal organ, and two minor structures, namely the septal organ of Masera and the Grueneberg ganglion. Among these, the vomeronasal organ plays the most remarkable role in pheromone coding by mediating several behavioral outcomes that are critical for species conservation and amplification. In rodents, this organ is organized into two segregated neuronal subsets that express different receptor families. To some extent, this dichotomic organization is preserved in higher projection areas of the central nervous system, suggesting, at first glance, distinct functions for these two neuronal pathways. Here, I will specifically focus on this issue and discuss the role of vomeronasal receptors in mediating important innate behavioral effects through the recognition of pheromones and other biological chemosignals.
Collapse
Affiliation(s)
- Roberto Tirindelli
- Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125, Parma, Italy.
| |
Collapse
|
6
|
Diving into the streams and waves of constitutive and regenerative olfactory neurogenesis: insights from zebrafish. Cell Tissue Res 2020; 383:227-253. [PMID: 33245413 DOI: 10.1007/s00441-020-03334-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
The olfactory system is renowned for its functional and structural plasticity, with both peripheral and central structures displaying persistent neurogenesis throughout life and exhibiting remarkable capacity for regenerative neurogenesis after damage. In general, fish are known for their extensive neurogenic ability, and the zebrafish in particular presents an attractive model to study plasticity and adult neurogenesis in the olfactory system because of its conserved structure, relative simplicity, rapid cell turnover, and preponderance of neurogenic niches. In this review, we present an overview of the anatomy of zebrafish olfactory structures, with a focus on the neurogenic niches in the olfactory epithelium, olfactory bulb, and ventral telencephalon. Constitutive and regenerative neurogenesis in both the peripheral olfactory organ and central olfactory bulb of zebrafish is reviewed in detail, and a summary of current knowledge about the cellular origin and molecular signals involved in regulating these processes is presented. While some features of physiologic and injury-induced neurogenic responses are similar, there are differences that indicate that regeneration is not simply a reiteration of the constitutive proliferation process. We provide comparisons to mammalian neurogenesis that reveal similarities and differences between species. Finally, we present a number of open questions that remain to be answered.
Collapse
|
7
|
Baldwin MW, Ko MC. Functional evolution of vertebrate sensory receptors. Horm Behav 2020; 124:104771. [PMID: 32437717 DOI: 10.1016/j.yhbeh.2020.104771] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Sensory receptors enable animals to perceive their external world, and functional properties of receptors evolve to detect the specific cues relevant for an organism's survival. Changes in sensory receptor function or tuning can directly impact an organism's behavior. Functional tests of receptors from multiple species and the generation of chimeric receptors between orthologs with different properties allow for the dissection of the molecular basis of receptor function and identification of the key residues that impart functional changes in different species. Knowledge of these functionally important sites facilitates investigation into questions regarding the role of epistasis and the extent of convergence, as well as the timing of sensory shifts relative to other phenotypic changes. However, as receptors can also play roles in non-sensory tissues, and receptor responses can be modulated by numerous other factors including varying expression levels, alternative splicing, and morphological features of the sensory cell, behavioral validation can be instrumental in confirming that responses observed in heterologous systems play a sensory role. Expression profiling of sensory cells and comparative genomics approaches can shed light on cell-type specific modifications and identify other proteins that may affect receptor function and can provide insight into the correlated evolution of complex suites of traits. Here we review the evolutionary history and diversity of functional responses of the major classes of sensory receptors in vertebrates, including opsins, chemosensory receptors, and ion channels involved in temperature-sensing, mechanosensation and electroreception.
Collapse
Affiliation(s)
| | - Meng-Ching Ko
- Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
8
|
Wang Y, Jiang H, Yang L. Transcriptome Analysis of Zebrafish Olfactory Epithelium Reveal Sexual Differences in Odorant Detection. Genes (Basel) 2020; 11:genes11060592. [PMID: 32471067 PMCID: PMC7349279 DOI: 10.3390/genes11060592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 01/04/2023] Open
Abstract
Animals have evolved a large number of olfactory receptor genes in their genome to detect numerous odorants in their surrounding environments. However, we still know little about whether males and females possess the same abilities to sense odorants, especially in fish. In this study, we used deep RNA sequencing to examine the difference of transcriptome between male and female zebrafish olfactory epithelia. We found that the olfactory transcriptomes between males and females are highly similar. We also found evidence of some genes showing differential expression or alternative splicing, which may be associated with odorant-sensing between sexes. Most chemosensory receptor genes showed evidence of expression in the zebrafish olfactory epithelium, with a higher expression level in males than in females. Taken together, our results provide a comprehensive catalog of the genes mediating olfactory perception and pheromone-evoked behavior in fishes.
Collapse
Affiliation(s)
- Ying Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan 430056, Hubei, China;
| | - Haifeng Jiang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China;
- Correspondence: ; Tel.: +86-27-6878-0281
| |
Collapse
|
9
|
Yang L, Jiang H, Wang Y, Lei Y, Chen J, Sun N, Lv W, Wang C, Near TJ, He S. Expansion of vomeronasal receptor genes ( OlfC) in the evolution of fright reaction in Ostariophysan fishes. Commun Biol 2019; 2:235. [PMID: 31263779 PMCID: PMC6588630 DOI: 10.1038/s42003-019-0479-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
Ostariophysans are the most diverse group of freshwater fishes and feature a pheromone-elicited fright reaction. However, the genetic basis of fright reaction is unclear. Here, we compared vomeronasal type 2 receptor-like (OlfC) genes from fishes having and lacking fright reaction, to provide insight into evolution of pheromonal olfaction in fishes. We found OlfC genes expanded remarkably in ostariophysans having fright reaction compared with fishes lacking fright reaction. Phylogenetic analysis indicates OlfC subfamily 9 expanded specifically in ostariophysans having fright reaction. Principle component and phylogenetic logistic regression analysis partitioned fishes by ecotype (having or lacking fright reaction) and identified OlfC subfamily 9 as being an important factor for fright reaction. Expression levels of expanded OlfC subfamily genes after fright reaction in zebrafish changed more than did genes that had not expanded. Furthermore, evidence of positive selection was found in the expanded OlfC proteins in ostariophysan fishes having fright reaction. These results provide new insight into the genetic basis of fright reaction in ostariophysan fish and will enable future research into the mechanism of action of OlfC proteins.
Collapse
Affiliation(s)
- Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
| | - Haifeng Jiang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| | - Ying Wang
- School of Life Sciences, Jianghan University, 430056 Wuhan, People’s Republic of China
| | - Yi Lei
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| | - Juan Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| | - Ning Sun
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| | - Wenqi Lv
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| | - Cheng Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| | - Thomas J. Near
- Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520 USA
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, People’s Republic of China
| |
Collapse
|
10
|
Nady A, Peimani AR, Zoidl G, Rezai P. A microfluidic device for partial immobilization, chemical exposure and behavioural screening of zebrafish larvae. LAB ON A CHIP 2017; 17:4048-4058. [PMID: 29068019 DOI: 10.1039/c7lc00786h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The zebrafish larva is an important vertebrate model for sensory-motor integration studies, genetic screening, and drug discovery because of its excellent characteristics such as optical transparency, genetic manipulability, and genetic similarity to humans. Operations such as precise manipulation of zebrafish larvae, controlled exposure to chemicals, and behavioural monitoring are of utmost importance to the abovementioned studies. In this work, a novel microfluidic device is presented to easily stabilize an individual larva's head using a microfluidic trap while leaving the majority of the body and the tail unhindered to move freely in a downstream chamber. The device is equipped with a microvalve to prevent the larva's escape from the trap and a microchannel beside the larva's head to expose it to chemicals at desired concentrations and times, while investigating multiple behaviours such as the tail, eye, and mouth movement frequencies. An in situ air bubble removal module was also incorporated to increase the yield of experiments. The functionality of our device in comparison to a conventional droplet-based technique was tested using l-arginine exposure and viability assays. We found that the larvae in the device and the droplet exhibit similar tail and eye response trends to nM-mM concentrations of l-arginine, and that the survival of the larvae is not affected by the device. However, the tail responses in the device were numerically higher than the droplet-tested larvae at nM-mM l-arginine concentrations. In the future, our device has the potential to be used for conducting simultaneous whole-brain functional imaging, upon optimized immobilization of the brain, and behavioural analysis to uncover differences between diseased and healthy states in zebrafish.
Collapse
Affiliation(s)
- Asal Nady
- Department of Biology, York University, Toronto, ON, Canada
| | | | | | | |
Collapse
|
11
|
Zhu G, Wang L, Tang W, Wang X, Wang C. Identification of olfactory receptor genes in the Japanese grenadier anchovy Coilia nasus. Genes Genomics 2017; 39:521-532. [PMID: 28458780 PMCID: PMC5387026 DOI: 10.1007/s13258-017-0517-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/25/2017] [Indexed: 12/18/2022]
Abstract
Olfaction is essential for fish to detect odorant elements in the environment and plays a critical role in navigating, locating food and detecting predators. Olfactory function is produced by the olfactory transduction pathway and is activated by olfactory receptors (ORs) through the binding of odorant elements. Recently, four types of olfactory receptors have been identified in vertebrate olfactory epithelium, including main odorant receptors (MORs), vomeronasal type receptors (VRs), trace-amine associated receptors (TAARs) and formyl peptide receptors (FPRs). It has been hypothesized that migratory fish, which have the ability to perform spawning migration, use olfactory cues to return to natal rivers. Therefore, obtaining OR genes from migratory fish will provide a resource for the study of molecular mechanisms that underlie fish spawning migration behaviors. Previous studies of OR genes have mainly focused on genomic data, however little information has been gained at the transcript level. In this study, we identified the OR genes of an economically important commercial fish Coilia nasus through searching for olfactory epithelium transcriptomes. A total of 142 candidate MOR, 52 V2R/OlfC, 32 TAAR and two FPR putative genes were identified. In addition, through genomic analysis we identified several MOR genes containing introns, which is unusual for vertebrate MOR genes. The transcriptome-scale mining strategy proved to be fruitful in identifying large sets of OR genes from species whose genome information is unavailable. Our findings lay the foundation for further research into the possible molecular mechanisms underlying the spawning migration behavior in C. nasus.
Collapse
Affiliation(s)
- Guoli Zhu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC USA
| | - Wenqiao Tang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaomei Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Cong Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
12
|
Silva L, Antunes A. Vomeronasal Receptors in Vertebrates and the Evolution of Pheromone Detection. Annu Rev Anim Biosci 2017; 5:353-370. [DOI: 10.1146/annurev-animal-022516-022801] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Liliana Silva
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-208 Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
13
|
Fatsini E, Bautista R, Manchado M, Duncan NJ. Transcriptomic profiles of the upper olfactory rosette in cultured and wild Senegalese sole (Solea senegalensis) males. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 20:125-135. [PMID: 27689822 DOI: 10.1016/j.cbd.2016.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/23/2016] [Accepted: 09/02/2016] [Indexed: 12/30/2022]
Abstract
The aims of this study were the characterization of the upper olfactory epithelium of cultured and wild Senegalese sole mature males at histological and transcriptomic (using RNA-Seq) level. No significant differences in tissue structure, cell types and cellular distribution pattern (olfactory sensory neurons) were identified between cultured and wild specimens. Deep transcriptomic analysis showed 2387 transcripts were differentially expressed between cultured and wild groups. A detailed analysis identified the differentially expressed transcripts included some olfactory receptors (OR, TAAR and V2R-like) and transcripts related with the control of reproduction such as the brain aromatase cytochrome P450 and tachykinin-3. Also a wide set of genes related with lipid sensing, metabolism and transport were differentially expressed and these transcripts were often down-regulated in cultured fish. Furthermore, cultured males presented a higher expression of genes related with goblet cells and mucin production that modulates innate and adaptive immune responses. All these changes in gene expression could be explained by different nutritional status and diet preference. The different expression of transcripts related to olfaction, reproduction, nutrient sensing and immune system demonstrate distinct differences in functionalities between cultured and wild soles providing new clues about the sexual dysfunction in this species.
Collapse
Affiliation(s)
- E Fatsini
- Institut de Recerca i Tecnología Agroalimentaria (IRTA), Sant Carles de la Ràpita Ctra. de Poble Nou km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - R Bautista
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, Edificio de Bioinnovación, C/ Severo Ochoa 34, 29590 Málaga, Spain
| | - M Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto Santa María, Cádiz, Spain.
| | - N J Duncan
- Institut de Recerca i Tecnología Agroalimentaria (IRTA), Sant Carles de la Ràpita Ctra. de Poble Nou km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| |
Collapse
|
14
|
Tora AS, Rovira X, Dione I, Bertrand H, Brabet I, De Koninck Y, Doyon N, Pin J, Acher F, Goudet C. Allosteric modulation of metabotropic glutamate receptors by chloride ions. FASEB J 2015; 29:4174-88. [DOI: 10.1096/fj.14-269746] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/15/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Amélie S. Tora
- Institut de Génomique Fonctionnelle, CNRS, UMR 5203, Université de MontpellierMontpellierFrance
- INSERM U1191MontpellierFrance
| | - Xavier Rovira
- Institut de Génomique Fonctionnelle, CNRS, UMR 5203, Université de MontpellierMontpellierFrance
- INSERM U1191MontpellierFrance
| | - Ibrahima Dione
- Centre de Recherche de l'Institut Universitaire en Santé Mentale du Québec and Université LavalQuébecCanada
| | | | - Isabelle Brabet
- Institut de Génomique Fonctionnelle, CNRS, UMR 5203, Université de MontpellierMontpellierFrance
- INSERM U1191MontpellierFrance
| | - Yves De Koninck
- Centre de Recherche de l'Institut Universitaire en Santé Mentale du Québec and Université LavalQuébecCanada
| | - Nicolas Doyon
- Centre de Recherche de l'Institut Universitaire en Santé Mentale du Québec and Université LavalQuébecCanada
| | - Jean‐Philippe Pin
- Institut de Génomique Fonctionnelle, CNRS, UMR 5203, Université de MontpellierMontpellierFrance
- INSERM U1191MontpellierFrance
| | - Francine Acher
- Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesCNRS, UMR 8601, Université Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Cyril Goudet
- Institut de Génomique Fonctionnelle, CNRS, UMR 5203, Université de MontpellierMontpellierFrance
- INSERM U1191MontpellierFrance
| |
Collapse
|
15
|
Clemmensen C, Smajilovic S, Wellendorph P, Bräuner-Osborne H. The GPCR, class C, group 6, subtype A (GPRC6A) receptor: from cloning to physiological function. Br J Pharmacol 2014; 171:1129-41. [PMID: 24032653 DOI: 10.1111/bph.12365] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/25/2013] [Accepted: 08/26/2013] [Indexed: 12/16/2022] Open
Abstract
GPRC6A (GPCR, class C, group 6, subtype A) is a class C GPCR that has been cloned from human, mouse and rat. Several groups have shown that the receptor is activated by a range of basic and small aliphatic L-α-amino acids of which L-arginine, L-lysine and L-ornithine are the most potent compounds with EC50 values in the mid-micromolar range. In addition, several groups have shown that the receptor is either directly activated or positively modulated by divalent cations such as Ca(2+) albeit in concentrations above 5 mM, which is above the physiological concentration in most tissues. More recently, the peptide osteocalcin and the steroid testosterone have also been suggested to be endogenous GPRC6A agonists. The receptor is widely expressed in all three species which, along with the omnipresence of the amino acids and divalent cation ligands, suggest that the receptor could be involved in a broad range of physiological functions. So far, this has mainly been addressed by analyses of genetically modified mice where the GPRC6A receptor has been ablated. Although there has been some discrepancies among results reported from different groups, there is increasing evidence that the receptor is involved in regulation of inflammation, metabolism and endocrine functions. GPRC6A could thus be an interesting target for new drugs in these therapeutic areas.
Collapse
Affiliation(s)
- C Clemmensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
16
|
Nakada T, Hagino-Yamagishi K, Nakanishi K, Yokosuka M, Saito TR, Toyoda F, Hasunuma I, Nakakura T, Kikuyama S. Expression of G proteins in the olfactory receptor neurons of the newt Cynops pyrrhogaster: their unique projection into the olfactory bulbs. J Comp Neurol 2014; 522:3501-19. [PMID: 24771457 DOI: 10.1002/cne.23619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 12/11/2022]
Abstract
We analyzed the expression of G protein α subunits and the axonal projection into the brain in the olfactory system of the semiaquatic newt Cynops pyrrhogaster by immunostaining with antibodies against Gαolf and Gαo , by in situ hybridization using probes for Gαolf , Gαo , and Gαi2 , and by neuronal tracing with DiI and DiA. The main olfactory epithelium (OE) consists of two parts, the ventral OE and dorsal OE. In the ventral OE, the Gαolf - and Gαo -expressing neurons are located in the apical and basal zone of the OE, respectively. This zonal expression was similar to that of the OE in the middle cavity of the fully aquatic toad Xenopus laevis. However, the Gαolf - and Gαo -expressing neurons in the newt ventral OE project their axons toward the main olfactory bulb (MOB) and the accessory olfactory bulb (AOB), respectively, whereas in Xenopus, the axons of both neurons project solely toward the MOB. In the dorsal OE of the newt, as in the principal cavity of Xenopus, the majority of the neurons express Gαolf and extend their axons into the MOB. In the vomeronasal organ (VNO), the neurons mostly express Gαo . These neurons and quite a few Gαolf -expressing neurons project their axons toward the AOB. This feature is similar to that in the terrestrial toad Bufo japonicus and is different from that in Xenopus, in which VNO neurons express solely Gαo , although their axons invariably project toward the AOB. We discuss the findings in the light of diversification and evolution of the vertebrate olfactory system.
Collapse
Affiliation(s)
- Tomoaki Nakada
- Department of Comparative and Behavioral Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, 180-8602, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sansone A, Hassenklöver T, Syed AS, Korsching SI, Manzini I. Phospholipase C and diacylglycerol mediate olfactory responses to amino acids in the main olfactory epithelium of an amphibian. PLoS One 2014; 9:e87721. [PMID: 24489954 PMCID: PMC3905040 DOI: 10.1371/journal.pone.0087721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/02/2014] [Indexed: 11/25/2022] Open
Abstract
The semi-aquatic lifestyle of amphibians represents a unique opportunity to study the molecular driving forces involved in the transition of aquatic to terrestrial olfaction in vertebrates. Most amphibians have anatomically segregated main and vomeronasal olfactory systems, but at the cellular and molecular level the segregation differs from that found in mammals. We have recently shown that amino acid responses in the main olfactory epithelium (MOE) of larval Xenopus laevis segregate into a lateral and a medial processing stream, and that the former is part of a vomeronasal type 2 receptor expression zone in the MOE. We hypothesized that the lateral amino acid responses might be mediated via a vomeronasal-like transduction machinery. Here we report that amino acid-responsive receptor neurons in the lateral MOE employ a phospholipase C (PLC) and diacylglycerol-mediated transduction cascade that is independent of Ca2+ store depletion. Furthermore, we found that putative transient receptor potential (TRP) channel blockers inhibit most amino acid-evoked responses in the lateral MOE, suggesting that ion channels belonging to the TRP family may be involved in the signaling pathway. Our data show, for the first time, a widespread PLC- and diacylglycerol-dependent transduction cascade in the MOE of a vertebrate already possessing a vomeronasal organ.
Collapse
Affiliation(s)
- Alfredo Sansone
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany
| | - Thomas Hassenklöver
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany
| | - Adnan S. Syed
- Institute of Genetics, University of Cologne, Cologne, Germany
| | | | - Ivan Manzini
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
18
|
Role of a ubiquitously expressed receptor in the vertebrate olfactory system. J Neurosci 2013; 33:15235-47. [PMID: 24048853 DOI: 10.1523/jneurosci.2339-13.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Odorant cues are recognized by receptors expressed on olfactory sensory neurons, the primary sensory neurons of the olfactory epithelium. Odorant receptors typically obey the "one receptor, one neuron" rule, in which the receptive field of the olfactory neuron is determined by the singular odorant receptor that it expresses. Odor-evoked receptor activity across the population of olfactory neurons is then interpreted by the brain to identify the molecular nature of the odorant stimulus. In the present study, we characterized the properties of a C family G-protein-coupled receptor that, unlike most other odorant receptors, is expressed in a large population of microvillous sensory neurons in the zebrafish olfactory epithelium and the mouse vomeronasal organ. We found that this receptor, OlfCc1 in zebrafish and its murine ortholog Vmn2r1, is a calcium-dependent, low-sensitivity receptor specific for the hydrophobic amino acids isoleucine, leucine, and valine. Loss-of-function experiments in zebrafish embryos demonstrate that OlfCc1 is required for olfactory responses to a diverse mixture of polar, nonpolar, acidic, and basic amino acids. OlfCc1 was also found to promote localization of other OlfC receptor family members to the plasma membrane in heterologous cells. Together, these results suggest that the broadly expressed OlfCc1 is required for amino acid detection by the olfactory system and suggest that it plays a role in the function and/or intracellular trafficking of other olfactory and vomeronasal receptors with which it is coexpressed.
Collapse
|
19
|
Marenco LN, Bahl G, Hyland L, Shi J, Wang R, Lai PC, Miller PL, Shepherd GM, Crasto CJ. Databases in SenseLab for the genomics, proteomics, and function of olfactory receptors. Methods Mol Biol 2013; 1003:3-22. [PMID: 23585030 DOI: 10.1007/978-1-62703-377-0_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We present here, the salient aspects of three databases: Olfactory Receptor Database (ORDB) is a repository of genomics and proteomics information of ORs; OdorDB stores information related to odorous compounds, specifically identifying those that have been shown to interact with olfactory rectors; and OdorModelDB disseminates information related to computational models of olfactory receptors (ORs). The data stored among these databases is integrated. Presented in this chapter are descriptions of these resources, which are part of the SenseLab suite of databases, a discussion of the computational infrastructure that enhances the efficacy of information storage, retrieval, dissemination, and automated data population from external sources.
Collapse
Affiliation(s)
- Luis N Marenco
- Center for Medical Informatics, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nikaido M, Suzuki H, Toyoda A, Fujiyama A, Hagino-Yamagishi K, Kocher TD, Carleton K, Okada N. Lineage-specific expansion of vomeronasal type 2 receptor-like (OlfC) genes in cichlids may contribute to diversification of amino acid detection systems. Genome Biol Evol 2013; 5:711-22. [PMID: 23501830 PMCID: PMC3641633 DOI: 10.1093/gbe/evt041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fish use olfaction to sense a variety of nonvolatile chemical signals in water. However, the evolutionary importance of olfaction in species-rich cichlids is controversial. Here, we determined an almost complete sequence of the vomeronasal type 2 receptor-like (OlfC: putative amino acids receptor in teleosts) gene cluster using the bacterial artificial chromosome library of the Lake Victoria cichlid, Haplochromis chilotes. In the cluster region, we found 61 intact OlfC genes, which is the largest number of OlfC genes identified among the seven teleost fish investigated to date. Data mining of the Oreochromis niloticus (Nile tilapia) draft genome sequence, and genomic Southern hybridization analysis revealed that the ancestor of all modern cichlids had already developed almost the same OlfC gene repertoire, which was accomplished by lineage-specific gene expansions. Furthermore, comparison of receptor sequences showed that recently duplicated paralogs are more variable than orthologs of different species at particular sites that were predicted to be involved in amino acid selectivity. Thus, the increase of paralogs through gene expansion may lead to functional diversification in detection of amino acids. This study implies that cichlids have developed a potent capacity to detect a variety of amino acids (and their derivatives) through OlfCs, which may have contributed to the extraordinary diversity of their feeding habitats.
Collapse
Affiliation(s)
- Masato Nikaido
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Mammalian olfactory receptor families are segregated into different olfactory organs, with type 2 vomeronasal receptor (v2r) genes expressed in a basal layer of the vomeronasal epithelium. In contrast, teleost fish v2r genes are intermingled with all other olfactory receptor genes in a single sensory surface. We report here that, strikingly different from both lineages, the v2r gene family of the amphibian Xenopus laevis is expressed in the main olfactory as well as the vomeronasal epithelium. Interestingly, late diverging v2r genes are expressed exclusively in the vomeronasal epithelium, whereas "ancestral" v2r genes, including the single member of v2r family C, are restricted to the main olfactory epithelium. Moreover, within the main olfactory epithelium, v2r genes are expressed in a basal zone, partially overlapping, but clearly distinct from an apical zone of olfactory marker protein and odorant receptor-expressing cells. These zones are also apparent in the spatial distribution of odor responses, enabling a tentative assignment of odor responses to olfactory receptor gene families. Responses to alcohols, aldehydes, and ketones show an apical localization, consistent with being mediated by odorant receptors, whereas amino acid responses overlap extensively with the basal v2r-expressing zone. The unique bimodal v2r expression pattern in main and accessory olfactory system of amphibians presents an excellent opportunity to study the transition of v2r gene expression during evolution of higher vertebrates.
Collapse
|
22
|
Gliem S, Syed AS, Sansone A, Kludt E, Tantalaki E, Hassenklöver T, Korsching SI, Manzini I. Bimodal processing of olfactory information in an amphibian nose: odor responses segregate into a medial and a lateral stream. Cell Mol Life Sci 2012; 70:1965-84. [PMID: 23269434 PMCID: PMC3656224 DOI: 10.1007/s00018-012-1226-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/30/2022]
Abstract
In contrast to the single sensory surface present in teleost fishes, several spatially segregated subsystems with distinct molecular and functional characteristics define the mammalian olfactory system. However, the evolutionary steps of that transition remain unknown. Here we analyzed the olfactory system of an early diverging tetrapod, the amphibian Xenopus laevis, and report for the first time the existence of two odor-processing streams, sharply segregated in the main olfactory bulb and partially segregated in the olfactory epithelium of pre-metamorphic larvae. A lateral odor-processing stream is formed by microvillous receptor neurons and is characterized by amino acid responses and Gαo/Gαi as probable signal transducers, whereas a medial stream formed by ciliated receptor neurons is characterized by responses to alcohols, aldehydes, and ketones, and Gαolf/cAMP as probable signal transducers. To reveal candidates for the olfactory receptors underlying these two streams, the spatial distribution of 12 genes from four olfactory receptor gene families was determined. Several class II and some class I odorant receptors (ORs) mimic the spatial distribution observed for the medial stream, whereas a trace amine-associated receptor closely parallels the spatial pattern of the lateral odor-processing stream. Other olfactory receptors (some class I odorant receptors and vomeronasal type 1 receptors) and odor responses (to bile acids, amines) were not lateralized, the latter not even in the olfactory bulb, suggesting an incomplete segregation. Thus, the olfactory system of X. laevis exhibits an intermediate stage of segregation and as such appears well suited to investigate the molecular driving forces behind olfactory regionalization.
Collapse
Affiliation(s)
- Sebastian Gliem
- Department of Neurophysiology and Cellular Biophysics, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Orthosteric and allosteric drug binding sites in the Caenorhabditis elegans mgl-2 metabotropic glutamate receptor. Neuropharmacology 2012; 63:667-74. [PMID: 22652059 DOI: 10.1016/j.neuropharm.2012.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/26/2012] [Accepted: 05/19/2012] [Indexed: 11/21/2022]
Abstract
The metabotropic glutamate receptors (mGluRs) are evolutionarily conserved from nematodes to vertebrates. The Caenorhabditis elegans (C. elegans) genome contains three mGluR genes referred to as mgl-1, mgl-2, and mgl-3. The aim of this study was to characterize the pharmacological profiles of orthosteric and allosteric mGluR ligands on mgl-2. A phylogenetic analysis revealed that mgl-2 is closely associated with the mammalian Group 1 mGluRs (mGluR1 and mGluR5) and is distinct from Group 2 and 3 mGluRs. The ligand binding domain of mgl-2 displayed higher homology to the rat Group 1 mGluRs binding domains compared to the level of homology in the heptahelical transmembrane domain regions. We found that, when transiently expressed in human embryonic kidney 293 cells, mgl-2 can be activated by glutamate and couples to human G-proteins to induce the release of intracellular calcium. Dose-response analyses revealed that mgl-2 has approximately a 15-20-fold lower affinity for glutamate and quisqualate compared to rat mGluR5. In contrast to orthosteric agonists, Group 1 negative allosteric modulators that target the transmembrane domain were ineffective at mgl-2. Surprisingly, CDPPB, an mGluR5 positive allosteric modulator, potentiated glutamate mediated activation of mgl-2, although MPEP and fenobam, two mGluR5 antagonists that share similar binding residues with CDPPB were ineffective at mgl-2. These findings indicate that selective pressures on mGluR protein structures have resulted in conservation of the glutamate binding site, whereas the allosteric modulator sites have been subjected to greater divergent evolutionary changes.
Collapse
|
24
|
Gromiha MM, Harini K, Sowdhamini R, Fukui K. Relationship between amino acid properties and functional parameters in olfactory receptors and discrimination of mutants with enhanced specificity. BMC Bioinformatics 2012; 13 Suppl 7:S1. [PMID: 22594995 PMCID: PMC3348020 DOI: 10.1186/1471-2105-13-s7-s1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Olfactory receptors are key components in signal transduction. Mutations in olfactory receptors alter the odor response, which is a fundamental response of organisms to their immediate environment. Understanding the relationship between odorant response and mutations in olfactory receptors is an important problem in bioinformatics and computational biology. In this work, we have systematically analyzed the relationship between various physical, chemical, energetic and conformational properties of amino acid residues, and the change of odor response/compound's potency/half maximal effective concentration (EC50) due to amino acid substitutions. RESULTS We observed that both the characteristics of odorant molecule (ligand) and amino acid properties are important for odor response and EC50. Additional information on neighboring and surrounding residues of the mutants enhanced the correlation between amino acid properties and EC50. Further, amino acid properties have been combined systematically using multiple regression techniques and we obtained a correlation of 0.90-0.98 with odor response/EC50 of goldfish, mouse and human olfactory receptors. In addition, we have utilized machine learning methods to discriminate the mutants, which enhance or reduce EC50 values upon mutation and we obtained an accuracy of 93% and 79% for self-consistency and jack-knife tests, respectively. CONCLUSIONS Our analysis provides deep insights for understanding the odor response of olfactory receptor mutants and the present method could be used for identifying the mutants with enhanced specificity.
Collapse
Affiliation(s)
- M Michael Gromiha
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India.
| | | | | | | |
Collapse
|
25
|
JOHNSTONE KA, LUBIENIECKI KP, KOOP BF, DAVIDSON WS. Expression of olfactory receptors in different life stages and life histories of wild Atlantic salmon (Salmo salar). Mol Ecol 2011; 20:4059-69. [DOI: 10.1111/j.1365-294x.2011.05251.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Olfactory sensitivity for six amino acids: a comparative study in CD-1 mice and spider monkeys. Amino Acids 2011; 42:1475-85. [PMID: 21647661 DOI: 10.1007/s00726-011-0951-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 05/21/2011] [Indexed: 10/18/2022]
Abstract
Using a conditioning paradigm, the olfactory sensitivity of five CD-1 mice for the L- and D-forms of cysteine, methionine, and proline was investigated. With all six stimuli, the animals discriminated concentrations ≤ 0.1 ppm (parts per million) from the odorless solvent, and with three of the six stimuli the best-scoring animals were even able to detect concentrations <0.1 ppb (parts per billion). Three spider monkeys tested in parallel were found to detect the same six stimuli at concentrations <1 ppm, and with four of the six stimuli the best-scoring animals detected concentrations ≤ 1 ppb. Both CD-1 mice and spider monkeys displayed a higher olfactory sensitivity with the L- and D-forms of cysteine and methionine than with the prolines, suggesting an important role of the sulfur-containing functional groups for detectability. Accordingly, the across-odorant patterns of detection thresholds obtained with mice and spider monkeys showed a significant positive correlation. A comparison of the detection thresholds between the two species tested here and those obtained in human subjects suggests that neither the number of functional olfactory receptor genes nor the absolute or the relative size of the olfactory bulbs reliably predicts a species' olfactory sensitivity for amino acids.
Collapse
|
27
|
Gayoso JÁ, Castro A, Anadón R, Manso MJ. Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio). J Comp Neurol 2011; 519:247-76. [PMID: 21165974 DOI: 10.1002/cne.22518] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunohistochemical methods were used to characterize the expression of two calcium-binding proteins, calretinin (CR) and S100, in the olfactory rosette of the adult zebrafish. These proteins are expressed in different sets of sensory neurons, and together represent a large proportion of these cells. Double immunofluorescence for CR and Gα(olf) protein, and CR immunoelectron microscopy, indicated that most CR-immunoreactive (ir) cells were ciliary neurons. Differential S100- and CR-ir projections to glomerular fields of the olfactory bulb were also observed, although these projections overlap in some glomeruli. Application of the carbocyanine dye DiI to either S100-ir or CR-ir glomerular regions led to labeling of cells mostly similar to S100-ir and CR-ir neurons, respectively. Instead, these bulbar regions project to similar telencephalic targets. On the other hand, antibodies against keyhole limpet hemocyanin (KLH)-stained numerous sensory cells in the olfactory rosette, including cells that were CR- and S100-negative. This antiserum also stained most primary bulbar projections and revealed extrabulbar olfactory primary projections coursing to the ventral area of the telencephalon through the medial olfactory tract. This extrabulbar projection was confirmed by tract-tracing with DiI. A loose association of this extrabulbar primary olfactory projection and the catecholaminergic populations of the ventral area was also observed with double tyrosine hydroxylase/KLH-like immunohistochemistry. Comparison between KLH-like-ir pathways and the structures revealed by FMRFamide immunohistochemistry (a marker of terminal ganglion cells and fibers) indicated that the KLH-like-ir extrabulbar projection was different from the terminal nerve system. The significance of the extrabulbar olfactory projection of zebrafish is discussed.
Collapse
Affiliation(s)
- José Ángel Gayoso
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, Coruña, Spain
| | | | | | | |
Collapse
|
28
|
A critical pocket close to the glutamate binding site of mGlu receptors opens new possibilities for agonist design. Neuropharmacology 2011; 60:102-7. [DOI: 10.1016/j.neuropharm.2010.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/11/2010] [Accepted: 07/01/2010] [Indexed: 01/23/2023]
|
29
|
Abstract
The olfactory properties of 6 amino acids were assessed in 20 human subjects using psychophysical tests of detectability, discriminability, and chemesthesis. Mean olfactory detection thresholds were found to be 10 microM for D-methionine, 80 microM for L-methionine, 200 microM for L-cysteine, 220 microM for D-cysteine, 75 mM for D-proline, and 100 mM for L-proline. When presented at clearly detectable and intensity-matched concentrations, the subjects readily discriminated between the odors of the L-forms of cysteine, methionine, and proline, whereas they failed to distinguish between the L- and D-forms of a given amino acid. The subjects also failed in localizing the side of monorhinal stimulation with all 6 amino acids when presented at the same concentrations as in the discrimination tasks. These results suggest that amino acids may contribute to the flavor of food not only as taste stimuli but also as olfactory stimuli perceived via ortho- or retronasal smelling. In contrast, it is unlikely that amino acids contribute to flavor perception via chemesthesis. Given that the odors of 4 of the 6 amino acids tested here were detected at concentrations lower than their corresponding taste detection thresholds, this may have important implications for the widespread use of amino acids as food additives as well as for the evaluation of off-flavors caused by amino acids.
Collapse
Affiliation(s)
- Matthias Laska
- IFM Biology, Linköping University, SE-581 83 Linköping, Sweden.
| |
Collapse
|
30
|
Warangkar SC, Khobragade CN. Purification, Characterization, and Effect of Thiol Compounds on Activity of the Erwinia carotovora L-Asparaginase. Enzyme Res 2009; 2010:165878. [PMID: 21048860 PMCID: PMC2956972 DOI: 10.4061/2010/165878] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 07/31/2009] [Indexed: 11/20/2022] Open
Abstract
L-asparaginase was extracted from Erwinia carotovora and purified by ammonium sulfate fractionation (60–70%), Sephadex G-100, CM cellulose, and DEAE sephadex chromatography. The apparent Mr of enzyme under nondenaturing and denaturing conditions was 150 kDa and 37 ± 0.5 kDa, respectively. L-asparaginase activity was studied in presence of thiols, namely, L-cystine (Cys), L-methionine (Met), N-acetyl cysteine (NAC), and reduced glutathione (GSH). Kinetic parameters in presence of thiols (10–400 μM) showed an increase in Vmax values (2000, 2223, 2380, 2500, and control 1666.7 μmoles mg−1min−1) and a decrease in Km values (0.086, 0.076, 0.062, 0.055 and control 0.098 mM) indicating nonessential mode of activation. KA values displayed propensity to bind thiols. A decrease in Vmax/Km ratio in concentration plots showed inverse relationship between free thiol groups (NAC and GSH) and bound thiol group (Cys and Met). Enzyme activity was enhanced in presence of thiol protecting reagents like dithiothreitol (DTT), 2-mercaptoethanol (2-ME), and GSH, but inhibited by p-chloromercurybenzoate (PCMB) and iodoacetamide (IA).
Collapse
Affiliation(s)
- Suchita C Warangkar
- Biotechnology Research Laboratory, School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, India
| | | |
Collapse
|
31
|
Dolensek J, Valentincic T. Specificities of olfactory receptor neuron responses to amino acids in the black bullhead catfish (Ameiurus melas). Pflugers Arch 2009; 459:413-25. [PMID: 19756721 PMCID: PMC2810369 DOI: 10.1007/s00424-009-0720-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 08/16/2009] [Accepted: 08/25/2009] [Indexed: 10/28/2022]
Abstract
In vivo investigations of catfish olfactory receptor neurons (ORNs) were previously limited to studying responses of spontaneously active cells. The olfactory organ, however, also contains ORNs that lack spontaneous activity and respond to amino acids. To record electrical activity of ORNs that were inactive prior to stimulation, we bathed the olfactory organ with low conductive, highly purified water that reduces shunting and enables detection of action potentials from ORNs distant to the electrode. After stimulation with amino acids, these ORNs elicited either phasic-tonic or tonic only activities. The spike frequency of the phasic activity consisted of transient frequencies up to 108 Hz that lasted <450 ms. All tonic activities saturated at action potential frequencies of 17-21 Hz. Their durations were dose dependent over several log units of concentration as they closely followed that of the suprathreshold amino acid stimulation. Specificities of 44 ORNs were investigated with ten different amino acids tested at 10(-4) M. Thirteen ORNs were excited by only one amino acid, L-norvaline, and 22 additional ORNs were excited by L-norvaline and L-methionine. Nine ORNs were excited by >2 amino acids that included L: -norvaline. In 29 of 31 neurons responding to >1 amino acid, the duration of the responses to the most stimulatory amino acid was at least double compared to that to the other amino acids. The amplitude of electro-olfactogram (EOG) correlated significantly with the number of ORNs activated by the same amino acids confirming that the EOG represents the sum of ORN receptor potentials.
Collapse
Affiliation(s)
- Jurij Dolensek
- Institute of Physiology, University of Maribor, Slomskov trg 15, Maribor, Slovenia.
| | | |
Collapse
|
32
|
Wellendorph P, Bräuner-Osborne H. Molecular basis for amino acid sensing by family C G-protein-coupled receptors. Br J Pharmacol 2009; 156:869-84. [PMID: 19298394 DOI: 10.1111/j.1476-5381.2008.00078.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Family C of human G-protein-coupled receptors (GPCRs) is constituted by eight metabotropic glutamate receptors, two gamma-aminobutyric acid type B (GABA(B1-2)) subunits forming the heterodimeric GABA(B) receptor, the calcium-sensing receptor, three taste1 receptors (T1R1-3), a promiscuous L-alpha;-amino acid receptor G-protein-coupled receptor family C, group 6, subtype A (GPRC6A) and seven orphan receptors. Aside from the orphan receptors, the family C GPCRs are dimeric receptors characterized by a large extracellular Venus flytrap domain which bind the endogenous agonists. Except from the GABA(B1-2) and T1R2-3 receptor, all receptors are either activated or positively modulated by amino acids. In this review, we outline mutational, biophysical and structural studies which have elucidated the interaction of the amino acids with the Venus flytrap domains, molecular mechanisms of receptor selectivity and the initial steps in receptor activation.
Collapse
Affiliation(s)
- P Wellendorph
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | |
Collapse
|
33
|
Olfactory neural circuitry for attraction to amino acids revealed by transposon-mediated gene trap approach in zebrafish. Proc Natl Acad Sci U S A 2009; 106:9884-9. [PMID: 19497864 DOI: 10.1073/pnas.0900470106] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In fish, amino acids are food-related important olfactory cues to elicit an attractive response. However, the neural circuit underlying this olfactory behavior is not fully elucidated. In the present study, we applied the Tol2 transposon-mediated gene trap method to dissect the zebrafish olfactory system genetically. Four zebrafish lines (SAGFF27A, SAGFF91B, SAGFF179A, and SAGFF228C) were established in which the modified transcription activator Gal4FF was expressed in distinct subsets of olfactory sensory neurons (OSNs). The OSNs in individual lines projected axons to partially overlapping but mostly different glomeruli in the olfactory bulb (OB). In SAGFF27A, Gal4FF was expressed predominantly in microvillous OSNs innervating the lateral glomerular cluster that corresponded to the amino acid-responsive region in the OB. To clarify the olfactory neural pathway mediating the feeding behavior, we genetically expressed tetanus neurotoxin in the Gal4FF lines to block synaptic transmission in distinct populations of glomeruli and examined their behavioral response to amino acids. The attractive response to amino acids was abolished only in SAGFF27A fish carrying the tetanus neurotoxin transgene. These findings clearly demonstrate the functional significance of the microvillous OSNs innervating the lateral glomerular cluster in the amino acid-mediated feeding behavior of zebrafish. Thus, the integrated approach combining genetic, neuroanatomical, and behavioral methods enables us to elucidate the neural circuit mechanism underlying various olfactory behaviors in adult zebrafish.
Collapse
|
34
|
Klaschka U. A new challenge-development of test systems for the infochemical effect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2009; 16:370-388. [PMID: 19189145 DOI: 10.1007/s11356-008-0093-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 11/25/2008] [Indexed: 05/27/2023]
Abstract
BACKGROUND, AIM, AND SCOPE Many-if not all-organisms depend on so-called infochemicals, chemical substances in their surroundings which inform the receivers about their biotic and abiotic environment and which allow them to react adequately to these signals. Anthropogenic substances can interfere with this complex chemical communication system. This finding is called infochemical effect. So far, it is not known to what extent anthropogenic discharges act as infochemicals and influence life and reproduction of organisms in the environment because adequate testing methods to identify chemicals which show the infochemical effect and to quantify their effects have not been developed yet. The purpose of this article is to help and find suitable test designs. MAIN FEATURES Test systems used in basic research to elucidate the olfactory cascade and the communication of environmental organisms by infochemicals are plentiful. Some of them might be the basis for a quantified ecotoxicological analysis of the infochemical effect. In principle, test systems for the infochemical effect could be developed at each step of the chemosensory signal transduction and processing cascade. RESULTS Experimental set-ups were compiled systematically under the aspect whether they might be usable for testing the infochemical effect of single chemicals in standardized quantifying laboratory experiments. For an appropriate ecotoxicological assessment of the infochemical effect, experimental studies of many disciplines, such as molecular biology, neurobiology, physiology, chemical ecology, and population dynamics, should be evaluated in detail before a decision can be made which test system, respectively which test battery, might be suited best. The test systems presented here are based on the knowledge of the genetic sequences for olfactory receptors, binding studies of odorants, signal transmission, and reactions of the receivers on the level of the organisms or the populations. The following basic approaches are conceivable to identify the role of an infochemical: binding studies to the odorant-binding protein or to the odorant receptor binding protein (e.g., by in situ hybridization and immunohistochemical studies), measurement of electrical signals of the receptor cells in the tissue (e.g., electroolfactograms, electroantennograms), registration of phenotypic changes (e.g., observation under the microscope), behavioral tests (e.g., in situ online biomonitoring, use of T-shaped olfactometers, tests of avoidance responses), measurement of population changes (e.g., cell density or turbidity measurements), and multispecies tests with observation of community structure and community function. The main focus of this study is on aquatic organisms. DISCUSSION It is evident that the infochemical effect is a very complex sublethal endpoint, and it needs further studies with standardized quantitative methods to elucidate whether and to what extent the ecosystem is affected. The collection of approaches presented here is far from being complete but should serve as a point of depart for further experimental research. CONCLUSIONS This article is the first to compare various approaches for testing the infochemical effect. The development of a suitable test system will not be easy as there are a multitude of relevant chemicals, a multitude of relevant receptors, and a multitude of relevant reactions, and it must be expected that the effective concentrations are very low. The chemical communication is of utmost importance for the ecosystem and justifies great endeavors to find solutions to these technical problems. RECOMMENDATIONS AND PERSPECTIVES The infochemical effect is a new chapter in ecotoxicology. Will a new endpoint, the so-called infochemical effect, be required in addition to the actual standard test battery of Annex 5 to Commission Directive 92/69/EEC (EC 1992)? Finding the answer to this question is a big challenge that could be met by a comprehensive research project.
Collapse
Affiliation(s)
- Ursula Klaschka
- University of Applied Sciences Ulm, Prittwitzstr. 10, 89075, Ulm, Germany.
| |
Collapse
|
35
|
Johnstone KA, Ciborowski KL, Lubieniecki KP, Chow W, Phillips RB, Koop BF, Jordan WC, Davidson WS. Genomic organization and evolution of the vomeronasal type 2 receptor-like (OlfC) gene clusters in Atlantic salmon, Salmo salar. Mol Biol Evol 2009; 26:1117-25. [PMID: 19221009 PMCID: PMC2668830 DOI: 10.1093/molbev/msp027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
There are three major multigene superfamilies of olfactory receptors (OR, V1R, and V2R) in mammals. The ORs are expressed in the main olfactory organ, whereas the V1Rs and V2Rs are located in the vomeronasal organ. Fish only possess one olfactory organ in each nasal cavity, the olfactory rosette; therefore, it has been proposed that their V2R-like genes be classified as olfactory C family G protein-coupled receptors (OlfC). There are large variations in the sizes of OR gene repertoires. Previous studies have shown that fish have between 12 and 46 functional V2R-like genes, whereas humans have lost all functional V2Rs, and frog sp. have more than 240. Pseudogenization of V2R genes is a prevalent event across species. In the mouse and frog genomes, there are approximately double the number of pseudogenes compared with functional genes. An oligonucleotide probe was designed from a conserved sequence from four Atlantic salmon OlfC genes and used to screen the Atlantic salmon bacterial artificial chromosome (BAC) library. Hybridization-positive BACs were matched to fingerprint contigs, and representative BACs were shotgun cloned and sequenced. We identified 55 OlfC genes. Twenty-nine of the OlfC genes are classified as putatively functional genes and 26 as pseudogenes. The OlfC genes are found in two genomic clusters on chromosomes 9 and 20. Phylogenetic analysis revealed that the OlfC genes could be divided into 10 subfamilies, with nine of these subfamilies corresponding to subfamilies found in other teleosts and one being salmon specific. There is also a large expansion in the number of OlfC genes in one subfamily in Atlantic salmon. Subfamily gene expansions have been identified in other teleosts, and these differences in gene number reflect species-specific evolutionary requirements for olfaction. Total RNA was isolated from the olfactory epithelium and other tissues from a presmolt to examine the expression of the odorant genes. Several of the putative OlfC genes that we identified are expressed only in the olfactory epithelium, consistent with these genes encoding odorant receptors.
Collapse
Affiliation(s)
- Kimberley A Johnstone
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Korsching S. The molecular evolution of teleost olfactory receptor gene families. Results Probl Cell Differ 2009; 47:37-55. [PMID: 18956167 DOI: 10.1007/400_2008_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Four olfactory receptor gene families, all of them G protein-coupled receptors, have been identified and characterized in mammals--the odorant (OR), vomeronasal (V1R and V2R) and trace amine-associated (TAARs) receptors. Much less attention has been directed towards non-mammalian members of these families. Since a hallmark of mammalian olfactory receptors is their remarkable species specificity, an evaluation of the non-mammalian olfactory receptors is instructive both for comparative purposes and in its own right. In this review I have compiled the results currently available for all four olfactory gene families and discuss their phylogenomic properties in relation to their mammalian counterparts. Representatives of all four families are found in cartilaginous fish and/or jawless fish, allowing a minimal estimate for the evolutionary origin as preceding the segregation between cartilaginous and bony fish or cartilaginous and jawless fish, respectively. Gene repertoires of teleost olfactory receptors are smaller in size (OR, ORA), comparable (olfC), or even larger (TAAR) than the corresponding mammalian gene repertoires. Despite their smaller repertoire size, the teleost OR and ORA families show much larger divergence than their mammalian counterparts. Evolutionary rates vary greatly between families, with evidence for positive selection in teleost OR genes, whereas the ora genes are subject to strong negative selection, and in fact are being conserved among all teleost species investigated. With one exception, ligands are unknown for any of the four teleost olfactory receptor gene families, and so the considerable knowledge about the odor responses of the olfactory epithelium and the olfactory bulb can only be linked indirectly to the receptor repertoires.
Collapse
|
37
|
Triballeau N, Van Name E, Laslier G, Cai D, Paillard G, Sorensen PW, Hoffmann R, Bertrand HO, Ngai J, Acher FC. High-potency olfactory receptor agonists discovered by virtual high-throughput screening: molecular probes for receptor structure and olfactory function. Neuron 2008; 60:767-74. [PMID: 19081373 PMCID: PMC2652502 DOI: 10.1016/j.neuron.2008.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 11/03/2008] [Accepted: 11/10/2008] [Indexed: 11/27/2022]
Abstract
The detection of diverse chemical structures by the vertebrate olfactory system is accomplished by the recognition of odorous ligands by their cognate receptors. In the present study, we used computational screening to discover novel high-affinity agonists of an olfactory G protein-coupled receptor that recognizes amino acid ligands. Functional testing of the top candidates validated several agonists with potencies higher than any of the receptor's known natural ligands. Computational modeling revealed molecular interactions involved in ligand binding and further highlighted interactions that have been conserved in evolutionarily divergent amino acid receptors. Significantly, the top compounds display robust activities as odorants in vivo and include a natural product that may be used to signal the presence of bacteria in the environment. Our virtual screening approach should be applicable to the identification of new bioactive molecules for probing the structure of chemosensory receptors and the function of chemosensory systems in vivo.
Collapse
Affiliation(s)
- Nicolas Triballeau
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR-8601, Université Paris Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France
- Accelrys, Parc-Club Orsay Université, 20 rue J. Rostand, 91898 Orsay Cedex, France
| | - Eric Van Name
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute and Functional Genomics Laboratory, University of California, Berkeley, California 94720, USA
| | - Guillaume Laslier
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR-8601, Université Paris Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France
| | - Diana Cai
- Department of Fisheries, Wildlife & Conservation Biology, University of Minnesota, 1980 Folwell Avenue, St. Paul, Minnesota 55108, USA
| | - Guillaume Paillard
- Accelrys, Parc-Club Orsay Université, 20 rue J. Rostand, 91898 Orsay Cedex, France
| | - Peter W. Sorensen
- Department of Fisheries, Wildlife & Conservation Biology, University of Minnesota, 1980 Folwell Avenue, St. Paul, Minnesota 55108, USA
| | - Rémy Hoffmann
- Accelrys, Parc-Club Orsay Université, 20 rue J. Rostand, 91898 Orsay Cedex, France
| | | | - John Ngai
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute and Functional Genomics Laboratory, University of California, Berkeley, California 94720, USA
| | - Francine C. Acher
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR-8601, Université Paris Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France
| |
Collapse
|
38
|
Derby CD, Sorensen PW. Neural processing, perception, and behavioral responses to natural chemical stimuli by fish and crustaceans. J Chem Ecol 2008; 34:898-914. [PMID: 18521679 DOI: 10.1007/s10886-008-9489-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 04/22/2008] [Accepted: 04/28/2008] [Indexed: 12/19/2022]
Abstract
This manuscript reviews the chemical ecology of two of the major aquatic animal models, fish and crustaceans, in the study of chemoreception. By necessity, it is restricted in scope, with most emphasis placed on teleost fish and decapod crustaceans. First, we describe the nature of the chemical world perceived by fish and crustaceans, giving examples of the abilities of these animals to analyze complex natural odors. Fish and crustaceans share the same environments and have evolved some similar chemosensory features: the ability to detect and discern mixtures of small metabolites in highly variable backgrounds and to use this information to identify food, mates, predators, and habitat. Next, we give examples of the molecular nature of some of these natural products, including a description of methodologies used to identify them. Both fish and crustaceans use their olfactory and gustatory systems to detect amino acids, amines, and nucleotides, among many other compounds, while fish olfactory systems also detect mixtures of sex steroids and prostaglandins with high specificity and sensitivity. Third, we discuss the importance of plasticity in chemical sensing by fish and crustaceans. Finally, we conclude with a description of how natural chemical stimuli are processed by chemosensory systems. In both fishes and crustaceans, the olfactory system is especially adept at mixture discrimination, while gustation is well suited to facilitate precise localization and ingestion of food. The behaviors of both fish and crustaceans can be defined by the chemical worlds in which they live and the abilities of their nervous systems to detect and identify specific features in their domains. An understanding of these worlds and the sensory systems that provide the animals with information about them provides insight into the chemical ecology of these species.
Collapse
Affiliation(s)
- Charles D Derby
- Center for Behavioral Neuroscience, Department of Biology, Georgia State University, Atlanta, GA, USA.
| | | |
Collapse
|
39
|
Extracellular calcium-sensing receptors in fishes. Comp Biochem Physiol A Mol Integr Physiol 2008; 149:225-45. [DOI: 10.1016/j.cbpa.2008.01.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/23/2008] [Accepted: 01/23/2008] [Indexed: 11/19/2022]
|
40
|
Abstract
Zebrafish is now becoming one of the most useful model organisms in neurobiology. In addition to its general advantageous properties (external fertilization, rapid development, transparency of embryos, etc.), the zebrafish is amenable to various genetic engineering technologies such as transgenesis, mutagenesis, gene knockdown, and transposon-mediated gene transfer. A transgenic approach unraveled two segregated neural circuits originating from ciliated and microvillous sensory neurons in the olfactory epithelium to distinct regions of the olfactory bulb, which likely convey different types of olfactory information (e.g., pheromones and odorants) to the higher olfactory centers. Furthermore, the two basic principles identified in mice, so-called one neuron-one receptor rule and convergence of like axons to target glomeruli, are basically preserved also in the zebrafish, rendering this organism a suitable model vertebrate for studies of the olfactory system. This review summarizes recent advances in our knowledge on genetic, molecular, and cellular mechanisms underlying the development and functional architecture of the olfactory neural circuitry in the zebrafish.
Collapse
|
41
|
Nikonov AA, Caprio J. Highly specific olfactory receptor neurons for types of amino acids in the channel catfish. J Neurophysiol 2007; 98:1909-18. [PMID: 17686913 DOI: 10.1152/jn.00548.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Odorant specificity to l-alpha-amino acids was determined electrophysiologically for 93 single catfish olfactory receptor neurons (ORNs) selected for their narrow excitatory molecular response range (EMRR) to only one type of amino acid (i.e., Group I units). These units were excited by either a basic amino acid, a neutral amino acid with a long side chain, or a neutral amino acid with a short side chain when tested at 10(-7) to 10(-5) M. Stimulus-induced inhibition, likely for contrast enhancement, was primarily observed in response to the types of amino acid stimuli different from that which activated a specific ORN. The high specificity of single Group I ORNs to type of amino acid was also previously observed for single Group I neurons in both the olfactory bulb and forebrain of the same species. These results indicate that for Group I neurons olfactory information concerning specific types of amino acids is processed from receptor neurons through mitral cells of the olfactory bulb to higher forebrain neurons without significant alteration in unit odorant specificity.
Collapse
Affiliation(s)
- Alexander A Nikonov
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
42
|
Ferrer RP, Zimmer RK. Chemosensory reception, behavioral expression, and ecological interactions at multiple trophic levels. J Exp Biol 2007; 210:1776-85. [PMID: 17488941 DOI: 10.1242/jeb.001727] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYChemoreception may function throughout an entire animal lifetime, with independent, stage-specific selection pressures leading to changes in physiological properties, behavioral expression, and hence, trophic interactions. When the California newt (Taricha torosa) metamorphoses from an entirely aquatic larva to a semi-terrestrial juvenile/adult form, its chemosensory organs undergo dramatic reorganization. The relationship between newt life-history stage and chemosensory-mediated behavior was established by comparing responses of adults (as determined here) to those of conspecific larvae (as studied previously). Bioassays were performed in mountain streams,testing responses of free-ranging adults to 13 individual l-amino acids. Relative to stream water (controls), adults turned immediately upcurrent and moved to the source of arginine, glycine or alanine release. These responses were indicative of predatory search. Arginine was the strongest attractant tested, with a response threshold (median effective dose)of 8.3×10–7 mol l–1 (uncorrected for dilution associated with chemical release and delivery). In contrast to adult behavior, arginine suppressed cannibal-avoidance and failed to evoke search reactions in larvae. For a common set of arginine analogs, the magnitudes of adult attraction and larval suppression were not positively correlated. Suppression of cannibal-avoidance behavior in larvae was unaffected by most structural modifications of the arginine molecule. Adult behavior, on the other hand, was strongly influenced by even subtle alterations in the parent compound. Reactions to arginine in both adults and larvae were eliminated by blocking the external openings of the nasal cavity.Stimulating adult predatory search in one case and inhibiting larval cannibal avoidance in the other, arginine is a chemical signal with opposing behavioral effects and varying ecological consequences. Significant differences between responses of adults and larvae to changes in arginine structure suggest alternative, chemosensory receptor targets. Although arginine reception functions throughout an entire newt lifetime, an ontogenetic shift in larval and adult chemoreceptive ability changes behavioral expression, and thus, reflects the unique selection pressures that act at each life-history stage.
Collapse
Affiliation(s)
- Ryan P Ferrer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095-1606, USA
| | | |
Collapse
|
43
|
Wellendorph P, Burhenne N, Christiansen B, Walter B, Schmale H, Bräuner-Osborne H. The rat GPRC6A: cloning and characterization. Gene 2007; 396:257-67. [PMID: 17478059 DOI: 10.1016/j.gene.2007.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/16/2007] [Accepted: 03/16/2007] [Indexed: 11/23/2022]
Abstract
GPRC6A is a novel member of family C of G protein-coupled receptors with so far elusive biological function. GPRC6A has been described in human and mouse as a promiscuous l-alpha-amino acid receptor. We now report the cloning, expression analysis and, functional characterization of the rat orthologue of GPRC6A. Full-length cloning of rat GPRC6A (rGPRC6A) was accomplished using amplification of cDNA from taste tissue, and the identity of rGPRC6A confirmed at both the genomic and the protein level by similarity studies. Using selective primers, reverse transcriptase polymerase chain reaction showed that the mRNA is widely but weakly distributed, except for a high expression in the soft palate, the so-called geschmacksstreifen. On the protein level, rGPRC6A was shown to be glycosylated and most likely oligomeric, and using immunochemistry we observed that rGPRC6A is expressed at the plasma membrane of mammalian cell lines. Utilizing co-expression of rGPRC6A and the promiscuous Galpha(q)(G66D) protein in an engineered cell-based inositol phosphate turnover assay, we were able to study the ligand profile of the receptor. We found that l-ornithine is the most potent and efficacious l-amino acid agonist with an EC(50) value of 264 microM, followed by several other aliphatic, neutral, and basic amino acids. Furthermore, the divalent cation Mg(2+) was found to be a positive modulator of the l-ornithine response. The presented quantitative pharmacological data underlines the evolutionary conservation of GPRC6A to the rat and signifies the physiological importance and emerging pharmacological potential of GPRC6A.
Collapse
Affiliation(s)
- Petrine Wellendorph
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
44
|
Pelz D, Roeske T, Syed Z, de Bruyne M, Galizia CG. The molecular receptive range of an olfactory receptor in vivo (Drosophila melanogaster Or22a). ACTA ACUST UNITED AC 2007; 66:1544-63. [PMID: 17103386 DOI: 10.1002/neu.20333] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Understanding how odors are coded within an olfactory system requires knowledge about its input. This is constituted by the molecular receptive ranges (MRR) of olfactory sensory neurons that converge in the glomeruli of the olfactory bulb (vertebrates) or the antennal lobe (AL, insects). Aiming at a comprehensive characterization of MRRs in Drosophila melanogaster we measured odor-evoked calcium responses in olfactory sensory neurons that express the olfactory receptor Or22a. We used an automated stimulus application system to screen [Ca(2+)] responses to 104 odors both in the antenna (sensory transduction) and in the AL (neuronal transmission). At 10(-2) (vol/vol) dilution, 39 odors elicited at least a half-maximal response. For these odorants we established dose-response relationships over their entire dynamic range. We tested 15 additional chemicals that are structurally related to the most efficient odors. Ethyl hexanoate and methyl hexanoate were the best stimuli, eliciting consistent responses at dilutions as low as 10(-9). Two substances led to calcium decrease, suggesting that Or22a might be constitutively active, and that these substances might act as inverse agonists, reminiscent of G-protein coupled receptors. There was no difference between the antennal and the AL MRR. Furthermore we show that Or22a has a broad yet selective MRR, and must be functionally described both as a specialist and a generalist. Both these descriptions are ecologically relevant. Given that adult Drosophila use approximately 43 ORs, a complete description of all MRRs appears now in reach.
Collapse
Affiliation(s)
- Daniela Pelz
- Institut für Neurobiologie, Freie Universität Berlin, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
45
|
Oka Y, Katada S, Omura M, Suwa M, Yoshihara Y, Touhara K. Odorant receptor map in the mouse olfactory bulb: in vivo sensitivity and specificity of receptor-defined glomeruli. Neuron 2007; 52:857-69. [PMID: 17145506 DOI: 10.1016/j.neuron.2006.10.019] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 10/05/2006] [Accepted: 10/19/2006] [Indexed: 10/23/2022]
Abstract
Odorant identity is represented in the olfactory bulb (OB) by the glomerular activity pattern, which reflects a combination of activated odorant receptors (ORs) in the olfactory epithelium. To elucidate this neuronal circuit at the molecular level, we established a functional OR identification strategy based on glomerular activity by combining in vivo Ca(2+) imaging, retrograde dye labeling, and single-cell RT-PCR. Spatial and functional mapping of OR-defined glomeruli revealed that the glomerular positional relationship varied considerably between individual animals, resulting in different OR maps in the OB. Notably, OR-defined glomeruli exhibited different ligand spectra and far higher sensitivity compared to the in vitro pharmacological properties of corresponding ORs. Moreover, we found that the olfactory mucus was an important factor in the regulation of in vivo odorant responsiveness. Our results provide a methodology to examine in vivo glomerular responses at the receptor level and further help address the long-standing issues of olfactory sensitivity and specificity under physiological conditions.
Collapse
Affiliation(s)
- Yuki Oka
- Department of Integrated Biosciences, The University of Tokyo, Chiba 277-8562, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Christiansen B, Wellendorph P, Bräuner-Osborne H. Known regulators of nitric oxide synthase and arginase are agonists at the human G-protein-coupled receptor GPRC6A. Br J Pharmacol 2007; 147:855-63. [PMID: 16491104 PMCID: PMC1760712 DOI: 10.1038/sj.bjp.0706682] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
GPRC6A is a novel family C G-protein-coupled receptor (GPCR) with so far unknown physiological function. It was the aim of our study to further characterize the ligand preferences of the receptor and elucidate structural requirements for activity. We have previously generated a functional chimeric receptor construct, h6A/5.24, containing the ligand-binding amino-terminal domain of the human GPRC6A and the seven-transmembrane domain and carboxy terminus of the homologous goldfish receptor 5.24. Based on knowledge that this chimera prefers basic L-alpha-amino acids such as arginine, lysine and ornithine, we searched for commercially available analogues of these and other L-alpha-amino acids, and tested them for activity in a fluorescence-based calcium assay. The majority of the tested compounds are involved in the regulation of nitric oxide synthase (NOS) and arginase enzymes. Altogether we profiled 30 different analogues. We found that a structurally wide range of L-alpha-amino-acid analogues of both arginine, lysine, and ornithine are agonists at h6A/5.24, whereas no antagonists were identified. From the profiling it is concluded that L-alpha-amino acids containing a highly basic side chain confer the highest activity, although the most potent compound was only twice as potent as L-arginine, which has a EC50 value of 23.5 microM. The reported agonism of NOS- and arginase-active compounds at GPRC6A has obvious implications in interpretation of experiments involving the NOS and arginase systems, and interfering effects at GPRC6A should be regarded of relevance, especially as the physiological function of the receptor is not yet understood.
Collapse
Affiliation(s)
- Bolette Christiansen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, 2 Universitetsparken, Copenhagen DK-2100, Denmark
| | - Petrine Wellendorph
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, 2 Universitetsparken, Copenhagen DK-2100, Denmark
| | - Hans Bräuner-Osborne
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, 2 Universitetsparken, Copenhagen DK-2100, Denmark
- Author for correspondence:
| |
Collapse
|
47
|
Touhara K. Molecular biology of peptide pheromone production and reception in mice. ADVANCES IN GENETICS 2007; 59:147-71. [PMID: 17888798 DOI: 10.1016/s0065-2660(07)59006-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Intraspecies communication via pheromones plays an important role in social and sexual behaviors, which are critical for survival and reproduction in many animal species. In mice, pheromonal signals are processed by the parallel action of two olfactory systems: the main olfactory system and the vomeronasal pathway. Pheromones are recognized by chemosensory receptors expressed in the main olfactory epithelium and by V1R- and V2R-type receptors expressed in the vomeronasal organ (VNO). Mice take advantage of the chemical properties of both types of pheromones (i.e., volatile/nonvolatile) to precisely control the spatial and temporal transmission of their individual signals. The recent discovery of the exocrine gland-secreting peptide (ESP) family, which appears to encode a VNO-specific ligand repertoire, should open a new avenue to understanding peptide pheromone-mediated communication via the vomeronasal pathway in mice. In this chapter, I will review the current knowledge on genetic and molecular aspects of peptide pheromones and their receptors, by focusing primarily on the mouse VNO system. It is also an intriguing aspect to discuss peptide pheromones in the context of the evolutionary importance of species-specific chemical communication.
Collapse
Affiliation(s)
- Kazushige Touhara
- Department of Integrated Biosciences, The University of Tokyo, Chiba 277-8562, Japan
| |
Collapse
|
48
|
The repertoire of olfactory C family G protein-coupled receptors in zebrafish: candidate chemosensory receptors for amino acids. BMC Genomics 2006; 7:309. [PMID: 17156446 PMCID: PMC1764893 DOI: 10.1186/1471-2164-7-309] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 12/08/2006] [Indexed: 11/22/2022] Open
Abstract
Background Vertebrate odorant receptors comprise at least three types of G protein-coupled receptors (GPCRs): the OR, V1R, and V2R/V2R-like receptors, the latter group belonging to the C family of GPCRs. These receptor families are thought to receive chemosensory information from a wide spectrum of odorant and pheromonal cues that influence critical animal behaviors such as feeding, reproduction and other social interactions. Results Using genome database mining and other informatics approaches, we identified and characterized the repertoire of 54 intact "V2R-like" olfactory C family GPCRs in the zebrafish. Phylogenetic analysis – which also included a set of 34 C family GPCRs from fugu – places the fish olfactory receptors in three major groups, which are related to but clearly distinct from other C family GPCRs, including the calcium sensing receptor, metabotropic glutamate receptors, GABA-B receptor, T1R taste receptors, and the major group of V2R vomeronasal receptor families. Interestingly, an analysis of sequence conservation and selective pressure in the zebrafish receptors revealed the retention of a conserved sequence motif previously shown to be required for ligand binding in other amino acid receptors. Conclusion Based on our findings, we propose that the repertoire of zebrafish olfactory C family GPCRs has evolved to allow the detection and discrimination of a spectrum of amino acid and/or amino acid-based compounds, which are potent olfactory cues in fish. Furthermore, as the major groups of fish receptors and mammalian V2R receptors appear to have diverged significantly from a common ancestral gene(s), these receptors likely mediate chemosensation of different classes of chemical structures by their respective organisms.
Collapse
|
49
|
Hashiguchi Y, Nishida M. Evolution and origin of vomeronasal-type odorant receptor gene repertoire in fishes. BMC Evol Biol 2006; 6:76. [PMID: 17014738 PMCID: PMC1601972 DOI: 10.1186/1471-2148-6-76] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 10/03/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In teleost fishes that lack a vomeronasal organ, both main odorant receptors (ORs) and vomeronasal receptors family 2 (V2Rs) are expressed in the olfactory epithelium, and used for perception of water-soluble chemicals. In zebrafish, it is known that both ORs and V2Rs formed multigene families of about a hundred copies. Whereas the contribution of V2Rs in zebrafish to olfaction has been found to be substantially large, the composition and structure of the V2R gene family in other fishes are poorly known, compared with the OR gene family. RESULTS To understand the evolutionary dynamics of V2R genes in fishes, V2R sequences in zebrafish, medaka, fugu, and spotted green pufferfish were identified from their draft genome sequences. There were remarkable differences in the number of intact V2R genes in different species. Most V2R genes in these fishes were tightly clustered in one or two specific chromosomal regions. Phylogenetic analysis revealed that the fish V2R family could be subdivided into 16 subfamilies that had diverged before the separation of the four fishes. Genes in two subfamilies in zebrafish and another subfamily in medaka increased in their number independently, suggesting species-specific evolution in olfaction. Interestingly, the arrangements of V2R genes in the gene clusters were highly conserved among species in the subfamily level. A genomic region of tetrapods corresponding to the region in fishes that contains the V2R cluster was found to have no V2R gene in any species. CONCLUSION Our results have indicated that the evolutionary dynamics of fish V2Rs are characterized by rapid gene turnover and lineage-specific phylogenetic clustering. In addition, the present phylogenetic and comparative genome analyses have shown that the fish V2Rs have expanded after the divergence between teleost and tetrapod lineages. The present identification of the entire V2R repertoire in fishes would provide useful foundation to the future functional and evolutionary studies of fish V2R gene family.
Collapse
Affiliation(s)
- Yasuyuki Hashiguchi
- Division of Molecular Marine Biology, Ocean Research Institute, University of Tokyo, Tokyo, Japan
| | - Mutsumi Nishida
- Division of Molecular Marine Biology, Ocean Research Institute, University of Tokyo, Tokyo, Japan
| |
Collapse
|
50
|
Kuang D, Yao Y, MacLean D, Wang M, Hampson DR, Chang BSW. Ancestral reconstruction of the ligand-binding pocket of Family C G protein-coupled receptors. Proc Natl Acad Sci U S A 2006; 103:14050-5. [PMID: 16966606 PMCID: PMC1563994 DOI: 10.1073/pnas.0604717103] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The metabotropic glutamate receptors (mGluRs) within the Family C subclass of G protein-coupled receptors are crucial modulators of synaptic transmission. However, their closest relatives include a diverse group of sensory receptors whose biological functions are not associated with neurotransmission, raising the question of the evolutionary origin of amino acid-binding Family C receptors. A common feature of most, if not all, functional Family C receptors is the presence of an amino acid-binding site localized within the large extracellular Venus flytrap domain. Here, we used maximum likelihood methods to infer the ancestral state of key residues in the amino acid-binding pocket of a primordial Family C receptor. These residues were reconstructed in the background of the fish 5.24 chemosensory receptor, a broad-spectrum amino acid-activated receptor. Unlike the WT 5.24 receptor, which was not activated by mGluR agonists and displayed low sensitivity toward l-glutamate, the reconstructed ancestral receptor possessed a pharmacological profile characterized by high affinity for both l-glutamate and selective Group I mGluR agonists. This pharmacological phenotype could be largely recapitulated by mutating only two residues in the 5.24 receptor-binding pocket. Our results suggest that this primordial Family C receptor may have arisen early in metazoan evolution and that it already was preadapted as a glutamate receptor for its later use at excitatory synapses in glutamate-mediated neurotransmission.
Collapse
Affiliation(s)
| | - Yi Yao
- Departments of Pharmaceutical Sciences
| | | | | | - David R. Hampson
- Departments of Pharmaceutical Sciences
- Pharmacology
- To whom correspondence should be addressed. E-mail:
| | - Belinda S. W. Chang
- Ecology and Evolutionary Biology, and
- Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3M2
| |
Collapse
|