1
|
Weingarten DJ, Shrestha A, Orlin DJ, Le Moing CL, Borchardt LA, Jackman SL. Synaptotagmins 3 and 7 mediate the majority of asynchronous release from synapses in the cerebellum and hippocampus. Cell Rep 2024; 43:114595. [PMID: 39116209 PMCID: PMC11410144 DOI: 10.1016/j.celrep.2024.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/24/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Neurotransmitter release consists of rapid synchronous release followed by longer-lasting asynchronous release (AR). Although the presynaptic proteins that trigger synchronous release are well understood, the mechanisms for AR remain unclear. AR is sustained by low concentrations of intracellular Ca2+ and Sr2+, suggesting the involvement of sensors with high affinities for both ions. Synaptotagmin 7 (SYT7) partly mediates AR, but substantial AR persists in the absence of SYT7. The closely related SYT3 binds Ca2+ and Sr2+ with high affinity, making it a promising candidate to mediate AR. Here, we use knockout mice to study the contribution of SYT3 and SYT7 to AR at cerebellar and hippocampal synapses. AR is dramatically reduced when both isoforms are absent, which alters the number and timing of postsynaptic action potentials. Our results confirm the long-standing prediction that SYT3 mediates AR and show that SYT3 and SYT7 act as dominant mechanisms for AR at three central synapses.
Collapse
Affiliation(s)
| | - Amita Shrestha
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Daniel J Orlin
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Chloé L Le Moing
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Luke A Borchardt
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Skyler L Jackman
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
2
|
López-Murcia FJ, Lin KH, Berns MMM, Ranjan M, Lipstein N, Neher E, Brose N, Reim K, Taschenberger H. Complexin has a dual synaptic function as checkpoint protein in vesicle priming and as a promoter of vesicle fusion. Proc Natl Acad Sci U S A 2024; 121:e2320505121. [PMID: 38568977 PMCID: PMC11009659 DOI: 10.1073/pnas.2320505121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
The presynaptic SNARE-complex regulator complexin (Cplx) enhances the fusogenicity of primed synaptic vesicles (SVs). Consequently, Cplx deletion impairs action potential-evoked transmitter release. Conversely, though, Cplx loss enhances spontaneous and delayed asynchronous release at certain synapse types. Using electrophysiology and kinetic modeling, we show that such seemingly contradictory transmitter release phenotypes seen upon Cplx deletion can be explained by an additional of Cplx in the control of SV priming, where its ablation facilitates the generation of a "faulty" SV fusion apparatus. Supporting this notion, a sequential two-step priming scheme, featuring reduced vesicle fusogenicity and increased transition rates into the faulty primed state, reproduces all aberrations of transmitter release modes and short-term synaptic plasticity seen upon Cplx loss. Accordingly, we propose a dual presynaptic function for the SNARE-complex interactor Cplx, one as a "checkpoint" protein that guarantees the proper assembly of the fusion machinery during vesicle priming, and one in boosting vesicle fusogenicity.
Collapse
Affiliation(s)
- Francisco José López-Murcia
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Kun-Han Lin
- Laboratory of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| | - Manon M. M. Berns
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Mrinalini Ranjan
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, Georg August University Göttingen, Göttingen37077, Germany
| | - Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Erwin Neher
- Laboratory of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
- Cluster of Excellence ‘Multiscale Bioimaging’, Georg August University Göttingen, Göttingen37073, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
- Cluster of Excellence ‘Multiscale Bioimaging’, Georg August University Göttingen, Göttingen37073, Germany
| | - Kerstin Reim
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| |
Collapse
|
3
|
Wu Z, Kusick GF, Berns MMM, Raychaudhuri S, Itoh K, Walter AM, Chapman ER, Watanabe S. Synaptotagmin 7 docks synaptic vesicles to support facilitation and Doc2α-triggered asynchronous release. eLife 2024; 12:RP90632. [PMID: 38536730 PMCID: PMC10972563 DOI: 10.7554/elife.90632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Despite decades of intense study, the molecular basis of asynchronous neurotransmitter release remains enigmatic. Synaptotagmin (syt) 7 and Doc2 have both been proposed as Ca2+ sensors that trigger this mode of exocytosis, but conflicting findings have led to controversy. Here, we demonstrate that at excitatory mouse hippocampal synapses, Doc2α is the major Ca2+ sensor for asynchronous release, while syt7 supports this process through activity-dependent docking of synaptic vesicles. In synapses lacking Doc2α, asynchronous release after single action potentials is strongly reduced, while deleting syt7 has no effect. However, in the absence of syt7, docked vesicles cannot be replenished on millisecond timescales. Consequently, both synchronous and asynchronous release depress from the second pulse onward during repetitive activity. By contrast, synapses lacking Doc2α have normal activity-dependent docking, but continue to exhibit decreased asynchronous release after multiple stimuli. Moreover, disruption of both Ca2+ sensors is non-additive. These findings result in a new model whereby syt7 drives activity-dependent docking, thus providing synaptic vesicles for synchronous (syt1) and asynchronous (Doc2 and other unidentified sensors) release during ongoing transmission.
Collapse
Affiliation(s)
- Zhenyong Wu
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Grant F Kusick
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Manon MM Berns
- Department of Neuroscience, University of CopenhagenCopenhagenDenmark
| | - Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Kie Itoh
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Alexander M Walter
- Department of Neuroscience, University of CopenhagenCopenhagenDenmark
- Molecular and Theoretical Neuroscience, Leibniz-Institut für Molekulare Pharmakologie, FMP im CharitéCrossOverBerlinGermany
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
4
|
Chiu DN, Carter BC. Synaptotagmin 7 Sculpts Short-Term Plasticity at a High Probability Synapse. J Neurosci 2024; 44:e1756232023. [PMID: 38262726 PMCID: PMC10904093 DOI: 10.1523/jneurosci.1756-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Synapses with high release probability (Pr ) tend to exhibit short-term synaptic depression. According to the prevailing model, this reflects the temporary depletion of release-ready vesicles after an initial action potential (AP). At the high-Pr layer 4 to layer 2/3 (L4-L2/3) synapse in rodent somatosensory cortex, short-term plasticity appears to contradict the depletion model: depression is absent at interstimulus intervals (ISIs) <50 ms and develops to a maximum at ∼200 ms. To understand the mechanism(s) underlying the biphasic time course of short-term plasticity at this synapse, we used whole-cell electrophysiology and two-photon calcium imaging in acute slices from male and female juvenile mice. We tested several candidate mechanisms including neuromodulation, postsynaptic receptor desensitization, and use-dependent changes in presynaptic AP-evoked calcium. We found that, at single L4-L2/3 synapses, Pr varies as a function of ISI, giving rise to the distinctive short-term plasticity time course. Furthermore, the higher-than-expected Pr at short ISIs depends on expression of synaptotagmin 7 (Syt7). Our results show that two distinct vesicle release processes summate to give rise to short-term plasticity at this synapse: (1) a basal, high-Pr release mechanism that undergoes rapid depression and recovers slowly (τ = ∼3 s) and (2) a Syt7-dependent mechanism that leads to a transient increase in Pr (τ = ∼100 ms) after the initial AP. We thus reveal how these synapses can maintain a very high probability of neurotransmission for multiple APs within a short time frame. Key words : depression; facilitation; short-term plasticity; synaptotagmin 7.
Collapse
Affiliation(s)
- Delia N Chiu
- European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, 37077 Göttingen, Germany
| | - Brett C Carter
- European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Neher E. Interpretation of presynaptic phenotypes of synaptic plasticity in terms of a two-step priming process. J Gen Physiol 2024; 156:e202313454. [PMID: 38112713 PMCID: PMC10730358 DOI: 10.1085/jgp.202313454] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Studies on synaptic proteins involved in neurotransmitter release often aim at distinguishing between their roles in vesicle priming (the docking of synaptic vesicles to the plasma membrane and the assembly of a release machinery) as opposed to the process of vesicle fusion. This has traditionally been done by estimating two parameters, the size of the pool of fusion-competent vesicles (the readily releasable pool, RRP) and the probability that such vesicles are released by an action potential, with the aim of determining how these parameters are affected by molecular perturbations. Here, it is argued that the assumption of a homogeneous RRP may be too simplistic and may blur the distinction between vesicle priming and fusion. Rather, considering priming as a dynamic and reversible multistep process allows alternative interpretations of mutagenesis-induced changes in synaptic transmission and suggests mechanisms for variability in synaptic strength and short-term plasticity among synapses, as well as for interactions between short- and long-term plasticity. In many cases, assigned roles of proteins or causes for observed phenotypes are shifted from fusion- to priming-related when considering multistep priming. Activity-dependent enhancement of priming is an essential element in this alternative view and its variation among synapse types can explain why some synapses show depression and others show facilitation at low to intermediate stimulation frequencies. Multistep priming also suggests a mechanism for frequency invariance of steady-state release, which can be observed in some synapses involved in sensory processing.
Collapse
Affiliation(s)
- Erwin Neher
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
6
|
Jun S, Kim M, Park H, Hwang E, Yamamoto Y, Tanaka-Yamamoto K. Organization of Purkinje cell development by neuronal MEGF11 in cerebellar granule cells. Cell Rep 2023; 42:113137. [PMID: 37708022 DOI: 10.1016/j.celrep.2023.113137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/24/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
As cerebellar granule cells (GCs) coordinate the formation of regular cerebellar networks during postnatal development, molecules in GCs are expected to be involved. Here, we test the effects of the knockdown (KD) of multiple epidermal growth factor-like domains protein 11 (MEGF11), which is a homolog of proteins mediating astrocytic phagocytosis but is substantially increased at the later developmental stages of GCs on cerebellar development. MEGF11-KD in GCs of developing mice results in abnormal cerebellar structures, including extensively ectopic Purkinje cell (PC) somas, and in impaired motor functions. MEGF11-KD also causes abnormally asynchronous synaptic release from GC axons, parallel fibers, before the appearance of abnormal cerebellar structures. Interestingly, blockade of this abnormal synaptic release restores most of the cerebellar structures. Thus, apart from phagocytic functions of its related homologs in astrocytes, MEGF11 in GCs promotes proper PC development and cerebellar network formation by regulating immature synaptic transmission.
Collapse
Affiliation(s)
- Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Muwoong Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eunmi Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
7
|
Oberle HM, Ford AN, Czarny JE, Rogalla MM, Apostolides PF. Recurrent Circuits Amplify Corticofugal Signals and Drive Feedforward Inhibition in the Inferior Colliculus. J Neurosci 2023; 43:5642-5655. [PMID: 37308295 PMCID: PMC10401644 DOI: 10.1523/jneurosci.0626-23.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
The inferior colliculus (IC) is a midbrain hub critical for perceiving complex sounds, such as speech. In addition to processing ascending inputs from most auditory brainstem nuclei, the IC receives descending inputs from auditory cortex that control IC neuron feature selectivity, plasticity, and certain forms of perceptual learning. Although corticofugal synapses primarily release the excitatory transmitter glutamate, many physiology studies show that auditory cortical activity has a net inhibitory effect on IC neuron spiking. Perplexingly, anatomy studies imply that corticofugal axons primarily target glutamatergic IC neurons while only sparsely innervating IC GABA neurons. Corticofugal inhibition of the IC may thus occur largely independently of feedforward activation of local GABA neurons. We shed light on this paradox using in vitro electrophysiology in acute IC slices from fluorescent reporter mice of either sex. Using optogenetic stimulation of corticofugal axons, we find that excitation evoked with single light flashes is indeed stronger in presumptive glutamatergic neurons compared with GABAergic neurons. However, many IC GABA neurons fire tonically at rest, such that sparse and weak excitation suffices to significantly increase their spike rates. Furthermore, a subset of glutamatergic IC neurons fire spikes during repetitive corticofugal activity, leading to polysynaptic excitation in IC GABA neurons owing to a dense intracollicular connectivity. Consequently, recurrent excitation amplifies corticofugal activity, drives spikes in IC GABA neurons, and generates substantial local inhibition in the IC. Thus, descending signals engage intracollicular inhibitory circuits despite apparent constraints of monosynaptic connectivity between auditory cortex and IC GABA neurons.SIGNIFICANCE STATEMENT Descending "corticofugal" projections are ubiquitous across mammalian sensory systems, and enable the neocortex to control subcortical activity in a predictive or feedback manner. Although corticofugal neurons are glutamatergic, neocortical activity often inhibits subcortical neuron spiking. How does an excitatory pathway generate inhibition? Here we study the corticofugal pathway from auditory cortex to inferior colliculus (IC), a midbrain hub important for complex sound perception. Surprisingly, cortico-collicular transmission was stronger onto IC glutamatergic compared with GABAergic neurons. However, corticofugal activity triggered spikes in IC glutamate neurons with local axons, thereby generating strong polysynaptic excitation and feedforward spiking of GABAergic neurons. Our results thus reveal a novel mechanism that recruits local inhibition despite limited monosynaptic convergence onto inhibitory networks.
Collapse
Affiliation(s)
- Hannah M Oberle
- Neuroscience Graduate Program
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Alexander N Ford
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Jordyn E Czarny
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Meike M Rogalla
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Pierre F Apostolides
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
8
|
Caballero-Florán RN, Bendahmane M, Gupta JP, Chen X, Wu X, Morales A, Anantharam A, Jenkins PM. Synaptotagmin-7 facilitates acetylcholine release in splanchnic nerve-chromaffin cell synapses during nerve activity. Neurosci Lett 2023; 800:137129. [PMID: 36796621 PMCID: PMC10145958 DOI: 10.1016/j.neulet.2023.137129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/23/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
Disturbances that threaten homeostasis elicit activation of the sympathetic nervous system (SNS) and the adrenal medulla. The effectors discharge as a unit to drive global and immediate changes in whole-body physiology. Descending sympathetic information is conveyed to the adrenal medulla via preganglionic splanchnic fibers. These fibers pass into the gland and synapse onto chromaffin cells, which synthesize, store, and secrete catecholamines and vasoactive peptides. While the importance of the sympatho-adrenal branch of the autonomic nervous system has been appreciated for many decades, the mechanisms underlying transmission between presynaptic splanchnic neurons and postsynaptic chromaffin cells have remained obscure. In contrast to chromaffin cells, which have enjoyed sustained attention as a model system for exocytosis, even the Ca2+ sensors that are expressed within splanchnic terminals have not yet been identified. This study shows that a ubiquitous Ca2+-binding protein, synaptotagmin-7 (Syt7), is expressed within the fibers that innervate the adrenal medulla, and that its absence can alter synaptic transmission in the preganglionic terminals of chromaffin cells. The prevailing impact in synapses that lack Syt7 is a decrease in synaptic strength and neuronal short-term plasticity. Evoked excitatory postsynaptic currents (EPSCs) in Syt7 KO preganglionic terminals are smaller in amplitude than in wild-type synapses stimulated in an identical manner. Splanchnic inputs also display robust short-term presynaptic facilitation, which is compromised in the absence of Syt7. These data reveal, for the first time, a role for any synaptotagmin at the splanchnic-chromaffin cell synapse. They also suggest that Syt7 has actions at synaptic terminals that are conserved across central and peripheral branches of the nervous system.
Collapse
Affiliation(s)
- René N Caballero-Florán
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Mounir Bendahmane
- Department of Neuroscience, University of Toledo, Toledo, OH 43614, United States
| | - Julie P Gupta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Xiaohuan Chen
- Department of Neuroscience, University of Toledo, Toledo, OH 43614, United States
| | - Xiaojun Wu
- Department of Neuroscience, University of Toledo, Toledo, OH 43614, United States
| | - Alina Morales
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Neuroscience, University of Toledo, Toledo, OH 43614, United States
| | - Arun Anantharam
- Department of Neuroscience, University of Toledo, Toledo, OH 43614, United States.
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
9
|
MacLeod KM, Pandya S. Expression and Neurotransmitter Association of the Synaptic Calcium Sensor Synaptotagmin in the Avian Auditory Brain Stem. J Assoc Res Otolaryngol 2022; 23:701-720. [PMID: 35999323 PMCID: PMC9789253 DOI: 10.1007/s10162-022-00863-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 07/12/2022] [Indexed: 01/31/2023] Open
Abstract
In the avian auditory brain stem, acoustic timing and intensity cues are processed in separate, parallel pathways via the two divisions of the cochlear nucleus, nucleus angularis (NA) and nucleus magnocellularis (NM). Differences in excitatory and inhibitory synaptic properties, such as release probability and short-term plasticity, contribute to differential processing of the auditory nerve inputs. We investigated the distribution of synaptotagmin, a putative calcium sensor for exocytosis, via immunohistochemistry and double immunofluorescence in the embryonic and hatchling chick brain stem (Gallus gallus). We found that the two major isoforms, synaptotagmin 1 (Syt1) and synaptotagmin 2 (Syt2), showed differential expression. In the NM, anti-Syt2 label was strong and resembled the endbulb terminals of the auditory nerve inputs, while anti-Syt1 label was weaker and more punctate. In NA, both isoforms were intensely expressed throughout the neuropil. A third isoform, synaptotagmin 7 (Syt7), was largely absent from the cochlear nuclei. In nucleus laminaris (NL, the target nucleus of NM), anti-Syt2 and anti-Syt7 strongly labeled the dendritic lamina. These patterns were established by embryonic day 18 and persisted to postnatal day 7. Double-labeling immunofluorescence showed that Syt1 and Syt2 were associated with vesicular glutamate transporter 2 (VGluT2), but not vesicular GABA transporter (VGAT), suggesting that these Syt isoforms were localized to excitatory, but not inhibitory, terminals. These results suggest that Syt2 is the major calcium binding protein underlying excitatory neurotransmission in the timing pathway comprising NM and NL, while Syt2 and Syt1 regulate excitatory transmission in the parallel intensity pathway via cochlear nucleus NA.
Collapse
Affiliation(s)
- Katrina M MacLeod
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| | - Sangeeta Pandya
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
10
|
Mesnard CS, Hays CL, Barta CL, Sladek AL, Grassmeyer JJ, Hinz KK, Quadros RM, Gurumurthy CB, Thoreson WB. Synaptotagmins 1 and 7 in vesicle release from rods of mouse retina. Exp Eye Res 2022; 225:109279. [PMID: 36280223 PMCID: PMC9830644 DOI: 10.1016/j.exer.2022.109279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 01/13/2023]
Abstract
Synaptotagmins are the primary Ca2+ sensors for synaptic exocytosis. Previous work suggested synaptotagmin-1 (Syt1) mediates evoked vesicle release from cone photoreceptor cells in the vertebrate retina whereas release from rods may involve another sensor in addition to Syt1. We found immunohistochemical evidence for syntaptotagmin-7 (Syt7) in mouse rod terminals and so performed electroretinograms (ERG) and single-cell recordings using mice in which Syt1 and/or Syt7 were conditionally removed from rods and/or cones. Synaptic release was measured in mouse rods by recording presynaptic anion currents activated during glutamate re-uptake and from exocytotic membrane capacitance changes. Deleting Syt1 from rods reduced glutamate release evoked by short depolarizing steps but not long steps whereas deleting Syt7 from rods reduced release evoked by long but not short steps. Deleting both sensors completely abolished depolarization-evoked release from rods. Effects of various intracellular Ca2+ buffers showed that Syt1-mediated release from rods involves vesicles close to ribbon-associated Ca2+ channels whereas Syt7-mediated release evoked by longer steps involves more distant release sites. Spontaneous release from rods was unaffected by eliminating Syt7. While whole animal knockout of Syt7 slightly reduced ERG b-waves and oscillatory potentials, selective elimination of Syt7 from rods had no effect on ERGs. Furthermore, eliminating Syt1 from rods and cones abolished ERG b-waves and additional elimination of Syt7 had no further effect. These results show that while Syt7 contributes to slow non-ribbon release from rods, Syt1 is the principal sensor shaping rod and cone inputs to bipolar cells in response to light flashes.
Collapse
Affiliation(s)
- C S Mesnard
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA; Pharmacology and Experimental Neuroscience, USA
| | - C L Hays
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA
| | - C L Barta
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA
| | - A L Sladek
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA
| | - J J Grassmeyer
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA; Pharmacology and Experimental Neuroscience, USA
| | - K K Hinz
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA
| | - R M Quadros
- Pharmacology and Experimental Neuroscience, USA; Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - C B Gurumurthy
- Pharmacology and Experimental Neuroscience, USA; Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - W B Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA; Pharmacology and Experimental Neuroscience, USA.
| |
Collapse
|
11
|
Weingarten DJ, Shrestha A, Juda-Nelson K, Kissiwaa SA, Spruston E, Jackman SL. Fast resupply of synaptic vesicles requires synaptotagmin-3. Nature 2022; 611:320-325. [PMID: 36261524 DOI: 10.1038/s41586-022-05337-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/12/2022] [Indexed: 01/09/2023]
Abstract
Sustained neuronal activity demands a rapid resupply of synaptic vesicles to maintain reliable synaptic transmission. Such vesicle replenishment is accelerated by submicromolar presynaptic Ca2+ signals by an as-yet unidentified high-affinity Ca2+ sensor1,2. Here we identify synaptotagmin-3 (SYT3)3,4 as that presynaptic high-affinity Ca2+ sensor, which drives vesicle replenishment and short-term synaptic plasticity. Synapses in Syt3 knockout mice exhibited enhanced short-term depression, and recovery from depression was slower and insensitive to presynaptic residual Ca2+. During sustained neuronal firing, SYT3 accelerated vesicle replenishment and increased the size of the readily releasable pool. SYT3 also mediated short-term facilitation under conditions of low release probability and promoted synaptic enhancement together with another high-affinity synaptotagmin, SYT7 (ref. 5). Biophysical modelling predicted that SYT3 mediates both replenishment and facilitation by promoting the transition of loosely docked vesicles to tightly docked, primed states. Our results reveal a crucial role for presynaptic SYT3 in the maintenance of reliable high-frequency synaptic transmission. Moreover, multiple forms of short-term plasticity may converge on a mechanism of reversible, Ca2+-dependent vesicle docking.
Collapse
Affiliation(s)
| | - Amita Shrestha
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kessa Juda-Nelson
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Sarah A Kissiwaa
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Evan Spruston
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Skyler L Jackman
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
12
|
Mochida S. Mechanisms of Synaptic Vesicle Exo- and Endocytosis. Biomedicines 2022; 10:1593. [PMID: 35884898 PMCID: PMC9313035 DOI: 10.3390/biomedicines10071593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/05/2023] Open
Abstract
Within 1 millisecond of action potential arrival at presynaptic terminals voltage-gated Ca2+ channels open. The Ca2+ channels are linked to synaptic vesicles which are tethered by active zone proteins. Ca2+ entrance into the active zone triggers: (1) the fusion of the vesicle and exocytosis, (2) the replenishment of the active zone with vesicles for incoming exocytosis, and (3) various types of endocytosis for vesicle reuse, dependent on the pattern of firing. These time-dependent vesicle dynamics are controlled by presynaptic Ca2+ sensor proteins, regulating active zone scaffold proteins, fusion machinery proteins, motor proteins, endocytic proteins, several enzymes, and even Ca2+ channels, following the decay of Ca2+ concentration after the action potential. Here, I summarize the Ca2+-dependent protein controls of synchronous and asynchronous vesicle release, rapid replenishment of the active zone, endocytosis, and short-term plasticity within 100 msec after the action potential. Furthermore, I discuss the contribution of active zone proteins to presynaptic plasticity and to homeostatic readjustment during and after intense activity, in addition to activity-dependent endocytosis.
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
13
|
Kusick GF, Ogunmowo TH, Watanabe S. Transient docking of synaptic vesicles: Implications and mechanisms. Curr Opin Neurobiol 2022; 74:102535. [PMID: 35398664 PMCID: PMC9167714 DOI: 10.1016/j.conb.2022.102535] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/19/2022] [Accepted: 03/06/2022] [Indexed: 02/03/2023]
Abstract
As synaptic vesicles fuse, they must continually be replaced with new docked, fusion-competent vesicles to sustain neurotransmission. It has long been appreciated that vesicles are recruited to docking sites in an activity-dependent manner. However, once entering the sites, vesicles were thought to be stably docked, awaiting calcium signals. Based on recent data from electrophysiology, electron microscopy, biochemistry, and computer simulations, a picture emerges in which vesicles can rapidly and reversibly transit between docking and undocking during activity. This "transient docking" can account for many aspects of synaptic physiology. In this review, we cover recent evidence for transient docking, physiological processes at the synapse that it may support, and progress on the underlying mechanisms. We also discuss an open question: what determines for how long and whether vesicles stay docked, or eventually undock?
Collapse
Affiliation(s)
- Grant F Kusick
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University, School of Medicine, 1830 E. Monument St., Baltimore, MD 21287, USA. https://twitter.com/@ultrafastgrant
| | - Tyler H Ogunmowo
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University, School of Medicine, 1830 E. Monument St., Baltimore, MD 21287, USA. https://twitter.com/@unculturedTy
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA.
| |
Collapse
|
14
|
Synaptotagmin-7 Enhances Facilitation of Ca v2.1 Calcium Channels. eNeuro 2022; 9:ENEURO.0081-22.2022. [PMID: 35477860 PMCID: PMC9113918 DOI: 10.1523/eneuro.0081-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
Voltage-gated calcium channel Cav2.1 undergoes Ca2+-dependent facilitation and inactivation, which are important in short-term synaptic plasticity. In presynaptic terminals, Cav2.1 forms large protein complexes that include synaptotagmins. Synaptotagmin-7 (Syt-7) is essential to mediate short-term synaptic plasticity in many synapses. Here, based on evidence that Cav2.1 and Syt-7 are both required for short-term synaptic facilitation, we investigated the direct interaction of Syt-7 with Cav2.1 and probed its regulation of Cav2.1 function. We found that Syt-7 binds specifically to the α1A subunit of Cav2.1 through interaction with the synaptic-protein interaction (synprint) site. Surprisingly, this interaction enhances facilitation in paired-pulse protocols and accelerates the onset of facilitation. Syt-7α induces a depolarizing shift in the voltage dependence of activation of Cav2.1 and slows Ca2+-dependent inactivation, whereas Syt-7β and Syt-7γ have smaller effects. Our results identify an unexpected, isoform-specific interaction between Cav2.1 and Syt-7 through the synprint site, which enhances Cav2.1 facilitation and modulates its inactivation.
Collapse
|
15
|
Hikima T, Witkovsky P, Khatri L, Chao MV, Rice ME. Synaptotagmins 1 and 7 Play Complementary Roles in Somatodendritic Dopamine Release. J Neurosci 2022; 42:3919-3930. [PMID: 35361702 PMCID: PMC9097777 DOI: 10.1523/jneurosci.2416-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/18/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
The molecular mechanisms underlying somatodendritic dopamine (DA) release remain unresolved, despite the passing of decades since its discovery. Our previous work showed robust release of somatodendritic DA in submillimolar extracellular Ca2+ concentration ([Ca2+]o). Here we tested the hypothesis that the high-affinity Ca2+ sensor synaptotagmin 7 (Syt7), is a key determinant of somatodendritic DA release and its Ca2+ dependence. Somatodendritic DA release from SNc DA neurons was assessed using whole-cell recording in midbrain slices from male and female mice to monitor evoked DA-dependent D2 receptor-mediated inhibitory currents (D2ICs). Single-cell application of an antibody to Syt7 (Syt7 Ab) decreased pulse train-evoked D2ICs, revealing a functional role for Syt7. The assessment of the Ca2+ dependence of pulse train-evoked D2ICs confirmed robust DA release in submillimolar [Ca2+]o in wild-type (WT) neurons, but loss of this sensitivity with intracellular Syt7 Ab or in Syt7 knock-out (KO) mice. In millimolar [Ca2+]o, pulse train-evoked D2ICs in Syt7 KOs showed a greater reduction in decreased [Ca2+]o than seen in WT mice; the effect on single pulse-evoked DA release, however, did not differ between genotypes. Single-cell application of a Syt1 Ab had no effect on train-evoked D2ICs in WT SNc DA neurons, but did cause a decrease in D2IC amplitude in Syt7 KOs, indicating a functional substitution of Syt1 for Syt7. In addition, Syt1 Ab decreased single pulse-evoked D2ICs in WT cells, indicating the involvement of Syt1 in tonic DA release. Thus, Syt7 and Syt1 play complementary roles in somatodendritic DA release from SNc DA neurons.SIGNIFICANCE STATEMENT The respective Ca2+ dependence of somatodendritic and axonal dopamine (DA) release differs, resulting in the persistence of somatodendritic DA release in submillimolar Ca2+ concentrations too low to support axonal release. We demonstrate that synaptotagmin7 (Syt7), a high-affinity Ca2+ sensor, underlies phasic somatodendritic DA release and its Ca2+ sensitivity in the substantia nigra pars compacta. In contrast, we found that synaptotagmin 1 (Syt1), the Ca2+ sensor underlying axonal DA release, plays a role in tonic, but not phasic, somatodendritic DA release in wild-type mice. However, Syt1 can facilitate phasic DA release after Syt7 deletion. Thus, we show that both Syt1 and Syt7 act as Ca2+ sensors subserving different aspects of somatodendritic DA release processes.
Collapse
Affiliation(s)
- Takuya Hikima
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York 10016
| | - Paul Witkovsky
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York 10016
| | - Latika Khatri
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York 10016
| | - Moses V Chao
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York 10016
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York 10016
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, New York 10016
| | - Margaret E Rice
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York 10016
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, New York 10016
| |
Collapse
|
16
|
Martínez-Valencia A, Ramírez-Santiago G, De-Miguel FF. Dynamics of Neuromuscular Transmission Reproduced by Calcium-Dependent and Reversible Serial Transitions in the Vesicle Fusion Complex. Front Synaptic Neurosci 2022; 13:785361. [PMID: 35242023 PMCID: PMC8885725 DOI: 10.3389/fnsyn.2021.785361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/30/2021] [Indexed: 11/28/2022] Open
Abstract
Neuromuscular transmission, from spontaneous release to facilitation and depression, was accurately reproduced by a mechanistic kinetic model of sequential maturation transitions in the molecular fusion complex. The model incorporates three predictions. First, calcium-dependent forward transitions take vesicles from docked to preprimed to primed states, followed by fusion. Second, prepriming and priming are reversible. Third, fusion and recycling are unidirectional. The model was fed with experimental data from previous studies, whereas the backward (β) and recycling (ρ) rate constant values were fitted. Classical experiments were successfully reproduced with four transition states in the model when every forward (α) rate constant had the same value, and both backward rate constants were 50–100 times larger. Such disproportion originated an abruptly decreasing gradient of resting vesicles from docked to primed states. By contrast, a three-state version of the model failed to reproduce the dynamics of transmission by using the same set of parameters. Simulations predict the following: (1) Spontaneous release reflects primed to fusion spontaneous transitions. (2) Calcium elevations synchronize the series of forward transitions that lead to fusion. (3) Facilitation reflects a transient increase of priming following the calcium-dependent maturation transitions. (4) The calcium sensors that produce facilitation are those that evoke the transitions form docked to primed states. (5) Backward transitions and recycling restore the resting state. (6) Depression reflects backward transitions and slow recycling after intense release. Altogether, our results predict that fusion is produced by one calcium sensor, whereas the modulation of the number of vesicles that fuse depends on the calcium sensors that promote the early transition states. Such finely tuned kinetics offers a mechanism for collective non-linear transitional adaptations of a homogeneous vesicle pool to the ever-changing pattern of electrical activity in the neuromuscular junction.
Collapse
Affiliation(s)
- Alejandro Martínez-Valencia
- Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Francisco F. De-Miguel
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: Francisco F. De-Miguel,
| |
Collapse
|
17
|
Abstract
Rapid and precise neuronal communication is enabled through a highly synchronous release of signaling molecules neurotransmitters within just milliseconds of the action potential. Yet neurotransmitter release lacks a theoretical framework that is both phenomenologically accurate and mechanistically realistic. Here, we present an analytic theory of the action-potential-triggered neurotransmitter release at the chemical synapse. The theory is demonstrated to be in detailed quantitative agreement with existing data on a wide variety of synapses from electrophysiological recordings in vivo and fluorescence experiments in vitro. Despite up to ten orders of magnitude of variation in the release rates among the synapses, the theory reveals that synaptic transmission obeys a simple, universal scaling law, which we confirm through a collapse of the data from strikingly diverse synapses onto a single master curve. This universality is complemented by the capacity of the theory to readily extract, through a fit to the data, the kinetic and energetic parameters that uniquely identify each synapse. The theory provides a means to detect cooperativity among the SNARE complexes that mediate vesicle fusion and reveals such cooperativity in several existing data sets. The theory is further applied to establish connections between molecular constituents of synapses and synaptic function. The theory allows competing hypotheses of short-term plasticity to be tested and identifies the regimes where particular mechanisms of synaptic facilitation dominate or, conversely, fail to account for the existing data for the paired-pulse ratio. The derived trade-off relation between the transmission rate and fidelity shows how transmission failure can be controlled by changing the microscopic properties of the vesicle pool and SNARE complexes. The established condition for the maximal synaptic efficacy reveals that no fine tuning is needed for certain synapses to maintain near-optimal transmission. We discuss the limitations of the theory and propose possible routes to extend it. These results provide a quantitative basis for the notion that the molecular-level properties of synapses are crucial determinants of the computational and information-processing functions in synaptic transmission.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physics, University of California, San DiegoLa JollaUnited States
| | - Olga K Dudko
- Department of Physics, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
18
|
Satake SI, Konishi S. Topographical distance between presynaptic Ca 2+ channels and exocytotic Ca 2+ sensors contributes to differential facilitatory actions of roscovitine on neurotransmitter release at cerebellar glutamatergic and GABAergic synapses. Eur J Neurosci 2021; 54:7048-7062. [PMID: 34622493 DOI: 10.1111/ejn.15487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022]
Abstract
Calcium influx into presynaptic terminals through voltage-gated Ca2+ channels triggers univesicular or multivesicular release of neurotransmitters depending on the characteristics of the release machinery. However, the mechanisms underlying multivesicular release (MVR) and its regulation remain unclear. Previous studies showed that in rat cerebellum, the cyclin-dependent kinase inhibitor roscovitine profoundly increases excitatory postsynaptic current (EPSC) amplitudes at granule cell (GC)-Purkinje cell (PC) synapses by enhancing the MVR of glutamate. This compound can also moderately augment the amplitude and prolong the decay time of inhibitory postsynaptic currents (IPSCs) at molecular layer interneuron (MLI)-PC synapses via MVR enhancement and GABA spillover, thus allowing for persistent activation of perisynaptic GABA receptors. The enhanced MVR may depend on the driving force for Cav 2.1 channel-mediated Ca2+ influx. To determine whether the distinct spatiotemporal dynamics of presynaptic Ca2+ influence MVR, we compared the effects of slow and fast Ca2+ chelators, that is, EGTA and BAPTA, respectively, on roscovitine-induced actions at GC-PC and MLI-PC synapses. Membrane-permeable EGTA-AM decreased GC-PC EPSC and MLI-PC IPSC amplitudes to a similar extent but suppressed the roscovitine-induced enhancement of EPSCs. In contrast, BAPTA-AM attenuated the effects of roscovitine on IPSCs. These results suggest that roscovitine augmented glutamate release by activating the release machinery located distally from the Cav 2.1 channel clusters, while it enhanced GABA release in a manner less dependent on those at distal sites. Therefore, the spatial relationships among Ca2+ channels, buffers, and sensors are critical determinants of the differential facilitatory actions of roscovitine on glutamatergic and GABAergic synapses in the cerebellar cortex.
Collapse
Affiliation(s)
- Shin' Ichiro Satake
- Brain Research Support Center, National Institute for Physiological Sciences (NIPS), Okazaki, Japan.,School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Shiro Konishi
- Department of Neurophysiology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Japan
| |
Collapse
|
19
|
Vevea JD, Kusick GF, Courtney KC, Chen E, Watanabe S, Chapman ER. Synaptotagmin 7 is targeted to the axonal plasma membrane through γ-secretase processing to promote synaptic vesicle docking in mouse hippocampal neurons. eLife 2021; 10:e67261. [PMID: 34543184 PMCID: PMC8452306 DOI: 10.7554/elife.67261] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/27/2021] [Indexed: 12/28/2022] Open
Abstract
Synaptotagmin 7 (SYT7) has emerged as a key regulator of presynaptic function, but its localization and precise role in the synaptic vesicle cycle remain the subject of debate. Here, we used iGluSnFR to optically interrogate glutamate release, at the single-bouton level, in SYT7KO-dissociated mouse hippocampal neurons. We analyzed asynchronous release, paired-pulse facilitation, and synaptic vesicle replenishment and found that SYT7 contributes to each of these processes to different degrees. 'Zap-and-freeze' electron microscopy revealed that a loss of SYT7 diminishes docking of synaptic vesicles after a stimulus and inhibits the recovery of depleted synaptic vesicles after a stimulus train. SYT7 supports these functions from the axonal plasma membrane, where its localization and stability require both γ-secretase-mediated cleavage and palmitoylation. In summary, SYT7 is a peripheral membrane protein that controls multiple modes of synaptic vesicle (SV) exocytosis and plasticity, in part, through enhancing activity-dependent docking of SVs.
Collapse
Affiliation(s)
- Jason D Vevea
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Grant F Kusick
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Kevin C Courtney
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Erin Chen
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| |
Collapse
|
20
|
Hays CL, Sladek AL, Thoreson WB. Resting and stimulated mouse rod photoreceptors show distinct patterns of vesicle release at ribbon synapses. J Gen Physiol 2021; 152:211528. [PMID: 33175961 PMCID: PMC7664508 DOI: 10.1085/jgp.202012716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 01/04/2023] Open
Abstract
The vertebrate visual system can detect and transmit signals from single photons. To understand how single-photon responses are transmitted, we characterized voltage-dependent properties of glutamate release in mouse rods. We measured presynaptic glutamate transporter anion current and found that rates of synaptic vesicle release increased with voltage-dependent Ca2+ current. Ca2+ influx and release rate also rose with temperature, attaining a rate of ∼11 vesicles/s/ribbon at -40 mV (35°C). By contrast, spontaneous release events at hyperpolarized potentials (-60 to -70 mV) were univesicular and occurred at random intervals. However, when rods were voltage clamped at -40 mV for many seconds to simulate maintained darkness, release occurred in coordinated bursts of 17 ± 7 quanta (mean ± SD; n = 22). Like fast release evoked by brief depolarizing stimuli, these bursts involved vesicles in the readily releasable pool of vesicles and were triggered by the opening of nearby ribbon-associated Ca2+ channels. Spontaneous release rates were elevated and bursts were absent after genetic elimination of the Ca2+ sensor synaptotagmin 1 (Syt1). This study shows that at the resting potential in darkness, rods release glutamate-filled vesicles from a pool at the base of synaptic ribbons at low rates but in Syt1-dependent bursts. The absence of bursting in cones suggests that this behavior may have a role in transmitting scotopic responses.
Collapse
Affiliation(s)
- Cassandra L Hays
- Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE.,Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Asia L Sladek
- Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Wallace B Thoreson
- Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE.,Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
21
|
Silva M, Tran V, Marty A. Calcium-dependent docking of synaptic vesicles. Trends Neurosci 2021; 44:579-592. [PMID: 34049722 DOI: 10.1016/j.tins.2021.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/23/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
The concentration of calcium ions in presynaptic terminals regulates transmitter release, but underlying mechanisms have remained unclear. Here we review recent studies that shed new light on this issue. Fast-freezing electron microscopy and total internal reflection fluorescence microscopy studies reveal complex calcium-dependent vesicle movements including docking on a millisecond time scale. Recordings from so-called 'simple synapses' indicate that calcium not only triggers exocytosis, but also modifies synaptic strength by controlling a final, rapid vesicle maturation step before release. Molecular studies identify several calcium-sensitive domains on Munc13 and on synaptotagmin-1 that are likely involved in bringing the vesicular and plasma membranes closer together in response to calcium elevation. Together, these results suggest that calcium-dependent vesicle docking occurs in a wide range of time domains and plays a crucial role in several phenomena including synaptic facilitation, post-tetanic potentiation, and neuromodulator-induced potentiation.
Collapse
Affiliation(s)
- Melissa Silva
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRS, F-75006 Paris, France
| | - Van Tran
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRS, F-75006 Paris, France
| | - Alain Marty
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRS, F-75006 Paris, France.
| |
Collapse
|
22
|
Bourgeois-Jaarsma Q, Miaja Hernandez P, Groffen AJ. Ca 2+ sensor proteins in spontaneous release and synaptic plasticity: Limited contribution of Doc2c, rabphilin-3a and synaptotagmin 7 in hippocampal glutamatergic neurons. Mol Cell Neurosci 2021; 112:103613. [PMID: 33753311 DOI: 10.1016/j.mcn.2021.103613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 11/28/2022] Open
Abstract
Presynaptic neurotransmitter release is strictly regulated by SNARE proteins, Ca2+ and a number of Ca2+ sensors including synaptotagmins (Syts) and Double C2 domain proteins (Doc2s). More than seventy years after the original description of spontaneous release, the mechanism that regulates this process is still poorly understood. Syt-1, Syt7 and Doc2 proteins contribute predominantly, but not exclusively, to synchronous, asynchronous and spontaneous phases of release. The proteins share a conserved tandem C2 domain architecture, but are functionally diverse in their subcellular location, Ca2+-binding properties and protein interactions. In absence of Syt-1, Doc2a and -b, neurons still exhibit spontaneous vesicle fusion which remains Ca2+-sensitive, suggesting the existence of additional sensors. Here, we selected Doc2c, rabphilin-3a and Syt-7 as three potential Ca2+ sensors for their sequence homology with Syt-1 and Doc2b. We genetically ablated each candidate gene in absence of Doc2a and -b and investigated spontaneous and evoked release in glutamatergic hippocampal neurons, cultured either in networks or on microglial islands (autapses). The removal of Doc2c had no effect on spontaneous or evoked release. Syt-7 removal also did not affect spontaneous release, although it altered short-term plasticity by accentuating short-term depression. The removal of rabphilin caused an increased spontaneous release frequency in network cultures, an effect that was not observed in autapses. Taken together, we conclude that Doc2c and Syt-7 do not affect spontaneous release of glutamate in hippocampal neurons, while our results suggest a possible regulatory role of rabphilin-3a in neuronal networks. These findings importantly narrow down the repertoire of synaptic Ca2+ sensors that may be implicated in the spontaneous release of glutamate.
Collapse
Affiliation(s)
- Quentin Bourgeois-Jaarsma
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Pablo Miaja Hernandez
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Alexander J Groffen
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Department of Clinical Genetics, VU Medical Center, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands.
| |
Collapse
|
23
|
Tawfik B, Martins JS, Houy S, Imig C, Pinheiro PS, Wojcik SM, Brose N, Cooper BH, Sørensen JB. Synaptotagmin-7 places dense-core vesicles at the cell membrane to promote Munc13-2- and Ca 2+-dependent priming. eLife 2021; 10:64527. [PMID: 33749593 PMCID: PMC8012061 DOI: 10.7554/elife.64527] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Synaptotagmins confer calcium-dependence to the exocytosis of secretory vesicles, but how coexpressed synaptotagmins interact remains unclear. We find that synaptotagmin-1 and synaptotagmin-7 when present alone act as standalone fast and slow Ca2+-sensors for vesicle fusion in mouse chromaffin cells. When present together, synaptotagmin-1 and synaptotagmin-7 are found in largely non-overlapping clusters on dense-core vesicles. Synaptotagmin-7 stimulates Ca2+-dependent vesicle priming and inhibits depriming, and it promotes ubMunc13-2- and phorbolester-dependent priming, especially at low resting calcium concentrations. The priming effect of synaptotagmin-7 increases the number of vesicles fusing via synaptotagmin-1, while negatively affecting their fusion speed, indicating both synergistic and competitive interactions between synaptotagmins. Synaptotagmin-7 places vesicles in close membrane apposition (<6 nm); without it, vesicles accumulate out of reach of the fusion complex (20-40 nm). We suggest that a synaptotagmin-7-dependent movement toward the membrane is involved in Munc13-2/phorbolester/Ca2+-dependent priming as a prelude to fast and slow exocytosis triggering.
Collapse
Affiliation(s)
- Bassam Tawfik
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Joana S Martins
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Sébastien Houy
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Paulo S Pinheiro
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | |
Collapse
|
24
|
Li J, Deng S, He Q, Ke W, Shu Y. Asynchronous Glutamate Release at Autapses Regulates Spike Reliability and Precision in Mouse Neocortical Pyramidal Cells. Cereb Cortex 2021; 31:2278-2290. [PMID: 33279969 DOI: 10.1093/cercor/bhaa361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
Autapses are self-synapses of a neuron. Inhibitory autapses in the neocortex release GABA in 2 modes, synchronous release and asynchronous release (AR), providing precise and prolonged self-inhibition, respectively. A subpopulation of neocortical pyramidal cells (PCs) also forms functional autapses, activation of which promotes burst firing by strong unitary autaptic response that reflects synchronous glutamate release. However, it remains unclear whether AR occurs at PC autapses and plays a role in neuronal signaling. We performed whole-cell recordings from layer-5 PCs in slices of mouse prefrontal cortex (PFC). In response to action potential (AP) burst, 63% of PCs showed robust long-lasting autaptic AR, much stronger than synaptic AR between neighboring PCs. The autaptic AR is mediated predominantly by P/Q-type Ca2+ channels, and its strength depends on the intensity of PC activity and the level of residual Ca2+. Further experiments revealed that autaptic AR enhances spiking activities but reduces the temporal precision of post-burst APs. Together, the results show the occurrence of AR at PC autapses, the delayed and persistent glutamate AR causes self-excitation in individual PCs but may desynchronize the autaptic PC population. Thus, glutamatergic autapses should be essential elements in PFC and contribute to cortical information processing.
Collapse
Affiliation(s)
- Junlong Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Suixin Deng
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Quansheng He
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Wei Ke
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yousheng Shu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
25
|
Function of Drosophila Synaptotagmins in membrane trafficking at synapses. Cell Mol Life Sci 2021; 78:4335-4364. [PMID: 33619613 PMCID: PMC8164606 DOI: 10.1007/s00018-021-03788-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
The Synaptotagmin (SYT) family of proteins play key roles in regulating membrane trafficking at neuronal synapses. Using both Ca2+-dependent and Ca2+-independent interactions, several SYT isoforms participate in synchronous and asynchronous fusion of synaptic vesicles (SVs) while preventing spontaneous release that occurs in the absence of stimulation. Changes in the function or abundance of the SYT1 and SYT7 isoforms alter the number and route by which SVs fuse at nerve terminals. Several SYT family members also regulate trafficking of other subcellular organelles at synapses, including dense core vesicles (DCV), exosomes, and postsynaptic vesicles. Although SYTs are linked to trafficking of multiple classes of synaptic membrane compartments, how and when they interact with lipids, the SNARE machinery and other release effectors are still being elucidated. Given mutations in the SYT family cause disorders in both the central and peripheral nervous system in humans, ongoing efforts are defining how these proteins regulate vesicle trafficking within distinct neuronal compartments. Here, we review the Drosophila SYT family and examine their role in synaptic communication. Studies in this invertebrate model have revealed key similarities and several differences with the predicted activity of their mammalian counterparts. In addition, we highlight the remaining areas of uncertainty in the field and describe outstanding questions on how the SYT family regulates membrane trafficking at nerve terminals.
Collapse
|
26
|
Wang QW, Lu SY, Liu YN, Chen Y, Wei H, Shen W, Chen YF, Fu CL, Wang YH, Dai A, Huang X, Gage FH, Xu Q, Yao J. Synaptotagmin-7 deficiency induces mania-like behavioral abnormalities through attenuating GluN2B activity. Proc Natl Acad Sci U S A 2020; 117:31438-31447. [PMID: 33229564 PMCID: PMC7733786 DOI: 10.1073/pnas.2016416117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synaptotagmin-7 (Syt7) probably plays an important role in bipolar-like behavioral abnormalities in mice; however, the underlying mechanisms for this have remained elusive. Unlike antidepressants that cause mood overcorrection in bipolar depression, N-methyl-d-aspartate receptor (NMDAR)-targeted drugs show moderate clinical efficacy, for unexplained reasons. Here we identified Syt7 single nucleotide polymorphisms (SNPs) in patients with bipolar disorder and demonstrated that mice lacking Syt7 or expressing the SNPs showed GluN2B-NMDAR dysfunction, leading to antidepressant behavioral consequences and avoidance of overcorrection by NMDAR antagonists. In human induced pluripotent stem cell (iPSC)-derived and mouse hippocampal neurons, Syt7 and GluN2B-NMDARs were localized to the peripheral synaptic region, and Syt7 triggered multiple forms of glutamate release to efficiently activate the juxtaposed GluN2B-NMDARs. Thus, while Syt7 deficiency and SNPs induced GluN2B-NMDAR dysfunction in mice, patient iPSC-derived neurons showed Syt7 deficit-induced GluN2B-NMDAR hypoactivity that was rescued by Syt7 overexpression. Therefore, Syt7 deficits induced mania-like behaviors in mice by attenuating GluN2B activity, which enabled NMDAR antagonists to avoid mood overcorrection.
Collapse
Affiliation(s)
- Qiu-Wen Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Si-Yao Lu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Yao-Nan Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Yun Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Hui Wei
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences and Peking Union Medical College, Neuroscience Center, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Wei Shen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Yan-Fen Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Chong-Lei Fu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Ying-Han Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Anbang Dai
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Xuan Huang
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, 100020 Beijing, China
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences and Peking Union Medical College, Neuroscience Center, Chinese Academy of Medical Sciences, 100005 Beijing, China;
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, 100084 Beijing, China;
| |
Collapse
|
27
|
Dhuriya YK, Sharma D. Neuronal Plasticity: Neuronal Organization is Associated with Neurological Disorders. J Mol Neurosci 2020; 70:1684-1701. [PMID: 32504405 DOI: 10.1007/s12031-020-01555-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
Stimuli from stressful events, attention in the classroom, and many other experiences affect the functionality of the brain by changing the structure or reorganizing the connections between neurons and their communication. Modification of the synaptic transmission is a vital mechanism for generating neural activity via internal or external stimuli. Neuronal plasticity is an important driving force in neuroscience research, as it is the basic process underlying learning and memory and is involved in many other functions including brain development and homeostasis, sensorial training, and recovery from brain injury. Indeed, neuronal plasticity has been explored in numerous studies, but it is still not clear how neuronal plasticity affects the physiology and morphology of the brain. Thus, unraveling the molecular mechanisms of neuronal plasticity is essential for understanding the operation of brain functions. In this timeline review, we discuss the molecular mechanisms underlying different forms of synaptic plasticity and their association with neurodegenerative/neurological disorders as a consequence of alterations in neuronal plasticity.
Collapse
Affiliation(s)
- Yogesh Kumar Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR) Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, India
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India.
- CRF, Mass Spectrometry Laboratory, Kusuma School of Biological Sciences (KSBS), Indian Institute of Technology-Delhi (IIT-D), Delhi, 110016, India.
| |
Collapse
|
28
|
Synaptic vesicles transiently dock to refill release sites. Nat Neurosci 2020; 23:1329-1338. [PMID: 32989294 PMCID: PMC8054220 DOI: 10.1038/s41593-020-00716-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022]
Abstract
Synaptic vesicles fuse with the plasma membrane to release neurotransmitter following an action potential, after which new vesicles must ‘dock’ to refill vacated release sites. To capture synaptic vesicle exocytosis at cultured mouse hippocampal synapses, we induced single action potentials by electrical field stimulation then subjected neurons to high-pressure freezing to examine their morphology by electron microscopy. During synchronous release, multiple vesicles can fuse at a single active zone. Fusions during synchronous release are distributed throughout the active zone, whereas fusions during asynchronous release are biased toward the center of the active zone. After stimulation, the total number of docked vesicles across all synapses decreases by ~40%. Within 14 ms, new vesicles are recruited and fully replenish the docked pool, but this docking is transient and they either undock or fuse within 100 ms. These results demonstrate that recruitment of synaptic vesicles to release sites is rapid and reversible.
Collapse
|
29
|
Huson V, Meijer M, Dekker R, Ter Veer M, Ruiter M, van Weering JR, Verhage M, Cornelisse LN. Post-tetanic potentiation lowers the energy barrier for synaptic vesicle fusion independently of Synaptotagmin-1. eLife 2020; 9:55713. [PMID: 32831174 PMCID: PMC7500951 DOI: 10.7554/elife.55713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/23/2020] [Indexed: 11/13/2022] Open
Abstract
Previously, we showed that modulation of the energy barrier for synaptic vesicle fusion boosts release rates supralinearly (Schotten, 2015). Here we show that mouse hippocampal synapses employ this principle to trigger Ca2+-dependent vesicle release and post-tetanic potentiation (PTP). We assess energy barrier changes by fitting release kinetics in response to hypertonic sucrose. Mimicking activation of the C2A domain of the Ca2+-sensor Synaptotagmin-1 (Syt1), by adding a positive charge (Syt1D232N) or increasing its hydrophobicity (Syt14W), lowers the energy barrier. Removing Syt1 or impairing its release inhibitory function (Syt19Pro) increases spontaneous release without affecting the fusion barrier. Both phorbol esters and tetanic stimulation potentiate synaptic strength, and lower the energy barrier equally well in the presence and absence of Syt1. We propose a model where tetanic stimulation activates Syt1-independent mechanisms that lower the energy barrier and act additively with Syt1-dependent mechanisms to produce PTP by exerting multiplicative effects on release rates.
Collapse
Affiliation(s)
- Vincent Huson
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands
| | - Marieke Meijer
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands
| | - Rien Dekker
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands
| | - Mirelle Ter Veer
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - Marvin Ruiter
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - Jan Rt van Weering
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - Lennart Niels Cornelisse
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands
| |
Collapse
|
30
|
Wolfes AC, Dean C. The diversity of synaptotagmin isoforms. Curr Opin Neurobiol 2020; 63:198-209. [PMID: 32663762 DOI: 10.1016/j.conb.2020.04.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022]
Abstract
The synaptotagmin family of molecules is known for regulating calcium-dependent membrane fusion events. Mice and humans express 17 synaptotagmin isoforms, where most studies have focused on isoforms 1, 2, and 7, which are involved in synaptic vesicle exocytosis. Recent work has highlighted how brain function relies on additional isoforms, with roles in postsynaptic receptor endocytosis, vesicle trafficking, membrane repair, synaptic plasticity, and protection against neurodegeneration, for example, in addition to the traditional concept of synaptotagmin-mediated neurotransmitter release - in neurons as well as glia, and at different timepoints. In fact, it is not uncommon for the same isoform to feature several splice isoforms, form homo- and heterodimers, and function in different subcellular locations and cell types. This review aims to highlight the diversity of synaptotagmins, offers a concise summary of key findings on all isoforms, and discusses different ways of grouping these.
Collapse
Affiliation(s)
- Anne C Wolfes
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK; UK Dementia Research Institute at Imperial College, London, UK
| | - Camin Dean
- German Center for Neurodegenerative Diseases, Charité University of Medicine - Berlin, 10117 Berlin, Germany.
| |
Collapse
|
31
|
Chamberland S, Timofeeva Y, Evstratova A, Norman CA, Volynski K, Tóth K. Slow-decaying presynaptic calcium dynamics gate long-lasting asynchronous release at the hippocampal mossy fiber to CA3 pyramidal cell synapse. Synapse 2020; 74:e22178. [PMID: 32598500 PMCID: PMC7685170 DOI: 10.1002/syn.22178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/21/2023]
Abstract
Action potentials trigger two modes of neurotransmitter release, with a fast synchronous component and a temporally delayed asynchronous release. Asynchronous release contributes to information transfer at synapses, including at the hippocampal mossy fiber (MF) to CA3 pyramidal cell synapse where it controls the timing of postsynaptic CA3 pyramidal neuron firing. Here, we identified and characterized the main determinants of asynchronous release at the MF–CA3 synapse. We found that asynchronous release at MF–CA3 synapses can last on the order of seconds following repetitive MF stimulation. Elevating the stimulation frequency or the external Ca2+ concentration increased the rate of asynchronous release, thus, arguing that presynaptic Ca2+ dynamics is the major determinant of asynchronous release rate. Direct MF bouton Ca2+ imaging revealed slow Ca2+ decay kinetics of action potential (AP) burst‐evoked Ca2+ transients. Finally, we observed that asynchronous release was preferentially mediated by Ca2+ influx through P/Q‐type voltage‐gated Ca2+ channels, while the contribution of N‐type VGCCs was limited. Overall, our results uncover the determinants of long‐lasting asynchronous release from MF terminals and suggest that asynchronous release could influence CA3 pyramidal cell firing up to seconds following termination of granule cell bursting.
Collapse
Affiliation(s)
- Simon Chamberland
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Université Laval, Quebec, QC, Canada
| | - Yulia Timofeeva
- Department of Computer Science, University of Warwick, Coventry, UK.,Centre for Complexity Science, University of Warwick, Coventry, UK.,University College London Institute of Neurology, University College London, London, UK
| | - Alesya Evstratova
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Université Laval, Quebec, QC, Canada
| | - Christopher A Norman
- Mathematics for Real-World Systems Centre for Doctoral Training, University of Warwick, Coventry, UK
| | - Kirill Volynski
- University College London Institute of Neurology, University College London, London, UK
| | - Katalin Tóth
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
32
|
Sleiman M, Stevens DR, Chitirala P, Rettig J. Cytotoxic Granule Trafficking and Fusion in Synaptotagmin7-Deficient Cytotoxic T Lymphocytes. Front Immunol 2020; 11:1080. [PMID: 32547563 PMCID: PMC7273742 DOI: 10.3389/fimmu.2020.01080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/05/2020] [Indexed: 11/13/2022] Open
Abstract
Granules of cytotoxic T lymphocytes (CTL) are derived from the lysosomal compartment. Synaptotagmin7 (Syt7) appears to be the calcium sensor triggering fusion of lysosomes in fibroblasts. Syt7 has been proposed to control cytotoxic granule (CG) fusion in lymphocytes and mice lacking Syt7 have reduced ability to clear infections. However, fusion of CG persists in the absence of Syt7. To clarify the role of Syt7 in CTL function, we have examined the fusion of cytotoxic granules of CD8+ T-lymphocytes from Syt7 knock-out mice. We have recorded granule fusion in living CTL, using total internal reflection microscopy. Since Syt7 is considered a high affinity calcium-sensor specialized for fusion under low calcium conditions, we have compared cytotoxic granule fusion under low and high calcium conditions in the same CTL. There was no difference in latencies or numbers of fusion events per CTL under low-calcium conditions, indicating that Syt7 is not required for cytotoxic granule fusion. A deficit of fusion in Syt7 KO CTL was seen when a high-calcium solution was introduced. Expressing wild type Syt7 in Syt7 KO lymphocytes reversed this deficit, confirming its Syt7-dependence. Mutations of Syt7 which disrupt calcium binding to its C2A domain reduced the efficacy of this rescue. We counted the cytotoxic granules present at the plasma membrane to determine if the lack of fusion events in the Syt7 KO CTL was due to a lack of granules. In low calcium there were no differences in fusion events per CTL, and granule numbers were similar. In high calcium, granule number was similar though wild type CTL exhibited significantly more fusion than Syt7 KO CTL. The modest differences in granule counts do not account for the lack of fusion in high calcium in Syt7 KO CTL. In Syt7 KO CTL expressing wild type Syt7, delivery of cytotoxic granules to the plasma membrane was comparable to that of wild type CTL. Syt7 KO CTL expressing Syt7 with deficient calcium binding in the C2A domain had significantly less fusion and fewer CG at the plasma membrane. These results indicate that Syt7 is involved in trafficking of CG to the plasma membrane.
Collapse
Affiliation(s)
- Marwa Sleiman
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - David R Stevens
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Praneeth Chitirala
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Jens Rettig
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| |
Collapse
|
33
|
Direct imaging of rapid tethering of synaptic vesicles accompanying exocytosis at a fast central synapse. Proc Natl Acad Sci U S A 2020; 117:14493-14502. [PMID: 32513685 DOI: 10.1073/pnas.2000265117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A high rate of synaptic vesicle (SV) release is required at cerebellar mossy fiber terminals for rapid information processing. As the number of release sites is limited, fast SV reloading is necessary to achieve sustained release. However, rapid reloading has not been observed directly. Here, we visualize SV movements near presynaptic membrane using total internal reflection fluorescence (TIRF) microscopy. Upon stimulation, SVs appeared in the TIRF-field and became tethered to the presynaptic membrane with unexpectedly rapid time course, almost as fast as SVs disappeared due to release. However, such stimulus-induced tethering was abolished by inhibiting exocytosis, suggesting that the tethering is tightly coupled to preceding exocytosis. The newly tethered vesicles became fusion competent not immediately but only 300 ms to 400 ms after tethering. Together with model simulations, we propose that rapid tethering leads to an immediate filling of vacated spaces and release sites within <100 nm of the active zone by SVs, which serve as precursors of readily releasable vesicles, thereby shortening delays during sustained activity.
Collapse
|
34
|
Guan Z, Quiñones-Frías MC, Akbergenova Y, Littleton JT. Drosophila Synaptotagmin 7 negatively regulates synaptic vesicle release and replenishment in a dosage-dependent manner. eLife 2020; 9:e55443. [PMID: 32343229 PMCID: PMC7224696 DOI: 10.7554/elife.55443] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023] Open
Abstract
Synchronous neurotransmitter release is triggered by Ca2+ binding to the synaptic vesicle protein Synaptotagmin 1, while asynchronous fusion and short-term facilitation is hypothesized to be mediated by plasma membrane-localized Synaptotagmin 7 (SYT7). We generated mutations in Drosophila Syt7 to determine if it plays a conserved role as the Ca2+ sensor for these processes. Electrophysiology and quantal imaging revealed evoked release was elevated 2-fold. Syt7 mutants also had a larger pool of readily-releasable vesicles, faster recovery following stimulation, and intact facilitation. Syt1/Syt7 double mutants displayed more release than Syt1 mutants alone, indicating SYT7 does not mediate the residual asynchronous release remaining in the absence of SYT1. SYT7 localizes to an internal membrane tubular network within the peri-active zone, but does not enrich at active zones. These findings indicate the two Ca2+ sensor model of SYT1 and SYT7 mediating all phases of neurotransmitter release and facilitation is not applicable at Drosophila synapses.
Collapse
Affiliation(s)
- Zhuo Guan
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Monica C Quiñones-Frías
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
35
|
Weyrer C, Turecek J, Niday Z, Liu PW, Nanou E, Catterall WA, Bean BP, Regehr WG. The Role of Ca V2.1 Channel Facilitation in Synaptic Facilitation. Cell Rep 2020; 26:2289-2297.e3. [PMID: 30811980 PMCID: PMC6597251 DOI: 10.1016/j.celrep.2019.01.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/04/2019] [Accepted: 01/30/2019] [Indexed: 02/05/2023] Open
Abstract
Activation of CaV2.1 voltage-gated calcium channels is facilitated by preceding calcium entry. Such self-modulatory facilitation is thought to contribute to synaptic facilitation. Using knockin mice with mutated CaV2.1 channels that do not facilitate (Ca IM-AA mice), we surprisingly found that, under conditions of physiological calcium and near-physiological temperatures, synaptic facilitation at hippocampal CA3 to CA1 synapses was not attenuated in Ca IM-AA mice and facilitation was paradoxically more prominent at two cerebellar synapses. Enhanced facilitation at these synapses is consistent with a decrease in initial calcium entry, suggested by an action-potential-evoked CaV2.1 current reduction in Purkinje cells from Ca IM-AA mice. In wild-type mice, CaV2.1 facilitation during high-frequency action potential trains was very small. Thus, for the synapses studied, facilitation of calcium entry through CaV2.1 channels makes surprisingly little contribution to synaptic facilitation under physiological conditions. Instead, CaV2.1 facilitation offsets CaV2.1 inactivation to produce remarkably stable calcium influx during high-frequency activation. Weyrer et al. use Ca IM-AA mice in which CaV2.1 calcium channel facilitation is eliminated to study synaptic facilitation at hippocampal and cerebellar synapses. Under conditions of physiological temperature, external calcium, and presynaptic waveforms, facilitation of CaV2.1 channels is small and does not contribute to synaptic facilitation at these synapses.
Collapse
Affiliation(s)
- Christopher Weyrer
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Josef Turecek
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary Niday
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pin W Liu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Evanthia Nanou
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Huson V, Regehr WG. Diverse roles of Synaptotagmin-7 in regulating vesicle fusion. Curr Opin Neurobiol 2020; 63:42-52. [PMID: 32278209 DOI: 10.1016/j.conb.2020.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 11/18/2022]
Abstract
Synaptotagmin 7 (Syt7) is a multifunctional calcium sensor expressed throughout the body. Its high calcium affinity makes it well suited to act in processes triggered by modest calcium increases within cells. In synaptic transmission, Syt7 has been shown to mediate asynchronous neurotransmitter release, facilitation, and vesicle replenishment. In this review we provide an update on recent developments, and the newly emerging roles of Syt7 in frequency invariant synaptic transmission and in suppressing spontaneous release. Additionally, we discuss Syt7's regulation of membrane fusion in non-neuronal cells, and its involvement in disease. How such diversity of functions is regulated remains an open question. We discuss several potential factors including temperature, presynaptic calcium signals, the localization of Syt7, and its interaction with other Syt isoforms.
Collapse
|
37
|
Regulation of Recurrent Inhibition by Asynchronous Glutamate Release in Neocortex. Neuron 2020; 105:522-533.e4. [DOI: 10.1016/j.neuron.2019.10.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 06/11/2019] [Accepted: 10/28/2019] [Indexed: 01/06/2023]
|
38
|
Fritsche L, Teuber-Hanselmann S, Soub D, Harnisch K, Mairinger F, Junker A. MicroRNA profiles of MS gray matter lesions identify modulators of the synaptic protein synaptotagmin-7. Brain Pathol 2019; 30:524-540. [PMID: 31663645 PMCID: PMC8018161 DOI: 10.1111/bpa.12800] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
We established microRNA (miRNA) profiles in gray and white matter multiple sclerosis (MS) lesions and identified seven miRNAs which were significantly more upregulated in the gray matter lesions. Five of those seven miRNAs, miR‐330‐3p, miR‐4286, miR‐4488, let‐7e‐5p, miR‐432‐5p shared the common target synaptotagmin7 (Syt7). Immunohistochemistry and transcript analyses using nanostring technology revealed a maldistribution of Syt7, with Syt7 accumulation in neuronal soma and decreased expression in axonal structures. This maldistribution could be at least partially explained by an axonal Syt7 transport disturbance. Since Syt7 is a synapse‐associated molecule, this maldistribution could result in impairment of neuronal functions in MS patients. Thus, our results lead to the hypothesis that the overexpression of these five miRNAs in gray matter lesions is a cellular mechanism to reduce further endogenous neuronal Syt7 production. Therefore, miRNAs seem to play an important role as modulators of neuronal structures in MS.
Collapse
Affiliation(s)
- Lena Fritsche
- Institute of Neuropathology, University Hospital Essen, D-45147, Essen, Germany
| | | | - Daniel Soub
- Institute of Neuropathology, University Hospital Essen, D-45147, Essen, Germany
| | - Kim Harnisch
- Institute of Neuropathology, University Hospital Essen, D-45147, Essen, Germany
| | - Fabian Mairinger
- Institute of Pathology, University Hospital Essen, D-45147, Essen, Germany
| | - Andreas Junker
- Institute of Neuropathology, University Hospital Essen, D-45147, Essen, Germany
| |
Collapse
|
39
|
Distinct Nanoscale Calcium Channel and Synaptic Vesicle Topographies Contribute to the Diversity of Synaptic Function. Neuron 2019; 104:693-710.e9. [PMID: 31558350 DOI: 10.1016/j.neuron.2019.08.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/31/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022]
Abstract
The nanoscale topographical arrangement of voltage-gated calcium channels (VGCC) and synaptic vesicles (SVs) determines synaptic strength and plasticity, but whether distinct spatial distributions underpin diversity of synaptic function is unknown. We performed single bouton Ca2+ imaging, Ca2+ chelator competition, immunogold electron microscopic (EM) localization of VGCCs and the active zone (AZ) protein Munc13-1, at two cerebellar synapses. Unexpectedly, we found that weak synapses exhibited 3-fold more VGCCs than strong synapses, while the coupling distance was 5-fold longer. Reaction-diffusion modeling could explain both functional and structural data with two strikingly different nanotopographical motifs: strong synapses are composed of SVs that are tightly coupled (∼10 nm) to VGCC clusters, whereas at weak synapses VGCCs were excluded from the vicinity (∼50 nm) of docked vesicles. The distinct VGCC-SV topographical motifs also confer differential sensitivity to neuromodulation. Thus, VGCC-SV arrangements are not canonical, and their diversity could underlie functional heterogeneity across CNS synapses.
Collapse
|
40
|
Schmidt H. Control of Presynaptic Parallel Fiber Efficacy by Activity-Dependent Regulation of the Number of Occupied Release Sites. Front Syst Neurosci 2019; 13:30. [PMID: 31379524 PMCID: PMC6650762 DOI: 10.3389/fnsys.2019.00030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/01/2019] [Indexed: 11/13/2022] Open
Abstract
Parallel fiber (PF) synapses show pronounced and lasting facilitation during bursts of high-frequency activity. They typically connect to their target neurons via a single active zone (AZ), harboring few release sites (~2-8) with moderate initial vesicular release probability (~0.2-0.4). In light of these biophysical characteristics, it seems surprising that PF synapses can sustain facilitation during high-frequency periods of tens of action potentials (APs). Recent findings suggest an increase in the number of occupied release sites due to ultra-rapid (~180 s-1), Ca2+ dependent recruitment of synaptic vesicles (SVs) from replenishment sites as major presynaptic mechanism of this lasting facilitation. On the molecular level, Synaptotagmin 7 or Munc13s have been suggested to be involved in mediating facilitation at PF synapses. The recruitment of SVs from replenishment sites appears to be reversible on a slower time-scale, thereby, explaining that PF synapses rapidly depress and ultimately become silent during low-frequency activity. Hence, PF synapses show high-frequency facilitation (HFF) but low-frequency depression (LFD). This behavior is explained by regulation of the number of occupied release sites at the AZ by AP frequency.
Collapse
Affiliation(s)
- Hartmut Schmidt
- Carl-Ludwig Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
41
|
Synaptotagmin-1 enables frequency coding by suppressing asynchronous release in a temperature dependent manner. Sci Rep 2019; 9:11341. [PMID: 31383906 PMCID: PMC6683208 DOI: 10.1038/s41598-019-47487-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023] Open
Abstract
To support frequency-coded information transfer, mammalian synapses tightly synchronize neurotransmitter release to action potentials (APs). However, release desynchronizes during AP trains, especially at room temperature. Here we show that suppression of asynchronous release by Synaptotagmin-1 (Syt1), but not release triggering, is highly temperature sensitive, and enhances synchronous release during high-frequency stimulation. In Syt1-deficient synapses, asynchronous release increased with temperature, opposite to wildtype synapses. Mutations in Syt1 C2B-domain polybasic stretch (Syt1 K326Q,K327Q,K331Q) did not affect synchronization during sustained activity, while the previously observed reduced synchronous response to a single AP was confirmed. However, an inflexible linker between the C2-domains (Syt1 9Pro) reduced suppression, without affecting synchronous release upon a single AP. Syt1 9Pro expressing synapses showed impaired synchronization during AP trains, which was rescued by buffering global Ca2+ to prevent asynchronous release. Hence, frequency coding relies on Syt1's temperature sensitive suppression of asynchronous release, an aspect distinct from its known vesicle recruitment and triggering functions.
Collapse
|
42
|
Kawaguchi SY. Dynamic Factors for Transmitter Release at Small Presynaptic Boutons Revealed by Direct Patch-Clamp Recordings. Front Cell Neurosci 2019; 13:269. [PMID: 31249514 PMCID: PMC6582627 DOI: 10.3389/fncel.2019.00269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/29/2019] [Indexed: 12/29/2022] Open
Abstract
Small size of an axon and presynaptic structures have hindered direct functional analysis of axonal signaling and transmitter release at presynaptic boutons in the central nervous system. However, recent technical advances in subcellular patch-clamp recordings and in fluorescent imagings are shedding light on the dynamic nature of axonal and presynaptic mechanisms. Here I summarize the functional design of an axon and presynaptic boutons, such as diversity and activity-dependent changes of action potential (AP) waveforms, Ca2+ influx, and kinetics of transmitter release, revealed by the technical tour de force of direct patch-clamp recordings and the leading-edge fluorescent imagings. I highlight the critical factors for dynamic modulation of transmitter release and presynaptic short-term plasticity.
Collapse
Affiliation(s)
- Shin-Ya Kawaguchi
- Society-Academia Collaboration for Innovation, Kyoto University, Kyoto, Japan.,Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Institute for Advanced Study, Kyoto University, Kyoto, Japan
| |
Collapse
|
43
|
Grassmeyer JJ, Cahill AL, Hays CL, Barta C, Quadros RM, Gurumurthy CB, Thoreson WB. Ca 2+ sensor synaptotagmin-1 mediates exocytosis in mammalian photoreceptors. eLife 2019; 8:e45946. [PMID: 31172949 PMCID: PMC6588344 DOI: 10.7554/elife.45946] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/06/2019] [Indexed: 11/24/2022] Open
Abstract
To encode light-dependent changes in membrane potential, rod and cone photoreceptors utilize synaptic ribbons to sustain continuous exocytosis while making rapid, fine adjustments to release rate. Release kinetics are shaped by vesicle delivery down ribbons and by properties of exocytotic Ca2+ sensors. We tested the role for synaptotagmin-1 (Syt1) in photoreceptor exocytosis by using novel mouse lines in which Syt1 was conditionally removed from rods or cones. Photoreceptors lacking Syt1 exhibited marked reductions in exocytosis as measured by electroretinography and single-cell recordings. Syt1 mediated all evoked release in cones, whereas rods appeared capable of some slow Syt1-independent release. Spontaneous release frequency was unchanged in cones but increased in rods lacking Syt1. Loss of Syt1 did not alter synaptic anatomy or reduce Ca2+ currents. These results suggest that Syt1 mediates both phasic and tonic release at photoreceptor synapses, revealing unexpected flexibility in the ability of Syt1 to regulate Ca2+-dependent synaptic transmission.
Collapse
Affiliation(s)
- Justin J Grassmeyer
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUnited States
| | - Asia L Cahill
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
| | - Cassandra L Hays
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaUnited States
| | - Cody Barta
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
| | - Rolen M Quadros
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research OfficeUniversity of Nebraska Medical CenterOmahaUnited States
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research OfficeUniversity of Nebraska Medical CenterOmahaUnited States
- Developmental Neuroscience, Munroe Meyer Institute for Genetics and RehabilitationUniversity of Nebraska Medical CenterOmahaUnited States
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUnited States
| |
Collapse
|
44
|
Fuente-Martín E, Mellado-Gil JM, Cobo-Vuilleumier N, Martín-Montalvo A, Romero-Zerbo SY, Diaz Contreras I, Hmadcha A, Soria B, Martin Bermudo F, Reyes JC, Bermúdez-Silva FJ, Lorenzo PI, Gauthier BR. Dissecting the Brain/Islet Axis in Metabesity. Genes (Basel) 2019; 10:genes10050350. [PMID: 31072002 PMCID: PMC6562925 DOI: 10.3390/genes10050350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
The high prevalence of type 2 diabetes mellitus (T2DM), together with the fact that current treatments are only palliative and do not avoid major secondary complications, reveals the need for novel approaches to treat the cause of this disease. Efforts are currently underway to identify therapeutic targets implicated in either the regeneration or re-differentiation of a functional pancreatic islet β-cell mass to restore insulin levels and normoglycemia. However, T2DM is not only caused by failures in β-cells but also by dysfunctions in the central nervous system (CNS), especially in the hypothalamus and brainstem. Herein, we review the physiological contribution of hypothalamic neuronal and glial populations, particularly astrocytes, in the control of the systemic response that regulates blood glucose levels. The glucosensing capacity of hypothalamic astrocytes, together with their regulation by metabolic hormones, highlights the relevance of these cells in the control of glucose homeostasis. Moreover, the critical role of astrocytes in the response to inflammation, a process associated with obesity and T2DM, further emphasizes the importance of these cells as novel targets to stimulate the CNS in response to metabesity (over-nutrition-derived metabolic dysfunctions). We suggest that novel T2DM therapies should aim at stimulating the CNS astrocytic response, as well as recovering the functional pancreatic β-cell mass. Whether or not a common factor expressed in both cell types can be feasibly targeted is also discussed.
Collapse
Affiliation(s)
- Esther Fuente-Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Jose M Mellado-Gil
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Nadia Cobo-Vuilleumier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Alejandro Martín-Montalvo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Silvana Y Romero-Zerbo
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, 29009 Málaga, Spain.
| | - Irene Diaz Contreras
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Abdelkrim Hmadcha
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Bernat Soria
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Francisco Martin Bermudo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Jose C Reyes
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Francisco J Bermúdez-Silva
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, 29009 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Petra I Lorenzo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Benoit R Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| |
Collapse
|
45
|
Burgoyne RD, Helassa N, McCue HV, Haynes LP. Calcium Sensors in Neuronal Function and Dysfunction. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035154. [PMID: 30833454 DOI: 10.1101/cshperspect.a035154] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcium signaling in neurons as in other cell types can lead to varied changes in cellular function. Neuronal Ca2+ signaling processes have also become adapted to modulate the function of specific pathways over a wide variety of time domains and these can have effects on, for example, axon outgrowth, neuronal survival, and changes in synaptic strength. Ca2+ also plays a key role in synapses as the trigger for fast neurotransmitter release. Given its physiological importance, abnormalities in neuronal Ca2+ signaling potentially underlie many different neurological and neurodegenerative diseases. The mechanisms by which changes in intracellular Ca2+ concentration in neurons can bring about diverse responses is underpinned by the roles of ubiquitous or specialized neuronal Ca2+ sensors. It has been established that synaptotagmins have key functions in neurotransmitter release, and, in addition to calmodulin, other families of EF-hand-containing neuronal Ca2+ sensors, including the neuronal calcium sensor (NCS) and the calcium-binding protein (CaBP) families, play important physiological roles in neuronal Ca2+ signaling. It has become increasingly apparent that these various Ca2+ sensors may also be crucial for aspects of neuronal dysfunction and disease either indirectly or directly as a direct consequence of genetic variation or mutations. An understanding of the molecular basis for the regulation of the targets of the Ca2+ sensors and the physiological roles of each protein in identified neurons may contribute to future approaches to the development of treatments for a variety of human neuronal disorders.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Nordine Helassa
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Hannah V McCue
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Lee P Haynes
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
46
|
Rozov A, Bolshakov AP, Valiullina-Rakhmatullina F. The Ever-Growing Puzzle of Asynchronous Release. Front Cell Neurosci 2019; 13:28. [PMID: 30809127 PMCID: PMC6379310 DOI: 10.3389/fncel.2019.00028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/22/2019] [Indexed: 11/13/2022] Open
Abstract
Invasion of an action potential (AP) to presynaptic terminals triggers calcium dependent vesicle fusion in a relatively short time window, about a millisecond, after the onset of the AP. This allows fast and precise information transfer from neuron to neuron by means of synaptic transmission and phasic mediator release. However, at some synapses a single AP or a short burst of APs can generate delayed or asynchronous synaptic release lasting for tens or hundreds of milliseconds. Understanding the mechanisms underlying asynchronous release (AR) is important, since AR can better recruit extrasynaptic metabotropic receptors and maintain a high level of neurotransmitter in the extracellular space for a substantially longer period of time after presynaptic activity. Over the last decade substantial work has been done to identify the presynaptic calcium sensor that may be involved in AR. Several models have been suggested which may explain the long lasting presynaptic calcium elevation a prerequisite for prolonged delayed release. However, the presynaptic mechanisms underlying asynchronous vesicle release are still not well understood. In this review article, we provide an overview of the current state of knowledge on the molecular components involved in delayed vesicle fusion and in the maintenance of sufficient calcium concentration to trigger AR. In addition, we discuss possible alternative models that may explain intraterminal calcium dynamics underlying AR.
Collapse
Affiliation(s)
- Andrei Rozov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Alexey P Bolshakov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences (RAS), Moscow, Russia.,Laboratory of Electrophysiology, Pirogov Russian National Research Medical University, Moscow, Russia
| | | |
Collapse
|
47
|
Synaptotagmin-7, a binding protein of P53, inhibits the senescence and promotes the tumorigenicity of lung cancer cells. Biosci Rep 2019; 39:BSR20181298. [PMID: 30647108 PMCID: PMC6367206 DOI: 10.1042/bsr20181298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/28/2018] [Accepted: 01/13/2019] [Indexed: 01/10/2023] Open
Abstract
Lung cancer has been one of the most common malignancies in the world. Cell senescence has been recognized as the avenue to inhibit tumor progression. However, the mechanisms remain poorly understood. In the present study, we have shown that synaptotagmin-7 (SYT7) expression was up-regulated in lung cancer. SYT7 also promoted the growth and colony formation of lung cancer cells and inhibited their senescence. In a molecular mechanism study, SYT7 was shown to interact with P53 and to potentiate the interaction between P53 and MDM2. Taken together, the present study demonstrates the oncogenic roles of SYT7 in lung cancer, and suggests that SYT7 may be a good therapeutic target for lung cancer treatment.
Collapse
|
48
|
Turecek J, Regehr WG. Neuronal Regulation of Fast Synaptotagmin Isoforms Controls the Relative Contributions of Synchronous and Asynchronous Release. Neuron 2019; 101:938-949.e4. [PMID: 30733150 DOI: 10.1016/j.neuron.2019.01.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/30/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
Neurotransmitter release can be synchronous and occur within milliseconds of action potential invasion, or asynchronous and persist for tens of milliseconds. The molecular determinants of release kinetics remain poorly understood. It has been hypothesized that asynchronous release dominates when fast Synaptotagmin isoforms are far from calcium channels or when specialized sensors, such as Synaptotagmin 7, are abundant. Here we test these hypotheses for GABAergic projections onto neurons of the inferior olive, where release in different subnuclei ranges from synchronous to asynchronous. Surprisingly, neither of the leading hypotheses accounts for release kinetics. Instead, we find that rapid Synaptotagmin isoforms are abundant in subnuclei with synchronous release but absent where release is asynchronous. Viral expression of Synaptotagmin 1 transforms asynchronous synapses into synchronous ones. Thus, the nervous system controls levels of fast Synaptotagmin isoforms to regulate release kinetics and thereby controls the ability of synapses to encode spike rates or precise timing.
Collapse
Affiliation(s)
- Josef Turecek
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Bornschein G, Schmidt H. Synaptotagmin Ca 2+ Sensors and Their Spatial Coupling to Presynaptic Ca v Channels in Central Cortical Synapses. Front Mol Neurosci 2019; 11:494. [PMID: 30697148 PMCID: PMC6341215 DOI: 10.3389/fnmol.2018.00494] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/21/2018] [Indexed: 11/21/2022] Open
Abstract
Ca2+ concentrations drop rapidly over a distance of a few tens of nanometers from an open voltage-gated Ca2+ channel (Cav), thereby, generating a spatially steep and temporally short-lived Ca2+ gradient that triggers exocytosis of a neurotransmitter filled synaptic vesicle. These non-steady state conditions make the Ca2+-binding kinetics of the Ca2+ sensors for release and their spatial coupling to the Cavs important parameters of synaptic efficacy. In the mammalian central nervous system, the main release sensors linking action potential mediated Ca2+ influx to synchronous release are Synaptotagmin (Syt) 1 and 2. We review here quantitative work focusing on the Ca2+ kinetics of Syt2-mediated release. At present similar quantitative detail is lacking for Syt1-mediated release. In addition to triggering release, Ca2+ remaining bound to Syt after the first of two successive high-frequency activations was found to be capable of facilitating release during the second activation. More recently, the Ca2+ sensor Syt7 was identified as additional facilitation sensor. We further review how several recent functional studies provided quantitative insights into the spatial topographical relationships between Syts and Cavs and identified mechanisms regulating the sensor-to-channel coupling distances at presynaptic active zones. Most synapses analyzed in matured cortical structures were found to operate at tight, nanodomain coupling. For fast signaling synapses a developmental switch from loose, microdomain to tight, nanodomain coupling was found. The protein Septin5 has been known for some time as a developmentally down-regulated “inhibitor” of tight coupling, while Munc13-3 was found only recently to function as a developmentally up-regulated mediator of tight coupling. On the other hand, a highly plastic synapse was found to operate at loose coupling in the matured hippocampus. Together these findings suggest that the coupling topography and its regulation is a specificity of the type of synapse. However, to definitely draw such conclusion our knowledge of functional active zone topographies of different types of synapses in different areas of the mammalian brain is too incomplete.
Collapse
Affiliation(s)
- Grit Bornschein
- Carl-Ludwig Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Hartmut Schmidt
- Carl-Ludwig Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
50
|
Montes-Chinea NI, Guan Z, Coutts M, Vidal C, Courel S, Rebelo AP, Abreu L, Zuchner S, Littleton JT, Saporta MA. Identification of a new SYT2 variant validates an unusual distal motor neuropathy phenotype. NEUROLOGY-GENETICS 2018; 4:e282. [PMID: 30533528 PMCID: PMC6244021 DOI: 10.1212/nxg.0000000000000282] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/21/2018] [Indexed: 11/15/2022]
Abstract
Objective To report a new SYT2 missense mutation causing distal hereditary motor neuropathy and presynaptic neuromuscular junction (NMJ) transmission dysfunction. Methods We report a multigenerational family with a new missense mutation, c. 1112T>A (p. Ile371Lys), in the C2B domain of SYT2, describe the clinical and electrophysiologic phenotype associated with this variant, and validate its pathogenicity in a Drosophila model. Results Both proband and her mother present a similar clinical phenotype characterized by a slowly progressive, predominantly motor neuropathy and clear evidence of presynaptic NMJ dysfunction on nerve conduction studies. Validation of this new variant was accomplished by characterization of the mutation homologous to the human c. 1112T>A variant in Drosophila, confirming its dominant-negative effect on neurotransmitter release. Conclusions This report provides further confirmation of the role of SYT2 in human disease and corroborates the resultant unique clinical phenotype consistent with heriditary distal motor neuropathy. SYT2-related motor neuropathy is a rare disease but should be suspected in patients presenting with a combination of presynaptic NMJ dysfunction (resembling Lambert-Eaton myasthenic syndrome) and a predominantly motor neuropathy, especially in the context of a positive family history.
Collapse
Affiliation(s)
- Nataly I Montes-Chinea
- Department of Neurology (N.I.M.-C., M.C., C.V., M.A.S.), University of Miami Miller School of Medicine FL; Department of Biology (Z.G., J.T.L.) and Department of Brain and Cognitive Sciences (Z.G., J.T.L.), The Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge; and Department of Human Genetics (S.C., A.P.R., L.A., S.Z., M.A.S.), Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| | - Zhuo Guan
- Department of Neurology (N.I.M.-C., M.C., C.V., M.A.S.), University of Miami Miller School of Medicine FL; Department of Biology (Z.G., J.T.L.) and Department of Brain and Cognitive Sciences (Z.G., J.T.L.), The Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge; and Department of Human Genetics (S.C., A.P.R., L.A., S.Z., M.A.S.), Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| | - Marcella Coutts
- Department of Neurology (N.I.M.-C., M.C., C.V., M.A.S.), University of Miami Miller School of Medicine FL; Department of Biology (Z.G., J.T.L.) and Department of Brain and Cognitive Sciences (Z.G., J.T.L.), The Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge; and Department of Human Genetics (S.C., A.P.R., L.A., S.Z., M.A.S.), Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| | - Cecilia Vidal
- Department of Neurology (N.I.M.-C., M.C., C.V., M.A.S.), University of Miami Miller School of Medicine FL; Department of Biology (Z.G., J.T.L.) and Department of Brain and Cognitive Sciences (Z.G., J.T.L.), The Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge; and Department of Human Genetics (S.C., A.P.R., L.A., S.Z., M.A.S.), Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| | - Steve Courel
- Department of Neurology (N.I.M.-C., M.C., C.V., M.A.S.), University of Miami Miller School of Medicine FL; Department of Biology (Z.G., J.T.L.) and Department of Brain and Cognitive Sciences (Z.G., J.T.L.), The Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge; and Department of Human Genetics (S.C., A.P.R., L.A., S.Z., M.A.S.), Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| | - Adriana P Rebelo
- Department of Neurology (N.I.M.-C., M.C., C.V., M.A.S.), University of Miami Miller School of Medicine FL; Department of Biology (Z.G., J.T.L.) and Department of Brain and Cognitive Sciences (Z.G., J.T.L.), The Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge; and Department of Human Genetics (S.C., A.P.R., L.A., S.Z., M.A.S.), Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| | - Lisa Abreu
- Department of Neurology (N.I.M.-C., M.C., C.V., M.A.S.), University of Miami Miller School of Medicine FL; Department of Biology (Z.G., J.T.L.) and Department of Brain and Cognitive Sciences (Z.G., J.T.L.), The Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge; and Department of Human Genetics (S.C., A.P.R., L.A., S.Z., M.A.S.), Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| | - Stephan Zuchner
- Department of Neurology (N.I.M.-C., M.C., C.V., M.A.S.), University of Miami Miller School of Medicine FL; Department of Biology (Z.G., J.T.L.) and Department of Brain and Cognitive Sciences (Z.G., J.T.L.), The Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge; and Department of Human Genetics (S.C., A.P.R., L.A., S.Z., M.A.S.), Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| | - J Troy Littleton
- Department of Neurology (N.I.M.-C., M.C., C.V., M.A.S.), University of Miami Miller School of Medicine FL; Department of Biology (Z.G., J.T.L.) and Department of Brain and Cognitive Sciences (Z.G., J.T.L.), The Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge; and Department of Human Genetics (S.C., A.P.R., L.A., S.Z., M.A.S.), Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| | - Mario A Saporta
- Department of Neurology (N.I.M.-C., M.C., C.V., M.A.S.), University of Miami Miller School of Medicine FL; Department of Biology (Z.G., J.T.L.) and Department of Brain and Cognitive Sciences (Z.G., J.T.L.), The Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge; and Department of Human Genetics (S.C., A.P.R., L.A., S.Z., M.A.S.), Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|