1
|
Cuentas-Condori A, Chen S, Krout M, Gallik KL, Tipps J, Gailey C, Flautt L, Kim H, Mulcahy B, Zhen M, Richmond JE, Miller DM. The epithelial Na + channel UNC-8 promotes an endocytic mechanism that recycles presynaptic components to new boutons in remodeling neurons. Cell Rep 2023; 42:113327. [PMID: 37906594 PMCID: PMC10921563 DOI: 10.1016/j.celrep.2023.113327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 06/01/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
Circuit refinement involves the formation of new presynaptic boutons as others are dismantled. Nascent presynaptic sites can incorporate material from recently eliminated synapses, but the recycling mechanisms remain elusive. In early-stage C. elegans larvae, the presynaptic boutons of GABAergic DD neurons are removed and new outputs established at alternative sites. Here, we show that developmentally regulated expression of the epithelial Na+ channel (ENaC) UNC-8 in remodeling DD neurons promotes a Ca2+ and actin-dependent mechanism, involving activity-dependent bulk endocytosis (ADBE), that recycles presynaptic material for reassembly at nascent DD synapses. ADBE normally functions in highly active neurons to accelerate local recycling of synaptic vesicles. In contrast, we find that an ADBE-like mechanism results in the distal recycling of synaptic material from old to new synapses. Thus, our findings suggest that a native mechanism (ADBE) can be repurposed to dismantle presynaptic terminals for reassembly at new, distant locations.
Collapse
Affiliation(s)
- Andrea Cuentas-Condori
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Siqi Chen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Mia Krout
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kristin L Gallik
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - John Tipps
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Casey Gailey
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Leah Flautt
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Hongkyun Kim
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA; Neurosience Program, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
2
|
Naslavsky N, Caplan S. Advances and challenges in understanding endosomal sorting and fission. FEBS J 2023; 290:4187-4195. [PMID: 36413090 PMCID: PMC10200825 DOI: 10.1111/febs.16687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Endosomes play crucial roles in the cell, serving as focal and 'triage' points for internalized lipids and receptors. As such, endosomes are a critical branching point that determines whether receptors are sorted for degradation or recycling. This Viewpoint aims to highlight recent advances in endosome research, including key endosomal functions such as sorting and fission. Moreover, the Viewpoint addresses key technical and conceptual challenges in studying endosomes.
Collapse
Affiliation(s)
- Naava Naslavsky
- Department of Biochemistry & Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
3
|
Blumrich EM, Nicholson-Fish JC, Pronot M, Davenport EC, Kurian D, Cole A, Smillie KJ, Cousin MA. Phosphatidylinositol 4-kinase IIα is a glycogen synthase kinase 3-regulated interaction hub for activity-dependent bulk endocytosis. Cell Rep 2023; 42:112633. [PMID: 37314927 DOI: 10.1016/j.celrep.2023.112633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/04/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023] Open
Abstract
Phosphatidylinositol 4-kinase IIα (PI4KIIα) generates essential phospholipids and is a cargo for endosomal adaptor proteins. Activity-dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle endocytosis mode during high neuronal activity and is sustained by glycogen synthase kinase 3β (GSK3β) activity. We reveal the GSK3β substrate PI4KIIα is essential for ADBE via its depletion in primary neuronal cultures. Kinase-dead PI4KIIα rescues ADBE in these neurons but not a phosphomimetic form mutated at the GSK3β site, Ser-47. Ser-47 phosphomimetic peptides inhibit ADBE in a dominant-negative manner, confirming that Ser-47 phosphorylation is essential for ADBE. Phosphomimetic PI4KIIα interacts with a specific cohort of presynaptic molecules, two of which, AGAP2 and CAMKV, are also essential for ADBE when depleted in neurons. Thus, PI4KIIα is a GSK3β-dependent interaction hub that silos essential ADBE molecules for liberation during neuronal activity.
Collapse
Affiliation(s)
- Eva-Maria Blumrich
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK
| | - Jessica C Nicholson-Fish
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK
| | - Marie Pronot
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK
| | - Dominic Kurian
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland EH25 9RG, UK
| | - Adam Cole
- Neurosignalling and Mood Disorders Group, The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Karen J Smillie
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK.
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK.
| |
Collapse
|
4
|
Huang L, Mao X, Li J, Li Q, Shen J, Liu M, Fan C, Tian Y. Nanoparticle Spikes Enhance Cellular Uptake via Regulating Myosin IIA Recruitment. ACS NANO 2023; 17:9155-9166. [PMID: 37171255 DOI: 10.1021/acsnano.2c12660] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Spike-like nanostructures are omnipresent in natural and artificial systems. Although biorecognition of nanostructures to cellular receptors has been indicated as the primary factor for virus infection pathways, how the spiky morphology of DNA-modified nanoparticles affects their cellular uptake and intracellular fate remains to be explored. Here, we design dually emissive gold nanoparticles with varied spikiness (from 0 to 2) to probe the interactions of spiky nanoparticles with cells. We discovered that nanospikes at the nanoparticle regulated myosin IIA recruitment at the cell membrane during cellular uptake, thereby enhancing cellular uptake efficiency, as revealed by dual-modality (plasmonic and fluorescence) imaging. Furthermore, the spiky nanoparticles also exhibited facilitated endocytosis dynamics, as revealed by real-time dark-field microscopy (DFM) imaging and colorimetry-based classification algorithms. These findings highlight the crucial role of the spiky morphology in regulating the intracellular fate of nanoparticles, which may shed light on engineering theranostic nanocarriers.
Collapse
Affiliation(s)
- Lulu Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
5
|
Kar J, Kar S, Gupta A, Jana SS. Assembly and disassembly dynamics of nonmuscle myosin II control endosomal fission. Cell Rep 2023; 42:112108. [PMID: 36774549 DOI: 10.1016/j.celrep.2023.112108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/23/2022] [Accepted: 01/27/2023] [Indexed: 02/13/2023] Open
Abstract
Endocytic vesicular trafficking requires merging of two lipid bilayers, but how the two lipid bilayers can come close together during fusion and fission in endocytic trafficking is not well explored. Here, we establish that knocking down nonmuscle myosin IIs (NM IIs) by small interfering RNA (siRNA) or inhibition of their activities by (-) blebbistatin causes the formation of a ring-like assembly of early endosomes (raEE). Inhibition of NM II assembly by an inhibitor of regulatory light-chain (RLC) kinase results in the formation of raEE, whereas inhibition of NM II disassembly by inhibitors of heavy chain kinases, protein kinase C (PKC) and casein kinase 2 (CK2), causes the dispersion of early endosomes. The raEEs retain EEA1, Rab7, and LAMP2 markers. Overexpression of an assembly incompetent form, RLC-AA, and disassembly incompetent form, NMHCIIB-S6A or NMHCIIA-1916A, induces such defects, respectively. Altogether, these data support that NM II assembly and disassembly dynamics participate in endocytic trafficking by regulating fission to maintain the size of early endosomes.
Collapse
Affiliation(s)
- Joy Kar
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India
| | - Sumanta Kar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal, India
| | - Siddhartha S Jana
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India.
| |
Collapse
|
6
|
Bademosi AT, Meunier FA. Unveiling the Nanoscale Dynamics of the Exocytic Machinery in Chromaffin Cells with Single-Molecule Imaging. Methods Mol Biol 2023; 2565:311-327. [PMID: 36205903 DOI: 10.1007/978-1-0716-2671-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Neuronal and hormonal communication relies on the exocytic fusion of vesicles containing neurotransmitters and hormones with the plasma membrane. This process is tightly regulated by key protein-protein and protein-lipid interactions and culminates in the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex formation and zippering that promotes vesicular fusion. Located on both sides of the vesicle and the plasma membrane, the zippering of the SNARE complex acts to overcome the energy barrier afforded by the repulsive electrostatic force stemming from apposing two negatively charged phospholipid membranes. Another component opposing the timely organization of the fusion machinery is thermal Brownian energy that tends to homogenize all cellular molecules by constantly switching their motions and directions through short-lived molecular interactions. Much less is known of the mechanisms counteracting these chaotic forces, allowing seamless cellular functions such as exocytic fusion. Super-resolution microscopy techniques such as single-molecule imaging have proven useful to start uncovering these nanoscale mechanisms. Here, we used single-particle tracking photoactivatable localization microscopy (sptPALM) to track syntaxin-1-mEos, a SNARE protein located on the plasma membrane of cultured bovine chromaffin cells. We demonstrate that syntaxin-1-mEos undergoes dramatic change in its mobility in response to secretagogue stimulation leading to increased nanoclustering. These nanoclusters are transient in nature and likely to provide docked vesicles with a molecular environment conducive to exocytic fusion.
Collapse
Affiliation(s)
- Adekunle T Bademosi
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia.
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia.
| |
Collapse
|
7
|
Ge L, Shin W, Arpino G, Wei L, Chan CY, Bleck CKE, Zhao W, Wu LG. Sequential compound fusion and kiss-and-run mediate exo- and endocytosis in excitable cells. SCIENCE ADVANCES 2022; 8:eabm6049. [PMID: 35714180 PMCID: PMC9205584 DOI: 10.1126/sciadv.abm6049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Vesicle fusion at preestablished plasma membrane release sites releases transmitters and hormones to mediate fundamental functions like neuronal network activities and fight-or-flight responses. This half-a-century-old concept-fusion at well-established release sites in excitable cells-needs to be modified to include the sequential compound fusion reported here-vesicle fusion at previously fused Ω-shaped vesicular membrane. With superresolution STED microscopy in excitable neuroendocrine chromaffin cells, we real-time visualized sequential compound fusion pore openings and content releases in generating multivesicular and asynchronous release from single release sites, which enhances exocytosis strength and dynamic ranges in excitable cells. We also visualized subsequent compound fusion pore closure, a new mode of endocytosis termed compound kiss-and-run that enhances vesicle recycling capacity. These results suggest modifying current exo-endocytosis concepts by including rapid release-site assembly at fused vesicle membrane, where sequential compound fusion and kiss-and-run take place to enhance exo-endocytosis capacity and dynamic ranges.
Collapse
Affiliation(s)
- Lihao Ge
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Wonchul Shin
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Gianvito Arpino
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Lisi Wei
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Chung Yu Chan
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | | | - Weidong Zhao
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Peng YJ, Geng J, Wu Y, Pinales C, Langen J, Chang YC, Buser C, Chang KT. Minibrain kinase and calcineurin coordinate activity-dependent bulk endocytosis through synaptojanin. J Cell Biol 2021; 220:212674. [PMID: 34596663 PMCID: PMC8491876 DOI: 10.1083/jcb.202011028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Neurons use multiple modes of endocytosis, including clathrin-mediated endocytosis (CME) and activity-dependent bulk endocytosis (ADBE), during mild and intense neuronal activity, respectively, to maintain stable neurotransmission. While molecular players modulating CME are well characterized, factors regulating ADBE and mechanisms coordinating CME and ADBE activations remain poorly understood. Here we report that Minibrain/DYRK1A (Mnb), a kinase mutated in autism and up-regulated in Down's syndrome, plays a novel role in suppressing ADBE. We demonstrate that Mnb, together with calcineurin, delicately coordinates CME and ADBE by controlling the phosphoinositol phosphatase activity of synaptojanin (Synj) during varying synaptic demands. Functional domain analyses reveal that Synj's 5'-phosphoinositol phosphatase activity suppresses ADBE, while SAC1 activity is required for efficient ADBE. Consequently, Parkinson's disease mutation in Synj's SAC1 domain impairs ADBE. These data identify Mnb and Synj as novel regulators of ADBE and further indicate that CME and ADBE are differentially governed by Synj's dual phosphatase domains.
Collapse
Affiliation(s)
- Yi-Jheng Peng
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA
| | - Junhua Geng
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Ying Wu
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Jennifer Langen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Yen-Ching Chang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Karen T Chang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA.,Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
9
|
Montenegro M, Bayonés L, Moya-Díaz J, Borassi C, Martín Toscani A, Gallo LI, Marengo FD. Rapid vesicle replenishment after the immediately releasable pool exocytosis is tightly linked to fast endocytosis, and depends on basal calcium and cortical actin in chromaffin cells. J Neurochem 2021; 157:1069-1085. [PMID: 33338257 DOI: 10.1111/jnc.15276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/25/2020] [Accepted: 12/12/2020] [Indexed: 01/06/2023]
Abstract
The maintenance of the secretory response requires a continuous replenishment of releasable vesicles. It was proposed that the immediately releasable pool (IRP) is important in chromaffin cell secretion during action potentials applied at basal physiological frequencies, because of the proximity of IRP vesicles to voltage-dependent Ca2+ channels. However, previous reports showed that IRP replenishment after depletion is too slow to manage such a situation. In this work, we used patch-clamp measurements of membrane capacitance, confocal imaging of F-actin distribution, and cytosolic Ca2+ measurements with Fura-2 to re-analyze this problem in primary cultures of mouse chromaffin cells. We provide evidence that IRP replenishment has one slow (time constant between 5 and 10 s) and one rapid component (time constant between 0.5 and 1.5 s) linked to a dynamin-dependent fast endocytosis. Both, the fast endocytosis and the rapid replenishment component were eliminated when 500 nM Ca2+ was added to the internal solution during patch-clamp experiments, but they became dominant and accelerated when the cytosolic Ca2+ buffer capacity was increased. In addition, both rapid replenishment and fast endocytosis were retarded when cortical F-actin cytoskeleton was disrupted with cytochalasin D. Finally, in permeabilized chromaffin cells stained with rhodamine-phalloidin, the cortical F-actin density was reduced when the Ca2+ concentration was increased in a range of 10-1000 nM. We conclude that low cytosolic Ca2+ concentrations, which favor cortical F-actin stabilization, allow the activation of a fast endocytosis mechanism linked to a rapid replenishment component of IRP.
Collapse
Affiliation(s)
- Mauricio Montenegro
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE). CONICET, Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucas Bayonés
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE). CONICET, Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José Moya-Díaz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE). CONICET, Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,School of Life Sciences, University of Sussex, Brighton, UK
| | - Cecilia Borassi
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Buenos Aires, Argentina
| | - Andrés Martín Toscani
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). CONICET, Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico -, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
| | - Luciana I Gallo
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE). CONICET, Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando D Marengo
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE). CONICET, Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Li TN, Chen YJ, Lu TY, Wang YT, Lin HC, Yao CK. A positive feedback loop between Flower and PI(4,5)P 2 at periactive zones controls bulk endocytosis in Drosophila. eLife 2020; 9:60125. [PMID: 33300871 PMCID: PMC7748424 DOI: 10.7554/elife.60125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023] Open
Abstract
Synaptic vesicle (SV) endocytosis is coupled to exocytosis to maintain SV pool size and thus neurotransmitter release. Intense stimulation induces activity-dependent bulk endocytosis (ADBE) to recapture large quantities of SV constituents in large endosomes from which SVs reform. How these consecutive processes are spatiotemporally coordinated remains unknown. Here, we show that Flower Ca2+ channel-dependent phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) compartmentalization governs control of these processes in Drosophila. Strong stimuli trigger PI(4,5)P2 microdomain formation at periactive zones. Upon exocytosis, Flower translocates from SVs to periactive zones, where it increases PI(4,5)P2 levels via Ca2+ influxes. Remarkably, PI(4,5)P2 directly enhances Flower channel activity, thereby establishing a positive feedback loop for PI(4,5)P2 microdomain compartmentalization. PI(4,5)P2 microdomains drive ADBE and SV reformation from bulk endosomes. PI(4,5)P2 further retrieves Flower to bulk endosomes, terminating endocytosis. We propose that the interplay between Flower and PI(4,5)P2 is the crucial spatiotemporal cue that couples exocytosis to ADBE and subsequent SV reformation.
Collapse
Affiliation(s)
- Tsai-Ning Li
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Jung Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ting-Yi Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - You-Tung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsin-Chieh Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Kuang Yao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Wang T, Li W, Martin S, Papadopulos A, Joensuu M, Liu C, Jiang A, Shamsollahi G, Amor R, Lanoue V, Padmanabhan P, Meunier FA. Radial contractility of actomyosin rings facilitates axonal trafficking and structural stability. J Cell Biol 2020; 219:e201902001. [PMID: 32182623 PMCID: PMC7199852 DOI: 10.1083/jcb.201902001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 09/17/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Most mammalian neurons have a narrow axon, which constrains the passage of large cargoes such as autophagosomes that can be larger than the axon diameter. Radial axonal expansion must therefore occur to ensure efficient axonal trafficking. In this study, we reveal that the speed of various large cargoes undergoing axonal transport is significantly slower than that of small ones and that the transit of diverse-sized cargoes causes an acute, albeit transient, axonal radial expansion, which is immediately restored by constitutive axonal contractility. Using live super-resolution microscopy, we demonstrate that actomyosin-II controls axonal radial contractility and local expansion, and that NM-II filaments associate with periodic F-actin rings via their head domains. Pharmacological inhibition of NM-II activity significantly increases axon diameter by detaching the NM-II from F-actin and impacts the trafficking speed, directionality, and overall efficiency of long-range retrograde trafficking. Consequently, prolonged NM-II inactivation leads to disruption of periodic actin rings and formation of focal axonal swellings, a hallmark of axonal degeneration.
Collapse
Affiliation(s)
- Tong Wang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Wei Li
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Sally Martin
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Andreas Papadopulos
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Chunxia Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Golnoosh Shamsollahi
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Rumelo Amor
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Frédéric A. Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
12
|
Rampérez A, Bartolomé-Martín D, García-Pascual A, Sánchez-Prieto J, Torres M. Photoconversion of FM1-43 Reveals Differences in Synaptic Vesicle Recycling and Sensitivity to Pharmacological Disruption of Actin Dynamics in Individual Synapses. ACS Chem Neurosci 2019; 10:2045-2059. [PMID: 30763065 DOI: 10.1021/acschemneuro.8b00712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The cycling of synaptic vesicles ensures that neurons can communicate adequately through their synapses on repeated occasions when activity is sustained, and several steps in this cycle are modulated by actin. The effects of pharmacological stabilization of actin with jasplakinolide or its depolymerization with latrunculin A was assessed on the synaptic vesicle cycle at individual boutons of cerebellar granule cells, using FM1-43 imaging to track vesicle recycling and its photoconversion to specifically label recycled organelles. Remarkable differences in the recycling capacity of individual boutons are evident, and their dependence on the actin cytoskeleton for recycling is clear. Disrupting actin dynamics causes a loss of functional boutons, and while this indicates that exo/endocytotic cycling in boutons is fully dependent on such events, this dependence is only partial in other boutons. Indeed, exocytosis and vesicle trafficking are impaired significantly by stabilizing or depolymerizing actin, whereas repositioning recycled vesicles at the active zone seems to be dependent on actin polymerization alone. These findings support the hypothesis that different steps of synaptic vesicle cycling depend on actin dynamics and that such dependence varies among individual boutons.
Collapse
Affiliation(s)
- Alberto Rampérez
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - David Bartolomé-Martín
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - Angeles García-Pascual
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - Jose Sánchez-Prieto
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - Magdalena Torres
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| |
Collapse
|
13
|
Zhang X, Han L, Wang Q, Zhang C, Yu Y, Tian J, Kong Z. The host actin cytoskeleton channels rhizobia release and facilitates symbiosome accommodation during nodulation in Medicago truncatula. THE NEW PHYTOLOGIST 2019; 221:1049-1059. [PMID: 30156704 DOI: 10.1111/nph.15423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 05/13/2023]
Abstract
In plants, the actin cytoskeleton plays a central role in regulating intracellular transport and trafficking in the endomembrane system. Work in legumes suggested that during nodulation, the actin cytoskeleton coordinates numerous cellular processes in the development of nitrogen-fixing nodules. However, we lacked live-cell visualizations demonstrating dynamic remodeling of the actin cytoskeleton during infection droplet release and symbiosome development. Here, we generated transgenic Medicago truncatula lines stably expressing the fluorescent actin marker ABD2-GFP, and utilized live-cell imaging to reveal the architecture and dynamics of the actin cytoskeleton during nodule development. Live-cell observations showed that different zones in nitrogen-fixing nodules exhibit distinct actin architectures and infected cells display five characteristic actin architectures during nodule development. Live-cell imaging combined with three-dimensional reconstruction demonstrated that dense filamentous-actin (F-actin) arrays channel the elongation of infection threads and the release of infection droplets, an F-actin network encircles freshly-released rhizobia, and short F-actin fragments and actin dots around radially distributed symbiosomes. Our findings suggest an important role of the actin cytoskeleton in infection droplet release, symbiosome development and maturation, and provide significant insight into the cellular mechanisms underlying nodule development and nitrogen fixation during legume-rhizobia interactions.
Collapse
Affiliation(s)
- Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libo Han
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Activity-dependent bulk endocytosis proteome reveals a key presynaptic role for the monomeric GTPase Rab11. Proc Natl Acad Sci U S A 2018; 115:E10177-E10186. [PMID: 30301801 PMCID: PMC6205440 DOI: 10.1073/pnas.1809189115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The maintenance of neurotransmission by synaptic vesicle (SV) recycling is critical to brain function. The dominant SV recycling mode during intense activity is activity-dependent bulk endocytosis (ADBE), suggesting it will perform a pivotal role in neurotransmission. However, the role of ADBE is still undetermined, due to the absence of identified molecules specific for this process. The determination of the bulk endosome proteome (a key ADBE organelle) revealed that it has a unique molecular signature and identified a role for Rab11 in presynaptic function. This work provides the molecular inventory of ADBE, a resource that will be of significant value to researchers wishing to modulate neurotransmission during intense neuronal activity in both health and disease. Activity-dependent bulk endocytosis (ADBE) is the dominant mode of synaptic vesicle endocytosis during high-frequency stimulation, suggesting it should play key roles in neurotransmission during periods of intense neuronal activity. However, efforts in elucidating the physiological role of ADBE have been hampered by the lack of identified molecules which are unique to this endocytosis mode. To address this, we performed proteomic analysis on purified bulk endosomes, which are a key organelle in ADBE. Bulk endosomes were enriched via two independent approaches, a classical subcellular fractionation method and isolation via magnetic nanoparticles. There was a 77% overlap in proteins identified via the two protocols, and these molecules formed the ADBE core proteome. Bioinformatic analysis revealed a strong enrichment in cell adhesion and cytoskeletal and signaling molecules, in addition to expected synaptic and trafficking proteins. Network analysis identified Rab GTPases as a central hub within the ADBE proteome. Subsequent investigation of a subset of these Rabs revealed that Rab11 both facilitated ADBE and accelerated clathrin-mediated endocytosis. These findings suggest that the ADBE proteome will provide a rich resource for the future study of presynaptic function, and identify Rab11 as a regulator of presynaptic function.
Collapse
|
15
|
Yu SC, Jánosi B, Liewald JF, Wabnig S, Gottschalk A. Endophilin A and B Join Forces With Clathrin to Mediate Synaptic Vesicle Recycling in Caenorhabditis elegans. Front Mol Neurosci 2018; 11:196. [PMID: 29962934 PMCID: PMC6010539 DOI: 10.3389/fnmol.2018.00196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 05/17/2018] [Indexed: 01/24/2023] Open
Abstract
Synaptic vesicle (SV) recycling enables ongoing transmitter release, even during prolonged activity. SV membrane and proteins are retrieved by ultrafast endocytosis and new SVs are formed from synaptic endosomes (large vesicles—LVs). Many proteins contribute to SV recycling, e.g., endophilin, synaptojanin, dynamin and clathrin, while the site of action of these proteins (at the plasma membrane (PM) vs. at the endosomal membrane) is only partially understood. Here, we investigated the roles of endophilin A (UNC-57), endophilin-related protein (ERP-1, homologous to human endophilin B1) and of clathrin, in SV recycling at the cholinergic neuromuscular junction (NMJ) of C. elegans. erp-1 mutants exhibited reduced transmission and a progressive reduction in optogenetically evoked muscle contraction, indicative of impaired SV recycling. This was confirmed by electrophysiology, where particularly endophilin A (UNC-57), but also endophilin B (ERP-1) mutants exhibited reduced transmission. By optogenetic and electrophysiological analysis, phenotypes in the unc-57; erp-1 double mutant are largely dominated by the unc-57 mutation, arguing for partially redundant functions of endophilins A and B, but also hinting at a back-up mechanism for neuronal endocytosis. By electron microscopy (EM), we observed that unc-57 and erp-1; unc-57 double mutants showed increased numbers of synaptic endosomes of large size, assigning a role for both proteins at the endosome, because endosomal disintegration into new SVs, but not formation of endosomes were hampered. Accordingly, only low amounts of SVs were present. Also erp-1 mutants show reduced SV numbers (but no increase in LVs), thus ERP-1 contributes to SV formation. We analyzed temperature-sensitive mutants of clathrin heavy chain (chc-1), as well as erp-1; chc-1 and unc-57; chc-1 double mutants. SV recycling phenotypes were obvious from optogenetic stimulation experiments. By EM, chc-1 mutants showed formation of numerous and large endosomes, arguing that clathrin, as shown for mammalian synapses, acts at the endosome in formation of new SVs. Without endophilins, clathrin formed endosomes at the PM, while endophilins A and B compensated for the loss of clathrin at the PM, under conditions of high SV turnover.
Collapse
Affiliation(s)
- Szi-Chieh Yu
- Buchmann Institute of Molecular Life Sciences (BMLS), Goethe University, Frankfurt, Germany.,Institute of Biophysical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Barbara Jánosi
- Buchmann Institute of Molecular Life Sciences (BMLS), Goethe University, Frankfurt, Germany.,Institute of Biophysical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Jana F Liewald
- Buchmann Institute of Molecular Life Sciences (BMLS), Goethe University, Frankfurt, Germany.,Institute of Biophysical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Sebastian Wabnig
- Buchmann Institute of Molecular Life Sciences (BMLS), Goethe University, Frankfurt, Germany.,Institute of Biophysical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Alexander Gottschalk
- Buchmann Institute of Molecular Life Sciences (BMLS), Goethe University, Frankfurt, Germany.,Institute of Biophysical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany.,Cluster of Excellence Frankfurt, Macromolecular Complexes (CEF-MC), Goethe University, Frankfurt, Germany
| |
Collapse
|
16
|
Pagliuso A, Cossart P, Stavru F. The ever-growing complexity of the mitochondrial fission machinery. Cell Mol Life Sci 2018; 75:355-374. [PMID: 28779209 PMCID: PMC5765209 DOI: 10.1007/s00018-017-2603-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/24/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022]
Abstract
The mitochondrial network constantly changes and remodels its shape to face the cellular energy demand. In human cells, mitochondrial fusion is regulated by the large, evolutionarily conserved GTPases Mfn1 and Mfn2, which are embedded in the mitochondrial outer membrane, and by OPA1, embedded in the mitochondrial inner membrane. In contrast, the soluble dynamin-related GTPase Drp1 is recruited from the cytosol to mitochondria and is key to mitochondrial fission. A number of new players have been recently involved in Drp1-dependent mitochondrial fission, ranging from large cellular structures such as the ER and the cytoskeleton to the surprising involvement of the endocytic dynamin 2 in the terminal abscission step. Here we review the recent findings that have expanded the mechanistic model for the mitochondrial fission process in human cells and highlight open questions.
Collapse
Affiliation(s)
- Alessandro Pagliuso
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
- U604 Inserm, Paris, France
- USC2020 INRA, Paris, France
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
- U604 Inserm, Paris, France
- USC2020 INRA, Paris, France
| | - Fabrizia Stavru
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France.
- U604 Inserm, Paris, France.
- USC2020 INRA, Paris, France.
- SNC5101 CNRS, Paris, France.
| |
Collapse
|
17
|
Cousin MA. Integration of Synaptic Vesicle Cargo Retrieval with Endocytosis at Central Nerve Terminals. Front Cell Neurosci 2017; 11:234. [PMID: 28824381 PMCID: PMC5541026 DOI: 10.3389/fncel.2017.00234] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022] Open
Abstract
Central nerve terminals contain a limited number of synaptic vesicles (SVs) which mediate the essential process of neurotransmitter release during their activity-dependent fusion. The rapid and accurate formation of new SVs with the appropriate cargo is essential to maintain neurotransmission in mammalian brain. Generating SVs containing the correct SV cargo with the appropriate stoichiometry is a significant challenge, especially when multiple modes of endocytosis exist in central nerve terminals, which occur at different locations within the nerve terminals. These endocytosis modes include ultrafast endocytosis, clathrin-mediated endocytosis (CME) and activity-dependent bulk endocytosis (ADBE) which are triggered by specific patterns of neuronal activity. This review article will assess the evidence for the role of classical adaptor protein complexes in SV retrieval, discuss the role of monomeric adaptors and how interactions between specific SV cargoes can facilitate retrieval. In addition it will consider the evidence for preassembled plasma membrane cargo complexes and their role in facilitating these endocytosis modes. Finally it will present a unifying model for cargo retrieval at the presynapse, which integrates endocytosis modes in time and space.
Collapse
Affiliation(s)
- Michael A Cousin
- Centre for Integrative Physiology, University of EdinburghEdinburgh, United Kingdom
| |
Collapse
|
18
|
Lasič E, Stenovec M, Kreft M, Robinson PJ, Zorec R. Dynamin regulates the fusion pore of endo- and exocytotic vesicles as revealed by membrane capacitance measurements. Biochim Biophys Acta Gen Subj 2017; 1861:2293-2303. [PMID: 28669852 DOI: 10.1016/j.bbagen.2017.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/24/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Dynamin is a multidomain GTPase exhibiting mechanochemical and catalytic properties involved in vesicle scission from the plasmalemma during endocytosis. New evidence indicates that dynamin is also involved in exocytotic release of catecholamines, suggesting the existence of a dynamin-regulated structure that couples endo- to exocytosis. METHODS Thus we here employed high-resolution cell-attached capacitance measurements and super-resolution structured illumination microscopy to directly examine single vesicle interactions with the plasmalemma in cultured rat astrocytes treated with distinct pharmacological modulators of dynamin activity. Fluorescent dextrans and the lipophilic plasmalemmal marker DiD were utilized to monitor uptake and distribution of vesicles in the peri-plasmalemmal space and in the cell cytosol. RESULTS Dynamin inhibition with Dynole™-34-2 and Dyngo™-4a prevented vesicle internalization into the cytosol and decreased fusion pore conductance of vesicles that remained attached to the plasmalemma via a narrow fusion pore that lapsed into a state of repetitive opening and closing - flickering. In contrast, the dynamin activator Ryngo™-1-23 promoted vesicle internalization and favored fusion pore closure by prolonging closed and shortening open fusion pore dwell times. Immunocytochemical staining revealed dextran uptake into dynamin-positive vesicles and increased dextran uptake into Syt4- and VAMP2-positive vesicles after dynamin inhibition, indicating prolonged retention of these vesicles at the plasmalemma. CONCLUSIONS Our results have provided direct evidence for a role of dynamin in regulation of fusion pore geometry and kinetics of endo- and exocytotic vesicles, indicating that both share a common dynamin-regulated structural intermediate, the fusion pore.
Collapse
Affiliation(s)
- Eva Lasič
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia.
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia; University of Ljubljana, Biotechnical Faculty, Department of Biology, CPAE, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Phillip J Robinson
- Children's Medical Research Institute, The University of Sydney, Australia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia.
| |
Collapse
|
19
|
Gormal R, Valmas N, Fath T, Meunier F. A role for tropomyosins in activity-dependent bulk endocytosis? Mol Cell Neurosci 2017; 84:112-118. [PMID: 28545680 DOI: 10.1016/j.mcn.2017.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023] Open
Abstract
Bulk endocytosis allows stimulated neurons to take up a large portion of the presynaptic plasma membrane in order to regenerate synaptic vesicle pools. Actin, one of the most abundant proteins in eukaryotic cells, plays an important role in this process, but a detailed mechanistic understanding of the involvement of the cortical actin network is still lacking, in part due to the relatively small size of nerve terminals and the limitation of optical microscopy. We recently discovered that neurosecretory cells display a similar, albeit much larger, form of bulk endocytosis in response to secretagogue stimulation. This allowed us to identify a novel highly dynamic role for the acto-myosin II cortex in generating constricting rings that precede the fission of nascent bulk endosomes. In this review we focus on the mechanism underpinning this dramatic switch in the organization and function of the cortical actin network. We provide additional experimental data that suggest a role of tropomyosin Tpm3.1 and Tpm4.2 in this process, together with an emerging model of how actin controls bulk endocytosis.
Collapse
Affiliation(s)
- Rachel Gormal
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Queensland 4072, Australia
| | - Nicholas Valmas
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland 4072, Australia
| | - Thomas Fath
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Frederic Meunier
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
20
|
Papadopulos A. Membrane shaping by actin and myosin during regulated exocytosis. Mol Cell Neurosci 2017; 84:93-99. [PMID: 28536001 DOI: 10.1016/j.mcn.2017.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 12/01/2022] Open
Abstract
The cortical actin network in neurosecretory cells is a dense mesh of actin filaments underlying the plasma membrane. Interaction of actomyosin with vesicular membranes or the plasma membrane is vital for tethering, retention, transport as well as fusion and fission of exo- and endocytic membrane structures. During regulated exocytosis the cortical actin network undergoes dramatic changes in morphology to accommodate vesicle docking, fusion and replenishment. Most of these processes involve plasma membrane Phosphoinositides (PIP) and investigating the interactions between the actin cortex and secretory structures has become a hotbed for research in recent years. Actin remodelling leads to filopodia outgrowth and the creation of new fusion sites in neurosecretory cells and actin, myosin and dynamin actively shape and maintain the fusion pore of secretory vesicles. Changes in viscoelastic properties of the actin cortex can facilitate vesicular transport and lead to docking and priming of vesicle at the plasma membrane. Small GTPase actin mediators control the state of the cortical actin network and influence vesicular access to their docking and fusion sites. These changes potentially affect membrane properties such as tension and fluidity as well as the mobility of embedded proteins and could influence the processes leading to both exo- and endocytosis. Here we discuss the multitudes of actin and membrane interactions that control successive steps underpinning regulated exocytosis.
Collapse
Affiliation(s)
- Andreas Papadopulos
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
21
|
Evans MD, Tufo C, Dumitrescu AS, Grubb MS. Myosin II activity is required for structural plasticity at the axon initial segment. Eur J Neurosci 2017; 46:1751-1757. [PMID: 28452088 PMCID: PMC5573965 DOI: 10.1111/ejn.13597] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/29/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022]
Abstract
In neurons, axons possess a molecularly defined and highly organised proximal region – the axon initial segment (AIS) – that is a key regulator of both electrical excitability and cellular polarity. Despite existing as a large, dense structure with specialised cytoskeletal architecture, the AIS is surprisingly plastic, with sustained alterations in neuronal activity bringing about significant alterations to its position, length or molecular composition. However, although the upstream activity‐dependent signalling pathways that lead to such plasticity have begun to be elucidated, the downstream mechanisms that produce structural changes at the AIS are completely unknown. Here, we use dissociated cultures of rat hippocampus to show that two forms of AIS plasticity in dentate granule cells – long‐term relocation, and more rapid shortening – are completely blocked by treatment with blebbistatin, a potent and selective myosin II ATPase inhibitor. These data establish a link between myosin II and AIS function, and suggest that myosin II's primary role at the structure may be to effect activity‐dependent morphological alterations.
Collapse
Affiliation(s)
- Mark D Evans
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| | - Candida Tufo
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| | - Adna S Dumitrescu
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK.,FENS-Kavli Network of Excellence, Europe-wide
| |
Collapse
|
22
|
Meunier FA, Gutiérrez LM. Captivating New Roles of F-Actin Cortex in Exocytosis and Bulk Endocytosis in Neurosecretory Cells. Trends Neurosci 2016; 39:605-613. [DOI: 10.1016/j.tins.2016.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 12/01/2022]
|
23
|
Abstract
Macropinocytosis is a means by which eukaryotic cells ingest extracellular liquid and dissolved molecules. It is widely conserved amongst cells that can take on amoeboid form and, therefore, appears to be an ancient feature that can be traced back to an early stage of evolution. Recent advances have highlighted how this endocytic process can be subverted during pathology - certain cancer cells use macropinocytosis to feed on extracellular protein, and many viruses and bacteria use it to enter host cells. Prion and prion-like proteins can also spread and propagate from cell to cell through macropinocytosis. Progress is being made towards using macropinocytosis therapeutically, either to deliver drugs to or cause cell death by inducing catastrophically rapid fluid uptake. Mechanistically, the Ras signalling pathway plays a prominent and conserved activating role in amoebae and in mammals; mutant amoebae with abnormally high Ras activity resemble tumour cells in their increased capacity for growth using nutrients ingested through macropinocytosis. This Commentary takes a functional and evolutionary perspective to highlight progress in understanding and use of macropinocytosis, which is an ancient feeding process used by single-celled phagotrophs that has now been put to varied uses by metazoan cells and is abused in disease states, including infection and cancer.
Collapse
Affiliation(s)
- Gareth Bloomfield
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
24
|
Mahapatra S, Lou X. Dynamin-1 deletion enhances post-tetanic potentiation and quantal size after tetanic stimulation at the calyx of Held. J Physiol 2016; 595:193-206. [PMID: 27229184 DOI: 10.1113/jp271937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/18/2016] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS Post-tetanic potentiation (PTP) is attributed mainly to an increase in release probability (Pr ) and/or readily-releasable pool (RRP) in many synapses, but the role of endocytosis in PTP is unknown. Using the calyx of Held synapse from tissue-specific dynamin-1 knockout (cKO) mice (P16-20), we report that cKO synapses show enhanced PTP compared to control. We found significant increases in both spontaneous excitatory postsynaptic current (spEPSC) amplitude and RRP size (estimated by a train of 30 APs at 100 Hz) in cKO over control during PTP. Actin depolymerization blocks the increase in spEPSC amplitude in both control and cKO, and it abolishes the enhancement of PTP in cKO. PTP is sensitive to the PKC inhibitor GF109203X in both control and cKO. We conclude that an activity-dependent quantal size increase contributes to the enhancement of PTP in cKO over control and an altered endocytosis affects short-term plasticity through quantal size changes. ABSTRACT High-frequency stimulation leads to post-tetanic potentiation (PTP) at many types of synapses. Previous studies suggest that PTP results primarily from a protein kinase C (PKC)-dependent increase in release probability (Pr ) and/or readily-releasable pool (RRP) of synaptic vesicles (SVs), but the role of SV endocytosis in PTP is unknown. Using the mature calyx of Held (P16-20), we report that tissue-specific ablation of dynamin-1 (cKO), an endocytic protein crucial for SV regeneration, enhances PTP in cKO over control. To explore the mechanism of this enhancement, we estimated the changes in paired-pulse ratios (PPRs) and RRP size during PTP. RRP was estimated by the back-extrapolation of cumulative EPSC amplitudes during a train of 30 action potentials at 100 Hz (termed RRPtrain ). We found an increase in RRPtrain during PTP in both control and cKO, but no significant changes in the PPR. Moreover, the amplitude and frequency of spontaneous excitatory postsynaptic currents (spEPSCs) increased during PTP in both control and cKO; however, the spEPSC amplitude in cKO during PTP was significantly larger than in control. Actin depolymerization reagent latrunculin-B (Lat-B) abolished the activity-dependent increase in spEPSC amplitude in both control and cKO, but selectively blocked the enhancement of PTP in cKO, without affecting PTP in control. PKC inhibitor GF109203X nearly abolished PTP in both control and cKO. These data suggest that the quantal size increase contributes to the enhancement of PTP in dynamin-1 cKO, and this change depends on strong synaptic activity and actin polymerization.
Collapse
Affiliation(s)
- Satyajit Mahapatra
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xuelin Lou
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
25
|
Li L, Wu X, Yue HY, Zhu YC, Xu J. Myosin light chain kinase facilitates endocytosis of synaptic vesicles at hippocampal boutons. J Neurochem 2016; 138:60-73. [PMID: 27062289 DOI: 10.1111/jnc.13635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/27/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
At nerve terminals, endocytosis efficiently recycles vesicle membrane to maintain synaptic transmission under different levels of neuronal activity. Ca(2+) and its downstream signal pathways are critical for the activity-dependent regulation of endocytosis. An activity- and Ca(2+) -dependent kinase, myosin light chain kinase (MLCK) has been reported to regulate vesicle mobilization, vesicle cycling, and motility in different synapses, but whether it has a general contribution to regulation of endocytosis at nerve terminals remains unknown. We investigated this issue at rat hippocampal boutons by imaging vesicle endocytosis as the real-time retrieval of vesicular synaptophysin tagged with a pH-sensitive green fluorescence protein. We found that endocytosis induced by 200 action potentials (5-40 Hz) was slowed by acute inhibition of MLCK and down-regulation of MLCK with RNA interference, while the total amount of vesicle exocytosis and somatic Ca(2+) channel current did not change with MLCK down-regulation. Acute inhibition of myosin II similarly impaired endocytosis. Furthermore, down-regulation of MLCK prevented depolarization-induced phosphorylation of myosin light chain, an effect shared by blockers of Ca(2+) channels and calmodulin. These results suggest that MLCK facilitates vesicle endocytosis through activity-dependent phosphorylation of myosin downstream of Ca(2+) /calmodulin, probably as a widely existing mechanism among synapses. Our study suggests that MLCK is an important activity-dependent regulator of vesicle recycling in hippocampal neurons, which are critical for learning and memory. The kinetics of vesicle membrane endocytosis at nerve terminals has long been known to depend on activity and Ca(2+) . This study provides evidence suggesting that myosin light chain kinase increases endocytosis efficiency at hippocampal neurons by mediating Ca(2+) /calmodulin-dependent phosphorylation of myosin. The authors propose that this signal cascade may serve as a common pathway contributing to the activity-dependent regulation of vesicle endocytosis at synapses.
Collapse
Affiliation(s)
- Lin Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, Georgia, USA
| | - Xiaomei Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, Georgia, USA.,Department of Neurochemistry, Institute of Nautical Medicine, Nantong University, Nantong, Jiangsu, China
| | - Hai-Yuan Yue
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, Georgia, USA
| | - Yong-Chuan Zhu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, Georgia, USA
| | - Jianhua Xu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, Georgia, USA.,Department of Neurology, Medical College of Georgia, Augusta, Georgia, USA
| |
Collapse
|
26
|
Tissue-specific dynamin-1 deletion at the calyx of Held decreases short-term depression through a mechanism distinct from vesicle resupply. Proc Natl Acad Sci U S A 2016; 113:E3150-8. [PMID: 27185948 DOI: 10.1073/pnas.1520937113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dynamin is a large GTPase with a crucial role in synaptic vesicle regeneration. Acute dynamin inhibition impairs neurotransmitter release, in agreement with the protein's established role in vesicle resupply. Here, using tissue-specific dynamin-1 knockout [conditional knockout (cKO)] mice at a fast central synapse that releases neurotransmitter at high rates, we report that dynamin-1 deletion unexpectedly leads to enhanced steady-state neurotransmission and consequently less synaptic depression during brief periods of high-frequency stimulation. These changes are also accompanied by increased transmission failures. Interestingly, synaptic vesicle resupply and several other synaptic properties remain intact, including basal neurotransmission, presynaptic Ca(2+) influx, initial release probability, and postsynaptic receptor saturation and desensitization. However, acute application of Latrunculin B, a reagent known to induce actin depolymerization and impair bulk and ultrafast endocytosis, has a stronger effect on steady-state depression in cKO than in control and brings the depression down to a control level. The slow phase of presynaptic capacitance decay following strong stimulation is impaired in cKO; the rapid capacitance changes immediately after strong depolarization are also different between control and cKO and sensitive to Latrunculin B. These data raise the possibility that, in addition to its established function in regenerating synaptic vesicles, the endocytosis protein dynamin-1 may have an impact on short-term synaptic depression. This role comes into play primarily during brief high-frequency stimulation.
Collapse
|
27
|
Myosin II and dynamin control actin rings to mediate fission during activity-dependent bulk endocytosis. J Neurosci 2015; 35:8687-8. [PMID: 26063902 DOI: 10.1523/jneurosci.1172-15.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Shitara A, Weigert R. Imaging membrane remodeling during regulated exocytosis in live mice. Exp Cell Res 2015; 337:219-25. [PMID: 26160452 DOI: 10.1016/j.yexcr.2015.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/28/2015] [Indexed: 10/23/2022]
Abstract
In this mini-review we focus on the use of time-lapse light microscopy to study membrane remodeling during protein secretion in live animals. In particular, we highlight how subcellular intravital microscopy has enabled imaging the dynamics of both individual secretory vesicles and the plasma membrane, during different steps in the exocytic process. This powerful approach has provided us with the unique opportunity to unravel the role of the actin cytoskeleton in regulating this process under physiological conditions, and to overcome the shortcomings of more reductionist model systems.
Collapse
Affiliation(s)
- Akiko Shitara
- Intracellular Membrane Trafficking Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. 303A, Bethesda, MD 20892-4340, United States
| | - Roberto Weigert
- Intracellular Membrane Trafficking Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. 303A, Bethesda, MD 20892-4340, United States.
| |
Collapse
|
29
|
Jackson J, Papadopulos A, Meunier FA, McCluskey A, Robinson PJ, Keating DJ. Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release. Mol Psychiatry 2015; 20:810-9. [PMID: 25939402 DOI: 10.1038/mp.2015.56] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/14/2015] [Accepted: 03/24/2015] [Indexed: 12/18/2022]
Abstract
Hormones and neurotransmitters are stored in specialised vesicles and released from excitable cells through exocytosis. During vesicle fusion with the plasma membrane, a transient fusion pore is created that enables transmitter release. The protein dynamin is known to regulate fusion pore expansion (FPE). The mechanism is unknown, but requires its oligomerisation-stimulated GTPase activity. We used a palette of small molecule dynamin modulators to reveal bi-directional regulation of FPE by dynamin and vesicle release in chromaffin cells. The dynamin inhibitors Dynole 34-2 and Dyngo 4a and the dynamin activator Ryngo 1-23 reduced or increased catecholamine released from single vesicles, respectively. Total internal reflection fluorescence (TIRF) microscopy demonstrated that dynamin stimulation with Ryngo 1-23 reduced the number of neuropeptide Y (NPY) kiss-and-run events, but not full fusion events, and slowed full fusion release kinetics. Amperometric stand-alone foot signals, representing transient kiss-and-run events, were less frequent but were of longer duration, similarly to full amperometric spikes and pre-spike foot signals. These effects are not due to alterations in vesicle size. Ryngo 1-23 action was blocked by inhibitors of actin polymerisation or myosin II. Therefore, we demonstrate using a novel pharmacological approach that dynamin not only controls FPE during exocytosis, but is a bi-directional modulator of the fusion pore that increases or decreases the amount released from a vesicle during exocytosis if it is activated or inhibited, respectively. As such, dynamin has the ability to exquisitely fine-tune transmitter release.
Collapse
Affiliation(s)
- J Jackson
- Discipline of Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - A Papadopulos
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - F A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - A McCluskey
- Centre for Chemical Biology and Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
| | - P J Robinson
- Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - D J Keating
- 1] Discipline of Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, Australia [2] South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| |
Collapse
|