1
|
Lin S, Du Y, Xia Y, Nan C, Weng S, Zhou L, Xiao L, Wang G. Changes of food-cue processing in major depressive disorder patients with decreased appetite: An event-related potential study. Appetite 2025; 210:107939. [PMID: 40179445 DOI: 10.1016/j.appet.2025.107939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025]
Abstract
Appetite decrease is a common symptom in major depressive disorder (MDD). However, published research discussing the cognitive process to food stimuli in MDD patients with decreased appetite is lacking, as are objective indicators to assess their degree of appetitive loss. The current study evaluated the disparities in food-related cognition between healthy controls and MDD patients, explored the brain regions contributing to these changes, and evaluated the potential of event-related potentials for assessing appetite loss severity. A total of 149 subjects (healthy controls, n = 50; MDD patients with decreased appetite, n = 52; MDD patients without appetite change, n = 47) were included in this study. We used the Dimensional Anhedonia Rating Scale (DARS) to measure the degree of appetite decrease, and assessed their alterations in food-related cognition with the late positive potential (LPP). The standardized low-resolution brain electromagnetic tomography (sLORETA) method was used to explore the source activity of the LPP. We found the two groups of MDD patients did not differ in the disease severity, while those with appetite decrease got the lowest DARS food/drink score. And MDD patients with decreased appetite allocated fewer attentional resources to food stimuli with significantly lower LPP amplitude evoked by food in this group. Within depressed patients, LPP source activations were reduced in lingual gyrus, cuneus, inferior and middle occipital lobe, and inferior occipital gyrus in appetite-decreased patients, indicating altered occipital activity may be associated with attentional processing in MDD patients with decreased appetite. And correlation analysis revealed a moderate, positive correlation between LPP amplitude and DARS food/drink score. This study demonstrates the cognitive differences between MDD patients with appetite decrease and without appetite change, and provides a potential biomarker for evaluating the degree of appetite loss in MDD patients experiencing decreased appetite.
Collapse
Affiliation(s)
- Shanshan Lin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiwei Du
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yujie Xia
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cai Nan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shenhong Weng
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China; Taikang Center for Life and Medical Science, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Ventura‐Bort C, Giraudier M, Weymar M. Transcutaneous Auricular Vagus Nerve Stimulation Enhances Emotional Processing and Long-Term Recognition Memory: Electrophysiological Evidence Across Two Studies. Psychophysiology 2025; 62:e70034. [PMID: 40066789 PMCID: PMC11894791 DOI: 10.1111/psyp.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 03/15/2025]
Abstract
Recently, we found that continuous transcutaneous auricular vagus nerve stimulation (taVNS) facilitates the encoding and later recollection of emotionally relevant information, as indicated by differences in the late positive potential (LPP), memory performance, and late ERP Old/New effect. Here, we aimed to conceptually replicate and extend these findings by investigating the effects of different time-dependent taVNS stimulation protocols. In Study 1, an identical paradigm to our previous study was employed with interval stimulation (30-s on/off). Participants viewed unpleasant and neutral scenes on two consecutive days while receiving taVNS or sham stimulation and completed a recognition test 1 week later. Replicating previous results, unpleasant images encoded under taVNS, compared to sham stimulation, elicited larger amplitudes in an earlier window of the LPP during encoding, as well as more pronounced late Old/New differences. However, no effects of taVNS on memory performance were found. In Study 2, we followed up on these findings by synchronizing the stimulation cycle with image presentation to determine the taVNS effects for images encoded during the on and off cycles. We could replicate the enhancing effects of taVNS on brain potentials (early LPP and late Old/New differences) and found that taVNS improved recollection-based memory performance for both unpleasant and neutral images, independently of the stimulation cycle. Overall, our results suggest that taVNS increases electrophysiological correlates of emotional encoding and retrieval in a time-independent manner, substantiating the vagus nerve's role in emotional processing and memory formation, opening new venues for improving mnemonic processes in both clinical and non-clinical populations.
Collapse
Affiliation(s)
- Carlos Ventura‐Bort
- Department of Biological Psychology and Affective Science, Faculty of Human SciencesUniversity of PotsdamPotsdamGermany
| | - Manon Giraudier
- Department of Biological Psychology and Affective Science, Faculty of Human SciencesUniversity of PotsdamPotsdamGermany
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human SciencesUniversity of PotsdamPotsdamGermany
- Faculty of Health Sciences BrandenburgUniversity of PotsdamPotsdamGermany
| |
Collapse
|
3
|
Liang Y, Bo K, Meyyappan S, Ding M. Decoding fMRI data with support vector machines and deep neural networks. J Neurosci Methods 2024; 401:110004. [PMID: 37914001 DOI: 10.1016/j.jneumeth.2023.110004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Multivoxel pattern analysis (MVPA) examines fMRI activation patterns associated with different cognitive conditions. Support vector machines (SVMs) are the predominant method in MVPA. While SVM is intuitive and easy to apply, it is mainly suitable for analyzing data that are linearly separable. Convolutional neural networks (CNNs) are known to have the ability to approximate nonlinear relationships. Applications of CNN to fMRI data are beginning to appear with increasing frequency, but our understanding of the similarities and differences between CNN models and SVM models is limited. NEW METHOD We compared the two methods when they are applied to the same datasets. Two datasets were considered: (1) fMRI data collected from participants during a cued visual spatial attention task and (2) fMRI data collected from participants viewing natural images containing varying degrees of affective content. RESULTS We found that (1) both SVM and CNN are able to achieve above-chance decoding accuracies for attention control and emotion processing in both the primary visual cortex and the whole brain, (2) the CNN decoding accuracies are consistently higher than that of the SVM, (3) the SVM and CNN decoding accuracies are generally not correlated, and (4) the heatmaps derived from SVM and CNN are not significantly overlapping. COMPARISON WITH EXISTING METHODS By comparing SVM and CNN we pointed out the similarities and differences between the two methods. CONCLUSIONS SVM and CNN rely on different neural features for classification. Applying both to the same data may yield a more comprehensive understanding of neuroimaging data.
Collapse
Affiliation(s)
- Yun Liang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Ke Bo
- The Cognitive and Affective Neuroscience Lab, Dartmouth College, Hanover, NH, USA
| | | | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Nie L, Ku Y. Decoding Emotion From High-frequency Steady State Visual Evoked Potential (SSVEP). J Neurosci Methods 2023:109919. [PMID: 37422072 DOI: 10.1016/j.jneumeth.2023.109919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Steady-state visual evoked potential (SSVEP) by flickering sensory stimuli has been widely applied in the brain-machine interface (BMI). Yet, it remains largely unexplored whether affective information could be decoded from the signal of SSVEP, especially from the frequencies higher than the critical flicker frequency (an upper-frequency limit one can see the flicker). NEW METHOD Participants fixated on visual stimuli presented at 60Hz above the critical flicker frequency. The stimuli were pictures with different affective valance (positive, neutral, negative) in distinctive semantic categories (human, animal, scene). SSVEP entrainment in the brain evoked by the flickering stimuli at 60Hz was used to decode the affective and semantic information. RESULTS During the presentation of stimuli (1s), the affective valance could be decoded from the SSVEP signals at 60Hz, while the semantic categories could not. In contrast, neither the affective nor the semantic information could be decoded from the brain signal 1second before the onset of stimuli. COMPARISON WITH EXISTING METHOD(S) Previous studies focused mainly on EEG activity tagged at frequencies lower than the critical flickering frequency and investigated whether the affective valence of stimuli drew participants' attention. The current study was the first to use SSVEP signals from high-frequency (60Hz) above the critical flickering frequency to decode affective information from stimuli. The high-frequency flickering was invisible and thus substantially reduced the fatigue of participants. CONCLUSIONS We found that affective information could be decoded from high-frequency SSVEP and the current finding could be added to designing affective BMI in the future.
Collapse
Affiliation(s)
- Lu Nie
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Yixuan Ku
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, China; Peng Cheng Laboratory, Shenzhen, China.
| |
Collapse
|
5
|
Liang Y, Bo K, Meyyappan S, Ding M. Decoding fMRI Data: A Comparison Between Support Vector Machines and Deep Neural Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542882. [PMID: 37398470 PMCID: PMC10312615 DOI: 10.1101/2023.05.30.542882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Multivoxel pattern analysis (MVPA) examines the differences in fMRI activation patterns associated with different cognitive conditions and provides information not possible with the conventional univariate analysis. Support vector machines (SVMs) are the predominant machine learning method in MVPA. SVMs are intuitive and easy to apply. The limitation is that it is a linear method and mainly suitable for analyzing data that are linearly separable. Convolutional neural networks (CNNs), a class of AI models originally developed for object recognition, are known to have the ability to approximate nonlinear relationships. CNNs are rapidly becoming an alternative to SVMs. The purpose of this study is to compare the two methods when they are applied to the same datasets. Two datasets were considered: (1) fMRI data collected from participants during a cued visual spatial attention task (the attention dataset) and (2) fMRI data collected from participants viewing natural images containing varying degrees of affective content (the emotion dataset). We found that (1) both SVM and CNN are able to achieve above chance level decoding accuracies for attention control and emotion processing in both the primary visual cortex and the whole brain with, (2) the CNN decoding accuracies are consistently higher than that of the SVM, (3) the SVM and CNN decoding accuracies are generally not correlated with each other, and (4) the heatmaps derived from SVM and CNN are not significantly overlapping. These results suggest that (1) there are both linearly separable features and nonlinearly separable features in fMRI data that distinguish cognitive conditions and (2) applying both SVM and CNN to the same data may yield a more comprehensive understanding of neuroimaging data. Key points We compared the performance and characteristics of SVM and CNN, two major methods in MVPA analysis of neuroimaging data, by applying them to the same two fMRI datasets.Both SVM and CNN achieved decoding accuracies above chance level for both datasets in the chosen ROIs and the CNN decoding accuracies were consistently higher than those of SVM.The heatmaps derived from SVM and CNN, which assess the contribution of voxels or brain regions to MVPA decoding performance, showed no significant overlap, providing evidence that the two methods depend on distinct brain activity patterns for decoding cognitive conditions.
Collapse
|
6
|
Calabro R, Lyu Y, Leong YC. Trial-by-trial fluctuations in amygdala activity track motivational enhancement of desirable sensory evidence during perceptual decision-making. Cereb Cortex 2022; 33:5690-5703. [PMID: 36398723 DOI: 10.1093/cercor/bhac452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
People are biased toward seeing outcomes that they are motivated to see. For example, wanting their favored team to prevail biases sports fans to perceive an ambiguous foul in a manner that is favorable to the team they support. Here, we test the hypothesis that such motivational biases in perceptual decision-making are associated with amygdala activity. We used monetary incentives to experimentally manipulate participants to want to see one percept over another while they performed a categorization task involving ambiguous images. Participants were more likely to categorize an image as the category we motivated them to see, suggesting that wanting to see a particular percept biased their perceptual decisions. Heightened amygdala activity was associated with motivation consistent categorizations and tracked trial-by-trial enhancement of neural activity in sensory cortices encoding the desirable category. Analyses using a drift diffusion model further suggest that trial-by-trial amygdala activity was specifically associated with biases in the accumulation of sensory evidence. In contrast, frontoparietal regions commonly associated with biases in perceptual decision-making were not associated with motivational bias. Altogether, our results suggest that wanting to see an outcome biases perceptual decisions via distinct mechanisms and may depend on dynamic fluctuations in amygdala activity.
Collapse
Affiliation(s)
- Ren Calabro
- 5848 S University Avenue, Department of Psychology, University of Chicago , Chicago, IL 60637 , USA
| | - Yizhou Lyu
- 5848 S University Avenue, Department of Psychology, University of Chicago , Chicago, IL 60637 , USA
| | - Yuan Chang Leong
- 5848 S University Avenue, Department of Psychology, University of Chicago , Chicago, IL 60637 , USA
| |
Collapse
|
7
|
Liu TT, Fu JZ, Chai Y, Japee S, Chen G, Ungerleider LG, Merriam EP. Layer-specific, retinotopically-diffuse modulation in human visual cortex in response to viewing emotionally expressive faces. Nat Commun 2022; 13:6302. [PMID: 36273204 PMCID: PMC9588045 DOI: 10.1038/s41467-022-33580-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/22/2022] [Indexed: 12/25/2022] Open
Abstract
Viewing faces that are perceived as emotionally expressive evokes enhanced neural responses in multiple brain regions, a phenomenon thought to depend critically on the amygdala. This emotion-related modulation is evident even in primary visual cortex (V1), providing a potential neural substrate by which emotionally salient stimuli can affect perception. How does emotional valence information, computed in the amygdala, reach V1? Here we use high-resolution functional MRI to investigate the layer profile and retinotopic distribution of neural activity specific to emotional facial expressions. Across three experiments, human participants viewed centrally presented face stimuli varying in emotional expression and performed a gender judgment task. We found that facial valence sensitivity was evident only in superficial cortical layers and was not restricted to the retinotopic location of the stimuli, consistent with diffuse feedback-like projections from the amygdala. Together, our results provide a feedback mechanism by which the amygdala directly modulates activity at the earliest stage of visual processing.
Collapse
Affiliation(s)
- Tina T Liu
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, 20892, MD, USA.
| | - Jason Z Fu
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, 20892, MD, USA
| | - Yuhui Chai
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, 20892, MD, USA
| | - Shruti Japee
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, 20892, MD, USA
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, NIH, Bethesda, 20892, MD, USA
| | - Leslie G Ungerleider
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, 20892, MD, USA
| | - Elisha P Merriam
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, 20892, MD, USA
| |
Collapse
|
8
|
Harnett NG, Finegold KE, Lebois LAM, van Rooij SJH, Ely TD, Murty VP, Jovanovic T, Bruce SE, House SL, Beaudoin FL, An X, Zeng D, Neylan TC, Clifford GD, Linnstaedt SD, Germine LT, Bollen KA, Rauch SL, Haran JP, Storrow AB, Lewandowski C, Musey PI, Hendry PL, Sheikh S, Jones CW, Punches BE, Kurz MC, Swor RA, Hudak LA, Pascual JL, Seamon MJ, Harris E, Chang AM, Pearson C, Peak DA, Domeier RM, Rathlev NK, O'Neil BJ, Sergot P, Sanchez LD, Miller MW, Pietrzak RH, Joormann J, Barch DM, Pizzagalli DA, Sheridan JF, Harte SE, Elliott JM, Kessler RC, Koenen KC, McLean SA, Nickerson LD, Ressler KJ, Stevens JS. Structural covariance of the ventral visual stream predicts posttraumatic intrusion and nightmare symptoms: a multivariate data fusion analysis. Transl Psychiatry 2022; 12:321. [PMID: 35941117 PMCID: PMC9360028 DOI: 10.1038/s41398-022-02085-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 01/16/2023] Open
Abstract
Visual components of trauma memories are often vividly re-experienced by survivors with deleterious consequences for normal function. Neuroimaging research on trauma has primarily focused on threat-processing circuitry as core to trauma-related dysfunction. Conversely, limited attention has been given to visual circuitry which may be particularly relevant to posttraumatic stress disorder (PTSD). Prior work suggests that the ventral visual stream is directly related to the cognitive and affective disturbances observed in PTSD and may be predictive of later symptom expression. The present study used multimodal magnetic resonance imaging data (n = 278) collected two weeks after trauma exposure from the AURORA study, a longitudinal, multisite investigation of adverse posttraumatic neuropsychiatric sequelae. Indices of gray and white matter were combined using data fusion to identify a structural covariance network (SCN) of the ventral visual stream 2 weeks after trauma. Participant's loadings on the SCN were positively associated with both intrusion symptoms and intensity of nightmares. Further, SCN loadings moderated connectivity between a previously observed amygdala-hippocampal functional covariance network and the inferior temporal gyrus. Follow-up MRI data at 6 months showed an inverse relationship between SCN loadings and negative alterations in cognition in mood. Further, individuals who showed decreased strength of the SCN between 2 weeks and 6 months had generally higher PTSD symptom severity over time. The present findings highlight a role for structural integrity of the ventral visual stream in the development of PTSD. The ventral visual stream may be particularly important for the consolidation or retrieval of trauma memories and may contribute to efficient reactivation of visual components of the trauma memory, thereby exacerbating PTSD symptoms. Potentially chronic engagement of the network may lead to reduced structural integrity which becomes a risk factor for lasting PTSD symptoms.
Collapse
Affiliation(s)
- Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | | | - Lauren A M Lebois
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Timothy D Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Steven E Bruce
- Department of Psychological Sciences, University of Missouri - St. Louis, St. Louis, MO, USA
| | - Stacey L House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca L Beaudoin
- Department of Emergency Medicine & Department of Health Services, Policy, and Practice, The Alpert Medical School of Brown University, Rhode Island Hospital and The Miriam Hospital, Providence, RI, USA
| | - Xinming An
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Donglin Zeng
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas C Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura T Germine
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- The Many Brains Project, Belmont, MA, USA
| | - Kenneth A Bollen
- Department of Psychology and Neuroscience & Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott L Rauch
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, McLean Hospital, Belmont, MA, USA
| | - John P Haran
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alan B Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Paul I Musey
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, USA
| | - Sophia Sheikh
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, USA
| | - Christopher W Jones
- Department of Emergency Medicine, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Brittany E Punches
- Department of Emergency Medicine, Ohio State University College of Medicine, Columbus, OH, USA
- Ohio State University College of Nursing, Columbus, OH, USA
| | - Michael C Kurz
- Department of Emergency Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
- Department of Surgery, Division of Acute Care Surgery, University of Alabama School of Medicine, Birmingham, AL, USA
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert A Swor
- Department of Emergency Medicine, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Lauren A Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jose L Pascual
- Department of Surgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark J Seamon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Anna M Chang
- Department of Emergency Medicine, Jefferson University Hospitals, Philadelphia, PA, USA
| | - Claire Pearson
- Department of Emergency Medicine, Wayne State University, Ascension St. John Hospital, Detroit, MI, USA
| | - David A Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Robert M Domeier
- Department of Emergency Medicine, Saint Joseph Mercy Hospital, Ypsilanti, MI, USA
| | - Niels K Rathlev
- Department of Emergency Medicine, University of Massachusetts Medical School-Baystate, Springfield, MA, USA
| | - Brian J O'Neil
- Department of Emergency Medicine, Wayne State University, Detroit Receiving Hospital, Detroit, MI, USA
| | - Paulina Sergot
- Department of Emergency Medicine, McGovern Medical School, University of Texas Health, Houston, TX, USA
| | - Leon D Sanchez
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
| | - Mark W Miller
- National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Robert H Pietrzak
- National Center for PTSD, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Jutta Joormann
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Diego A Pizzagalli
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - John F Sheridan
- Division of Biosciences, Ohio State University College of Dentistry, Columbus, OH, USA
- Institute for Behavioral Medicine Research, OSU Wexner Medical Center, Columbus, OH, USA
| | - Steven E Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James M Elliott
- Kolling Institute, University of Sydney, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Northern Sydney Local Health District, New South Wales, Australia
- Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Samuel A McLean
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lisa D Nickerson
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| | - Kerry J Ressler
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
9
|
Bo K, Cui L, Yin S, Hu Z, Hong X, Kim S, Keil A, Ding M. Decoding the temporal dynamics of affective scene processing. Neuroimage 2022; 261:119532. [PMID: 35931307 DOI: 10.1016/j.neuroimage.2022.119532] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 10/31/2022] Open
Abstract
Natural images containing affective scenes are used extensively to investigate the neural mechanisms of visual emotion processing. Functional fMRI studies have shown that these images activate a large-scale distributed brain network that encompasses areas in visual, temporal, and frontal cortices. The underlying spatial and temporal dynamics, however, remain to be better characterized. We recorded simultaneous EEG-fMRI data while participants passively viewed affective images from the International Affective Picture System (IAPS). Applying multivariate pattern analysis to decode EEG data, and representational similarity analysis to fuse EEG data with simultaneously recorded fMRI data, we found that: (1) ∼80 ms after picture onset, perceptual processing of complex visual scenes began in early visual cortex, proceeding to ventral visual cortex at ∼100 ms, (2) between ∼200 and ∼300 ms (pleasant pictures: ∼200 ms; unpleasant pictures: ∼260 ms), affect-specific neural representations began to form, supported mainly by areas in occipital and temporal cortices, and (3) affect-specific neural representations were stable, lasting up to ∼2 s, and exhibited temporally generalizable activity patterns. These results suggest that affective scene representations in the brain are formed temporally in a valence-dependent manner and may be sustained by recurrent neural interactions among distributed brain areas.
Collapse
Affiliation(s)
- Ke Bo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Psychological and Brain Sciences, Dartmouth college, Hanover, NH 03755, USA
| | - Lihan Cui
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Siyang Yin
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Zhenhong Hu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Xiangfei Hong
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Sungkean Kim
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Human-Computer Interaction, Hanyang University, Ansan, Republic of Korea
| | - Andreas Keil
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA.
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
10
|
Mielke M, Reisch LM, Mehlmann A, Schindler S, Bien CG, Kissler J. Right medial temporal lobe structures particularly impact early stages of affective picture processing. Hum Brain Mapp 2022; 43:787-798. [PMID: 34687490 PMCID: PMC8720182 DOI: 10.1002/hbm.25687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 11/12/2022] Open
Abstract
Human vision prioritizes emotional stimuli. This is reflected in stronger electrocortical activation in response to emotional than neutral stimuli, measurable on the surface of the head. Feedback projections from brain structures deep within the medial temporal lobes (mTLs), in particular the amygdala, are thought to give rise to this phenomenon, although causal evidence is rare. Given the many pathways involved in visual processing, the influence of mTL structures could be restricted to specific time windows. Therefore, we delineate the temporal dynamics of the impact of right mTL structures on affective picture processing, investigating event-related potentials (ERPs) in 19 patients (10 female) with right mTL resections and 19 individually matched healthy participants, while they viewed negative and neutral scenes. Groups differed significantly at early- and mid-latency processing stages. Patients with right mTL resection, unlike controls, showed no (P1: 90-140 ms) or marginal (N1: 170-220 ms) emotion modulation. At mid-latency (early posterior negativity: 220-370 ms), emotion modulation over the ipsi-resectional right hemisphere was smaller in patients than in controls, but groups did not differ over the left hemisphere. During late parietal positivities (400-650 ms and 650-900 ms), both groups had similar emotion modulation. Our results demonstrate that right mTL structures attenuate particularly early processing of affectively negative scenes. This is theoretically consistent with an initial amygdala-dependent feedforward sweep in visual emotion processing whose absence is successively compensated. Findings specify the impact of right mTL structures on emotional picture processing and highlight the value of time-resolved measures in affective neuroscience.
Collapse
Affiliation(s)
- Malena Mielke
- Department of PsychologyBielefeld UniversityBielefeldGermany
| | - Lea Marie Reisch
- Department of PsychologyBielefeld UniversityBielefeldGermany
- Medical School, Department of Epileptology (Krankenhaus Mara)Bielefeld UniversityBielefeldGermany
| | | | - Sebastian Schindler
- Institute of Medical Psychology and Systems NeuroscienceUniversity of MünsterMünsterGermany
| | - Christian G. Bien
- Medical School, Department of Epileptology (Krankenhaus Mara)Bielefeld UniversityBielefeldGermany
| | - Johanna Kissler
- Department of PsychologyBielefeld UniversityBielefeldGermany
| |
Collapse
|
11
|
Carretié L, Fernández-Folgueiras U, Álvarez F, Cipriani GA, Tapia M, Kessel D. Fast Unconscious Processing of Emotional Stimuli in Early Stages of the Visual Cortex. Cereb Cortex 2022; 32:4331-4344. [DOI: 10.1093/cercor/bhab486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Several cortical and subcortical brain areas have been reported to be sensitive to the emotional content of subliminal stimuli. However, the timing of these activations remains unclear. Our scope was to detect the earliest cortical traces of emotional unconscious processing of visual stimuli by recording event-related potentials (ERPs) from 43 participants. Subliminal spiders (emotional) and wheels (neutral), sharing similar low-level visual parameters, were presented at two different locations (fixation and periphery). The differential (peak-to-peak) amplitude from CP1 (77 ms from stimulus onset) to C2 (100 ms), two early visual ERP components originated in V1/V2 according to source localization analyses, was analyzed via Bayesian and traditional frequentist analyses. Spiders elicited greater CP1–C2 amplitudes than wheels when presented at fixation. This fast effect of subliminal stimulation—not reported previously to the best of our knowledge—has implications in several debates: 1) The amygdala cannot be mediating these effects, 2) latency of other evaluative structures recently proposed, such as the visual thalamus, is compatible with these results, 3) the absence of peripheral stimuli effects points to a relevant role of the parvocellular visual system in unconscious processing.
Collapse
|
12
|
Sambuco N. fMRI replicability during emotional scene viewing: Functional regions and sample size. Psychophysiology 2022; 59:e14000. [PMID: 35001394 DOI: 10.1111/psyp.14000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022]
Abstract
Recent findings have questioned the replicability of functional magnetic resonance imaging (fMRI) in the study of affective processing, reporting low replicability of emotional enhancement during a face-matching task. However, poor replicability may instead reflect a lack of emotional engagement for face matching. In the current study, replicability of emotional enhancement was tested in a large (N = 160) sample when emotional engagement was assessed during pleasant, neutral, and unpleasant picture viewing, which reliably engages affective reactions in both the brain and the body. Replicability was computed using a subsampling technique, in which random sets of subjects of different sample sizes (N = 20, 40, 60, 80) were selected from the entire dataset, and replicability of emotional enhancement for peaks, clusters, and voxels were averaged across 500 permutations for each sample size. Consistent with previous findings, fMRI replicability increased with increasing sample size. On the other hand, even with relatively small samples, fMRI replicability for peaks, clusters, and voxels during emotional, compared to neutral, scene viewing was good to excellent. Importantly, replicability varied in different brain regions, with excellent replicability at both the cluster and peak level with an N of 40, at the most conservative threshold (p < .001), in the amygdala and the visual cortex. The data argue against general recommendations regarding sample size in fMRI studies of emotion, suggesting instead that degree of replicability depends on successful emotional engagement in task-related brain regions.
Collapse
Affiliation(s)
- Nicola Sambuco
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
13
|
Progressive modulation of resting-state brain activity during neurofeedback of positive-social emotion regulation networks. Sci Rep 2021; 11:23363. [PMID: 34862407 PMCID: PMC8642545 DOI: 10.1038/s41598-021-02079-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/25/2021] [Indexed: 11/08/2022] Open
Abstract
Neurofeedback allows for the self-regulation of brain circuits implicated in specific maladaptive behaviors, leading to persistent changes in brain activity and connectivity. Positive-social emotion regulation neurofeedback enhances emotion regulation capabilities, which is critical for reducing the severity of various psychiatric disorders. Training dorsomedial prefrontal cortex (dmPFC) to exert a top-down influence on bilateral amygdala during positive-social emotion regulation progressively (linearly) modulates connectivity within the trained network and induces positive mood. However, the processes during rest that interleave the neurofeedback training remain poorly understood. We hypothesized that short resting periods at the end of training sessions of positive-social emotion regulation neurofeedback would show alterations within emotion regulation and neurofeedback learning networks. We used complementary model-based and data-driven approaches to assess how resting-state connectivity relates to neurofeedback changes at the end of training sessions. In the experimental group, we found lower progressive dmPFC self-inhibition and an increase of connectivity in networks engaged in emotion regulation, neurofeedback learning, visuospatial processing, and memory. Our findings highlight a large-scale synergy between neurofeedback and resting-state brain activity and connectivity changes within the target network and beyond. This work contributes to our understanding of concomitant learning mechanisms post training and facilitates development of efficient neurofeedback training.
Collapse
|
14
|
Martin L, Rosales JH, Jaime K, Ramos F. Affective Episodic Memory System for Virtual Creatures: The First Step of Emotion-Oriented Memory. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:7954140. [PMID: 34721565 PMCID: PMC8550857 DOI: 10.1155/2021/7954140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022]
Abstract
Episodic memory and emotions are considered essential functions in human cognition. Both allow us to acquire new knowledge from the environment, ranging from the objects around us to how we feel towards them. These qualities make them crucial functions for systems trying to create human-like behaviour. In the field of cognitive architectures (CAs), there are multiple studies covering memory and emotions. However, most of them treat these subjects in an isolated manner, considering emotions only as a reward signal unrelated to a retrieved experience. To address this lack of direct interaction, we propose a computational model that covers the common processes that are related to memory and emotions. Specifically, this proposal focuses on affective evaluations of episodic memories. Neurosciences and psychology are the bases of this model. That is, the model's components and the processes that they carry out on the information they receive are designed based on evidence from these cognitive sciences. The proposed model is a part of Cuáyóllótl, a cognitive architecture for cybernetic entities such as virtual creatures and robots. Case studies validate our proposal. They show the relevance of the integration of emotions and memory in a virtual creature. The virtual creature endowed with our emotional episodic model improves its learning and modifies its behaviour according to planning and decision-making processes.
Collapse
Affiliation(s)
- Luis Martin
- Department of Computer Science, Center for Research and Advanced Studies of the National Polytechnic Institute, Zapopan 45019, Mexico
| | - Jonathan H. Rosales
- Faculty of Science and Technology, Autonomous University of Guadalajara, Zapopan 45129, Mexico
| | - Karina Jaime
- Department of Computer Science, Center for Research and Advanced Studies of the National Polytechnic Institute, Zapopan 45019, Mexico
| | - Felix Ramos
- Department of Computer Science, Center for Research and Advanced Studies of the National Polytechnic Institute, Zapopan 45019, Mexico
| |
Collapse
|
15
|
Heinbockel H, Quaedflieg CWEM, Schneider TR, Engel AK, Schwabe L. Stress enhances emotional memory-related theta oscillations in the medial temporal lobe. Neurobiol Stress 2021; 15:100383. [PMID: 34504907 PMCID: PMC8414174 DOI: 10.1016/j.ynstr.2021.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/27/2021] [Accepted: 08/19/2021] [Indexed: 11/11/2022] Open
Abstract
Stressful events impact memory formation, in particular for emotionally arousing stimuli. Although these stress effects on emotional memory formation have potentially far-reaching implications, the underlying neural mechanisms are not fully understood. Specifically, the temporal processing dimension of the mechanisms involved in emotional memory formation under stress remains elusive. Here, we used magnetoencephalography (MEG) to examine the neural processes underlying stress effects on emotional memory formation with high temporal and spatial resolution and a particular focus on theta oscillations previously implicated in mnemonic binding. Healthy participants (n = 53) underwent a stress or control procedure before encoding emotionally neutral and negative pictures, while MEG was recorded. Memory for the pictures was probed in a recognition test 24 h after encoding. In this recognition test, stress did not modulate the emotional memory enhancement but led to significantly higher confidence in memory for negative compared to neutral stimuli. Our neural data revealed that stress increased memory-related theta oscillations specifically in medial temporal and occipito-parietal regions. Further, this stress-related increase in theta power emerged during memory formation for emotionally negative but not for neutral stimuli. These findings indicate that acute stress can enhance, in the medial temporal lobe, oscillations at a frequency that is ideally suited to bind the elements of an ongoing emotional episode, which may represent a mechanism to facilitate the storage of emotionally salient events that occurred in the context of a stressful encounter.
Collapse
Affiliation(s)
- Hendrik Heinbockel
- Department of Cognitive Psychology, Universität Hamburg, 20146, Hamburg, Germany
| | - Conny W E M Quaedflieg
- Department of Cognitive Psychology, Universität Hamburg, 20146, Hamburg, Germany.,Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Lars Schwabe
- Department of Cognitive Psychology, Universität Hamburg, 20146, Hamburg, Germany
| |
Collapse
|
16
|
Yin S, Bo K, Liu Y, Thigpen N, Keil A, Ding M. Fear conditioning prompts sparser representations of conditioned threat in primary visual cortex. Soc Cogn Affect Neurosci 2021; 15:950-964. [PMID: 32901822 PMCID: PMC7647380 DOI: 10.1093/scan/nsaa122] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/01/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Repeated exposure to threatening stimuli alters sensory responses. We investigated the underlying neural mechanism by re-analyzing previously published simultaneous electroencephalogram-functional magnetic resonance imaging (EEG-fMRI) data from humans viewing oriented gratings during Pavlovian fear conditioning. In acquisition, one grating (CS+) was paired with a noxious noise, the unconditioned stimulus (US). The other grating (CS-) was never paired with the US. In habituation, which preceded acquisition, and in extinction, the same two gratings were presented without US. Using fMRI multivoxel patterns in primary visual cortex during habituation as reference, we found that during acquisition, aversive learning selectively prompted systematic changes in multivoxel patterns evoked by CS+. Specifically, CS+ evoked voxel patterns in V1 became sparser as aversive learning progressed, and the sparsified pattern appeared to be preserved in extinction. Concomitant with the voxel pattern changes, occipital alpha oscillations were increasingly more desynchronized during CS+ (but not CS-) trials. Across acquisition trials, the rate of change in CS+-related alpha desynchronization was correlated with the rate of change in multivoxel pattern representations of CS+. Furthermore, alpha oscillations co-varied with blood-oxygen-level-dependent (BOLD) data in the ventral attention network, but not with BOLD in the amygdala. Thus, fear conditioning prompts persistent sparsification of voxel patterns evoked by threat, likely mediated by attention-related mechanisms
Collapse
Affiliation(s)
- Siyang Yin
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ke Bo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Yuelu Liu
- Center for Mind and Brain, University of California, Davis, CA 95618, USA
| | - Nina Thigpen
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA
| | - Andreas Keil
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
17
|
The dynamics of pain reappraisal: the joint contribution of cognitive change and mental load. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 20:276-293. [PMID: 31950439 PMCID: PMC7105446 DOI: 10.3758/s13415-020-00768-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study was designed to investigate the neural mechanism of cognitive modulation of pain via a reappraisal strategy with high temporal resolution. The EEG signal was recorded from 29 participants who were instructed to down-regulate, up-regulate, or maintain their pain experience. The L2 minimum norm source reconstruction method was used to localize areas in which a significant effect of the instruction was present. Down-regulating pain by reappraisal exerted a robust effect on pain processing from as early as ~100 ms that diminished the activity of limbic brain regions: the anterior cingulate cortex, right orbitofrontal cortex, left anterior temporal region, and left insula. However, compared with the no-regulation condition, the neural activity was similarly attenuated in the up- and down-regulation conditions. We suggest that this effect could be ascribed to the cognitive load that was associated with the execution of a cognitively demanding reappraisal task that could have produced a general attenuation of pain-related areas regardless of the aim of the reappraisal task (i.e., up- or down-regulation attempts). These findings indicate that reappraisal effects reflect the joint influence of both reappraisal-specific (cognitive change) and unspecific (cognitive demand) factors, thus pointing to the importance of cautiously selected control conditions that allow the modulating impact of both processes to be distinguished.
Collapse
|
18
|
Linton SR, Levita L. Potentiated perceptual neural responses to learned threat during Pavlovian fear acquisition and extinction in adolescents. Dev Sci 2021; 24:e13107. [PMID: 33817917 DOI: 10.1111/desc.13107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/31/2021] [Accepted: 02/24/2021] [Indexed: 11/30/2022]
Abstract
Adolescents' experience of heightened anxiety and increased vulnerability to develop anxiety disorders is believed to partly result from blunted fear extinction processes. However, whether this anxiety is mediated by adolescent-specific differences in perceptual responses to learned threat is not known. To investigate this, we used EEG to examine reinforcement-dependent changes in early visual event-related potentials in adolescents (N = 28, 13-14 years) and adults (N = 23, 25-26 years old) during a differential Pavlovian fear conditioning task, with one conditioned stimulus (CS+) paired with an aversive sound (unconditioned stimulus [US]) on 50% of trials, and another (CS-) never paired with the US. An immediate extinction phase followed, where both CSs were presented alone. We found age-dependent dissociations between explicit and implicit measures of fear learning. Specifically, both adolescents and adults demonstrated successful fear conditioning and extinction according to their explicit awareness of changes in CS contingencies and their evaluative CS ratings, and their differential skin conductance responses. However, for the first time we show age differences at the neural level in perceptual areas. Only adolescents showed greater visual P1 and N1 responses to the CS+ compared to the CS- during acquisition, a dissociation that for the N1 was maintained during extinction. We suggest that the adolescent perceptual hyper-responsivity to learned threat and blunted extinction reported here could be an adaptive mechanism to protect adolescents from harm. However, this hyper-responsivity may also confer greater vulnerability to experience pathological levels of anxiety at this developmental stage.
Collapse
Affiliation(s)
| | - Liat Levita
- Department of Psychology, University of Sheffield, Sheffield, UK
| |
Collapse
|
19
|
Bo K, Yin S, Liu Y, Hu Z, Meyyappan S, Kim S, Keil A, Ding M. Decoding Neural Representations of Affective Scenes in Retinotopic Visual Cortex. Cereb Cortex 2021; 31:3047-3063. [PMID: 33594428 DOI: 10.1093/cercor/bhaa411] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/28/2022] Open
Abstract
The perception of opportunities and threats in complex visual scenes represents one of the main functions of the human visual system. The underlying neurophysiology is often studied by having observers view pictures varying in affective content. It has been shown that viewing emotionally engaging, compared with neutral, pictures (1) heightens blood flow in limbic, frontoparietal, and anterior visual structures and (2) enhances the late positive event-related potential (LPP). The role of retinotopic visual cortex in this process has, however, been contentious, with competing theories predicting the presence versus absence of emotion-specific signals in retinotopic visual areas. Recording simultaneous electroencephalography-functional magnetic resonance imaging while observers viewed pleasant, unpleasant, and neutral affective pictures, and applying multivariate pattern analysis, we found that (1) unpleasant versus neutral and pleasant versus neutral decoding accuracy were well above chance level in retinotopic visual areas, (2) decoding accuracy in ventral visual cortex (VVC), but not in early or dorsal visual cortex, was correlated with LPP, and (3) effective connectivity from amygdala to VVC predicted unpleasant versus neutral decoding accuracy, whereas effective connectivity from ventral frontal cortex to VVC predicted pleasant versus neutral decoding accuracy. These results suggest that affective scenes evoke valence-specific neural representations in retinotopic visual cortex and that these representations are influenced by reentry signals from anterior brain regions.
Collapse
Affiliation(s)
- Ke Bo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Siyang Yin
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Yuelu Liu
- Center for Mind and Brain, University of California, Davis, CA 95618, USA
| | - Zhenhong Hu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Sreenivasan Meyyappan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Sungkean Kim
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Andreas Keil
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
20
|
Schindler S, Bruchmann M, Gathmann B, Moeck R, Straube T. Effects of low-level visual information and perceptual load on P1 and N170 responses to emotional expressions. Cortex 2020; 136:14-27. [PMID: 33450599 DOI: 10.1016/j.cortex.2020.12.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/28/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Emotional facial expressions lead to modulations of early event-related potentials (ERPs). However, it has so far remained unclear how far these modulations represent face-specific effects rather than differences in low-level visual features, and to which extent they depend on available processing resources. To examine these questions, we conducted two preregistered independent experiments (N = 40 in each experiment) using different variants of a novel task that manipulates peripheral perceptual load across levels but keeps overall visual stimulation constant. At the display center, we presented task-irrelevant angry, neutral, and happy faces and their Fourier phase-scrambled versions, which preserved low-level visual features. The results of both studies showed load-independent P1 and N170 emotional expression effects. Importantly, by using Bayesian analyses we could confirm that these facial expression effects were face-independent for the P1 but not for the N170 component. We conclude that firstly, ERP modulations during the P1 interval strongly depend on low-level visual information, while the N170 modulation requires the processing of figural facial expression features. Secondly, both P1 and N170 modulations appear to be immune to a large range of variations in perceptual load.
Collapse
Affiliation(s)
- Sebastian Schindler
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Germany.
| | - Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Germany
| | - Bettina Gathmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany
| | - Robert Moeck
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Germany
| |
Collapse
|
21
|
Sperl MFJ, Wroblewski A, Mueller M, Straube B, Mueller EM. Learning dynamics of electrophysiological brain signals during human fear conditioning. Neuroimage 2020; 226:117569. [PMID: 33221446 DOI: 10.1016/j.neuroimage.2020.117569] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/13/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
Electrophysiological studies in rodents allow recording neural activity during threats with high temporal and spatial precision. Although fMRI has helped translate insights about the anatomy of underlying brain circuits to humans, the temporal dynamics of neural fear processes remain opaque and require EEG. To date, studies on electrophysiological brain signals in humans have helped to elucidate underlying perceptual and attentional processes, but have widely ignored how fear memory traces evolve over time. The low signal-to-noise ratio of EEG demands aggregations across high numbers of trials, which will wash out transient neurobiological processes that are induced by learning and prone to habituation. Here, our goal was to unravel the plasticity and temporal emergence of EEG responses during fear conditioning. To this end, we developed a new sequential-set fear conditioning paradigm that comprises three successive acquisition and extinction phases, each with a novel CS+/CS- set. Each set consists of two different neutral faces on different background colors which serve as CS+ and CS-, respectively. Thereby, this design provides sufficient trials for EEG analyses while tripling the relative amount of trials that tap into more transient neurobiological processes. Consistent with prior studies on ERP components, data-driven topographic EEG analyses revealed that ERP amplitudes were potentiated during time periods from 33-60 ms, 108-200 ms, and 468-820 ms indicating that fear conditioning prioritizes early sensory processing in the brain, but also facilitates neural responding during later attentional and evaluative stages. Importantly, averaging across the three CS+/CS- sets allowed us to probe the temporal evolution of neural processes: Responses during each of the three time windows gradually increased from early to late fear conditioning, while long-latency (460-730 ms) electrocortical responses diminished throughout fear extinction. Our novel paradigm demonstrates how short-, mid-, and long-latency EEG responses change during fear conditioning and extinction, findings that enlighten the learning curve of neurophysiological responses to threat in humans.
Collapse
Affiliation(s)
- Matthias F J Sperl
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, 35032 Marburg, Germany; Department of Psychology, Clinical Psychology and Psychotherapy, University of Giessen, 35394 Giessen, Germany.
| | - Adrian Wroblewski
- Department of Psychiatry and Psychotherapy, Translational Neuroimaging Marburg, University of Marburg, 35039 Marburg, Germany.
| | - Madeleine Mueller
- Department of Psychiatry and Psychotherapy, Translational Neuroimaging Marburg, University of Marburg, 35039 Marburg, Germany; Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Translational Neuroimaging Marburg, University of Marburg, 35039 Marburg, Germany.
| | - Erik M Mueller
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, 35032 Marburg, Germany.
| |
Collapse
|
22
|
Schindler S, Bublatzky F. Attention and emotion: An integrative review of emotional face processing as a function of attention. Cortex 2020; 130:362-386. [DOI: 10.1016/j.cortex.2020.06.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/28/2020] [Accepted: 06/29/2020] [Indexed: 11/25/2022]
|
23
|
Mu E, Crewther D. Occipital Magnocellular VEP Non-linearities Show a Short Latency Interaction Between Contrast and Facial Emotion. Front Hum Neurosci 2020; 14:268. [PMID: 32754021 PMCID: PMC7381315 DOI: 10.3389/fnhum.2020.00268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/15/2020] [Indexed: 01/13/2023] Open
Abstract
The magnocellular system has been implicated in the rapid processing of facial emotions, such as fear. Of the various anatomical possibilities, the retino-colliculo-pulvinar route to the amygdala is currently favored. However, it is not clear whether and when amygdala arousal activates the primary visual cortex (V1). Non-linear visual evoked potentials provide a well-accepted technique for examining temporal processing in the magnocellular and parvocellular pathways in the visual cortex. Here, we investigated the relationship between facial emotion processing and the separable magnocellular (K2.1) and parvocellular (K2.2) components of the second-order non-linear multifocal visual evoked potential responses recorded from the occipital scalp (OZ). Stimuli comprised pseudorandom brightening/darkening of fearful, happy, neutral faces (or no face) with surround patches decorrelated from the central face-bearing patch. For the central patch, the spatial contrast of the faces was 30% while the modulation of the per-pixel brightening/darkening was uniformly 10% or 70%. From 14 neurotypical young adults, we found a significant interaction between emotion and contrast in the magnocellularly driven K2.1 peak amplitudes, with greater K2.1 amplitudes for fearful (vs. happy) faces at 70% temporal contrast condition. Taken together, our findings suggest that facial emotional information is present in early V1 processing as conveyed by the M pathway, and more activated for fearful as opposed to happy and neutral faces. An explanation is offered in terms of the contest between feedback and response gain modulation models.
Collapse
Affiliation(s)
- Eveline Mu
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - David Crewther
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC, Australia
| |
Collapse
|
24
|
Takagaki K, Krug K. The effects of reward and social context on visual processing for perceptual decision-making. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Manuel AL, Roquet D, Landin-Romero R, Kumfor F, Ahmed RM, Hodges JR, Piguet O. Interactions between decision-making and emotion in behavioral-variant frontotemporal dementia and Alzheimer's disease. Soc Cogn Affect Neurosci 2020; 15:681-694. [PMID: 32613246 PMCID: PMC7393308 DOI: 10.1093/scan/nsaa085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/16/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Negative and positive emotions are known to shape decision-making toward more or less impulsive responses, respectively. Decision-making and emotion processing are underpinned by shared brain regions including the ventromedial prefrontal cortex (vmPFC) and the amygdala. How these processes interact at the behavioral and brain levels is still unclear. We used a lesion model to address this question. Study participants included individuals diagnosed with behavioral-variant frontotemporal dementia (bvFTD, n = 18), who typically present deficits in decision-making/emotion processing and atrophy of the vmPFC, individuals with Alzheimer’s disease (AD, n = 12) who present with atrophy in limbic structures and age-matched healthy controls (CTRL, n = 15). Prior to each choice on the delay discounting task participants were cued with a positive, negative or neutral picture and asked to vividly imagine witnessing the event. As hypothesized, our findings showed that bvFTD patients were more impulsive than AD patients and CTRL and did not show any emotion-related modulation of delay discounting rate. In contrast, AD patients showed increased impulsivity when primed by negative emotion. This increased impulsivity was associated with reduced integrity of bilateral amygdala in AD but not in bvFTD. Altogether, our results indicate that decision-making and emotion interact at the level of the amygdala supporting findings from animal studies.
Collapse
Affiliation(s)
- Aurélie L Manuel
- School of Psychology, The University of Sydney, Sydney, Australia.,Brain & Mind Centre, The University of Sydney, Sydney, Australia.,ARC Centre of Excellence in Cognition & its Disorders, Sydney, Australia.,Laboratory for Research in Neuroimaging LREN, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Daniel Roquet
- School of Psychology, The University of Sydney, Sydney, Australia.,Brain & Mind Centre, The University of Sydney, Sydney, Australia.,ARC Centre of Excellence in Cognition & its Disorders, Sydney, Australia
| | - Ramon Landin-Romero
- School of Psychology, The University of Sydney, Sydney, Australia.,Brain & Mind Centre, The University of Sydney, Sydney, Australia.,ARC Centre of Excellence in Cognition & its Disorders, Sydney, Australia
| | - Fiona Kumfor
- School of Psychology, The University of Sydney, Sydney, Australia.,Brain & Mind Centre, The University of Sydney, Sydney, Australia.,ARC Centre of Excellence in Cognition & its Disorders, Sydney, Australia
| | - Rebekah M Ahmed
- Brain & Mind Centre, The University of Sydney, Sydney, Australia.,ARC Centre of Excellence in Cognition & its Disorders, Sydney, Australia.,Clinical Medical School, The University of Sydney, Sydney, Australia
| | - John R Hodges
- Brain & Mind Centre, The University of Sydney, Sydney, Australia.,ARC Centre of Excellence in Cognition & its Disorders, Sydney, Australia.,Clinical Medical School, The University of Sydney, Sydney, Australia
| | - Olivier Piguet
- School of Psychology, The University of Sydney, Sydney, Australia.,Brain & Mind Centre, The University of Sydney, Sydney, Australia.,ARC Centre of Excellence in Cognition & its Disorders, Sydney, Australia
| |
Collapse
|
26
|
Roelke A, Vorstius C, Radach R, Hofmann MJ. Fixation-related NIRS indexes retinotopic occipital processing of parafoveal preview during natural reading. Neuroimage 2020; 215:116823. [PMID: 32289457 DOI: 10.1016/j.neuroimage.2020.116823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 11/19/2022] Open
Abstract
While word frequency and predictability effects have been examined extensively, any evidence on interactive effects as well as parafoveal influences during whole sentence reading remains inconsistent and elusive. Novel neuroimaging methods utilize eye movement data to account for the hemodynamic responses of very short events such as fixations during natural reading. In this study, we used the rapid sampling frequency of near-infrared spectroscopy (NIRS) to investigate neural responses in the occipital and orbitofrontal cortex to word frequency and predictability. We observed increased activation in the right ventral occipital cortex when the fixated word N was of low frequency, which we attribute to an enhanced cost during saccade planning. Importantly, unpredictable (in contrast to predictable) low frequency words increased the activity in the left dorsal occipital cortex at the fixation of the preceding word N-1, presumably due to an upcoming breach of top-down modulated expectation. Opposite to studies that utilized a serial presentation of words (e.g. Hofmann et al., 2014), we did not find such an interaction in the orbitofrontal cortex, implying that top-down timing of cognitive subprocesses is not required during natural reading. We discuss the implications of an interactive parafoveal-on-foveal effect for current models of eye movements.
Collapse
Affiliation(s)
- Andre Roelke
- General and Biological Psychology, University of Wuppertal, Max-Horkheimer-Str. 20, D-42119, Wuppertal, Germany.
| | - Christian Vorstius
- General and Biological Psychology, University of Wuppertal, Max-Horkheimer-Str. 20, D-42119, Wuppertal, Germany
| | - Ralph Radach
- General and Biological Psychology, University of Wuppertal, Max-Horkheimer-Str. 20, D-42119, Wuppertal, Germany
| | - Markus J Hofmann
- General and Biological Psychology, University of Wuppertal, Max-Horkheimer-Str. 20, D-42119, Wuppertal, Germany
| |
Collapse
|
27
|
Sambuco N, Costa VD, Lang PJ, Bradley MM. Aversive perception in a threat context: Separate and independent neural activation. Biol Psychol 2020; 154:107926. [PMID: 32621851 PMCID: PMC7490760 DOI: 10.1016/j.biopsycho.2020.107926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 11/19/2022]
Abstract
Unpleasant, compared to neutral, scenes reliably prompt enhanced functional brain activity in the amygdala and inferotemporal cortex. Considering data from psychophysiological studies in which defensive reactivity is further enhanced when viewing unpleasant scenes under threat of shock (compared to safety), the current study investigates functional activation in the amygdala-inferotemporal circuit when unpleasant (or neutral) scenes are viewed under threat of shock or safety. In this paradigm, a cue signaling threat or safety was presented in conjunction with either an unpleasant or neutral picture. Replicating previous studies, unpleasant, compared to neutral, scenes reliably enhanced activation in the amygdala and inferotemporal cortex. Functional activity in these regions, however, did not differ whether scenes were presented in a context threatening shock exposure, compared to safety, which instead activated regions of the anterior insula and cingulate cortex. Taken together, the data support a view in which neural regions activated in different defensive situations act independently.
Collapse
Affiliation(s)
- Nicola Sambuco
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, United States.
| | - Vincent D Costa
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States
| | - Peter J Lang
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, United States
| | - Margaret M Bradley
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, United States
| |
Collapse
|
28
|
Sambuco N, Bradley MM, Herring DR, Lang PJ. Common circuit or paradigm shift? The functional brain in emotional scene perception and emotional imagery. Psychophysiology 2020; 57:e13522. [PMID: 32011742 PMCID: PMC7446773 DOI: 10.1111/psyp.13522] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022]
Abstract
Meta-analytic and experimental studies investigating the neural basis of emotion often compare functional activation in different emotional induction contexts, assessing evidence for a "core affect" or "salience" network. Meta-analyses necessarily aggregate effects across diverse paradigms and different samples, which ignore potential neural differences specific to the method of affect induction. Data from repeated measures designs are few, reporting contradictory results with a small N. In the current study, functional brain activity is assessed in a large (N = 61) group of healthy participants during two common emotion inductions-scene perception and narrative imagery-to evaluate cross-paradigm consistency. Results indicate that limbic and paralimbic regions, together with visual and parietal cortex, are reliably engaged during emotional scene perception. For emotional imagery, in contrast, enhanced functional activity is found in several cerebellar regions, hippocampus, caudate, and dorsomedial prefrontal cortex, consistent with the conception that imagery is an action disposition. Taken together, the data suggest that a common emotion network is not engaged across paradigms, but that the specific neural regions activated during emotional processing can vary significantly with the context of the emotional induction.
Collapse
Affiliation(s)
- Nicola Sambuco
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida
| | - Margaret M Bradley
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida
| | - David R Herring
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida
| | - Peter J Lang
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida
| |
Collapse
|
29
|
The Neurofunctional Basis of Affective Startle Modulation in Humans: Evidence From Combined Facial Electromyography and Functional Magnetic Resonance Imaging. Biol Psychiatry 2020; 87:548-558. [PMID: 31547934 DOI: 10.1016/j.biopsych.2019.07.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND The startle eye-blink is the cross-species translational tool to study defensive behavior in affective neuroscience with relevance to a broad range of neuropsychiatric conditions. It makes use of the startle reflex, a defensive response elicited by an immediate, unexpected sensory event, which is potentiated when evoked during threat and inhibited during safety. In contrast to skin conductance responses or pupil dilation, modulation of the startle reflex is valence specific. Rodent models implicate a modulatory pathway centering on the brainstem (i.e., nucleus reticularis pontis caudalis) and the centromedial amygdala as key hubs for flexibly integrating valence information into differential startle magnitude. Technical advances now allow for the investigation of this pathway using combined facial electromyography and functional magnetic resonance imaging in humans. METHODS We employed a multimethodological approach combining trial-by-trial facial eye-blink startle electromyography and brainstem- and amygdala-specific functional magnetic resonance imaging in humans. Validating the robustness and reproducibility of our findings, we provide evidence from two different paradigms (fear-potentiated startle, affect-modulated startle) in two independent studies (N = 43 and N = 55). RESULTS We provide key evidence for a conserved neural pathway for acoustic startle modulation between humans and rodents. Furthermore, we provide the crucial direct link between electromyography startle eye-blink magnitude and neural response strength. Finally, we demonstrate a dissociation between arousal-specific amygdala responding and triggered valence-specific amygdala responding. CONCLUSIONS We provide neurobiologically based evidence for the strong translational value of startle responding and argue that startle-evoked amygdala responding and its affective modulation may hold promise as an important novel tool for affective neuroscience and its clinical translation.
Collapse
|
30
|
Lueck AH, Dutton GN, Chokron S. Profiling Children With Cerebral Visual Impairment Using Multiple Methods of Assessment to Aid in Differential Diagnosis. Semin Pediatr Neurol 2019; 31:5-14. [PMID: 31548025 DOI: 10.1016/j.spen.2019.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cerebral (cortical) visual impairment (CVI), the primary cause of visual impairment in children in high-income countries, is increasing globally due to improved life-saving measures for premature and full-term infants. Yet the consequences of this condition are only beginning to be understood and addressed. According to the topography, site, and the extent of the pathology, the deficit may variably concern central visual functions, visual field, perception of movement, visual analysis, visual exploration, attention, or visual memory, as well as visual guidance of movement. Each affected child has a unique clinical picture, which needs to be identified and individually profiled. This is probably the underlying reason that CVI is commonly underdiagnosed or misdiagnosed, especially in children, and, as a consequence, the full range of potential behavioral outcomes are not identified and adequately addressed. The present paper shows how the use of multiple methods of assessment can improve understanding of children with CVI.
Collapse
Affiliation(s)
- Amanda H Lueck
- Department of Special Education, San Francisco State University, San Francisco, CA.
| | - Gordon N Dutton
- Department of Optometry and Visual Science, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Sylvie Chokron
- Unité Vision et Cognition, Fondation Opthalmologique Rothschild, Paris, France; Laboratoire de Psychologie de la Perception, Université Paris Descartes, Paris, France
| |
Collapse
|
31
|
Pegg S, Dickey L, Mumper E, Kessel E, Klein DN, Kujawa A. Stability and change in emotional processing across development: A 6-year longitudinal investigation using event-related potentials. Psychophysiology 2019; 56:e13438. [PMID: 31376164 DOI: 10.1111/psyp.13438] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022]
Abstract
ERPs reveal the temporal dynamics of emotional processing and are easily assessed in children. Yet, little longitudinal research has examined ERPs sensitive to emotion across development. We aimed to systematically identify timing and spatial distributions of ERPs sensitive to emotion in a longitudinal sample of youth (N = 62) using principal component analysis (PCA) and evaluate stability and change in emotional responses across development. Participants completed an emotional interrupt paradigm in childhood (Mage = 9.38, SD = 0.42), early adolescence (Mage = 13.03, SD = 0.24), and midadolescence (Mage = 15.16, SD = 0.17). ERPs were recorded to unpleasant, pleasant, and neutral images. Participants were instructed to respond to a target while viewing images. Two components sensitive to emotion emerged across development: P300/early late positive potential (LPP) and late LPP. The P300/early LPP component was characterized by an enhanced positivity for unpleasant compared to pleasant and neutral images. The late LPP was enhanced for both unpleasant and pleasant compared to neutral images, and more positive for unpleasant compared to pleasant images. The components showed moderate to strong stability. Overall LPP magnitude decreased from childhood into adolescence. There was a developmental shift in distributions from occipital sites in childhood to centroparietal sites in midadolescence. Results support use of PCA to inform scoring windows and electrode selection. The shift in distribution may reflect developmental focalization in underlying neural circuitry. Future work is needed using multimodal approaches to further understand the relationship between ERPs and changes in neural circuitry across development.
Collapse
Affiliation(s)
- Samantha Pegg
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee
| | - Lindsay Dickey
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee
| | - Emma Mumper
- Department of Psychology, Stony Brook University, Stony Brook, New York
| | - Ellen Kessel
- Department of Psychology, Stony Brook University, Stony Brook, New York
| | - Daniel N Klein
- Department of Psychology, Stony Brook University, Stony Brook, New York
| | - Autumn Kujawa
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
32
|
Frank DW, Costa VD, Averbeck BB, Sabatinelli D. Directional interconnectivity of the human amygdala, fusiform gyrus, and orbitofrontal cortex in emotional scene perception. J Neurophysiol 2019; 122:1530-1537. [PMID: 31166811 DOI: 10.1152/jn.00780.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The perception of emotionally arousing scenes modulates neural activity in ventral visual areas via reentrant signals from the amygdala. The orbitofrontal cortex (OFC) shares dense interconnections with amygdala and has been strongly implicated in emotional stimulus processing in primates, but our understanding of the functional contribution of this region to emotional perception in humans is poorly defined. In this study we acquired targeted rapid functional imaging from lateral OFC, amygdala, and fusiform gyrus (FG) over multiple scanning sessions (resulting in over 1,000 trials per participant) in an effort to define the activation amplitude and directional connectivity among these regions during naturalistic scene perception. All regions of interest showed enhanced activation during emotionally arousing, compared with neutral scenes. In addition, we identified bidirectional connectivity between amygdala, FG, and OFC in the great majority of individual subjects, suggesting that human emotional perception is implemented in part via nonhierarchical causal interactions across these three regions.NEW & NOTEWORTHY Due to the practical limitations of noninvasive recording methodologies, there is a scarcity of data regarding the interactions of human amygdala and orbitofrontal cortex (OFC). Using rapid functional MRI sampling and directional connectivity, we found that the human amygdala influences emotional perception via distinct interactions with late-stage ventral visual cortex and OFC, in addition to distinct interactions between OFC and fusiform gyrus. Future efforts may leverage these patterns of directional connectivity to noninvasively distinguish clinical groups from controls with respect to network causal hierarchy.
Collapse
Affiliation(s)
- David W Frank
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Neuroscience, University of Georgia, Athens, Georgia
| | - Vincent D Costa
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland
| | - Bruno B Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland
| | - Dean Sabatinelli
- Department of Neuroscience, University of Georgia, Athens, Georgia.,Department of Psychology, University of Georgia, Athens, Georgia
| |
Collapse
|
33
|
Sabatinelli D, Frank DW. Assessing the Primacy of Human Amygdala-Inferotemporal Emotional Scene Discrimination with Rapid Whole-Brain fMRI. Neuroscience 2019; 406:212-224. [DOI: 10.1016/j.neuroscience.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/09/2023]
|
34
|
Heim S, Keil A. Quantifying Intermodal Distraction by Emotion During Math Performance: An Electrophysiological Approach. Front Psychol 2019; 10:439. [PMID: 30914991 PMCID: PMC6423079 DOI: 10.3389/fpsyg.2019.00439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/13/2019] [Indexed: 01/23/2023] Open
Abstract
Emotionally engaging stimuli are powerful competitors for limited attention capacity. In the cognitive neuroscience laboratory, the presence of task-irrelevant emotionally arousing visual distractors prompts decreased performance and attenuated brain responses measured in concurrent visual tasks. The extent to which distraction effects occur across different sensory modalities is not yet established, however. Here, we examined the extent and time course of competition between a naturalistic distractor sound and a visual task stimulus, using dense-array electroencephalography (EEG) recordings from 20 college students. Steady-state visual evoked potentials (ssVEPs) were quantified from EEG, elicited by periodically flickering vignettes displaying basic arithmetic problems - the participants' primary task. Concurrently, low-arousing and high-arousing sounds were presented, as well as auditory pink noise, used as a control. Capitalizing on the temporal dynamics of the ssVEP signal allowed us to study intermodal interference of the sounds with the processing of the visual math problems. We observed that high-arousing sounds were associated with diminished visuocortical responses and poor performance, compared to low-arousing sounds and pink noise, suggesting that emotional distraction acts across modalities. We discuss the role of sensory cortices in emotional distraction along with implications for translational research in educational neuroscience.
Collapse
Affiliation(s)
- Sabine Heim
- Infancy Studies Laboratory, Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, United States
| | - Andreas Keil
- Psychophysiology Laboratory, Department of Psychology, Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, United States
| |
Collapse
|
35
|
Sambuco N, Bradley M, Herring D, Hillbrandt K, Lang PJ. Transdiagnostic trauma severity in anxiety and mood disorders: Functional brain activity during emotional scene processing. Psychophysiology 2019; 57:e13349. [DOI: 10.1111/psyp.13349] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/20/2018] [Accepted: 01/21/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Nicola Sambuco
- Center for the Study of Emotion and Attention University of Florida Gainesville Florida
| | - Margaret Bradley
- Center for the Study of Emotion and Attention University of Florida Gainesville Florida
| | - David Herring
- Center for the Study of Emotion and Attention University of Florida Gainesville Florida
| | - Katja Hillbrandt
- Center for the Study of Emotion and Attention University of Florida Gainesville Florida
| | - Peter J. Lang
- Center for the Study of Emotion and Attention University of Florida Gainesville Florida
| |
Collapse
|
36
|
Camacho MC, Karim HT, Perlman SB. Neural architecture supporting active emotion processing in children: A multivariate approach. Neuroimage 2019; 188:171-180. [PMID: 30537564 PMCID: PMC6401267 DOI: 10.1016/j.neuroimage.2018.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/08/2018] [Accepted: 12/06/2018] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Adaptive emotion processing is critical for nearly all aspects of social and emotional functioning. There are distinct developmental trajectories associated with improved emotion processing, with a protracted developmental course for negative or complex emotions. The specific changes in neural circuitry that underlie this development, however are still scarcely understood. We employed a multivariate approach in order to elucidate distinctions in complex, naturalistic emotion processing between childhood and adulthood. METHOD Twenty-one adults (M±SD age = 26.57 ± 5.08 years) and thirty children (age = 7.75 ± 1.80 years) completed a free-viewing movie task during BOLD fMRI scanning. This task was designed to assess naturalistic processing of movie clips portraying positive, negative, and neutral emotions. Multivariate support vector machines (SVM) were trained to classify age groups based on neural activation during the task. RESULTS SVMs were able to successfully classify condition (positive, negative, and neutral) across all participants with high accuracy (61.44%). SVMs could successfully distinguish adults and children within each condition (ps < 0.05). Regions that informed the age group SVMs were associated with sensory and socio-emotional processing (inferior parietal lobule), emotion regulation (inferior frontal gyrus), and sensory regions of the temporal and occipital lobes. CONCLUSIONS These results point to distributed differences in activation between childhood and adulthood unique to each emotional condition. In the negative condition specifically, there is evidence for a shift in engagement from regions of sensory and socio-emotional integration to emotion regulation regions between children and adults. These results provide insight into circuitry contributing to maturation of emotional processing across development.
Collapse
Affiliation(s)
- M Catalina Camacho
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Helmet T Karim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susan B Perlman
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
37
|
Frank DW, Sabatinelli D. Hemodynamic and electrocortical reactivity to specific scene contents in emotional perception. Psychophysiology 2019; 56:e13340. [DOI: 10.1111/psyp.13340] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 12/19/2022]
Affiliation(s)
- David W. Frank
- Department of Neuroscience, BioImaging Research Center University of Georgia Athens Georgia
- Department of Behavioral Science MD Anderson Cancer Center Houston Texas
| | - Dean Sabatinelli
- Department of Neuroscience, BioImaging Research Center University of Georgia Athens Georgia
- Department of Psychology University of Georgia Athens Georgia
| |
Collapse
|
38
|
Padmala S, Sambuco N, Pessoa L. Interactions between reward motivation and emotional processing. PROGRESS IN BRAIN RESEARCH 2019; 247:1-21. [DOI: 10.1016/bs.pbr.2019.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Leventon JS, Merrill NA, Bauer PJ. Neural response to emotion related to narrative socialization of emotion in school-age girls. J Exp Child Psychol 2018; 178:155-169. [PMID: 30380455 DOI: 10.1016/j.jecp.2018.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 10/28/2022]
Abstract
Emotion is processed on multiple dimensions, both internal and external, and these dimensions interact over time and development. Socialization of emotion via parent-child conversations is well known to shape emotion processes, with greater parental elaboration supporting children's emotion knowledge, understanding, and regulation. However, it is unclear how the effects of socialization may extend to neural processing of emotion, which in turn relates to emotion behaviors. In this research, 28 school-age girls and their parents discussed recent emotional experiences (positive and negative), and event-related potentials (ERPs) were recorded as the children viewed emotionally evocative picture stimuli. Parent-child conversations were recorded and coded for parents' use of elaborative style. ERPs indicated a robust emotion response (late positive potential, LPP) that was observed across the scalp. Children of parents who used a greater elaborative style when discussing negative experiences had reduced LPPs at posterior sites. This relation was not observed for discussions of positive experiences despite similar use of elaborative style between event types. The results suggest that parental elaboration, during discussion of negative experience, is associated with reduced neurophysiological emotional reactivity in children. Thus, the impact of socialization of emotion extends beyond emotional behaviors to neural processing of emotion.
Collapse
Affiliation(s)
| | | | - Patricia J Bauer
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
40
|
Kaskan PM, Costa VD, Eaton HP, Zemskova JA, Mitz AR, Leopold DA, Ungerleider LG, Murray EA. Learned Value Shapes Responses to Objects in Frontal and Ventral Stream Networks in Macaque Monkeys. Cereb Cortex 2018; 27:2739-2757. [PMID: 27166166 DOI: 10.1093/cercor/bhw113] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have an incomplete picture of how the brain links object representations to reward value, and how this information is stored and later retrieved. The orbitofrontal cortex (OFC), medial frontal cortex (MFC), and ventrolateral prefrontal cortex (VLPFC), together with the amygdala, are thought to play key roles in these processes. There is an apparent discrepancy, however, regarding frontal areas thought to encode value in macaque monkeys versus humans. To address this issue, we used fMRI in macaque monkeys to localize brain areas encoding recently learned image values. Each week, monkeys learned to associate images of novel objects with a high or low probability of water reward. Areas responding to the value of recently learned reward-predictive images included MFC area 10 m/32, VLPFC area 12, and inferior temporal visual cortex (IT). The amygdala and OFC, each thought to be involved in value encoding, showed little such effect. Instead, these 2 areas primarily responded to visual stimulation and reward receipt, respectively. Strong image value encoding in monkey MFC compared with OFC is surprising, but agrees with results from human imaging studies. Our findings demonstrate the importance of VLPFC, MFC, and IT in representing the values of recently learned visual images.
Collapse
Affiliation(s)
- Peter M Kaskan
- Section on Neurobiology of Learning and Memory, Laboratory of Neuropsychology
| | - Vincent D Costa
- Unit on Learning and Decision Making, Laboratory of Neuropsychology
| | - Hana P Eaton
- Section on Neurobiology of Learning and Memory, Laboratory of Neuropsychology
| | - Julie A Zemskova
- Section on Neurobiology of Learning and Memory, Laboratory of Neuropsychology
| | | | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology and
| | - Leslie G Ungerleider
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Elisabeth A Murray
- Section on Neurobiology of Learning and Memory, Laboratory of Neuropsychology
| |
Collapse
|
41
|
Ji H, Petro NM, Chen B, Yuan Z, Wang J, Zheng N, Keil A. Cross multivariate correlation coefficients as screening tool for analysis of concurrent EEG-fMRI recordings. J Neurosci Res 2018; 96:1159-1175. [PMID: 29406599 PMCID: PMC6001468 DOI: 10.1002/jnr.24217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 01/23/2023]
Abstract
Over the past decade, the simultaneous recording of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) data has garnered growing interest because it may provide an avenue towards combining the strengths of both imaging modalities. Given their pronounced differences in temporal and spatial statistics, the combination of EEG and fMRI data is however methodologically challenging. Here, we propose a novel screening approach that relies on a Cross Multivariate Correlation Coefficient (xMCC) framework. This approach accomplishes three tasks: (1) It provides a measure for testing multivariate correlation and multivariate uncorrelation of the two modalities; (2) it provides criterion for the selection of EEG features; (3) it performs a screening of relevant EEG information by grouping the EEG channels into clusters to improve efficiency and to reduce computational load when searching for the best predictors of the BOLD signal. The present report applies this approach to a data set with concurrent recordings of steady‐state‐visual evoked potentials (ssVEPs) and fMRI, recorded while observers viewed phase‐reversing Gabor patches. We test the hypothesis that fluctuations in visuo‐cortical mass potentials systematically covary with BOLD fluctuations not only in visual cortical, but also in anterior temporal and prefrontal areas. Results supported the hypothesis and showed that the xMCC‐based analysis provides straightforward identification of neurophysiological plausible brain regions with EEG‐fMRI covariance. Furthermore xMCC converged with other extant methods for EEG‐fMRI analysis.
Collapse
Affiliation(s)
- Hong Ji
- Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong Univeristy, 28 Xianning West Road Xi'an, 710049, P. R. China
| | - Nathan M Petro
- Center for the Study of Emotion and Attention, University of Florida, P.O. Box 112766, Gainesville, FL, USA
| | - Badong Chen
- Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong Univeristy, 28 Xianning West Road Xi'an, 710049, P. R. China
| | - Zejian Yuan
- Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong Univeristy, 28 Xianning West Road Xi'an, 710049, P. R. China
| | - Jianji Wang
- Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong Univeristy, 28 Xianning West Road Xi'an, 710049, P. R. China
| | - Nanning Zheng
- Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong Univeristy, 28 Xianning West Road Xi'an, 710049, P. R. China
| | - Andreas Keil
- Center for the Study of Emotion and Attention, University of Florida, P.O. Box 112766, Gainesville, FL, USA
| |
Collapse
|
42
|
Höfler C, Wabnegger A, Schienle A. Investigating visual effects of a disgust nocebo with fMRI. J Integr Neurosci 2018. [DOI: 10.3233/jin-170041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Carina Höfler
- Department of Psychology, Section Clinical Psychology, University of Graz, BioTechMedGraz, Universitätsplatz 2/III, 8010 Graz, Austria
| | - Albert Wabnegger
- Department of Psychology, Section Clinical Psychology, University of Graz, BioTechMedGraz, Universitätsplatz 2/III, 8010 Graz, Austria
| | - Anne Schienle
- Department of Psychology, Section Clinical Psychology, University of Graz, BioTechMedGraz, Universitätsplatz 2/III, 8010 Graz, Austria
| |
Collapse
|
43
|
Owens MM, MacKillop J, Gray JC, Hawkshead BE, Murphy CM, Sweet LH. Neural correlates of graphic cigarette warning labels predict smoking cessation relapse. Psychiatry Res 2017; 262:63-70. [PMID: 28236714 PMCID: PMC5404379 DOI: 10.1016/j.pscychresns.2017.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/14/2017] [Indexed: 01/12/2023]
Abstract
Exposure to graphic warning labels (GWLs) on cigarette packaging has been found to produce heightened activity in brain regions central to emotional processing and higher-order cognitive processes. The current study extends this literature by using functional magnetic resonance imaging (fMRI) to investigate neural activation in response to GWLs and use it to predict relapse in an evidence-based smoking cessation treatment program. Participants were 48 treatment-seeking nicotine-dependent smokers who completed an fMRI paradigm in which they were exposed to GWLs, text-only warning labels (TOLs), and matched control stimuli. Subsequently, they enrolled in smoking cessation treatment and their smoking behavior was monitored. Activation in bilateral amygdala, right dorsolateral prefrontal cortex, right inferior frontal gyrus, left medial temporal gyrus, bilateral occipital lobe, and bilateral fusiform gyrus was greater during GWLs than TOLs. Neural response in the ventromedial prefrontal cortex (vmPFC) during exposure to GWLs (relative to a visual control image) predicted relapse during treatment beyond baseline demographic and dependence severity, but response in the amygdala to GWLs did not. These findings suggest that neurocognitive processes in the vmPFC may be critical to understanding how GWL's induce behavior change and may be useful as a predictor of smoking cessation treatment prognosis.
Collapse
Affiliation(s)
- Max M Owens
- Department of Psychology, The University of Georgia, Athens, GA, USA.
| | - James MacKillop
- Department of Psychology, The University of Georgia, Athens, GA, USA; Peter Boris Centre for Addictions Research and Department of Psychiatry and Behavioural Neurosciences, McMaster University/St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada; Department of Psychiatry, Brown University, Providence, RI, USA
| | - Joshua C Gray
- Department of Psychology, The University of Georgia, Athens, GA, USA; Department of Psychiatry, Brown University, Providence, RI, USA
| | | | - Cara M Murphy
- Peter Boris Centre for Addictions Research and Department of Psychiatry and Behavioural Neurosciences, McMaster University/St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Lawrence H Sweet
- Department of Psychology, The University of Georgia, Athens, GA, USA; Department of Psychiatry, Brown University, Providence, RI, USA
| |
Collapse
|
44
|
Howsley P, Levita L. Anticipatory representations of reward and threat in perceptual areas from preadolescence to late adolescence. Dev Cogn Neurosci 2017; 25:246-259. [PMID: 28359682 PMCID: PMC6987791 DOI: 10.1016/j.dcn.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 01/29/2017] [Accepted: 03/08/2017] [Indexed: 12/03/2022] Open
Abstract
This study examined whether changes in perceptual processes can partially account for the increase in reward-orientated behaviour during adolescence. This was investigated by examining reinforcement-dependent potentiation to discriminative stimuli (SD) that predicted rewarding or threatening outcomes. To that end, perceptual event-related potentials that are modulated by motivationally salient stimuli, the N170 and Late Positive Potential (LPP), were recorded from 30 preadolescents (9–12 years), 30 adolescents (13–17 years), and 34 late adolescents (18–23 years) while they completed an instrumental task in which they emitted or omitted a motor response to obtain rewards and avoid losses. The LPP, but not the N170, showed age, but not gender, differences in reinforcement-dependent potentiation; preadolescents, adolescents, and late adolescents showed potentiation to SD that predicted a threat, whereas only preadolescents showed potentiation to SD that predicted a reward. Notably, the magnitude of threat-related LPP reinforcement-dependent potentiation decreased during the course of adolescence. In addition, greater sensation seeking was associated with greater LPP amplitudes in preadolescent males, but smaller LPP amplitudes in late adolescent males. Critically, these findings provide initial evidence for developmental differences in value-related coding in perceptual areas, where adolescents show greater perceptual biases to avoidance-related cues than to reward-related cues.
Collapse
Affiliation(s)
- Philippa Howsley
- Department of Psychology, The University of Sheffield, Sheffield, South Yorkshire, S1 2LT, United Kingdom.
| | - Liat Levita
- Department of Psychology, The University of Sheffield, Sheffield, South Yorkshire, S1 2LT, United Kingdom.
| |
Collapse
|
45
|
Frank DW, Sabatinelli D. Primate Visual Perception: Motivated Attention in Naturalistic Scenes. Front Psychol 2017; 8:226. [PMID: 28265250 PMCID: PMC5316551 DOI: 10.3389/fpsyg.2017.00226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
Research has consistently revealed enhanced neural activation corresponding to attended cues coupled with suppression to unattended cues. This attention effect depends both on the spatial features of stimuli and internal task goals. However, a large majority of research supporting this effect involves circumscribed tasks that possess few ecologically relevant characteristics. By comparison, natural scenes have the potential to engage an evolved attention system, which may be characterized by supplemental neural processing and integration compared to mechanisms engaged during reduced experimental paradigms. Here, we describe recent animal and human studies of naturalistic scene viewing to highlight the specific impact of social and affective processes on the neural mechanisms of attention modulation.
Collapse
Affiliation(s)
- David W Frank
- Oklahoma Tobacco Research Center, Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA; BioImaging Research Center, University of GeorgiaAthens, GA, USA; Division of Neuroscience, University of GeorgiaAthens, GA, USA
| | - Dean Sabatinelli
- BioImaging Research Center, University of GeorgiaAthens, GA, USA; Division of Neuroscience, University of GeorgiaAthens, GA, USA; Department of Psychology, University of GeorgiaAthens, GA, USA
| |
Collapse
|
46
|
Filkowski MM, Haas BW. Rethinking the Use of Neutral Faces as a Baseline in fMRI Neuroimaging Studies of Axis-I Psychiatric Disorders. J Neuroimaging 2016; 27:281-291. [PMID: 27805291 DOI: 10.1111/jon.12403] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/30/2016] [Indexed: 11/29/2022] Open
Abstract
Major Axis-I disorders including major depressive disorder (MDD), bipolar disorder (BD), anxiety disorder, and schizophrenia are associated with a host of aberrations in the way social stimuli are processed. Face perception tasks are often used in neuroimaging research of emotion processing in both healthy and patient populations, and to date, there exists a mounting body of evidence, both behavioral and within the brain, indicating that emotional faces compared to neutral faces are processed abnormally by those with Axis-I disorders relative to healthy control (HC) groups. The use of neutral faces as a "baseline control condition" is predicated on the assumption that neutral faces are processed in the same way HCs and individuals with major Axis-I disorders. In this paper, existing fMRI studies examining the way neutral faces are processed in groups with Axis-I disorders involving socioaffective perception are reviewed. In reviewing available studies, a consistent pattern of results demonstrated that these disorders are associated with abnormal frontolimbic activity in response to neutral faces and in particular within the amygdala and prefrontal regions such as the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) compared to HC groups. Specifically, increased amygdala activation was consistently reported in response to neutral faces in anxiety disorders and schizophrenia. Abnormal medial PFC activity was reported in patients with MDD, and patients with BD exhibit decreased activity in the DLPFC and ACC relative to HCs. In addition, specific suggestions to overcome these obstacles with new research and additional analyses are discussed.
Collapse
Affiliation(s)
- Megan M Filkowski
- Behavioral and Brain Sciences Program, Department of Psychology, University of Georgia, 125 Baldwin Street, Athens, GA
| | - Brian W Haas
- Behavioral and Brain Sciences Program, Department of Psychology, University of Georgia, 125 Baldwin Street, Athens, GA
| |
Collapse
|
47
|
Forscher EC, Zheng Y, Ke Z, Folstein J, Li W. Decomposing fear perception: A combination of psychophysics and neurometric modeling of fear perception. Neuropsychologia 2016; 91:254-261. [PMID: 27546075 DOI: 10.1016/j.neuropsychologia.2016.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 01/20/2023]
Abstract
Emotion perception is known to involve multiple operations and waves of analysis, but specific nature of these processes remains poorly understood. Combining psychophysical testing and neurometric analysis of event-related potentials (ERPs) in a fear detection task with parametrically varied fear intensities (N=45), we sought to elucidate key processes in fear perception. Building on psychophysics marking fear perception thresholds, our neurometric model fitting identified several putative operations and stages: four key processes arose in sequence following face presentation - fear-neutral categorization (P1 at 100ms), fear detection (P300 at 320ms), valuation (early subcomponent of the late positive potential/LPP at 400-500ms) and conscious awareness (late subcomponent LPP at 500-600ms). Furthermore, within-subject brain-behavior association suggests that initial emotion categorization was mandatory and detached from behavior whereas valuation and conscious awareness directly impacted behavioral outcome (explaining 17% and 31% of the total variance, respectively). The current study thus reveals the chronometry of fear perception, ascribing psychological meaning to distinct underlying processes. The combination of early categorization and late valuation of fear reconciles conflicting (categorical versus dimensional) emotion accounts, lending support to a hybrid model. Importantly, future research could specifically interrogate these psychological processes in various behaviors and psychopathologies (e.g., anxiety and depression).
Collapse
Affiliation(s)
- Emily C Forscher
- Department of Psychology, University of Wisconsin-Madison, Madison 53706, USA
| | - Yan Zheng
- Department of Psychology, Florida State University, Tallahassee 32303, USA
| | - Zijun Ke
- Department of Psychology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jonathan Folstein
- Department of Psychology, Florida State University, Tallahassee 32303, USA
| | - Wen Li
- Department of Psychology, Florida State University, Tallahassee 32303, USA.
| |
Collapse
|
48
|
Ventura-Bort C, Löw A, Wendt J, Dolcos F, Hamm AO, Weymar M. When neutral turns significant: brain dynamics of rapidly formed associations between neutral stimuli and emotional contexts. Eur J Neurosci 2016; 44:2176-83. [DOI: 10.1111/ejn.13319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/17/2016] [Accepted: 06/22/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Carlos Ventura-Bort
- Department of Biological and Clinical Psychology; University of Greifswald; Franz-Mehring-Str. 47 17487 Greifswald Germany
- Department of Basic and Clinical Psychology, and Psychobiology; Universitat Jaume I; Castellón Spain
| | - Andreas Löw
- Department of Humanities and Social Sciences; Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg; Hamburg Germany
| | - Julia Wendt
- Department of Biological and Clinical Psychology; University of Greifswald; Franz-Mehring-Str. 47 17487 Greifswald Germany
| | - Florin Dolcos
- Psychology Department; Neuroscience Program; Beckman Institute for Advanced Science and Technology; University of Illinois at Urbana-Champaign; Champaign IL USA
| | - Alfons O. Hamm
- Department of Biological and Clinical Psychology; University of Greifswald; Franz-Mehring-Str. 47 17487 Greifswald Germany
| | - Mathias Weymar
- Department of Biological and Clinical Psychology; University of Greifswald; Franz-Mehring-Str. 47 17487 Greifswald Germany
| |
Collapse
|
49
|
Kang D, Liu Y, Miskovic V, Keil A, Ding M. Large-scale functional brain connectivity during emotional engagement as revealed by beta-series correlation analysis. Psychophysiology 2016; 53:1627-1638. [PMID: 27453345 DOI: 10.1111/psyp.12731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/22/2016] [Indexed: 12/23/2022]
Abstract
It has been hypothesized that the medial prefrontal cortex (mPFC) is a hub in the network that mediates appetitive responses whereas the amygdala is thought to mediate both aversive and appetitive processing. Both structures may facilitate adaptive responses to emotional challenge by linking perception, attention, memory, and motor circuits. We provide an initial exploration of these hypotheses by recording simultaneous EEG-fMRI in eleven participants viewing affective pictures. MPFC- and amygdala-seeded functional connectivity maps were generated by applying the beta-series correlation method. The mPFC-seeded correlation map encompassed visual regions, sensorimotor areas, prefrontal cortex, and medial temporal lobe structures, exclusively for pleasant content. For the amygdala-seeded correlation map, a similar set of distributed brain areas appeared in the unpleasant-neutral contrast, with the addition of structures such as the insula and thalamus. A substantially sparser network was recruited for the pleasant-neutral contrast. Using the late positive potential (LPP) to index the intensity of emotional engagement, functional connectivity was found to be stronger in trials with larger LPP. These results demonstrate that mPFC-mediated functional interactions are engaged specifically during appetitive processing, whereas the amygdala is coupled to distinct sets of brain regions during both aversive and appetitive processing. The strength of these interactions varies as a function of the intensity of emotional engagement.
Collapse
Affiliation(s)
- Daesung Kang
- The J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Yuelu Liu
- The J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Vladimir Miskovic
- Department of Psychology and Center for Affective Science, State University of New York at Binghamton, Binghamton, New York, USA
| | - Andreas Keil
- Department of Psychology and Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida, USA.
| | - Mingzhou Ding
- The J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
50
|
Deweese MM, Müller M, Keil A. Extent and time-course of competition in visual cortex between emotionally arousing distractors and a concurrent task. Eur J Neurosci 2016; 43:961-70. [PMID: 26790572 DOI: 10.1111/ejn.13180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/18/2015] [Accepted: 01/12/2016] [Indexed: 01/23/2023]
Abstract
Emotionally arousing cues automatically attract attentional resources, which may be at the cost of processing task-related information. Of central importance is how the visual system resolves competition for processing resources among stimuli differing in motivational salience. Here, we assessed the extent and time-course of competition between emotionally arousing distractors and task-related stimuli in a frequency-tagging paradigm. Steady-state visual evoked potentials (ssVEPs) were evoked using random-dot kinematograms that consisted of rapidly flickering (8.57 Hz) dots, superimposed upon emotional or neutral distractor pictures flickering at 12 Hz. The time-varying amplitude of the ssVEP evoked by the motion detection task showed a significant reduction to the task-relevant stream while emotionally arousing pictures were presented as distractors. Competition between emotionally arousing pictures and moving dots began 450 ms after picture onset and persisted for an additional 2600 ms. Competitive effects of the overlapping task and picture stream revealed cost effects for the motion detection task when unpleasant pictures were presented as distractors between 450 and 1650 ms after picture onset, where an increase in ssVEP amplitude to the flickering picture stimulus was at the cost of ssVEP amplitude to the flickering dot stimulus. Cost effects were generalized to all emotionally arousing contents between 1850 and 3050 ms after picture onset, where the greatest amount of competition was evident for conditions in which emotionally arousing pictures, compared to neutral, served as distractors. In sum, the processing capacity of the visual system as measured by ssVEPs is limited, resulting in prioritized processing of emotionally relevant cues.
Collapse
Affiliation(s)
- Menton M Deweese
- Center for the Study of Emotion and Attention, University of Florida, P.O. Box 112766, Gainesville, FL, 32611, USA
| | - Matthias Müller
- Institute of Psychology, University of Leipzig, Leipzig, Germany
| | - Andreas Keil
- Center for the Study of Emotion and Attention, University of Florida, P.O. Box 112766, Gainesville, FL, 32611, USA
| |
Collapse
|