1
|
Li X, Xu Z. Applications of Matrix Metalloproteinase-9-Related Nanomedicines in Tumors and Vascular Diseases. Pharmaceutics 2025; 17:479. [PMID: 40284474 PMCID: PMC12030376 DOI: 10.3390/pharmaceutics17040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is implicated in tumor progression and vascular diseases, contributing to angiogenesis, metastasis, and extracellular matrix degradation. This review comprehensively examines the relationship between MMP-9 and these pathologies, exploring the underlying molecular mechanisms and signaling pathways involved. Specifically, we discuss the contribution of MMP-9 to tumor epithelial-mesenchymal transition, angiogenesis, and metastasis, as well as its involvement in a spectrum of vascular diseases, including macrovascular, cerebrovascular, and ocular vascular diseases. This review focuses on recent advances in MMP-9-targeted nanomedicine strategies, highlighting the design and application of responsive nanoparticles for enhanced drug delivery. These nanotherapeutic strategies leverage MMP-9 overexpression to achieve targeted drug release, improved tumor penetration, and reduced systemic toxicity. We explore various nanoparticle platforms, such as liposomes and polymer nanoparticles, and discuss their mechanisms of action, including degradation, drug release, and targeting specificity. Finally, we address the challenges posed by the heterogeneity of MMP-9 expression and their implications for personalized therapies. Ultimately, this review underscores the diagnostic and therapeutic potential of MMP-9-targeted nanomedicines against tumors and vascular diseases.
Collapse
Affiliation(s)
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
2
|
Khan H, Rihal V, Kaur A, Singh TG. Proposed Hypothesis of TWEAK/Fn14 Receptor Modulation in Autism Spectrum Disorder. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:257-262. [PMID: 39473248 DOI: 10.2174/0118715273330549241015073953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 05/13/2025]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with a complex, multiple etiology that is marked by impaired social interaction, communication, and repetitive behaviour. There is presently no pharmaceutical treatment for the core symptoms of ASD, even though the prevalence of ASD is increasing worldwide. Treatment of autism spectrum disorder involves the interaction of numerous signalling pathways, such as the Wnt/beta-catenin pathway, probiotics and kynurenine pathway, PPAR pathway, PI3K-AKT-mTOR pathway, Hedgehog signaling pathway, etc. The scientific literature has revealed TWEAK/Fn14 to not be explored in the autism spectrum disorder. In vitro and in vivo, TWEAK can control a wide range of cellular responses. Recent research has revealed that TWEAK and Fn14 are expressed in the Central Nervous System (CNS) and upregulated in perivascular endothelial cells, astrocytes, neurons, and microglia in response to various stimuli, including cerebral ischemia. This upregulation is followed by cell death and an increase in Blood-brain Barrier (BBB) permeability. The study has revealed that Aurintricarboxylic Acid (ATA) acts as an agent that suppresses TWEAK/Fn14 signaling. Similarly, from the discussion, it has been emphasized that the proposed molecular TWEAK/Fn14 signalling pathway can be considered as a therapeutic approach in the management of autism spectrum disorder.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Vivek Rihal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
3
|
Deng Q, Wu C, Parker E, Zhu J, Liu TCY, Duan R, Yang L. Mystery of gamma wave stimulation in brain disorders. Mol Neurodegener 2024; 19:96. [PMID: 39695746 PMCID: PMC11657232 DOI: 10.1186/s13024-024-00785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Neuronal oscillations refer to rhythmic and periodic fluctuations of electrical activity in the central nervous system that arise from the cellular properties of diverse neuronal populations and their interactions. Specifically, gamma oscillations play a crucial role in governing the connectivity between distinct brain regions, which are essential in perception, motor control, memory, and emotions. In this context, we recapitulate various current stimulation methods to induce gamma entrainment. These methods include sensory stimulation, optogenetic modulation, photobiomodulation, and transcranial electrical or magnetic stimulation. Simultaneously, we explore the association between abnormal gamma oscillations and central nervous system disorders such as Alzheimer's disease, Parkinson's disease, stroke, schizophrenia, and autism spectrum disorders. Evidence suggests that gamma entrainment-inducing stimulation methods offer notable neuroprotection, although somewhat controversial. This review comprehensively discusses the functional role of gamma oscillations in higher-order brain activities from both physiological and pathological perspectives, emphasizing gamma entrainment as a potential therapeutic approach for neuropsychiatric disorders. Additionally, we discuss future opportunities and challenges in implementing such strategies.
Collapse
Affiliation(s)
- Qianting Deng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Emily Parker
- Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Jing Zhu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Timon Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Yepes M. Reprint of: Fibrinolytic and Non-fibrinolytic Roles of Tissue-type Plasminogen Activator in the Ischemic Brain. Neuroscience 2024; 550:21-29. [PMID: 38964373 DOI: 10.1016/j.neuroscience.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/06/2023] [Indexed: 07/06/2024]
Abstract
The neurovascular unit (NVU) is assembled by endothelial cells (ECs) and pericytes, and encased by a basement membrane (BM) surveilled by microglia and surrounded by perivascular astrocytes (PVA), which in turn are in contact with synapses. Cerebral ischemia induces the rapid release of the serine proteinase tissue-type plasminogen activator (tPA) from endothelial cells, perivascular astrocytes, microglia and neurons. Owning to its ability to catalyze the conversion of plasminogen into plasmin, in the intravascular space tPA functions as a fibrinolytic enzyme. In contrast, the release of astrocytic, microglial and neuronal tPA have a plethora of effects that not always require the generation of plasmin. In the ischemic brain tPA increases the permeability of the NVU, induces microglial activation, participates in the recycling of glutamate, and has various effects on neuronal survival. These effects are mediated by different receptors, notably subunits of the N-methyl-D-aspartate receptor (NMDAR) and the low-density lipoprotein receptor-related protein-1 (LRP-1). Here we review data on the role of tPA in the NVU under non-ischemic and ischemic conditions, and analyze how this knowledge may lead to the development of potential strategies for the treatment of acute ischemic stroke patients.
Collapse
Affiliation(s)
- Manuel Yepes
- Department of Neurology, Emory University, Atlanta, GA, USA; Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA; Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA.
| |
Collapse
|
5
|
Hervella P, Sampedro-Viana A, Fernández-Rodicio S, Rodríguez-Yáñez M, López-Dequidt I, Pumar JM, Mosqueira AJ, Bazarra-Barreiros M, Abengoza-Bello MT, Ortega-Espina S, Ouro A, Pérez-Mato M, Campos F, Sobrino T, Castillo J, Alonso-Alonso ML, Iglesias-Rey R. Precision Medicine for Blood Glutamate Grabbing in Ischemic Stroke. Int J Mol Sci 2024; 25:6554. [PMID: 38928260 PMCID: PMC11204254 DOI: 10.3390/ijms25126554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Glutamate grabbers, such as glutamate oxaloacetate transaminase (GOT), have been proposed to prevent excitotoxicity secondary to high glutamate levels in stroke patients. However, the efficacy of blood glutamate grabbing by GOT could be dependent on the extent and severity of the disruption of the blood-brain barrier (BBB). Our purpose was to analyze the relationship between GOT and glutamate concentration with the patient's functional status differentially according to BBB serum markers (soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) and leukoaraiosis based on neuroimaging). This retrospective observational study includes 906 ischemic stroke patients. We studied the presence of leukoaraiosis and the serum levels of glutamate, GOT, and sTWEAK in blood samples. Functional outcome was assessed using the modified Rankin Scale (mRS) at 3 months. A significant negative correlation between GOT and glutamate levels at admission was shown in those patients with sTWEAK levels > 2900 pg/mL (Pearson's correlation coefficient: -0.249; p < 0.0001). This correlation was also observed in patients with and without leukoaraiosis (Pearson's correlation coefficients: -0.299; p < 0.001 vs. -0.116; p = 0.024). The logistic regression model confirmed the association of higher levels of GOT with lower odds of poor outcome at 3 months when sTWEAK levels were >2900 pg/mL (OR: 0.41; CI 95%: 0.28-0.68; p < 0.0001) or with leukoaraiosis (OR: 0.75; CI 95%: 0.69-0.82; p < 0.0001). GOT levels are associated with glutamate levels and functional outcomes at 3 months, but only in those patients with leukoaraiosis and elevated sTWEAK levels. Consequently, therapies targeting glutamate grabbing might be more effective in patients with BBB dysfunction.
Collapse
Grants
- SAF2017-84267-R, PDC2021-121455-I00 Spanish Ministry of Science and Innovation
- IN607A2022-03, IN607A2022/07 Xunta de Galicia
- PI17/01103, PI22/00938, PI21/01256/, DTS23/00103, RD16/0019/0001, RD21/0006/0003, CB22/05/00067, CPII17/00027, CPII19/00020, CP22/00061, FI22/00200 Instituto de Salud Carlos III
- EAPA_791/2018_ NEUROATLANTIC, 0624_2IQBIONEURO_6_E INTERREG
Collapse
Affiliation(s)
- Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
| | - Ana Sampedro-Viana
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
| | - Sabela Fernández-Rodicio
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
| | - Manuel Rodríguez-Yáñez
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain;
| | - Iria López-Dequidt
- Department of Neurology, Hospital Clínico Universitario de Ferrol, 15405 Ferrol, Spain;
| | - José M. Pumar
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
- Department of Neuroradiology, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Antonio J. Mosqueira
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
- Department of Neuroradiology, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Marcos Bazarra-Barreiros
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
| | - María Teresa Abengoza-Bello
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
| | - Sara Ortega-Espina
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
| | - Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.O.); (T.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Pérez-Mato
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.P.-M.); (F.C.)
| | - Francisco Campos
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.P.-M.); (F.C.)
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.O.); (T.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
| | - Maria Luz Alonso-Alonso
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
| | - Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
| |
Collapse
|
6
|
Hervella P, Alonso-Alonso ML, Sampedro-Viana A, Rodríguez-Yáñez M, López-Dequidt I, Pumar JM, Ouro A, Romaus-Sanjurjo D, Campos F, Sobrino T, Castillo J, Leira Y, Iglesias-Rey R. Differential blood-based biomarkers of subcortical and deep brain small vessel disease. Ther Adv Neurol Disord 2024; 17:17562864241243274. [PMID: 38827243 PMCID: PMC11143814 DOI: 10.1177/17562864241243274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/13/2024] [Indexed: 06/04/2024] Open
Abstract
Background Cerebral small vessel disease is the most common cause of lacunar strokes (LS). Understanding LS pathogenesis is vital for predicting disease severity, prognosis, and developing therapies. Objectives To research molecular profiles that differentiate LS in deep brain structures from those in subcortical white matter. Design Prospective case-control study involving 120 patients with imaging-confirmed LS and a 120 control group. Methods We examined the relationship between Alzheimer's disease biomarkers [amyloid beta (Aβ1-40, Aβ1-42)], serum inflammatory marker (interleukin-6, IL-6), and endothelial dysfunction markers [soluble tumor necrosis factor-like weak inducer of apoptosis, and pentraxin-3 (sTWEAK, PTX3)] with respect to LS occurring in deep brain structures and subcortical white matter. In addition, we investigated links between LS, leukoaraiosis presence (white matter hyperintensities, WMHs), and functional outcomes at 3 months. Poor outcome was defined as a modified Rankin scale >2 at 3 months. Results Significant differences were observed in levels of IL-6, PTX3, and sTWEAK between patients with deep lacunar infarcts and those with recent small subcortical infarcts (20.8 versus 15.6 pg/mL, p < 0.001; 7221.3 versus 4624.4 pg/mL, p < 0.0001; 2528.5 versus 1660.5 pg/mL, p = 0.001). Patients with poor outcomes at 3 months displayed notably higher concentrations of these biomarkers compared to those with good outcomes. By contrast, Aβ1-40 and Aβ1-42 were significantly lower in patients with deep LS (p < 0.0001). Aβ1-42 levels were significantly higher in patients with LS in subcortical white matter who had poor outcomes. WMH severity only showed a significant association with deep LS and correlated with sTWEAK (p < 0.0001). Conclusion The pathophysiological mechanisms of lacunar infarcts in deep brain structures seem different from those in the subcortical white matter. As a result, specific therapeutic and preventive strategies should be explored.
Collapse
Affiliation(s)
- Pablo Hervella
- Neuroimaging and Biotechnology Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria Luz Alonso-Alonso
- Neuroimaging and Biotechnology Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Sampedro-Viana
- Neuroimaging and Biotechnology Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Rodríguez-Yáñez
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | - Iria López-Dequidt
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, Santiago de Compostela, Spain
- Hospital Clínico Universitario de Ferrol, Ferrol, Spain
| | - José M. Pumar
- Neuroimaging and Biotechnology Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Neuroradiology, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alberto Ouro
- NeuroAging Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Campos
- Translational Stroke Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomás Sobrino
- NeuroAging Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Yago Leira
- Hospital Clínico Universitario, Rúa Travesa da Choupana, s/n 15706 Santiago de Compostela, Spain
- NeuroAging Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Periodontology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Hospital Clínico Universitario, Rúa Travesa da Choupana, s/n 15706 Santiago de Compostela, Spain
- Neuroimaging and Biotechnology Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
7
|
Yepes M. Fibrinolytic and Non-fibrinolytic Roles of Tissue-type Plasminogen Activator in the Ischemic Brain. Neuroscience 2024; 542:69-80. [PMID: 37574107 DOI: 10.1016/j.neuroscience.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
The neurovascular unit (NVU) is assembled by endothelial cells (ECs) and pericytes, and encased by a basement membrane (BM) surveilled by microglia and surrounded by perivascular astrocytes (PVA), which in turn are in contact with synapses. Cerebral ischemia induces the rapid release of the serine proteinase tissue-type plasminogen activator (tPA) from endothelial cells, perivascular astrocytes, microglia and neurons. Owning to its ability to catalyze the conversion of plasminogen into plasmin, in the intravascular space tPA functions as a fibrinolytic enzyme. In contrast, the release of astrocytic, microglial and neuronal tPA have a plethora of effects that not always require the generation of plasmin. In the ischemic brain tPA increases the permeability of the NVU, induces microglial activation, participates in the recycling of glutamate, and has various effects on neuronal survival. These effects are mediated by different receptors, notably subunits of the N-methyl-D-aspartate receptor (NMDAR) and the low-density lipoprotein receptor-related protein-1 (LRP-1). Here we review data on the role of tPA in the NVU under non-ischemic and ischemic conditions, and analyze how this knowledge may lead to the development of potential strategies for the treatment of acute ischemic stroke patients.
Collapse
Affiliation(s)
- Manuel Yepes
- Department of Neurology, Emory University, Atlanta, GA, USA; Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA; Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA.
| |
Collapse
|
8
|
Yao ZM, Sun XR, Huang J, Chen L, Dong SY. Astrocyte-Neuronal Communication and Its Role in Stroke. Neurochem Res 2023; 48:2996-3006. [PMID: 37329448 DOI: 10.1007/s11064-023-03966-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
Astrocytes are the most abundant glial cells in the central nervous system. These cells are an important hub for intercellular communication. They participate in various pathophysiological processes, including synaptogenesis, metabolic transformation, scar production, and blood-brain barrier repair. The mechanisms and functional consequences of astrocyte-neuron signaling are more complex than previously thought. Stroke is a disease associated with neurons in which astrocytes also play an important role. Astrocytes respond to the alterations in the brain microenvironment after stroke, providing required substances to neurons. However, they can also have harmful effects. In this review, we have summarized the function of astrocytes, their association with neurons, and two paradigms of the inflammatory response, which suggest that targeting astrocytes may be an effective strategy for treating stroke.
Collapse
Affiliation(s)
- Zi-Meng Yao
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiao-Rong Sun
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Lei Chen
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Shu-Ying Dong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China.
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, Anhui, China.
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui, China.
| |
Collapse
|
9
|
Huang Y, Wang Z, Huang ZX, Liu Z. Biomarkers and the outcomes of ischemic stroke. Front Mol Neurosci 2023; 16:1171101. [PMID: 37342100 PMCID: PMC10277488 DOI: 10.3389/fnmol.2023.1171101] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
Biomarkers are measurable substances that could be used as objective indicators for disease diagnosis, responses to treatments, and outcomes predictions. In this review, we summarized the data on a number of important biomarkers including glutamate, S100B, glial fibrillary acidic protein, receptor for advanced glycation end-products, intercellular adhesion molecule-1, von willebrand factor, matrix metalloproteinase-9, interleukin-6, tumor necrosis factor-a, activated protein C, copeptin, neuron-specific enolase, tau protein, gamma aminobutyric acid, blood glucose, endothelial progenitor cells, and circulating CD34-positive cells that could be potentially used to indicate the disease burden and/or predict clinical outcome of ischemic stroke. We examined the relationship between specific biomarkers and disease burden and outcomes and discussed the potential mechanisms underlying the relationship. The clinical significance and implications of these biomarkers were also discussed.
Collapse
Affiliation(s)
- Ying Huang
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Zhenzhen Wang
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Zhi-Xin Huang
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| |
Collapse
|
10
|
Cognitive dysfunction in SLE: An understudied clinical manifestation. J Autoimmun 2022; 132:102911. [PMID: 36127204 DOI: 10.1016/j.jaut.2022.102911] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022]
Abstract
Neuropsychiatric lupus (NPSLE) is a debilitating manifestation of SLE which occurs in a majority of SLE patients and has a variety of clinical manifestations. In the central nervous system, NPSLE may result from ischemia or penetration of inflammatory mediators and neurotoxic antibodies through the blood brain barrier (BBB). Here we focus on cognitive dysfunction (CD) as an NPSLE manifestation; it is common, underdiagnosed, and without specific therapy. For a very long time, clinicians ignored cognitive dysfunction and researchers who might be interested in the question struggled to find an approach to understanding mechanisms for this manifestation. Recent years, however, propelled by a more patient-centric approach to disease, have seen remarkable progress in our understanding of CD pathogenesis. This has been enabled through the use of novel imaging modalities and numerous mouse models. Overall, these studies point to a pivotal role of an impaired BBB and microglial activation in leading to neuronal injury. These insights suggest potential therapeutic modalities and make possible clinical trials for cognitive impairment.
Collapse
|
11
|
Diaz A, Woo Y, Martin-Jimenez C, Merino P, Torre E, Yepes M. Tissue-type plasminogen activator induces TNF-α-mediated preconditioning of the blood-brain barrier. J Cereb Blood Flow Metab 2022; 42:667-682. [PMID: 34796748 PMCID: PMC9051146 DOI: 10.1177/0271678x211060395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/15/2022]
Abstract
Ischemic tolerance is a phenomenon whereby transient exposure to a non-injurious preconditioning stimulus triggers resistance to a subsequent lethal ischemic insult. Despite the fact that not only neurons but also astrocytes and endothelial cells have a unique response to preconditioning stimuli, current research has been focused mostly on the effect of preconditioning on neuronal death. Thus, it is unclear if the blood-brain barrier (BBB) can be preconditioned independently of an effect on neuronal survival. The release of tissue-type plasminogen activator (tPA) from perivascular astrocytes in response to an ischemic insult increases the permeability of the BBB. In line with these observations, treatment with recombinant tPA increases the permeability of the BBB and genetic deficiency of tPA attenuates the development of post-ischemic edema. Here we show that tPA induces ischemic tolerance in the BBB independently of an effect on neuronal survival. We found that tPA renders the BBB resistant to an ischemic injury by inducing TNF-α-mediated astrocytic activation and increasing the abundance of aquaporin-4-immunoreactive astrocytic end-feet processes in the neurovascular unit. This is a new role for tPA, that does not require plasmin generation, and with potential therapeutic implications for patients with cerebrovascular disease.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
| | - Yena Woo
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
| | - Cynthia Martin-Jimenez
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
| | - Enrique Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
- Department of Neurology & Center for Neurodegenerative
Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Veterans Affairs Medical Center,
Atlanta, GA, USA
| |
Collapse
|
12
|
Silva‐Candal A, Custodia A, López‐Dequidt I, Rodríguez‐Yáñez M, Alonso‐Alonso ML, Ávila‐Gómez P, Pumar JM, Castillo J, Sobrino T, Campos F, Iglesias‐Rey R, Hervella P. sTWEAK
is a leukoaraiosis biomarker associated with neurovascular angiopathy. Ann Clin Transl Neurol 2022; 9:171-180. [PMID: 35060359 PMCID: PMC8862435 DOI: 10.1002/acn3.51502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Objective Leukoaraiosis (LA) refers to white matter lesions of undetermined etiology associated with the appearance and worsening of vascular pathologies. The aim is to confirm an increased frequency and intensity of LA in symptomatic patients with neurovascular pathology compared with asymptomatic subjects, and its association with circulating serum levels of soluble tumor necrosis factor‐like weak inducer of apoptosis (sTWEAK). Methods An observational study was conducted in which two groups of patients were compared. Group I (N = 242) comprised of asymptomatic subjects with arterial hypertension and/or diabetes or with a history of transient ischemic attacks, and Group II (N = 382) comprised patients with lacunar stroke or deep hemispheric intracerebral hemorrhage (ICH) of hypertensive origin. Serum levels of sTWEAK were analyzed and correlated with prevalence and intensity of LA according to the Fazekas scale. Results The prevalence of LA was higher in symptomatic (85.1%) versus asymptomatic patients (62.0%). Logistic regression model showed a significant relation of LA with neurovascular pathologies (OR: 2.69, IC 95%: 1.10–6.59, p = 0.003). When stratified according to the Fazekas scale, LA of grade II (OR: 3.53, IC 95%: 1.10–6.59, p = 0.003) and specially grade III (OR: 4.66, 95% CI: 1.09–19.84, p = 0.037) showed correlation with neurovascular pathologies. Increased sTWEAK levels were found in the symptomatic group in all LA grades (p < 0.0001), and associated with 5.06 times more risk of presenting clinical symptoms (OR: 5.06, 95% CI: 2.66–9.75, p < 0.0001). Interpretation LA showed a higher prevalence in patients with symptomatic lacunar stroke or deep hemispheric ICH. There is an association between sTWEAK levels and LA degree.
Collapse
Affiliation(s)
- Andrés Silva‐Candal
- Clinical Neurosciences Research Laboratories (LINC) Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
- Neurovascular Diseases Laboratory Neurology Service University Hospital Complex of A Coruña Biomedical Research Institute (INIBIC) A Coruña Spain
| | - Antia Custodia
- Clinical Neurosciences Research Laboratories (LINC) Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Iria López‐Dequidt
- Stroke Unit Department of Neurology Hospital Clínico Universitario Santiago de Compostela Spain
| | - Manuel Rodríguez‐Yáñez
- Stroke Unit Department of Neurology Hospital Clínico Universitario Santiago de Compostela Spain
| | - Maria Luz Alonso‐Alonso
- Clinical Neurosciences Research Laboratories (LINC) Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Paulo Ávila‐Gómez
- Clinical Neurosciences Research Laboratories (LINC) Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - José M. Pumar
- Department of Neuroradiology Hospital Clínico Universitario Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratories (LINC) Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratories (LINC) Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratories (LINC) Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Ramón Iglesias‐Rey
- Clinical Neurosciences Research Laboratories (LINC) Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Pablo Hervella
- Clinical Neurosciences Research Laboratories (LINC) Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| |
Collapse
|
13
|
Plasminogen Activators in Neurovascular and Neurodegenerative Disorders. Int J Mol Sci 2021; 22:ijms22094380. [PMID: 33922229 PMCID: PMC8122722 DOI: 10.3390/ijms22094380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
The neurovascular unit (NVU) is a dynamic structure assembled by endothelial cells surrounded by a basement membrane, pericytes, astrocytes, microglia and neurons. A carefully coordinated interplay between these cellular and non-cellular components is required to maintain normal neuronal function, and in line with these observations, a growing body of evidence has linked NVU dysfunction to neurodegeneration. Plasminogen activators catalyze the conversion of the zymogen plasminogen into the two-chain protease plasmin, which in turn triggers a plethora of physiological events including wound healing, angiogenesis, cell migration and inflammation. The last four decades of research have revealed that the two mammalian plasminogen activators, tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), are pivotal regulators of NVU function during physiological and pathological conditions. Here, we will review the most relevant data on their expression and function in the NVU and their role in neurovascular and neurodegenerative disorders.
Collapse
|
14
|
Xie Q, Ma R, Guo X, Chen H, Wang J. Benzoinum from Styrax tonkinensis (Pierre) Craib ex Hart exerts a NVU protective effect by inhibiting cell apoptosis in cerebral ischaemia rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113355. [PMID: 32891816 DOI: 10.1016/j.jep.2020.113355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Benzoinum (Styraceae) is a traditional Chinese medicine used to treat stroke and other cardio-cerebrovascular diseases for thousands of years. Benzoinum has also proven to have diverse pharmacological activity, but the neuroprotection mechanism of apoptosis in ischaemic stroke was not determined. AIM OF THIS STUDY To investigate the protective effect of a neurovascular unit (NVU) and the mechanisms of benzoinum on cerebral ischaemic rats. MATERIALS AND METHODS The neuroprotective activity of benzoinum against middle cerebral artery occlusion (MCAO)-induced cerebral ischaemic injury. Neurological scores, 2,3,5-Triphenyltetrazolium chloride (TTC) staining, and hematoxylin-eosin staining (HE) staining were conducted to evaluate the neurological damage. Infarction rate and denatured cell index (DCI) were also calculated. The ultrastructure of neuron and blood-brain-barrier (BBB) was observed by transmission electron microscopy (TEM). Immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) were used to detect Bax, Bcl-2 and Caspase 3 expression. Furthermore, Claudin 5 also was detected through immunohistochemistry. RESULTS Benzoinum could significantly improve neurological function score and reduce cerebral infarction rate and DCI. In addition, benzoinum alleviated pathomorphological change and apoptosis in the brain tissue of MCAO rats. The results of TEM and claudin 5 expression of immunohistochemistry showed that benzoinum could play a neuroprotective effect in NVU. Also, benzoinum-enhanced Bcl2, and reduced Bax and Bax/Bcl-2 and Caspase 3, suggest that benzoinum provided a neuroprotective effect by inhibited cell apoptosis. CONCLUSION Benzoinum could play a neuroprotective role and regulate apoptosis for repair and stabilisation of NVU. This anti-apoptosis activity might be associated with the downregulation of Bax and Caspase 3, and the upregulation of Bcl2. Our present findings provide a promising medication for the treatment of ischaemic stroke.
Collapse
Affiliation(s)
- Qian Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Rong Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Xiaoqing Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Hai Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Jian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Poveda J, Vázquez-Sánchez S, Sanz AB, Ortiz A, Ruilope LM, Ruiz-Hurtado G. TWEAK-Fn14 as a common pathway in the heart and the kidneys in cardiorenal syndrome. J Pathol 2021; 254:5-19. [PMID: 33512736 DOI: 10.1002/path.5631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
There is a complex relationship between cardiac and renal disease, often referred to as the cardiorenal syndrome. Heart failure adversely affects kidney function, and both acute and chronic kidney disease are associated with structural and functional changes to the myocardium. The pathological mechanisms and contributing interactions that surround this relationship remain poorly understood, limiting the opportunities for therapeutic intervention. The cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor, fibroblast growth factor-inducible 14 (Fn14), are abundantly expressed in injured kidneys and heart. The TWEAK-Fn14 axis promotes responses that drive tissue injury such as inflammation, proliferation, fibrosis, and apoptosis, while restraining the expression of tissue protective factors such as the anti-aging factor Klotho and the master regulator of mitochondrial biogenesis peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). High levels of TWEAK induce cardiac remodeling, and promote inflammation, tubular and podocyte injury and death, fibroblast proliferation, and, ultimately, renal fibrosis. Accordingly, targeting the TWEAK-Fn14 axis is protective in experimental kidney and heart disease. TWEAK has also emerged as a biomarker of kidney damage and cardiovascular outcomes and has been successfully targeted in clinical trials. In this review, we update our current knowledge of the roles of the TWEAK-Fn14 axis in cardiovascular and kidney disease and its potential contribution to the cardiorenal syndrome. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jonay Poveda
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Sara Vázquez-Sánchez
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana B Sanz
- Research Institute - Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Alberto Ortiz
- Research Institute - Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Luis M Ruilope
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,School of Doctoral Studies and Research, European University of Madrid, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
16
|
Tjensvoll AB, Lauvsnes MB, Zetterberg H, Kvaløy JT, Kvivik I, Maroni SS, Greve OJ, Beyer MK, Hirohata S, Putterman C, Alves G, Harboe E, Blennow K, Gøransson LG, Omdal R. Neurofilament light is a biomarker of brain involvement in lupus and primary Sjögren's syndrome. J Neurol 2020; 268:1385-1394. [PMID: 33128084 PMCID: PMC7990817 DOI: 10.1007/s00415-020-10290-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 01/04/2023]
Abstract
Background To test the hypothesis that neurofilament light (NfL) in CSF is a biomarker of CNS involvement in patients with systemic lupus erythematosus (SLE) and primary Sjögren’s syndrome (pSS), we measured NfL in CSF from 52 patients with lupus and 54 with pSS and explored associations with clinical, structural, immunological and biochemical abnormalities. Methods In CSF, we measured NfL, anti-P antibodies, protein S100B and TWEAK by ELISA and anti-NR2 antibodies by electrochemiluminescence. Anti-phospholipid antibodies and routine immunological tests were performed in blood. IgG and albumin were measured in CSF and serum for assessment of the blood–brain barrier function (Q-albumin) and intrathecal IgG production (IgG index). Cerebral MRI and neuropsychological testing were performed. Results A multivariable regression model showed that increasing CSF anti-NR2 antibody levels were associated with increasing NfL levels in patients with SLE (B 1.27, 95% CI 0.88–1.65, p < 0.001). Age contributed significantly in the model (B 0.04, 95% CI 0.03–0.05, p < 0.001). Similar findings were observed in the pSS group. Adjusted for age and sex, no associations were found between NfL levels and any MRI data. In SLE patients, higher NfL concentrations were associated with impairments in psychomotor speed and motor function, and in pSS with motor dysfunction. These associations remained in multivariable regression models. Conclusions Increased concentration of NfL in CSF is a marker of cerebral involvement in patients with SLE and pSS, is strongly associated with the presence of anti-NR2 antibodies, and correlates with cognitive impairment in several domains. Electronic supplementary material Supplementary information is available for this paper at 10.1007/s00415-020-10290-y.
Collapse
Affiliation(s)
- Anne B Tjensvoll
- Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Maria B Lauvsnes
- Department of Internal Medicine, Clinical Immunology Unit, Stavanger University Hospital, POB 8100, 4068, Stavanger, Norway
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy At the University of Gothenburg, Mölndal, Sweden.,UK Dementia Research Institute At UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Jan T Kvaløy
- Research Department, Stavanger University Hospital, Stavanger, Norway.,Department of Mathematics and Physics, University of Stavanger, Stavanger, Norway
| | - Ingeborg Kvivik
- Research Department, Stavanger University Hospital, Stavanger, Norway
| | - Stian S Maroni
- Clinical Neuropsychology Unit, Division of Psychiatry, Stavanger University Hospital, Stavanger, Norway
| | - Ole J Greve
- Department of Radiology, Stavanger University Hospital, Stavanger, Norway
| | - Mona K Beyer
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Shunsei Hirohata
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0374, Japan
| | - Chaim Putterman
- Division of Rheumatology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.,Azrieli School of Medicine Bar-Ilan University, Zefat, Israel.,Galilee Medical Center Research Institute, Nahariya, Israel
| | - Guido Alves
- The Norwegian Centre for Movement Disorders and Department of Neurology, Stavanger University Hospital, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Erna Harboe
- Department of Internal Medicine, Clinical Immunology Unit, Stavanger University Hospital, POB 8100, 4068, Stavanger, Norway
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy At the University of Gothenburg, Mölndal, Sweden
| | - Lasse G Gøransson
- Department of Internal Medicine, Clinical Immunology Unit, Stavanger University Hospital, POB 8100, 4068, Stavanger, Norway.,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Roald Omdal
- Department of Internal Medicine, Clinical Immunology Unit, Stavanger University Hospital, POB 8100, 4068, Stavanger, Norway. .,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
17
|
Kiliç F, Işik Ü, Usta A, Demirdaş A. Serum tumor necrosis factor-like weak inducer of apoptosis levels are elevated in schizophrenia. ACTA ACUST UNITED AC 2020; 43:242-246. [PMID: 32785454 PMCID: PMC8136394 DOI: 10.1590/1516-4446-2020-0950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/02/2020] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The purpose of this study was to assess serum Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) concentrations to determine whether changes in patients with schizophrenia could have etiopathogenetic importance. Since very little research has addressed the connection between the inflammatory marker TWEAK and schizophrenia, we wanted to examine alterations of TWEAK and investigate the possible correlation between clinical symptomatology and serum concentrations. METHODS A total of 45 schizophrenia patients and 40 healthy controls were included in this study. The Positive Symptom Assessment scale and the Negative Symptom Assessment scale were administered to determine symptom severity. Venous blood samples were collected and serum TWEAK levels were measured. RESULTS Serum TWEAK levels were significantly higher in the schizophrenia group than the control group, independently of potential confounders, including sex, age, body mass index and smoking status. CONCLUSION The results indicate that TWEAK is elevated in schizophrenia patients, which could deepen our understanding of the role of inflammation in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Faruk Kiliç
- Department of Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| | - Ümit Işik
- Department of Child and Adolescent Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| | - Ayşe Usta
- Department of Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| | - Arif Demirdaş
- Department of Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| |
Collapse
|
18
|
Tumor Necrosis Factor-Like Weak Inducer of Apoptosis (TWEAK) Enhances Activation of STAT3/NLRC4 Inflammasome Signaling Axis through PKCδ in Astrocytes: Implications for Parkinson's Disease. Cells 2020; 9:cells9081831. [PMID: 32759670 PMCID: PMC7464730 DOI: 10.3390/cells9081831] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/26/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
Astrocytic dysfunction has been implicated in Parkinson's disease (PD) pathogenesis. While the Tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/Fn14 signaling axis is known to play a role in PD-like neuropathology, the molecular mechanisms that govern this process remain poorly understood. Herein, we show that TWEAK levels are elevated in PD serum compared to controls. Moreover, using both U373 human astrocyte cells and primary mouse astrocytes, we demonstrate that TWEAK induces mitochondrial oxidative stress as well as protein kinase C delta (PKCδ) and signal transducer and activator of transcription 3 (STAT3) activation, accompanied by NLRC4 inflammasome activation and upregulation and release of proinflammatory cytokines, including IL-1β, TNF-α, and IL-18. Mechanistically, TWEAK-induced PKCδ activation enhances the STAT3/NLRC4 signaling pathway and other proinflammatory mediators through a mitochondrial oxidative stress-dependent mechanism. We further show that PKCδ knockdown and mito-apocynin, a mitochondrial antioxidant, suppress TWEAK-induced proinflammatory NLRC4/STAT3 signaling and cellular oxidative stress response. Notably, we validated our in vitro findings in an MPTP mouse model of PD and in mice receiving intrastriatal administration of TWEAK. These results indicate that TWEAK is a key regulator of astroglial reactivity and illustrate a novel mechanism by which mitochondrial oxidative stress may influence dopaminergic neuronal survival in PD.
Collapse
|
19
|
Wang M, Xie Z, Xu J, Feng Z. TWEAK/Fn14 axis in respiratory diseases. Clin Chim Acta 2020; 509:139-148. [PMID: 32526219 DOI: 10.1016/j.cca.2020.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 02/08/2023]
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a well known multifunctional cytokine extensively distributed in cell types and tissues. Accumulating evidence has shown that TWEAK binding to the receptor factor-inducible 14 (Fn14) participates in diverse pathologic processes including cell proliferation and death, angiogenesis, carcinogenesis and inflammation. Interestingly, alterations of intracellular signaling cascades are correlated to the development of respiratory disease. Recently, a several lines of evidence suggests that TWEAK in lung tissues are closely associated with these signaling pathways. In this review, we explore if TWEAK could provide a novel therapeutic strategy for managing respiratory disease in general and pulmonary arterial hypertension (PAH), obstructive sleep apnea syndrome (OSAS), asthma, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and non-small cell lung cancer (NSCLC), specifically.
Collapse
Affiliation(s)
- Min Wang
- Department of Otorhinolaryngology, University of South China Affiliated Nanhua Hospital, Hengyang 421002, China
| | - Zhijuan Xie
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Jin Xu
- School of Pharmaceutical Sciences, Changsha Medical University, Changsha 410219, Hunan, China.
| | - Zhuyu Feng
- Department of Critical Care Medicine, University of South China Affiliated Nanhua Hospital, Hengyang 421002, China.
| |
Collapse
|
20
|
Balajkova V, Olejarova M, Moravcova R, Kozelek P, Posmurova M, Hulejova H, Senolt L. Is serum TWEAK a useful biomarker of neuropsychiatric systemic lupus erythematosus? Physiol Res 2020; 69:339-346. [PMID: 32199014 DOI: 10.33549/physiolres.934308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to determine the role of the tumor necrosis factor like weak inducer of apoptosis (TWEAK) as a serum biomarker of neuropsychiatric involvement in systemic lupus erythematosus (NPSLE). Levels of TWEAK levels were measured in sera of 92 patients with systemic lupus erythematosus (SLE), including 28 patients with neuropsychiatric lupus, and in 59 healthy controls using ELISA. All SLE patients underwent rheumatological, neurological and psychiatric assessment. We found no significant differences in TWEAK levels, between SLE patients and the healthy controls (p=0.2411). Similarly, no difference was observed between subgroup of NPSLE and healthy controls (p=0.7658). The mean SLE disease activity (SLEDAI) was 13.25. No correlations between TWEAK levels with disease activity (SLEDAI, r=0.2113, p=0.2805) or the most common NPSLE manifestations such as headache (r=0.2079), seizures (r=0.1101), cerebrovascular disease (r= 0.2347), cognitive dysfunction (r=0.1597) and anxiety (r=0.1397) were observed. Our data do not support the use of serum TWEAK as a discriminating biomarker for NPSLE. The role of the TWEAK in NPSLE remains to be investigated.
Collapse
Affiliation(s)
- V Balajkova
- Department of Rheumatology, First Faculty of Medicine Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
21
|
Tumor Necrosis Factor-Like Weak Inducer of Apoptosis (TWEAK)/Fibroblast Growth Factor-Inducible 14 (Fn14) Axis in Cardiovascular Diseases: Progress and Challenges. Cells 2020; 9:cells9020405. [PMID: 32053869 PMCID: PMC7072601 DOI: 10.3390/cells9020405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of mortality in Western countries. CVD include several pathologies, such as coronary artery disease, stroke, peripheral artery disease, and aortic aneurysm, among others. All of them are characterized by a pathological vascular remodeling in which inflammation plays a key role. Interaction between different members of the tumor necrosis factor superfamily and their cognate receptors induce several biological actions that may participate in CVD. The cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its functional receptor, fibroblast growth factor-inducible 14 (Fn14), are abundantly expressed during pathological cardiovascular remodeling. The TWEAK/Fn14 axis controls a variety of cellular functions, such as proliferation, differentiation, and apoptosis, and has several biological functions, such as inflammation and fibrosis that are linked to CVD. It has been demonstrated that persistent TWEAK/Fn14 activation is involved in both vessel and heart remodeling associated with acute and chronic CVD. In this review, we summarized the role of the TWEAK/Fn14 axis during pathological cardiovascular remodeling, highlighting the cellular components and the signaling pathways that are involved in these processes.
Collapse
|
22
|
Wang D, Duan H, Feng J, Xiang J, Feng L, Liu D, Chen X, Jing L, Liu Z, Zhang D, Hao H, Yan X. Soluble CD146, a cerebrospinal fluid marker for neuroinflammation, promotes blood-brain barrier dysfunction. Am J Cancer Res 2020; 10:231-246. [PMID: 31903117 PMCID: PMC6929609 DOI: 10.7150/thno.37142] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
The blood-brain barrier (BBB) dysfunction is an initial event of various neuroinflammatory diseases. However, the absence of reliable markers and mechanisms for BBB damage greatly limits the diagnosis and treatment of neuroinflammatory diseases. Soluble CD146 (sCD146) is mainly derived from vascular endothelial cells (ECs) and highly elevated in inflammatory settings. Based on a small cohort, our previous study showed that sCD146 is elevated in the cerebrospinal fluid (CSF) of multiple sclerosis (MS), which is accompanied with BBB damage. Nevertheless, whether sCD146 monitors and regulates the BBB dysfunction remains unknown. Methods: Coupled serum and CSF samples from patients with or without neuroinflammatory diseases were collected via multicenter collaborations. sCD146 was measured by sandwich ELISA using anti-CD146 antibodies AA1 and AA98, both of which were generated in our laboratory. The correlations between sCD146 and other clinical parameters or inflammatory factors were analyzed by Spearman's correlation coefficient analysis. The role of sCD146 on BBB function was examined in an in vitro BBB model. Results: Between July 20, 2011, and February 31, 2017, we collected coupled serum and CSF samples from 823 patients, of which 562 (68.3%) had neuroinflammatory diseases, 44 (5.3%) had remitting MS, and 217 (26.4%) had non-inflammatory neurological diseases (NIND). We found that sCD146 in CSF, but not in serum, is abnormally elevated in neuroinflammatory diseases (37.3 ± 13.3 ng/mL) compared with NIND (4.7 ± 2.9 ng/mL) and remitting MS (4.6 ± 3.5 ng/mL). Abnormally elevated CSF sCD146 is significantly correlated with the hyperpermeability-related clinical parameters of BBB and neuroinflammation-related factors. Moreover, CSF sCD146 shows higher sensitivity and specificity for evaluating BBB damage. Using an in vitro BBB model, we found that sCD146 impairs BBB function by promoting BBB permeability via an association with integrin αvβ1. Blocking integrin αvβ1 significantly attenuates sCD146-induced hyperpermeability of the BBB. Conclusion: Our study provides convincing evidence that CSF sCD146 is a sensitive marker of BBB damage and neuroinflammation. Furthermore, sCD146 is actively involved in BBB dysfunction.
Collapse
|
23
|
Xiao G, Lyu M, Wang Y, He S, Liu X, Ni J, Li L, Fan G, Han J, Gao X, Wang X, Zhu Y. Ginkgo Flavonol Glycosides or Ginkgolides Tend to Differentially Protect Myocardial or Cerebral Ischemia-Reperfusion Injury via Regulation of TWEAK-Fn14 Signaling in Heart and Brain. Front Pharmacol 2019; 10:735. [PMID: 31333457 PMCID: PMC6624656 DOI: 10.3389/fphar.2019.00735] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022] Open
Abstract
Shuxuening injection (SXNI), one of the pharmaceutical preparations of Ginkgo biloba extract, has significant effects on both ischemic stroke and heart diseases from bench to bedside. Its major active ingredients are ginkgo flavonol glycosides (GFGs) and ginkgolides (GGs). We have previously reported that SXNI as a whole protected ischemic brain and heart, but the active ingredients and their contribution to the therapeutic effects remain unclear. Therefore, we combined experimental and network analysis approach to further explore the specific effects and underlying mechanisms of GFGs and GGs of SXNI on ischemia–reperfusion injury in mouse brain and heart. In the myocardial ischemia–reperfusion injury (MIRI) model, pretreatment with GFGs at 2.5 ml/kg was superior to the same dose of GGs in improving cardiac function and coronary blood flow and reducing the levels of lactate dehydrogenase and aspartate aminotransferase in serum, with an effect similar to that achieved by SXNI. In contrast, pretreatment with GGs at 2.5 ml/kg reduced cerebral infarction area and cerebral edema similarly to that of SXNI but more significantly compared with GFGs in cerebral ischemia–reperfusion injury (CIRI) model. Network pharmacology analysis of GFGs and GGs revealed that tumor necrosis factor-related weak inducer of apoptosis (TWEAK)–fibroblast growth factor-inducible 14 (Fn14) signaling pathway as an important common mechanism but with differential targets in MIRI and CIRI. In addition, immunohistochemistry and enzyme linked immunosorbent assay (ELISA) assays were performed to evaluate the regulatory roles of GFGs and GGs on the common TWEAK–Fn14 signaling pathway to protect the heart and brain. Experimental results confirmed that TWEAK ligand and Fn14 receptor were downregulated by GFGs to mitigate MIRI in the heart while upregulated by GGs to improve CIRI in the brain. In conclusion, our study showed that GFGs and GGs of SXNI tend to differentially protect brain and heart from ischemia–reperfusion injuries at least in part by regulating a common TWEAK–Fn14 signaling pathway.
Collapse
Affiliation(s)
- Guangxu Xiao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Ming Lyu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medicial Sciences, Beijing, China
| | - Yule Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Shuang He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Xinyan Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Jingyu Ni
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jihong Han
- College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China; College of Biomedical Engineering, Hefei University of Technology, Hefei, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| |
Collapse
|
24
|
Fn14 Participates in Neuropathic Pain Through NF-κB Pathway in Primary Sensory Neurons. Mol Neurobiol 2019; 56:7085-7096. [PMID: 30976982 DOI: 10.1007/s12035-019-1545-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/12/2019] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factor-inducible-14 (Fn14), a receptor for tumor necrosis-like weak inducer of apoptosis, is expressed in the neurons of dorsal root ganglion (DRG). Its mRNA is increased in the injured DRG following peripheral nerve injury. Whether this increase contributes to neuropathic pain is unknown. We reported here that peripheral nerve injury caused by spinal nerve ligation (SNL) increased the expression of Fn14 at both protein and mRNA levels in the injured DRG. Blocking this increase attenuated the development of SNL-induced mechanical, thermal, and cold pain hypersensitivities. Conversely, mimicking this increase produced the increases in the levels of phosphorylated extracellular signal-regulated kinase ½ and glial fibrillary acidic protein in ipsilateral dorsal horn and the enhanced responses to mechanical, thermal, and cold stimuli in the absence of SNL. Mechanistically, the increased Fn14 activated the NF-κB pathway through promoting the translocation of p65 into the nucleus of the injured DRG neurons. Our findings suggest that Fn14 may be a potential target for the therapeutic treatment of peripheral neuropathic pain.
Collapse
|
25
|
Maarouf A, Stephan D, Ranjeva MP, Ranjeva JP, Pelletier J, Audoin B, Khrestchatisky M, Desplat-Jégo S. High levels of serum soluble TWEAK are associated with neuroinflammation during multiple sclerosis. J Transl Med 2019; 17:51. [PMID: 30786899 PMCID: PMC6381647 DOI: 10.1186/s12967-019-1789-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/04/2019] [Indexed: 11/28/2022] Open
Abstract
Background Inflammation and demyelination are the main processes in multiple sclerosis. Nevertheless, to date, blood biomarkers of inflammation are lacking. TWEAK, a transmembrane protein that belongs to the TNF ligand family, has been previously identified as a potential candidate. Methods Twenty-eight patients (9 males, 19 females) were prospectively included after a first clinical episode suggestive of multiple sclerosis and clinically followed during 3 years. Fifty-seven healthy controls were also included. TWEAK serum levels and MRI exams including magnetization transfer imaging were performed at baseline, 6- and 12-month follow-up. Results TWEAK serum levels were significantly increased in the patient group (mean baseline = 1086 ± 493 pg/mL, mean M6 = 624 ± 302 pg/mL and mean M12 = 578 ± 245 pg/mL) compared to healthy controls (mean = 467 ± 177 pg/mL; respectively p < 0.0001, 0.01 and 0.06). Serum levels of soluble TWEAK were significantly increased during relapses, compared to time periods without any relapse (respectively 935 ± 489 pg/mL and 611 ± 292 pg/mL, p = 0.0005). Moreover, patients presenting at least one gadolinium-enhanced CNS lesion at baseline (n = 7) displayed significantly increased serum TWEAK levels in comparison with patients without any gadolinium-enhanced lesion at baseline (n = 21) (respectively 1421 ± 657 pg/mL vs 975 ± 382 pg/mL; p = 0.02). Finally, no correlation was evidenced between TWEAK serum levels and the extent of brain tissue damage assessed by magnetization transfer ratio. Conclusions The present study showed that TWEAK serum levels are increased in MS patients, in relation to the disease activity. This simple and reproducible serum test could be used as a marker of ongoing inflammation, contributing in the follow-up and the care of MS patients. Thus, TWEAK is a promising serum marker of the best window to perform brain MRI, optimizing the disease control in patients.
Collapse
Affiliation(s)
- Adil Maarouf
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.,Assistance Publique-Hôpitaux de Marseille, Hôpital de la Timone, CEMEREM, Marseille, France.,Assistance Publique-Hôpitaux de Marseille, Hôpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | - Delphine Stephan
- Aix-Marseille Université, CNRS, Faculté de Médecine, Institut de NeuroPhysiopathologie (INP), Inst Neurophysiopathol, 51 Bd P. Drammard, 13015, Marseille, France
| | - Marie-Pierre Ranjeva
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.,Assistance Publique-Hôpitaux de Marseille, Hôpital de la Timone, CEMEREM, Marseille, France.,Assistance Publique-Hôpitaux de Marseille, Hôpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | | | - Jean Pelletier
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.,Assistance Publique-Hôpitaux de Marseille, Hôpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | - Bertrand Audoin
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.,Assistance Publique-Hôpitaux de Marseille, Hôpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | - Michel Khrestchatisky
- Aix-Marseille Université, CNRS, Faculté de Médecine, Institut de NeuroPhysiopathologie (INP), Inst Neurophysiopathol, 51 Bd P. Drammard, 13015, Marseille, France
| | - Sophie Desplat-Jégo
- Aix-Marseille Université, CNRS, Faculté de Médecine, Institut de NeuroPhysiopathologie (INP), Inst Neurophysiopathol, 51 Bd P. Drammard, 13015, Marseille, France. .,Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, Pôle de Biologie, Service d'Immunologie, 13005, Marseille, France.
| |
Collapse
|
26
|
Liu L, Liu X. Contributions of Drug Transporters to Blood-Brain Barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:407-466. [PMID: 31571171 DOI: 10.1007/978-981-13-7647-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood-brain interfaces comprise the cerebral microvessel endothelium forming the blood-brain barrier (BBB) and the epithelium of the choroid plexuses forming the blood-cerebrospinal fluid barrier (BCSFB). Their main functions are to impede free diffusion between brain fluids and blood; to provide transport processes for essential nutrients, ions, and metabolic waste products; and to regulate the homeostasis of central nervous system (CNS), all of which are attributed to absent fenestrations, high expression of tight junction proteins at cell-cell contacts, and expression of multiple transporters, receptors, and enzymes. Existence of BBB is an important reason that systemic drug administration is not suitable for the treatment of CNS diseases. Some diseases, such epilepsy, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and diabetes, alter BBB function via affecting tight junction proteins or altering expression and function of these transporters. This chapter will illustrate function of BBB, expression of transporters, as well as their alterations under disease status.
Collapse
Affiliation(s)
- Li Liu
- China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
27
|
Leira Y, Rodríguez‐Yáñez M, Arias S, López‐Dequidt I, Campos F, Sobrino T, D'Aiuto F, Castillo J, Blanco J. Periodontitis is associated with systemic inflammation and vascular endothelial dysfunction in patients with lacunar infarct. J Periodontol 2018; 90:465-474. [DOI: 10.1002/jper.18-0560] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Yago Leira
- Periodontology UnitFaculty of Medicine and OdontologyUniversity of Santiago de CompostelaMedical‐Surgical Dentistry (OMEQUI) Research GroupHealth Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
- Periodontology UnitUCL Eastman Dental Institute and HospitalUniversity College London London UK
| | - Manuel Rodríguez‐Yáñez
- Clinical Neurosciences Research LaboratoryDepartment of NeurologyClinical University HospitalHealth Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Susana Arias
- Clinical Neurosciences Research LaboratoryDepartment of NeurologyClinical University HospitalHealth Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Iria López‐Dequidt
- Clinical Neurosciences Research LaboratoryDepartment of NeurologyClinical University HospitalHealth Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Francisco Campos
- Clinical Neurosciences Research LaboratoryDepartment of NeurologyClinical University HospitalHealth Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research LaboratoryDepartment of NeurologyClinical University HospitalHealth Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Francesco D'Aiuto
- Periodontology UnitUCL Eastman Dental Institute and HospitalUniversity College London London UK
| | - José Castillo
- Clinical Neurosciences Research LaboratoryDepartment of NeurologyClinical University HospitalHealth Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Juan Blanco
- Periodontology UnitFaculty of Medicine and OdontologyUniversity of Santiago de CompostelaMedical‐Surgical Dentistry (OMEQUI) Research GroupHealth Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| |
Collapse
|
28
|
Lauvsnes MB, Tjensvoll AB, Maroni SS, Kvivik I, Grimstad T, Greve OJ, Harboe E, Gøransson LG, Putterman C, Omdal R. The blood-brain barrier, TWEAK, and neuropsychiatric involvement in human systemic lupus erythematosus and primary Sjögren's syndrome. Lupus 2018; 27:2101-2111. [PMID: 30282561 DOI: 10.1177/0961203318804895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE A prevailing hypothesis for neuropsychiatric involvement in systemic lupus erythematosus (SLE) and primary Sjögren's syndrome is that brain reactive autoantibodies enter the brain through a disrupted blood-brain barrier. Our aim was to investigate whether TNF-like weak inducer of apoptosis (TWEAK) plays a role in cerebral involvement in human SLE and primary Sjögren's syndrome, and whether an impaired blood-brain barrier is a prerequisite for neuropsychiatric manifestations. METHODS TWEAK was measured in the cerebrospinal fluid and serum and compared with markers of blood-brain barrier permeability (Q-albumin and MRI contrast-enhanced lesions) and S100B, an astrocyte activation marker in 50 SLE and 52 primary Sjögren's syndrome patients. Furthermore, we estimated the general intrathecal B-cell activation (IgG index), measured anti-NR2 antibodies in cerebrospinal fluid, and explored whether these variables were associated with neuropsychiatric manifestations. RESULTS No associations were found between TWEAK in the cerebrospinal fluid or serum and neuropsychiatric manifestations in SLE nor in primary Sjögren's syndrome patients. Furthermore, no associations were found between neuropsychiatric manifestations and indicators of blood-brain barrier integrity or astroglial activity. Anti-NR2 antibodies were associated with impaired visuospatial processing (odds ratio 4.9, P = 0.03) and motor functioning (odds ratio 6.0, P = 0.006). CONCLUSION No clinical neuropsychiatric manifestations could be attributed to impaired integrity of the blood-brain barrier, or to TWEAK levels in cerebrospinal fluid or serum in either patient group. The TWEAK concentration was considerably higher in the cerebrospinal fluid than in blood, which indicates intrathecal production. We hypothesize that increased TWEAK and S100B result from immunological stress caused by brain-reactive antibodies produced by brain residing immune cells.
Collapse
Affiliation(s)
- M B Lauvsnes
- 1 Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway
| | - A B Tjensvoll
- 2 Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - S S Maroni
- 3 Clinical Neuropsychology Unit, Stavanger University Hospital, Stavanger, Norway
| | - I Kvivik
- 4 Research Department, Stavanger University Hospital, Stavanger, Norway
| | - T Grimstad
- 1 Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway
| | - O J Greve
- 5 Department of Radiology, Stavanger University Hospital, Stavanger, Norway
| | - E Harboe
- 1 Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway
| | - L G Gøransson
- 1 Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway.,6 Department of Clinical Science, University of Bergen, Bergen, Norway
| | - C Putterman
- 7 Division of Rheumatology, Albert Einstein College of Medicine and Montefiore Medical Center, New York, USA
| | - R Omdal
- 1 Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway.,6 Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
29
|
Kichev A, Baburamani AA, Vontell R, Gressens P, Burkly L, Thornton C, Hagberg H. TWEAK Receptor Deficiency Has Opposite Effects on Female and Male Mice Subjected to Neonatal Hypoxia-Ischemia. Front Neurol 2018; 9:230. [PMID: 29706927 PMCID: PMC5906546 DOI: 10.3389/fneur.2018.00230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a multifunctional cytokine member of the TNF family. TWEAK binds to its only known receptor, Fn14, enabling it to activate downstream signaling processes in response to tissue injury. The aim of this study was to investigate the role of TWEAK signaling in neonatal hypoxia–ischemia (HI). We found that after neonatal HI, both TWEAK and Fn14 expression were increased to a greater extent in male compared with female mice. To assess the role of TWEAK signaling after HI, the size of the injury was measured in neonatal mice genetically deficient in Fn14 and compared with their wild-type and heterozygote littermates. A significant sex difference in the Fn14 knockout (KO) animals was observed. Fn14 gene KO was beneficial in females; conversely, reducing Fn14 expression exacerbated the brain injury in male mice. Our findings indicate that the TWEAK/Fn14 pathway is critical for development of hypoxic–ischemic brain injury in immature animals. However, as the responses are different in males and females, clinical implementation depends on development of sex-specific therapies.
Collapse
Affiliation(s)
- Anton Kichev
- Perinatal Brain Injury Group, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Ana A Baburamani
- Perinatal Brain Injury Group, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Regina Vontell
- Perinatal Brain Injury Group, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Pierre Gressens
- Perinatal Brain Injury Group, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom.,PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Linda Burkly
- Department of Neuroinflammation, Biogen, Cambridge, MA, United States
| | - Claire Thornton
- Perinatal Brain Injury Group, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Henrik Hagberg
- Perinatal Brain Injury Group, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom.,Perinatal Center, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Perinatal Center, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
Gupta P, Dutta P. Landscape of Molecular Events in Pituitary Apoplexy. Front Endocrinol (Lausanne) 2018; 9:107. [PMID: 29615979 PMCID: PMC5869273 DOI: 10.3389/fendo.2018.00107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
Apoplectic pituitary adenomas cause significant morbidity and even mortality. The pituitary apoplexy denotes a pituitary adenoma presenting with hemorrhage and/or infarction, implementation in remedial effects of various of drugs in pituitary apoplexy is a promising pharmacogenomic field in the near future adenoma treatment. Indisputably, this is an important horizon for complicated pituitary adenomas. In a pituitary adenoma, the interplay between genetic, cytokine, and growth factors promotes the pathogenic transformation into an apoplectic formation. However, till date, little is known about how all these factors together lead to the pathogenesis of apoplectic pituitary. The vascular endothelial growth factor, tumor necrosis factor-α (TNF-α), pituitary tumor-transforming gene (PTTG), matrix metalloproteinase-2/9 (MMP-2/9), proliferating marker (Ki-67), as well as hypoxia-inducing factor are the major contributing factors involved in pituitary apoplexy. The molecular mechanism involved in pituitary apoplexy has never been described so far. In this review, we discuss the various proteins/cytokines/growth factors and signaling molecules which are involved in the pathogenesis of pituitary apoplexy and their potential role as biomarkers or as therapeutic targets.
Collapse
Affiliation(s)
- Prakamya Gupta
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pinaki Dutta
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- *Correspondence: Pinaki Dutta,
| |
Collapse
|
31
|
Bo L, Wei B, Wang Z, Li C, Gao Z, Miao Z. Bioinformatic analysis of gene expression profiling of intracranial aneurysm. Mol Med Rep 2017; 17:3473-3480. [PMID: 29328431 PMCID: PMC5802158 DOI: 10.3892/mmr.2017.8367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 04/04/2017] [Indexed: 01/22/2023] Open
Abstract
Intracranial aneurysm (IA) is a severe clinical condition of primary concern and currently, there is no effective therapeutic reagent. The present study aimed to investigate the molecular mechanism of IA via bioinformatic analysis. Various gene expression profiles (GSE26969) were downloaded from the Gene Expression Omnibus database, including 3 IA and 3 normal superficial temporal artery samples. Firstly, the limma package in R language was used to identify differentially expressed genes (DEGs; P-value <0.01 and |log2 FC|≥1). Secondly, the database for annotation, visualization and integrated discovery software was utilized to perform pathway and functional enrichment analyses (false discovery rate ≤0.05). Finally, protein-protein interaction (PPI) network and sub-network clustering analyses were performed using the biomolecular interaction network database and ClusterONE software, respectively. Following this, a transcription factor regulatory network was identified from the PPI network. A total of 1,124 DEGs were identified, of which 989 were upregulated and 135 downregulated. Pathway and functional enrichment analyses revealed that the DEGs primarily participated in RNA splicing, functioning of the spliceosome, RNA processing and the mRNA metabolic process. Following PPI network analysis, 1 hepatocyte nuclear factor (HNF) 4A (transcription factor)-centered regulatory network and 5 DEG-centered sub-networks were identified. On analysis of the transcription factor regulatory network, 6 transcription factors (HNF6, HNF4A, E2F4, YY1, H4 and H31T) and a regulatory pathway (HNF6-HNF4-E2F4) were identified. The results of the present study suggest that activating transcription factor-5, Jun proto-oncogene, activator protein-1 transcription factor subunit, HNF6, HNF4 and E2F4 may participate in IA progression via vascular smooth muscle cell apoptosis, inflammation, vessel wall remodeling and damage and the tumor necrosis factor-β signaling pathway. However, further experimental studies are required to validate these predictions.
Collapse
Affiliation(s)
- Lijuan Bo
- Department of Infection, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bo Wei
- Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhanfeng Wang
- Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Chaohui Li
- Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zheng Gao
- Department of Neurosurgery, Dandong First Hospital, Dandong, Liaoning 118000, P.R. China
| | - Zhuang Miao
- Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
32
|
Boulamery A, Desplat-Jégo S. Regulation of Neuroinflammation: What Role for the Tumor Necrosis Factor-Like Weak Inducer of Apoptosis/Fn14 Pathway? Front Immunol 2017; 8:1534. [PMID: 29201025 PMCID: PMC5696327 DOI: 10.3389/fimmu.2017.01534] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/27/2017] [Indexed: 12/25/2022] Open
Abstract
Observed in many central nervous system diseases, neuroinflammation (NI) proceeds from peripheral immune cell infiltration into the parenchyma, from cytokine secretion and from oxidative stress. Astrocytes and microglia also get activated and proliferate. NI manifestations and consequences depend on its context and on the acute or chronic aspect of the disease. The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/Fn14 pathway has been involved in chronic human inflammatory pathologies such as neurodegenerative, autoimmune, or malignant diseases. New data now describe its regulatory effects in tissues or fluids from patients with neurological diseases. In this mini-review, we aim to highlight the role of TWEAK/Fn14 in modulating NI in multiple sclerosis, neuropsychiatric systemic lupus erythematosus, stroke, or glioma. TWEAK/Fn14 can modulate NI by activating canonical and non-canonical nuclear factor-κB pathways but also by stimulating mitogen-activated protein kinase signaling. These downstream activations are associated with (i) inflammatory cytokine, chemokine and adhesion molecule expression or release, involved in NI propagation, (ii) matrix-metalloproteinase 9 secretion, implicated in blood–brain barrier disruption and tissue remodeling, (iii) astrogliosis and microgliosis, and (iv) migration of tumor cells in glioma. In addition, we report several animal and human studies pointing to TWEAK as an attractive therapeutic target.
Collapse
Affiliation(s)
- Audrey Boulamery
- Aix-Marseille University, CNRS, NICN, Marseille, France.,AP-HM, Hôpital Sainte-Marguerite, Centre Antipoison et de Toxicovigilance, Marseille, France
| | - Sophie Desplat-Jégo
- Aix-Marseille University, CNRS, NICN, Marseille, France.,Service d'Immunologie, Hôpital de la Conception, Marseille, France
| |
Collapse
|
33
|
Li Z, Shen Z, Du L, He J, Chen S, Zhang J, Luan Y, Fu G. Fn14 is regulated via the RhoA pathway and mediates nuclear factor-kappaB activation by Angiotensin II. Am J Transl Res 2016; 8:5386-5398. [PMID: 28078010 PMCID: PMC5209490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/06/2016] [Indexed: 06/06/2023]
Abstract
Angiotesin II (Ang II) plays an important role in cardiac remodeling. Fibroblast growth factor inducible-14 (Fn14) is the smallest member of the tumor necrosis factor superfamily of receptors. Currently, little is known about the functional role of Fn14 in the heart. Chiefly, we observe the up-regulation of extracellular matrix in in vivo model. We therefore assess the expression and regulation of Fn14 in cardiomyocytes and in vivo models induced by Ang II. In order to study the regulation of Fn14, cardiac remodeling was established in rats and neonatal cardiomyocytes were used in in vitro model. As well, Ang II is able to strongly induce Fn14 expression in in vivo and in vitro models. Fn14 is mediated via RhoA pathways, since siRNA against RhoA prevented the expression of Fn14 in cardiomyocytes. Pretreatment of cardiomyoctes with siRNA against NF-κB and IκBα also decreased Fn14 expression induced by Ang II. We here describe for the first time Ang II regulation of Fn14 in in vivo and in vitro models via RhoA, NF-κB and NF-κB driven gene signaling pathway. In conclusion, Fn14 may be important in regulating the process of cardiac remodeling induced by Ang II.
Collapse
Affiliation(s)
- Zhengwei Li
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Zhida Shen
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Lailing Du
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Jialin He
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Shengyu Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Jiefang Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Yi Luan
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| |
Collapse
|
34
|
Wen J, Chen CH, Stock A, Doerner J, Gulinello M, Putterman C. Intracerebroventricular administration of TNF-like weak inducer of apoptosis induces depression-like behavior and cognitive dysfunction in non-autoimmune mice. Brain Behav Immun 2016; 54:27-37. [PMID: 26721417 PMCID: PMC4828298 DOI: 10.1016/j.bbi.2015.12.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 12/11/2022] Open
Abstract
Fn14, the sole known signaling receptor for the TNF family member TWEAK, is inducibly expressed in the central nervous system (CNS) in endothelial cells, astrocytes, microglia, and neurons. There is increasing recognition of the importance of the TWEAK/Fn14 pathway in autoimmune neurologic conditions, including experimental autoimmune encephalomyelitis and neuropsychiatric lupus. Previously, we had found that Fn14 knockout lupus-prone MRL/lpr mice display significantly attenuated neuropsychiatric manifestations. To investigate whether this improvement in disease is secondary to inhibition of TWEAK/Fn14 signaling within the CNS or the periphery, and determine whether TWEAK-mediated neuropsychiatric effects are strain dependent, we performed intracerebroventricular (ICV) injection of Fc-TWEAK or an isotype matched control protein to C57Bl6/J non-autoimmune mice. We found that Fc-TWEAK injected C57Bl6/J mice developed significant depression-like behavior and cognitive dysfunction. Inflammatory mediators associated with lupus brain disease, including CCL2, C3, and iNOS, were significantly elevated in the brains of Fc-TWEAK treated mice. Furthermore, Fc-TWEAK directly increased blood brain barrier (BBB) permeability, as demonstrated by increased IgG deposition in the brain and reduced aquaporin-4 expression. Finally, Fc-TWEAK increased apoptotic cell death in the cortex and hippocampus. In conclusion, TWEAK can contribute to lupus-associated neurobehavioral deficits including depression and cognitive dysfunction by acting within the CNS to enhance production of inflammatory mediators, promote disruption of the BBB, and induce apoptosis in resident brain cells. Our study provides further support that the TWEAK/Fn14 signaling pathway may be a potential therapeutic target for inflammatory diseases involving the CNS.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Blood-Brain Barrier/metabolism
- Brain/metabolism
- Cognitive Dysfunction/chemically induced
- Cytokine TWEAK
- Depression/chemically induced
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Injections, Intraventricular
- Lupus Erythematosus, Systemic/etiology
- Lupus Erythematosus, Systemic/metabolism
- Mice
- Mice, Inbred C57BL
- Neurons/metabolism
- Pregnancy
- Receptors, Tumor Necrosis Factor/physiology
- Signal Transduction/physiology
- Tumor Necrosis Factors/administration & dosage
- Tumor Necrosis Factors/metabolism
Collapse
Affiliation(s)
- Jing Wen
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Ariel Stock
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jessica Doerner
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria Gulinello
- Behavioral Core Facility, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chaim Putterman
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
35
|
Mustafa S, Martin HL, Burkly L, Costa A, Martins ML, Schwaninger M, Teismann P. The role of TWEAK/Fn14 signaling in the MPTP-model of Parkinson's disease. Neuroscience 2016; 319:116-22. [PMID: 26808775 PMCID: PMC4771015 DOI: 10.1016/j.neuroscience.2016.01.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 12/23/2015] [Accepted: 01/13/2016] [Indexed: 02/06/2023]
Abstract
The tumor necrosis factor like weak inducer of apoptosis (TWEAK) and its receptor, fibroblast growth factor-inducible 14 (Fn14), mediate inflammation and neuronal apoptosis in cerebral edema, ischemic stroke and multiple sclerosis. The downstream effectors and pathways linked to TWEAK-Fn14 signaling are strongly implicated in the pathology of Parkinson's disease (PD), thus indicating a putative role for TWEAK/Fn14 signaling in PD neurodegeneration. Using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model, we aimed to determine whether genetic ablation or pharmacologic mitigation of the TWEAK protein and its Fn14 receptor affected substantia nigra and striatum Parkinsonian pathology. Changes in endogenous TWEAK protein expression were also quantified in tissue from both MPTP-treated mice and PD human samples. TWEAK protein expression was transiently increased in the striatal tissue but remained unaltered in substantia nigra tissue of MPTP-treated mice. There was also no change of TWEAK protein levels in the substantia nigra or the striatum of human PD patients as compared to matched control subjects. Mitigating the effects of endogenous TWEAK protein using neutralizing antibody did affect MPTP-mediated neurotoxicity in the substantia nigra using the sub-acute model of MPTP (30mg/kg i.p. over five consecutive days). Neither TWEAK nor Fn14 genetic ablation led to attenuation of MPTP-toxicity in the acute model. These findings suggest that TWEAK signaling might be an aspect of MPTP-mediated neuropathology and be involved in the overall neurodegenerative pathology of PD.
Collapse
Affiliation(s)
- S Mustafa
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - H L Martin
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - L Burkly
- Department of Immunology, Biogen Idec, Inc., Cambridge, MA, United States
| | - A Costa
- Cell Death Regulation Laboratory, MRC Toxicology Unit, Leicester, United Kingdom
| | - M L Martins
- Cell Death Regulation Laboratory, MRC Toxicology Unit, Leicester, United Kingdom
| | - M Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany; Department of Pharmacology, University of Heidelberg, Germany
| | - P Teismann
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| |
Collapse
|
36
|
Fragoso-Loyo H, Atisha-Fregoso Y, Nuñez-Alvarez CA, Llorente L. Utility of TWEAK to assess neuropsychiatric disease activity in systemic lupus erhytematosus. Lupus 2015; 25:364-9. [PMID: 26466614 DOI: 10.1177/0961203315610206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/11/2015] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The purpose of this study was to assess the utility of tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) in serum and cerebrospinal fluid (CSF) as a biomarker in neuropsychiatric systemic lupus erythematosus (NPSLE). METHODS Thirty three NPSLE patients were evaluated at hospitalization and six months later. As controls, five SLE patients with septic meningitis, 51 hospitalized SLE patients without a history of neuropsychiatric (NP) manifestations and without infections, 16 SLE patients without NP manifestations (surgical-SLE), four patients with primary neuropsychiatric disorders, and 25 patients with non-autoimmune diseases were also studied. Serum and CSF samples were drawn at hospitalization, except non-NPSLE patients, in whom only serum was studied, and six months later in 19 NPSLE and 27 non-NPSLE patients. Serum and CSF TWEAK levels were measured by ELISA; values are expressed in pg/mL. RESULTS The mean ± SD age of NPSLE patients was 31 ± 13.1 years, which was similar across study groups (p = 0.54). TWEAK levels in serum were not different across the study groups. In CSF, TWEAK levels were higher in NPSLE, surgical-SLE and primary neuropsychiatric groups than in non-autoimmune patients: median (IQR) 159.2 (94.1-374.9), 172.3 (125.3-421.9), 371.3 (143-543) vs. 122.1 (76.1-212.4), respectively; all p < 0.05. Six months later, when the neuropsychiatric manifestations were clinically in remission, serum or CSF TWEAK did not vary from baseline in NPSLE patients. CONCLUSIONS TWEAK levels are slightly elevated in CSF in SLE patients compared with non-autoimmune controls, irrespective of the presence of NP manifestations. TWEAK levels in serum and CSF do not seem to be a useful biomarker of CNS involvement in SLE.
Collapse
Affiliation(s)
- H Fragoso-Loyo
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Y Atisha-Fregoso
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - C A Nuñez-Alvarez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - L Llorente
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
37
|
Sonar S, Lal G. Role of Tumor Necrosis Factor Superfamily in Neuroinflammation and Autoimmunity. Front Immunol 2015; 6:364. [PMID: 26257732 PMCID: PMC4507150 DOI: 10.3389/fimmu.2015.00364] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/05/2015] [Indexed: 12/18/2022] Open
Abstract
Tumor necrosis factor superfamily (TNFSF) molecules play an important role in the activation, proliferation, differentiation, and migration of immune cells into the central nervous system (CNS). Several TNF superfamily molecules are known to control alloimmunity, autoimmunity, and immunity. Development of transgenic and gene knockout animals, and monoclonal antibodies against TNFSF molecules have increased our understanding of individual receptor-ligand interactions, and their intracellular signaling during homeostasis and neuroinflammation. A strong clinical association has been observed between TNFSF members and CNS autoimmunity such as multiple sclerosis and also in its animal model experimental autoimmune encephalomyelitis. Therefore, they are promising targets for alternative therapeutic options to control autoimmunity. Although, TNFSF ligands are widely distributed and have diverse functions, we have restricted the discussions in this review to TNFSF receptor-ligand interactions and their role in the pathogenesis of neuroinflammation and CNS autoimmunity.
Collapse
|
38
|
TNF-like weak inducer of apoptosis promotes blood brain barrier disruption and increases neuronal cell death in MRL/lpr mice. J Autoimmun 2015; 60:40-50. [PMID: 25911200 DOI: 10.1016/j.jaut.2015.03.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/25/2015] [Accepted: 03/29/2015] [Indexed: 01/15/2023]
Abstract
Neuropsychiatric disease is one of the most common manifestations of human systemic lupus erythematosus, but the mechanisms remain poorly understood. In human brain microvascular endothelial cells in vitro, TNF-like weak inducer of apoptosis (TWEAK) decreases tight junction ZO-1 expression and increases the permeability of monolayer cell cultures. Furthermore, knockout (KO) of the TWEAK receptor, Fn14, in the MRL/lpr lupus mouse strain markedly attenuates neuropsychiatric disease, as demonstrated by significant reductions in depressive-like behavior and improved cognitive function. The purpose of the present study was to determine the mechanisms by which TWEAK signaling is instrumental in the pathogenesis of neuropsychiatric lupus (NPSLE). Evaluating brain sections of MRL/lpr Fn14WT and Fn14KO mice, we found that Fn14KO mice displayed significantly decreased cellular infiltrates in the choroid plexus. To evaluate the integrity of the blood brain barrier (BBB) in MRL/lpr mice, Western blot for fibronectin, qPCR for iNOS, and immunohistochemical staining for VCAM-1/ICAM-1 were performed. We found preserved BBB permeability in MRL/lpr Fn14KO mice, attributable to reduced brain expression of VCAM-1/ICAM-1 and iNOS. Additionally, administration of Fc-TWEAK intravenously directly increased the leakage of a tracer (dextran-FITC) into brain tissue. Furthermore, MRL/lpr Fn14KO mice displayed reduced antibody (IgG) and complement (C3, C6, and C4a) deposition in the brain. Finally, we found that MRL/lpr Fn14KO mice manifested reduced neuron degeneration and hippocampal gliosis. Our studies indicate that TWEAK/Fn14 interactions play an important role in the pathogenesis of NPSLE by increasing the accumulation of inflammatory cells in the choroid plexus, disrupting BBB integrity, and increasing neuronal damage, suggesting a novel target for therapy in this disease.
Collapse
|
39
|
Abu El-Asrar AM, De Hertogh G, Nawaz MI, Siddiquei MM, Van den Eynde K, Mohammad G, Opdenakker G, Geboes K. The Tumor Necrosis Factor Superfamily Members TWEAK, TNFSF15 and Fibroblast Growth Factor-Inducible Protein 14 Are Upregulated in Proliferative Diabetic Retinopathy. Ophthalmic Res 2015; 53:122-30. [DOI: 10.1159/000369300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 10/22/2014] [Indexed: 11/19/2022]
|
40
|
Wajant H. The TWEAK-Fn14 system as a potential drug target. Br J Pharmacol 2014; 170:748-64. [PMID: 23957828 DOI: 10.1111/bph.12337] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/29/2013] [Accepted: 08/12/2013] [Indexed: 12/27/2022] Open
Abstract
Fibroblast growth factor-inducible 14 (Fn14) is a member of the tumour necrosis factor (TNF) receptor family that is induced in a variety of cell types in situations of tissue injury. Fn14 becomes activated by TNF-like weak inducer of apoptosis (TWEAK), a typical member of the TNF ligand family. TWEAK is constitutively expressed by monocytes and some tumour cell lines and also shows cytokine inducible expression in various other cell types. Fn14 activation results in stimulation of signalling pathways culminating in the activation of NFκB transcription factors and various MAPKs but might also trigger the PI3K/Akt pathway and GTPases of the Rho family. In accordance with its tissue damage-associated expression pattern and its pleiotropic proinflammatory signalling capabilities, the TWEAK-Fn14 system has been implicated in a huge number of pathologies. The use of TWEAK- and Fn14-knockout mice identified the TWEAK-Fn14 system as a crucial player in muscle atrophy, cerebral ischaemia, kidney injury, atherosclerosis and infarction as well as in various autoimmune scenarios including experimental autoimmune encephalitis, rheumatoid arthritis and inflammatory bowel disease. Moreover, there is increasing preclinical evidence that Fn14 targeting is a useful option in tumour therapy. Based on a discussion of the signalling capabilities of TWEAK and Fn14, this review is focused on two major issues. On the one hand, on the molecular and cellular basis of the TWEAK/Fn14-related pathological outcomes in the aforementioned diseases and on the other hand, on the preclinical experience that have been made so far with TWEAK and Fn14 targeting drugs.
Collapse
Affiliation(s)
- Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
41
|
Claro S, Oshiro MEM, Mortara RA, Paredes-Gamero EJ, Pereira GJS, Smaili SS, Ferreira AT. γ-Rays-generated ROS induce apoptosis via mitochondrial and cell cycle alteration in smooth muscle cells. Int J Radiat Biol 2014; 90:914-27. [DOI: 10.3109/09553002.2014.911988] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Blanco-Colio LM. TWEAK/Fn14 Axis: A Promising Target for the Treatment of Cardiovascular Diseases. Front Immunol 2014; 5:3. [PMID: 24478772 PMCID: PMC3895871 DOI: 10.3389/fimmu.2014.00003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/03/2014] [Indexed: 11/30/2022] Open
Abstract
Cardiovascular diseases (CVD) are the first cause of mortality in Western countries. CVD include several pathologies such as coronary heart disease, stroke or cerebrovascular accident, congestive heart failure, peripheral arterial disease, and aortic aneurysm, among others. Interaction between members of the tumor necrosis factor (TNF) superfamily and their receptors elicits several biological actions that could participate in CVD. TNF-like weak inducer of apoptosis (TWEAK) and its functional receptor and fibroblast growth factor-inducible molecule 14 (Fn14) are two proteins belonging to the TNF superfamily that activate NF-κB by both canonical and non-canonical pathways and regulate several cell functions such as proliferation, migration, differentiation, cell death, inflammation, and angiogenesis. TWEAK/Fn14 axis plays a beneficial role in tissue repair after acute injury. However, persistent TWEAK/Fn14 activation mediated by blocking experiments or overexpression experiments in animal models has shown an important role of this axis in the pathological remodeling underlying CVD. In this review, we summarize the role of TWEAK/Fn14 pathway in the development of CVD, focusing on atherosclerosis and stroke and the molecular mechanisms by which TWEAK/Fn14 interaction participates in these pathologies. We also review the role of the soluble form of TWEAK as a biomarker for the diagnosis and prognosis of CVD. Finally, we highlight the results obtained with other members of the TNF superfamily that also activate canonical and non-canonical NF-κB pathway.
Collapse
|
43
|
Stock AD, Wen J, Putterman C. Neuropsychiatric Lupus, the Blood Brain Barrier, and the TWEAK/Fn14 Pathway. Front Immunol 2013; 4:484. [PMID: 24400009 PMCID: PMC3872310 DOI: 10.3389/fimmu.2013.00484] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/10/2013] [Indexed: 11/13/2022] Open
Abstract
Patients with systemic lupus erythematosus (SLE) can experience acute neurological events such as seizures, cerebrovascular accidents, and delirium, psychiatric conditions including depression, anxiety, and psychosis, as well as memory loss and general cognitive decline. Neuropsychiatric SLE (NPSLE) occurs in between 30 and 40% of SLE patients, can constitute the initial patient presentation, and may occur outside the greater context of an SLE flare. Current efforts to elucidate the mechanistic underpinnings of NPSLE are focused on several different and potentially complementary pathways, including thrombosis, brain autoreactive antibodies, and complement deposition. Furthermore, significant effort is dedicated to understanding the contribution of neuroinflammation induced by TNF, IL-1, IL-6, and IFN-γ. More recent studies have pointed to a possible role for the TNF family ligand TWEAK in the pathogenesis of neuropsychiatric disease in human lupus patients, and in a murine model of this disease. The blood brain barrier (BBB) consists of tight junctions between endothelial cells (ECs) and astrocytic projections which regulate paracellular and transcellular flow into the central nervous system (CNS), respectively. Given the privileged environment of the CNS, an important question is whether and how the integrity of the BBB is compromised in NPSLE, and its potential pathogenic role. Evidence of BBB violation in NPSLE includes changes in the albumin quotient (Qalb) between plasma and cerebrospinal fluid, activation of brain ECs, and magnetic resonance imaging. This review summarizes the evidence implicating BBB damage as an important component in NPSLE development, occurring via damage to barrier integrity by environmental triggers such as infection and stress; cerebrovascular ischemia as result of a generally prothrombotic state; and immune mediated EC activation, mediated by antibodies and/or inflammatory cytokines. Additionally, new evidence supporting the role of TWEAK/Fn14 signaling in compromising the integrity of the BBB in lupus will be presented.
Collapse
Affiliation(s)
- Ariel D Stock
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , Bronx, NY , USA
| | - Jing Wen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , Bronx, NY , USA
| | - Chaim Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , Bronx, NY , USA ; Division of Rheumatology, Albert Einstein College of Medicine , Bronx, NY , USA
| |
Collapse
|
44
|
Cheng E, Armstrong CL, Galisteo R, Winkles JA. TWEAK/Fn14 Axis-Targeted Therapeutics: Moving Basic Science Discoveries to the Clinic. Front Immunol 2013; 4:473. [PMID: 24391646 PMCID: PMC3870272 DOI: 10.3389/fimmu.2013.00473] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/06/2013] [Indexed: 01/25/2023] Open
Abstract
The TNF superfamily member TWEAK (TNFSF12) is a multifunctional cytokine implicated in physiological tissue regeneration and wound repair. TWEAK is initially synthesized as a membrane-anchored protein, but furin cleavage within the stalk region can generate a secreted TWEAK isoform. Both TWEAK isoforms bind to a small cell surface receptor named Fn14 (TNFRSF12A) and this interaction stimulates various cellular responses, including proliferation and migration. Fn14, like other members of the TNF receptor superfamily, is not a ligand-activated protein kinase. Instead, TWEAK:Fn14 engagement promotes Fn14 association with members of the TNFR associated factor family of adapter proteins, which triggers activation of various signaling pathways, including the classical and alternative NF-κB pathways. Numerous studies have revealed that Fn14 gene expression is significantly elevated in injured tissues and in most solid tumor types. Also, sustained Fn14 signaling has been implicated in the pathogenesis of cerebral ischemia, chronic inflammatory diseases, and cancer. Accordingly, several groups are developing TWEAK- or Fn14-targeted agents for possible therapeutic use in patients. These agents include monoclonal antibodies, fusion proteins, and immunotoxins. In this article, we provide an overview of some of the TWEAK/Fn14 axis-targeted agents currently in pre-clinical animal studies or in human clinical trials and discuss two other potential approaches to target this intriguing signaling node.
Collapse
Affiliation(s)
- Emily Cheng
- Department of Surgery, Center for Vascular and Inflammatory Diseases and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cheryl L. Armstrong
- Department of Surgery, Center for Vascular and Inflammatory Diseases and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebeca Galisteo
- Department of Surgery, Center for Vascular and Inflammatory Diseases and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeffrey A. Winkles
- Department of Surgery, Center for Vascular and Inflammatory Diseases and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
45
|
Pelekanou V, Notas G, Kampa M, Tsentelierou E, Stathopoulos EN, Tsapis A, Castanas E. BAFF, APRIL, TWEAK, BCMA, TACI and Fn14 proteins are related to human glioma tumor grade: immunohistochemistry and public microarray data meta-analysis. PLoS One 2013; 8:e83250. [PMID: 24376672 PMCID: PMC3869762 DOI: 10.1371/journal.pone.0083250] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 11/01/2013] [Indexed: 11/30/2022] Open
Abstract
Gliomas are common and lethal tumors of the central nervous system (CNS). Genetic alterations, inflammatory and angiogenic processes have been identified throughout tumor progression; however, treatment still remains palliative for most cases. Biological research on parameters influencing cell survival, invasion and tumor heterogeneity identified several cytokines interfering in CNS inflammation, oxidative stress and malignant transformation, including TNF-superfamily (TNFSF) members. In this report we performed a meta-analysis of public gene-array data on the expression of a group of TNFSF ligands (BAFF, APRIL, TWEAK) and their receptors (BAFF-R, TACI, BCMA, Fn14) in gliomas. In addition, we investigated by immunohistochemistry (IHC) the tumor cells' expression of these ligands and receptors in a series of 56 gliomas of different grade. We show that in IHC, BAFF and APRIL as well as their cognate receptors (BCMA, TACI) and Fn14 expression correlate with tumor grade. This result was not evidenced in micro-arrays meta-analysis. Finally, we detected for the first time Fn14, BAFF, BCMA and TACI in glioma-related vascular endothelium. Our data, combined with our previous report in glioma cell lines, suggest a role for these receptors and ligands in glioma biology and advance these molecules as potential markers for the classification of these tumors to the proliferative, angiogenic or stem-like molecular subtype.
Collapse
Affiliation(s)
- Vassiliki Pelekanou
- Laboratories of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
- Laboratories of Pathology, University of Crete, School of Medicine, Heraklion, Greece
| | - George Notas
- Laboratories of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - Marilena Kampa
- Laboratories of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | | | | | - Andreas Tsapis
- Laboratories of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
- INSERM U976, Hôpital Saint Louis, Paris, France; (4) Université Paris Diderot, Paris, France
| | - Elias Castanas
- Laboratories of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| |
Collapse
|
46
|
Abstract
The neurovascular unit (NVU) is a dynamic structure assembled by endothelial cells (EC), a basement membrane (BM), perivascular astrocytes (PA), pericytes, and surrounding neurons. The NVU regulates the passage of substances and cellular elements from the intravascular space into the brain parenchyma. This function, also known as blood-brain barrier (BBB), is regulated by the integrity of tight junctions proteins between EC, and the interaction between PA and the basal lamina. The cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) are abundantly expressed in the NVU. Here we will review data indicating that the interaction between TWEAK and Fn14 in the endothelial cell-BM-astrocyte interface regulates the function of the BBB following an ischemic/hypoxic injury, and that pharmacological inhibition of TWEAK-Fn14 is a promising target for the treatment of patients with neurological diseases that have a direct impact on the structure and function of the NVU.
Collapse
Affiliation(s)
- Manuel Yepes
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine , Atlanta, GA , USA ; Department of Neurology, Veterans Affairs Medical Center, Emory University School of Medicine , Atlanta, GA , USA
| |
Collapse
|
47
|
Nazeri A, Heydarpour P, Sadaghiani S, Sahraian MA, Burkly LC, Bar-Or A. A further TWEAK to multiple sclerosis pathophysiology. Mol Neurobiol 2013; 49:78-87. [PMID: 23873135 DOI: 10.1007/s12035-013-8490-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/13/2013] [Indexed: 12/31/2022]
Abstract
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a member of the TNF super family that controls many cellular activities including proliferation, migration, differentiation, apoptosis, and inflammation by binding to fibroblast growth factor-inducible 14 (Fn14), a highly inducible cell surface receptor. Recent studies have indicated that TWEAK-Fn14 axis signaling may contribute to chronic autoimmune diseases. TWEAK expression via microglia in cortical lesions, presence of TWEAK(+) macrophages in inflamed leptomeninges, and absence of TWEAK/Fn14 expression in healthy brain implicates importance of this pathway in pathogenesis of multiple sclerosis lesions. TWEAK-Fn14 axis blockade has also shown promise in various multiple sclerosis animal models. Stimulation of the TWEAK/Fn14 pathway can result in activation of both canonical and noncanonical NF-κB signaling and could also stimulate mitogen-activated protein kinase (MAPK) signaling pathways. Here, we have reviewed evidence of the possible role of TWEAK-Fn14 axis in pathophysiology of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE) via neuroinflammation, tissue remodeling, blood-brain barrier (BBB) disruption, neurodegeneration, and astrogliosis.
Collapse
Affiliation(s)
- Arash Nazeri
- Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
48
|
Lammens A, Baehner M, Kohnert U, Niewoehner J, von Proff L, Schraeml M, Lammens K, Hopfner KP. Crystal structure of human TWEAK in complex with the Fab fragment of a neutralizing antibody reveals insights into receptor binding. PLoS One 2013; 8:e62697. [PMID: 23667509 PMCID: PMC3648529 DOI: 10.1371/journal.pone.0062697] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/25/2013] [Indexed: 12/18/2022] Open
Abstract
The tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a multifunctional cytokine playing a key role in tissue regeneration and remodeling. Dysregulation of TWEAK signaling is involved in various pathological processes like autoimmune diseases and cancer. The unique interaction with its cognate receptor Fn14 makes both ligand and receptor promising targets for novel therapeutics. To gain insights into this important signaling pathway, we determined the structure of soluble human TWEAK in complex with the Fab fragment of an antibody selected for inhibition of receptor binding. In the crystallized complex TWEAK is bound by three Fab fragments of the neutralizing antibody. Homology modeling shows that Fab binding overlaps with the putative Fn14 binding site of TWEAK. Docking of the Fn14 cysteine rich domain (CRD) to that site generates a highly complementary interface with perfectly opposing charged and hydrophobic residues. Taken together the presented structure provides new insights into the biology of TWEAK and the TWEAK/Fn14 pathway, which will help to optimize the therapeutic strategy for treatment of related cancer types and autoimmune diseases.
Collapse
Affiliation(s)
- Alfred Lammens
- Center for Integrated Protein Science-CIPSM, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Poloxamer 188 protects neurons against ischemia/reperfusion injury through preserving integrity of cell membranes and blood brain barrier. PLoS One 2013; 8:e61641. [PMID: 23613890 PMCID: PMC3628995 DOI: 10.1371/journal.pone.0061641] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/12/2013] [Indexed: 11/19/2022] Open
Abstract
Poloxamer 188 (P188), a multiblock copolymer surfactant, has been shown to protect against ischemic tissue injury of cardiac muscle, testes and skeletal muscle, but the mechanisms have not been fully understood. In this study, we explored whether P188 had a protective effect against cerebral ischemia/reperfusion injury and its underlying mechanisms. The in vivo results showed that P188 significantly reduced the infarct volume, ameliorated the brain edema and neurological symptoms 24 h after ischemia/reperfusion. In the long-term outcome study, P188 markedly alleviated brain atrophy and motor impairments and increased survival rate in 3 weeks of post stroke period. Additionally, P188 protected cultured hippucampal HT22 cells against oxygen-glucose deprivation and reoxygenation (OGD/R) injury. The ability in membrane sealing was assessed with two fluorescent membrane-impermeant dyes. The results showed that P188 treatment significantly reduced the PI-positive cells following ischemia/reperfusion injury and repaired the HT22 cell membrane rupture induced by Triton X-100. In addition, P188 inhibited ischemia/reperfusion-induced activation of matrix metalloproteinase (MMP)-9 and leakage of Evans blue. Therefore, the present study concludes that P188 can protect against cerebral ischemia/reperfusion injury, and the protection involves multi-mechanisms in addition to the membrane resealing.
Collapse
|
50
|
Wen J, Xia Y, Stock A, Michaelson JS, Burkly LC, Gulinello M, Putterman C. Neuropsychiatric disease in murine lupus is dependent on the TWEAK/Fn14 pathway. J Autoimmun 2013; 43:44-54. [PMID: 23578591 DOI: 10.1016/j.jaut.2013.03.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/05/2013] [Accepted: 03/05/2013] [Indexed: 01/11/2023]
Abstract
Given the early onset of neuropsychiatric disease and the potential response to immunosuppressive therapy, neuropsychiatric disease is considered a primary disease manifestation in systemic lupus erythematosus (SLE). However, the pathogenesis is not fully understood and optimal treatment has yet to be determined. TWEAK is a TNF family ligand that mediates pleotropic effects through its receptor Fn14, including the stimulation of inflammatory cytokine production by astrocytes, endothelial cells, and other non-hematopeotic cell types, and induction of neuronal death. Furthermore, TWEAK-inducible mediators are implicated in neuropsychiatric lupus. Thus, we hypothesized that the TWEAK/Fn14 pathway may be involved in the pathogenesis of neuropsychiatric SLE. We generated MRL-lpr/lpr (MRL/lpr) mice deficient for Fn14, the sole known signaling receptor for TWEAK. Neuropsychiatric disease was compared in age- and gender-matched MRL/lpr Fn14 wild type (WT) and knockout (KO) mice, using a comprehensive battery of neurobehavioral tests. We found that MRL/lpr Fn14WT mice displayed profound depression-like behavior as seen by increased immobility in a forced swim test and loss of preference for sweetened fluids, which were significantly ameliorated in Fn14KO mice. Similarly, MRL/lpr Fn14WT mice had impaired cognition, and this was significantly improved in Fn14KO mice. To determine the mechanism by which Fn14 deficiency ameliorates neuropsychiatric disease, we assessed the serum levels of autoantibodies and local expression of cytokines in the cortex and hippocampus of lupus mice. No significant differences were found in the serum levels of antibodies to nuclear antigens, or autoantibodies specifically associated with neuropsychiatric disease, between MRL/lpr Fn14WT and KO mice. However, MRL/lpr Fn14KO mice had significantly decreased brain expression of RANTES, C3, and other proinflammatory mediators. Furthermore, MRL/lpr Fn14KO mice displayed improved blood brain barrier integrity. In conclusion, several central manifestations of neuropsychiatric lupus, including depression-like behavior and altered cognition, are normalized in MRL/lpr mice lacking Fn14. Our results are the first to indicate a role for the TWEAK/Fn14 pathway in the pathogenesis of neuropsychiatric lupus, and suggest this ligand-receptor pair as a potential therapeutic target for a common and dangerous disease manifestation.
Collapse
Affiliation(s)
- Jing Wen
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|