1
|
Li Q, Jia C, Wu H, Liao Y, Yang K, Li S, Zhang J, Wang J, Li G, Guan F, Leung E, Yuan Z, Hua Q, Pan RY. Nao Tan Qing ameliorates Alzheimer's disease-like pathology by regulating glycolipid metabolism and neuroinflammation: A network pharmacology analysis and biological validation. Pharmacol Res 2022; 185:106489. [DOI: 10.1016/j.phrs.2022.106489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/15/2022]
|
2
|
Monayo SM, Liu X. The Prospective Application of Melatonin in Treating Epigenetic Dysfunctional Diseases. Front Pharmacol 2022; 13:867500. [PMID: 35668933 PMCID: PMC9163742 DOI: 10.3389/fphar.2022.867500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/14/2022] [Indexed: 01/09/2023] Open
Abstract
In the past, different human disorders were described by scientists from the perspective of either environmental factors or just by genetically related mechanisms. The rise in epigenetic studies and its modifications, i.e., heritable alterations in gene expression without changes in DNA sequences, have now been confirmed in diseases. Modifications namely, DNA methylation, posttranslational histone modifications, and non-coding RNAs have led to a better understanding of the coaction between epigenetic alterations and human pathologies. Melatonin is a widely-produced indoleamine regulator molecule that influences numerous biological functions within many cell types. Concerning its broad spectrum of actions, melatonin should be investigated much more for its contribution to the upstream and downstream mechanistic regulation of epigenetic modifications in diseases. It is, therefore, necessary to fill the existing gaps concerning corresponding processes associated with melatonin with the physiological abnormalities brought by epigenetic modifications. This review outlines the findings on melatonin’s action on epigenetic regulation in human diseases including neurodegenerative diseases, diabetes, cancer, and cardiovascular diseases. It summarizes the ability of melatonin to act on molecules such as proteins and RNAs which affect the development and progression of diseases.
Collapse
|
3
|
Taccola C, Barneoud P, Cartot-Cotton S, Valente D, Schussler N, Saubaméa B, Chasseigneaux S, Cochois V, Mignon V, Curis E, Lochus M, Nicolic S, Dodacki A, Cisternino S, Declèves X, Bourasset F. Modifications of physical and functional integrity of the blood-brain barrier in an inducible mouse model of neurodegeneration. Neuropharmacology 2021; 191:108588. [PMID: 33940010 DOI: 10.1016/j.neuropharm.2021.108588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 12/28/2022]
Abstract
The inducible p25 overexpression mouse model recapitulate many hallmark features of Alzheimer's disase including progressive neuronal loss, elevated Aβ, tau pathology, cognitive dysfunction, and impaired synaptic plasticity. We chose p25 mice to evaluate the physical and functional integrity of the blood-brain barrier (BBB) in a context of Tau pathology (pTau) and severe neurodegeneration, at an early (3 weeks ON) and a late (6 weeks ON) stage of the pathology. Using in situ brain perfusion and confocal imaging, we found that the brain vascular surface area and the physical integrity of the BBB were unaltered in p25 mice. However, there was a significant 14% decrease in cerebrovascular volume in 6 weeks ON mice, possibly explained by a significant 27% increase of collagen IV in the basement membrane of brain capillaries. The function of the BBB transporters GLUT1 and LAT1 was evaluated by measuring brain uptake of d-glucose and phenylalanine, respectively. In 6 weeks ON p25 mice, d-glucose brain uptake was significantly reduced by about 17% compared with WT, without any change in the levels of GLUT1 protein or mRNA in brain capillaries. The brain uptake of phenylalanine was not significantly reduced in p25 mice compared with WT. Lack of BBB integrity, impaired BBB d-glucose transport have been observed in several mouse models of AD. In contrast, reduced cerebrovascular volume and an increased basement membrane thickness may be more specifically associated with pTau in mouse models of neurodegeneration.
Collapse
Affiliation(s)
- Camille Taccola
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine & Early Development, Sanofi, 3 Digue d'Alfortville, 94140, Alfortville, France; INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Pascal Barneoud
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, 1 Avenue Pierre Brossolette, 91380, Chilly-Mazarin, France
| | - Sylvaine Cartot-Cotton
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine & Early Development, Sanofi, 3 Digue d'Alfortville, 94140, Alfortville, France
| | - Delphine Valente
- Drug Metabolism & Pharmacokinetics, Research platform, Sanofi, 3 Digue d'Alfortville, 94140, Alfortville, France
| | - Nathalie Schussler
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, 1 Avenue Pierre Brossolette, 91380, Chilly-Mazarin, France
| | - Bruno Saubaméa
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Stéphanie Chasseigneaux
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Véronique Cochois
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Virginie Mignon
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Emmanuel Curis
- Laboratoire de biomathématiques, plateau iB(2), EA 7537 « BioSTM », UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France; Service de bioinformatique et statistique médicale, hôpital Saint-Louis, APHP, 1, avenue Claude Vellefaux, 75010, Paris, France
| | - Murielle Lochus
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Sophie Nicolic
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Agnès Dodacki
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Salvatore Cisternino
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Xavier Declèves
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Fanchon Bourasset
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000, Besançon, France.
| |
Collapse
|
4
|
Zhou J, Chow HM, Liu Y, Wu D, Shi M, Li J, Wen L, Gao Y, Chen G, Zhuang K, Lin H, Zhang G, Xie W, Li H, Leng L, Wang M, Zheng N, Sun H, Zhao Y, Zhang Y, Xue M, Huang TY, Bu G, Xu H, Yuan Z, Herrup K, Zhang J. Cyclin-Dependent Kinase 5-Dependent BAG3 Degradation Modulates Synaptic Protein Turnover. Biol Psychiatry 2020; 87:756-769. [PMID: 31955914 DOI: 10.1016/j.biopsych.2019.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Synaptic protein dyshomeostasis and functional loss is an early invariant feature of Alzheimer's disease (AD), yet the unifying etiological pathway remains largely unknown. Knowing that cyclin-dependent kinase 5 (CDK5) plays critical roles in synaptic formation and degeneration, its phosphorylation targets were reexamined in search of candidates with direct global impacts on synaptic protein dynamics, and the associated regulatory network was also analyzed. METHODS Quantitative phosphoproteomics and bioinformatics analyses were performed to identify top-ranked candidates. A series of biochemical assays was used to investigate the associated regulatory signaling networks. Histological, electrochemical, and behavioral assays were performed in conditional knockout, small hairpin RNA-mediated knockdown, and AD-related mice models to evaluate the relevance of CDK5 to synaptic homeostasis and functions. RESULTS Among candidates with known implications in synaptic modulations, BAG3 ranked the highest. CDK5-mediated phosphorylation on S297/S291 (mouse/human) destabilized BAG3. Loss of BAG3 unleashed the selective protein degradative function of the HSP70 machinery. In neurons, this resulted in enhanced degradation of a number of glutamatergic synaptic proteins. Conditional neuronal knockout of Bag3 in vivo led to impairment of learning and memory functions. In human AD and related mouse models, aberrant CDK5-mediated loss of BAG3 yielded similar effects on synaptic homeostasis. Detrimental effects of BAG3 loss on learning and memory functions were confirmed in these mice, and such effects were reversed by ectopic BAG3 reexpression. CONCLUSIONS Our results highlight that the neuronal CDK5-BAG3-HSP70 signaling axis plays a critical role in modulating synaptic homeostasis. Dysregulation of the signaling pathway directly contributes to synaptic dysfunction and AD pathogenesis.
Collapse
Affiliation(s)
- Jiechao Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong.
| | - Yan Liu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China; Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Di Wu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Meng Shi
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jieyin Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lei Wen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China; Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Yuehong Gao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guimiao Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Kai Zhuang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hui Lin
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guanyun Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wenting Xie
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Huifang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lige Leng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Mengdan Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Naizhen Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hao Sun
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yingjun Zhao
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Yunwu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Maoqiang Xue
- Department of Basic Medical Science, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jie Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
5
|
Höglund K, Schussler N, Kvartsberg H, Smailovic U, Brinkmalm G, Liman V, Becker B, Zetterberg H, Cedazo-Minguez A, Janelidze S, Lefevre IA, Eyquem S, Hansson O, Blennow K. Cerebrospinal fluid neurogranin in an inducible mouse model of neurodegeneration: A translatable marker of synaptic degeneration. Neurobiol Dis 2020; 134:104645. [DOI: 10.1016/j.nbd.2019.104645] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022] Open
|
6
|
Salissou MTM, Mahaman YAR, Zhu F, Huang F, Wang Y, Xu Z, Ke D, Wang Q, Liu R, Wang JZ, Zhang B, Wang X. Methanolic extract of Tamarix Gallica attenuates hyperhomocysteinemia induced AD-like pathology and cognitive impairments in rats. Aging (Albany NY) 2019; 10:3229-3248. [PMID: 30425189 PMCID: PMC6286848 DOI: 10.18632/aging.101627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/27/2018] [Indexed: 12/20/2022]
Abstract
Although few drugs are available today for the management of Alzheimer’s disease (AD) and many plants and their extracts are extensively employed in animals’ studies and AD patients, yet no drug or plant extract is able to reverse AD symptoms adequately. In the present study, Tamarix gallica (TG), a naturally occurring plant known for its strong antioxidative, anti-inflammatory and anti-amyloidogenic properties, was evaluated on homocysteine (Hcy) induced AD-like pathology and cognitive impairments in rats. We found that TG attenuated Hcy-induced oxidative stress and memory deficits. TG also improved neurodegeneration and neuroinflammation by upregulating synaptic proteins such as PSD95 and synapsin 1 and downregulating inflammatory markers including CD68 and GFAP with concomitant decrease in proinflammatory mediators interlukin-1β (IL1β) and tumor necrosis factor α (TNFα). TG attenuated tau hyperphosphorylation at multiple AD-related sites through decreasing some kinases and increasing phosphatase activities. Moreover, TG rescued amyloid-β (Aβ) pathology through downregulating BACE1. Our data for the first time provide evidence that TG attenuates Hcy-induced AD-like pathological changes and cognitive impairments, making TG a promising candidate for the treatment of AD-associated pathological changes.
Collapse
Affiliation(s)
- Maibouge Tanko Mahamane Salissou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, Guangdong Province, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, Guangdong Province, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuman Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhendong Xu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| |
Collapse
|
7
|
Barrett T, Marchalant Y, Park KH. p35 Hemizygous Deletion in 5xFAD Mice Increases Aβ Plaque Load in Males but Not in Females. Neuroscience 2019; 417:45-56. [DOI: 10.1016/j.neuroscience.2019.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/25/2019] [Accepted: 08/08/2019] [Indexed: 12/29/2022]
|
8
|
Mahaman YAR, Huang F, Wu M, Wang Y, Wei Z, Bao J, Salissou MTM, Ke D, Wang Q, Liu R, Wang JZ, Zhang B, Chen D, Wang X. Moringa Oleifera Alleviates Homocysteine-Induced Alzheimer's Disease-Like Pathology and Cognitive Impairments. J Alzheimers Dis 2019; 63:1141-1159. [PMID: 29710724 PMCID: PMC6004908 DOI: 10.3233/jad-180091] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer’s disease (AD) is multifactorial with unclear etiopathology. Due to the complexity of AD, many attempted single therapy treatments, like Aβ immunization, have generally failed. Therefore, there is a need for drugs with multiple benefits. Naturally occurring phytochemicals with neuroprotective, anti-amyloidogenic, antioxidative, and anti-inflammatory properties could be a possible way out. In this study, the effect of Moringa oleifera (MO), a naturally occurring plant with high antioxidative, anti-inflammatory, and neuroprotective effects, was evaluated on hyperhomocysteinemia (HHcy) induced AD-like pathology in rats. Homocysteine (Hcy) injection for 14 days was used to induce AD-like pathology. Simultaneous MO extract gavage followed the injection as a preventive treatment or, after injection completion, MO gavage was performed for another 14 days as a curative treatment. MO was found to not only prevent but also rescue the oxidative stress and cognitive impairments induced by Hcy treatment. Moreover, MO recovered the decreased synaptic proteins PSD93, PSD95, Synapsin 1 and Synaptophysin, and improved neurodegeneration. Interestingly, MO decreased the Hyc-induced tau hyperphosphorylation at different sites including S-199, T-231, S-396, and S-404, and at the same time decreased Aβ production through downregulation of BACE1. These effects in HHcy rats were accompanied by a decrease in calpain activity under MO treatment, supporting that calpain activation might be involved in AD pathogenesis in HHcy rats. Taken together, our data, for the first time, provided evidence that MO alleviates tau hyperphosphorylation and Aβ pathology in a HHcy AD rat model. This and previous other studies support MO as a good candidate for, and could provide new insights into, the treatment of AD and other tauopathies.
Collapse
Affiliation(s)
- Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengjuan Wu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuman Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Bao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maibouge Tanko Mahamane Salissou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Chen
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
9
|
Vnencak M, Schölvinck ML, Schwarzacher SW, Deller T, Willem M, Jedlicka P. Lack of β-amyloid cleaving enzyme-1 (BACE1) impairs long-term synaptic plasticity but enhances granule cell excitability and oscillatory activity in the dentate gyrus in vivo. Brain Struct Funct 2019; 224:1279-1290. [PMID: 30701309 DOI: 10.1007/s00429-019-01836-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
BACE1 is a β-secretase involved in the cleavage of amyloid precursor protein and the pathogenesis of Alzheimer's disease (AD). The entorhinal cortex and the dentate gyrus are important for learning and memory, which are affected in the early stages of AD. Since BACE1 is a potential target for AD therapy, it is crucial to understand its physiological role in these brain regions. Here, we examined the function of BACE1 in the dentate gyrus. We show that loss of BACE1 in the dentate gyrus leads to increased granule cell excitability, indicated by enhanced efficiency of synaptic potentials to generate granule cell spikes. The increase in granule cell excitability was accompanied by prolonged paired-pulse inhibition, altered network gamma oscillations, and impaired synaptic plasticity at entorhinal-dentate synapses of the perforant path. In summary, this is the first detailed electrophysiological study of BACE1 deletion at the network level in vivo. The results suggest that BACE1 is important for normal dentate gyrus network function. This has implications for the use of BACE1 inhibitors as therapeutics for AD therapy, since BACE1 inhibition could similarly disrupt synaptic plasticity and excitability in the entorhinal-dentate circuitry.
Collapse
Affiliation(s)
- Matej Vnencak
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt am Main, Germany. .,Otorhinolaryngology, Head and Neck Surgery, Turku University Hospital, University of Turku, PL 52, 20521, Turku, Finland.
| | - Marieke L Schölvinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Stephan W Schwarzacher
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt am Main, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt am Main, Germany
| | - Michael Willem
- BioMedical Center, Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt am Main, Germany. .,ICAR3R-Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, Rudolf-Buchheim-Str. 6, 35392, Giessen, Germany.
| |
Collapse
|
10
|
Liao W, Zheng Y, Fang W, Liao S, Xiong Y, Li Y, Xiao S, Zhang X, Liu J. Dual Specificity Phosphatase 6 Protects Neural Stem Cells from β-Amyloid-Induced Cytotoxicity through ERK1/2 Inactivation. Biomolecules 2018; 8:E181. [PMID: 30572643 PMCID: PMC6315916 DOI: 10.3390/biom8040181] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease with limited treatment options and no cure. Beta-amyloid (Aβ) is a hallmark of AD that has potent neurotoxicity in neural stem cells (NSCs). Dual specificity phosphatase 6 (DUSP6) is a member of the mitogen-activated protein kinases (MAPKs), which is involved in regulating various physiological and pathological processes. Whether DUSP6 has a protective effect on Aβ-induced NSC injury remains to be explored. C17.2 neural stem cells were transfected with DUSP6-overexpressed plasmid. NSCs with or without DUSP6 overexpression were administrated with Aβ25⁻35 at various concentrations (i.e., 0, 2.5, 5 μM). DUSP6 expression after Aβ treatment was detected by Real-Time Polymerase Chain Reaction (RT-PCR) and Western blot and cell vitality was examined by the CCK8 assay. The oxidative stress (intracellular reactive oxygen species (ROS) and malondialdehyde (MDA)), endoplasmic reticulum stress (ER calcium level) and mitochondrial dysfunction (cytochrome c homeostasis) were tested. The expression of p-ERK1/2 and ERK1/2 were assayed by Western blot. Our results showed that Aβ decreased the expression of DUSP6 in a dose-dependent manner. The overexpression of DUSP6 increased the cell vitality of NSCs after Aβ treatment. Oxidative stress, ER stress, and mitochondrial dysfunction induced by Aβ could be restored by DUSP6 overexpression. Additionally, the Aβ-induced ERK1/2 activation was reversed. In summary, DUSP6 might have a neuroprotective effect on Aβ-induced cytotoxicity, probably via ERK1/2 activation.
Collapse
Affiliation(s)
- Wang Liao
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China.
| | - Yuqiu Zheng
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China.
| | - Wenli Fang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China.
| | - Shaowei Liao
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China.
| | - Ying Xiong
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China.
| | - Yi Li
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China.
| | - Songhua Xiao
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China.
| | - Xingcai Zhang
- John A Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA 02138, USA.
| | - Jun Liu
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
11
|
Consequences of Pharmacological BACE Inhibition on Synaptic Structure and Function. Biol Psychiatry 2018; 84:478-487. [PMID: 29945719 DOI: 10.1016/j.biopsych.2018.04.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease is the most prevalent neurodegenerative disorder among elderly persons. Overt accumulation and aggregation of the amyloid-β peptide (Aβ) is thought to be the initial causative factor for Alzheimer's disease. Aβ is produced by sequential proteolytic cleavage of the amyloid precursor protein. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the initial and rate-limiting protease for the generation of Aβ. Therefore, inhibiting BACE1 is considered one of the most promising therapeutic approaches for potential treatment of Alzheimer's disease. Currently, several drugs blocking this enzyme (BACE inhibitors) are being evaluated in clinical trials. However, high-dosage BACE-inhibitor treatment interferes with structural and functional synaptic plasticity in mice. These adverse side effects may mask the therapeutic benefit of lowering the Aβ concentration. In this review, we focus on the consequences of BACE inhibition-mediated synaptic deficits and the potential clinical implications.
Collapse
|
12
|
Shen Y, Wang H, Sun Q, Yao H, Keegan AP, Mullan M, Wilson J, Lista S, Leyhe T, Laske C, Rujescu D, Levey A, Wallin A, Blennow K, Li R, Hampel H. Increased Plasma Beta-Secretase 1 May Predict Conversion to Alzheimer's Disease Dementia in Individuals With Mild Cognitive Impairment. Biol Psychiatry 2018; 83:447-455. [PMID: 28359566 PMCID: PMC5656540 DOI: 10.1016/j.biopsych.2017.02.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Increased beta-secretase 1 (BACE1) activity has consistently been detected in brain tissue and cerebrospinal fluid of subjects with mild cognitive impairment (MCI) and probable Alzheimer's disease (AD) compared with control subjects. The collection of cerebrospinal fluid by lumbar puncture is invasive. We sought to identify the presence of plasma BACE1 activity and determine potential alterations in subjects with MCI with clinical follow-up examinations for 3 years using patients with diagnosed probable AD dementia compared with healthy control subjects. METHODS Seventy-five patients with probable AD, 96 individuals with MCI, and 53 age-matched and sex-matched healthy control subjects were recruited from three independent international academic memory clinics and AD research expert centers. Plasma BACE1 activity was measured by a synthetic fluorescence substrate enzyme-linked immunosorbent assay. BACE1 protein expression was assessed by Western blotting using three different antibodies that recognize the epitopes of the N-terminus, C-terminus, and full-length BACE1. RESULTS Compared with healthy control subjects, plasma BACE1 activity (Vmax) significantly increased by 53.2% in subjects with MCI and by 68.9% in patients with probable AD. Subjects with MCI who converted to probable AD dementia at follow-up examinations exhibited significantly higher BACE1 activity compared with cognitively stable MCI nonconverters and showed higher levels of BACE1 activity than patients with AD. CONCLUSIONS Plasma BACE1 activity is significantly increased in MCI converters and patients with probable AD. The sensitivities and specificities of BACE1 activity for the patients were 84% and 88%, respectively. Our results indicate that plasma BACE1 activity may be a biomarker for AD risk and could predict progression from prodromal to probable AD dementia.
Collapse
Affiliation(s)
- Yong Shen
- Neurodegenerative Disorder Research Center and Brain Bank, School of Life Sciences, University of Science and Technology of China, Material Science at Microscale National Laboratory, Hefei, China 230027,Roskamp Institute, Sarasota, FL34203 USA
| | - Haibo Wang
- Roskamp Institute, Sarasota, FL34203 USA
| | - Qiying Sun
- Roskamp Institute, Sarasota, FL34203 USA
| | - Hailan Yao
- Roskamp Institute, Sarasota, FL34203 USA
| | | | | | - Jeffrey Wilson
- Department of Economics, Arizona State University, Tempe, AZ, USA
| | - Simone Lista
- IHU-A-ICM – Paris Institute of Translational Neurosciences, Pitié-Salpêtrière University Hospital, Paris, France,AXA Research Fund & UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM)
| | - Thomas Leyhe
- Department of Psychiatry and Psychotherapy, University Hospital of Tübingen, Tübingen, Germany,Center of Old Age Psychiatry, Psychiatric University Hospital, Wilhelm Klein-Strasse 27, CH-4012Basel, Switzerland
| | - Christoph Laske
- Department of Psychiatry and Psychotherapy, University Hospital of Tübingen, Tübingen, Germany
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Alzheimer Memorial Center, Ludwig-Maximilian University, Munich, Germany
| | - Allan Levey
- Department of Neurology and Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Anders Wallin
- Department of Neuroscience and Physiology, University of Gothenburg, Sahlgren’s University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Neuroscience and Physiology, University of Gothenburg, Sahlgren’s University Hospital, Mölndal, Sweden
| | - Rena Li
- Beijing Anding Hospital, Capital Medical University & Beijing Key Laboratory of Mental Disorders, Beijing; Beijing Institute for Brain Disorders, Beijing, China; Center for Hormone Advanced Science and Education, Sarasota.
| | - Harald Hampel
- IHU-A-ICM – Paris Institute of Translational Neurosciences, Pitié-Salpêtrière University Hospital, Paris, France,AXA Research Fund & UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM),Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
| |
Collapse
|
13
|
Kamikubo Y, Takasugi N, Niisato K, Hashimoto Y, Sakurai T. Consecutive Analysis of BACE1 Function on Developing and Developed Neuronal Cells. J Alzheimers Dis 2018; 56:641-653. [PMID: 28035928 DOI: 10.3233/jad-160806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The amyloid-β protein precursor (AβPP) is cleaved by a transmembrane protease termed β-site AβPP cleavage enzyme (BACE1), which is being explored as a target for therapy and prevention of Alzheimer's disease (AD). Although genetic deletion of BACE1 results in abolished amyloid pathology in AD model mice, it also results in neurodevelopmental phenotypes such as hypomyelination and synaptic loss, observed in schizophrenia and autism-like phenotype. These lines of evidence indicate that the inhibition of BACE1 causes adverse side effects during the neurodevelopmental stage. However, the effects of the inhibition of BACE1 activity on already developed neurons remain unclear. Here, we utilized hippocampal slice cultures as an ex vivo model that enabled continuous and long-term analysis for the effect of BACE1 inhibition on neuronal circuits and synapses. Temporal changes in synaptic proteins in hippocampal slices indicated acute synaptic loss, followed by synapse formation and maintenance phases. Long-term BACE1 inhibition in the neurodevelopmental stage caused the loss of synaptic proteins but failed to alter synaptic proteins in the already developed maintenance stage. These data indicate that BACE1 function on synapses is dependent on synaptic developmental stages, and our study provides a useful model to observe the long-term effect of BACE1 activity in the brain, and to evaluate adverse effects of BACE inhibitors.
Collapse
|
14
|
Hargis KE, Blalock EM. Transcriptional signatures of brain aging and Alzheimer's disease: What are our rodent models telling us? Behav Brain Res 2016; 322:311-328. [PMID: 27155503 DOI: 10.1016/j.bbr.2016.05.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022]
Abstract
Aging is the biggest risk factor for idiopathic Alzheimer's disease (AD). Recently, the National Institutes of Health released AD research recommendations that include: appreciating normal brain aging, expanding data-driven research, using open-access resources, and evaluating experimental reproducibility. Transcriptome data sets for aging and AD in humans and animal models are available in NIH-curated, publically accessible databases. However, little work has been done to test for concordance among those molecular signatures. Here, we test the hypothesis that brain transcriptional profiles from animal models recapitulate those observed in the human condition. Raw transcriptional profile data from twenty-nine studies were analyzed to produce p-values and fold changes for young vs. aged or control vs. AD conditions. Concordance across profiles was assessed at three levels: (1) # of significant genes observed vs. # expected by chance; (2) proportion of significant genes showing directional agreement; (3) correlation among studies for magnitude of effect among significant genes. The highest concordance was found within subjects across brain regions. Normal brain aging was concordant across studies, brain regions, and species, despite profound differences in chronological aging among humans, rats and mice. Human studies of idiopathic AD were concordant across brain structures and studies, but were not concordant with the transcriptional profiles of transgenic AD mouse models. Further, the five transgenic AD mouse models that were assessed were not concordant with one another. These results suggest that normal brain aging is similar in humans and research animals, and that different transgenic AD model mice may reflect selected aspects of AD pathology.
Collapse
Affiliation(s)
- Kendra E Hargis
- University of Kentucky College of Medicine, Department of Pharmacology and Nutritional Science, Lexington, KY, United States
| | - Eric M Blalock
- University of Kentucky College of Medicine, Department of Pharmacology and Nutritional Science, Lexington, KY, United States.
| |
Collapse
|
15
|
Inhibition of BACE1 Activity by a DNA Aptamer in an Alzheimer's Disease Cell Model. PLoS One 2015; 10:e0140733. [PMID: 26473367 PMCID: PMC4608735 DOI: 10.1371/journal.pone.0140733] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/28/2015] [Indexed: 02/07/2023] Open
Abstract
An initial step in amyloid-β (Aβ) production includes amyloid precursor protein (APP) cleavage via β-Site amyloid precursor protein cleaving enzyme 1 (BACE1). Increased levels of brain Aβ have been implicated in the pathogenesis of Alzheimer’s disease (AD). Thus, β-secretase represents a primary target for inhibitor drug development in AD. In this study, aptamers were obtained from combinatorial oligonucleotide libraries using a technology referred to as systematic evolution of ligands by exponential enrichment (SELEX). A purified human BACE1 extracellular domain was used as a target to conduct an in vitro selection process using SELEX. Two DNA aptamers were capable of binding to BACE1 with high affinity and good specificity, with Kd values in the nanomolar range. We subsequently confirmed that one aptamer, A1, exhibited a distinct inhibitory effect on BACE1 activity in an AD cell model. We detected the effects of M17-APPsw cells that stably expressed Swedish mutant APP after aptamer A1 treatment. Aβ40 and Aβ42 concentrations secreted by M17-APPsw cells decreased intracellularly and in culture media. Furthermore, Western blot analysis indicated that sAPPβ expression significantly decreased in the A1 treated versus control groups. These findings support the preliminary feasibility of an aptamer evolved from a SELEX strategy to function as a potential BACE1 inhibitor. To our knowledge, this is the first study to acquire a DNA aptamer that exhibited binding specificity to BACE1 and inhibited its activity.
Collapse
|
16
|
Wilkaniec A, Czapski GA, Adamczyk A. Cdk5 at crossroads of protein oligomerization in neurodegenerative diseases: facts and hypotheses. J Neurochem 2015; 136:222-33. [PMID: 26376455 DOI: 10.1111/jnc.13365] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is involved in proper neurodevelopment and brain function and serves as a switch between neuronal survival and death. Overactivation of Cdk5 is associated with many neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. It is believed that in those diseases Cdk5 may be an important link between disease-initiating factors and cell death effectors. A common hallmark of neurodegenerative disorders is incorrect folding of specific proteins, thus leading to their intra- and extracellular accumulation in the nervous system. Abnormal Cdk5 signaling contributes to dysfunction of individual proteins and has a substantial role in either direct or indirect interactions of proteins common to, and critical in, different neurodegenerative diseases. While the roles of Cdk5 in α-synuclein (ASN) - tau or β-amyloid peptide (Aβ) - tau interactions are well documented, its contribution to many other pertinent interactions, such as that of ASN with Aβ, or interactions of the Aβ - ASN - tau triad with prion proteins, did not get beyond plausible hypotheses and remains to be proven. Understanding of the exact position of Cdk5 in the deleterious feed-forward loop critical for development and progression of neurodegenerative diseases may help designing successful therapeutic strategies of several fatal neurodegenerative diseases. Cyclin-dependent kinase 5 (Cdk5) is associated with many neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. It is believed that in those diseases Cdk5 may be an important factor involved in protein misfolding, toxicity and interaction. We suggest that Cdk5 may contribute to the vicious circle of neurotoxic events involved in the pathogenesis of different neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz A Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
17
|
Song WJ, Son MY, Lee HW, Seo H, Kim JH, Chung SH. Enhancement of BACE1 Activity by p25/Cdk5-Mediated Phosphorylation in Alzheimer's Disease. PLoS One 2015; 10:e0136950. [PMID: 26317805 PMCID: PMC4552876 DOI: 10.1371/journal.pone.0136950] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/10/2015] [Indexed: 11/24/2022] Open
Abstract
The activity of beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is elevated during aging and in sporadic Alzheimer’s disease (AD), but the underlying mechanisms of this change are not well understood. p25/Cyclin-dependent kinase 5 (Cdk5) has been implicated in the pathogenesis of several neurodegenerative diseases, including AD. Here, we describe a potential mechanism by which BACE activity is increased in AD brains. First, we show that BACE1 is phosphorylated by the p25/Cdk5 complex at Thr252 and that this phosphorylation increases BACE1 activity. Then, we demonstrate that the level of phospho-BACE1 is increased in the brains of AD patients and in mammalian cells and transgenic mice that overexpress p25. Furthermore, the fraction of p25 prepared from iodixanol gradient centrifugation was unexpectedly protected by protease digestion, suggesting that p25/Cdk5-mediated BACE1 phosphorylation may occur in the lumen. These results reveal a link between p25 and BACE1 in AD brains and suggest that upregulated Cdk5 activation by p25 accelerates AD pathogenesis by enhancing BACE1 activity via phosphorylation.
Collapse
Affiliation(s)
- Woo-Joo Song
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
- Institute for Brain Science and Technology, Inje University, Busan, Korea
| | - Mi-Young Son
- Institute for Brain Science and Technology, Inje University, Busan, Korea
| | - Hye-Won Lee
- Institute for Brain Science and Technology, Inje University, Busan, Korea
| | - Hyemyung Seo
- Division of Molecular and Life Sciences, College of Sciences and Technology, Hanyang University, Ansan, Gyeonggi Do, Korea
| | - Jeong Hee Kim
- Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Kyung Hee University, Seoul, Korea
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Korea
- * E-mail: (JHK); (SHC)
| | - Sul-Hee Chung
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
- Institute for Brain Science and Technology, Inje University, Busan, Korea
- * E-mail: (JHK); (SHC)
| |
Collapse
|
18
|
Wagner FF, Zhang YL, Fass DM, Joseph N, Gale JP, Weïwer M, McCarren P, Fisher SL, Kaya T, Zhao WN, Reis SA, Hennig KM, Thomas M, Lemercier BC, Lewis MC, Guan JS, Moyer MP, Scolnick E, Haggarty SJ, Tsai LH, Holson EB. Kinetically Selective Inhibitors of Histone Deacetylase 2 (HDAC2) as Cognition Enhancers. Chem Sci 2015; 6:804-815. [PMID: 25642316 PMCID: PMC4310013 DOI: 10.1039/c4sc02130d] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Kinetically selective inhibitors of HDAC2 enhanced learning and memory in a CK-p25 mouse model of neurodegeneration.
Aiming towards the development of novel nootropic therapeutics to address the cognitive impairment common to a range of brain disorders, we set out to develop highly selective small molecule inhibitors of HDAC2, a chromatin modifying histone deacetylase implicated in memory formation and synaptic plasticity. Novel ortho-aminoanilide inhibitors were designed and evaluated for their ability to selectively inhibit HDAC2 versus the other Class I HDACs. Kinetic and thermodynamic binding properties were essential elements of our design strategy and two novel classes of ortho-aminoanilides, that exhibit kinetic selectivity (biased residence time) for HDAC2 versus the highly homologous isoform HDAC1, were identified. These kinetically selective HDAC2 inhibitors (BRD6688 and BRD4884) increased H4K12 and H3K9 histone acetylation in primary mouse neuronal cell culture assays, in the hippocampus of CK-p25 mice, a model of neurodegenerative disease, and rescued the associated memory deficits of these mice in a cognition behavioural model. These studies demonstrate for the first time that selective pharmacological inhibition of HDAC2 is feasible and that inhibition of the catalytic activity of this enzyme may serve as a therapeutic approach towards enhancing the learning and memory processes that are affected in many neurological and psychiatric disorders.
Collapse
Affiliation(s)
- F F Wagner
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - Y-L Zhang
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - D M Fass
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA ; SL Fisher Consulting, LLC, PO Box 3052, Framingham, Massachusetts, USA
| | - N Joseph
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA ; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, Massachusetts, USA
| | - J P Gale
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - M Weïwer
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - P McCarren
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - S L Fisher
- SL Fisher Consulting, LLC, PO Box 3052, Framingham, Massachusetts, USA
| | - T Kaya
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - W-N Zhao
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA ; Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Department of Neurology and Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - S A Reis
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA ; Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Department of Neurology and Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - K M Hennig
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA ; Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Department of Neurology and Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - M Thomas
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - B C Lemercier
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - M C Lewis
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - J S Guan
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA ; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, Massachusetts, USA
| | - M P Moyer
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - E Scolnick
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - S J Haggarty
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA ; Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Department of Neurology and Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - L-H Tsai
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA ; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, Massachusetts, USA
| | - E B Holson
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Abstract
Glycogen synthase kinase 3β (GSK3β) and cyclin-dependent kinase 5 (CDK5) are tau kinases and have been proposed to contribute to the pathogenesis of Alzheimer's disease. The 3D structures of these kinases are remarkably similar, which led us to hypothesize that both might be capable of binding cyclin proteins--the activating cofactors of all CDKs. CDK5 is normally activated by the cyclin-like proteins p35 and p39. By contrast, we show that GSK3β does not bind to p35 but unexpectedly binds to p25, the calpain cleavage product of p35. Indeed, overexpressed GSK3β outcompetes CDK5 for p25, whereas CDK5 is the preferred p35 partner. FRET analysis reveals nanometer apposition of GSK3β:p25 in cell soma as well as in synaptic regions. Interaction with p25 also alters GSK3β substrate specificity. The GSK3β:p25 interaction leads to enhanced phosphorylation of tau, but decreased phosphorylation of β-catenin. A partial explanation for this situation comes from in silico modeling, which predicts that the docking site for p25 on GSK3β is the AXIN-binding domain; because of this, p25 inhibits the formation of the GSK3β/AXIN/APC destruction complex, thus preventing GSK3β from binding to and phosphorylating β-catenin. Coexpression of GSK3β and p25 in cultured neurons results in a neurodegeneration phenotype that exceeds that observed with CDK5 and p25. When p25 is transfected alone, the resulting neuronal damage is blocked more effectively with a specific siRNA against Gsk3β than with one against Cdk5. We propose that the effects of p25, although normally attributed to activate CDK5, may be mediated in part by elevated GSK3β activity.
Collapse
|
20
|
Wang H, Megill A, Wong PC, Kirkwood A, Lee HK. Postsynaptic target specific synaptic dysfunctions in the CA3 area of BACE1 knockout mice. PLoS One 2014; 9:e92279. [PMID: 24637500 PMCID: PMC3956924 DOI: 10.1371/journal.pone.0092279] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
Beta-amyloid precursor protein cleaving enzyme 1 (BACE1), a major neuronal β-secretase critical for the formation of β-amyloid (Aβ) peptide, is considered one of the key therapeutic targets that can prevent the progression of Alzheimer's disease (AD). Although a complete ablation of BACE1 gene prevents Aβ formation, we previously reported that BACE1 knockouts (KOs) display presynaptic deficits, especially at the mossy fiber (MF) to CA3 synapses. Whether the defect is specific to certain inputs or postsynaptic targets in CA3 is unknown. To determine this, we performed whole-cell recording from pyramidal cells (PYR) and the stratum lucidum (SL) interneurons in the CA3, both of which receive excitatory MF terminals with high levels of BACE1 expression. BACE1 KOs displayed an enhancement of paired-pulse facilitation at the MF inputs to CA3 PYRs without changes at the MF inputs to SL interneurons, which suggests postsynaptic target specific regulation. The synaptic dysfunction in CA3 PYRs was not restricted to excitatory synapses, as seen by an increase in the paired-pulse ratio of evoked inhibitory postsynaptic currents from SL to CA3 PYRs. In addition to the changes in evoked synaptic transmission, BACE1 KOs displayed a reduction in the frequency of miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) in CA3 PYRs without alteration in mEPSCs recorded from SL interneurons. This suggests that the impairment may be more global across diverse inputs to CA3 PYRs. Our results indicate that the synaptic dysfunctions seen in BACE1 KOs are specific to the postsynaptic target, the CA3 PYRs, independent of the input type.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neuroscience, Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Andrea Megill
- Department of Neuroscience, Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Philip C. Wong
- Department of Pathology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alfredo Kirkwood
- Department of Neuroscience, Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hey-Kyoung Lee
- Department of Neuroscience, Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
21
|
Evin G, Barakat A. Critical analysis of the use of β-site amyloid precursor protein-cleaving enzyme 1 inhibitors in the treatment of Alzheimer's disease. Degener Neurol Neuromuscul Dis 2014; 4:1-19. [PMID: 32669897 PMCID: PMC7337240 DOI: 10.2147/dnnd.s41056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/06/2014] [Indexed: 01/18/2023] Open
Abstract
Alzheimer’s disease (AD) is the major cause of dementia in the elderly and an unmet clinical challenge. A variety of therapies that are currently under development are directed to the amyloid cascade. Indeed, the accumulation and toxicity of amyloid-β (Aβ) is believed to play a central role in the etiology of the disease, and thus rational interventions are aimed at reducing the levels of Aβ in the brain. Targeting β-site amyloid precursor protein-cleaving enzyme (BACE)-1 represents an attractive strategy, as this enzyme catalyzes the initial and rate-limiting step in Aβ production. Observation of increased levels of BACE1 and enzymatic activity in the brain, cerebrospinal fluid, and platelets of patients with AD and mild cognitive impairment supports the potential benefits of BACE1 inhibition. Numerous potent inhibitors have been generated, and many of these have been proved to lower Aβ levels in the brain of animal models. Over 10 years of intensive research on BACE1 inhibitors has now culminated in advancing half a dozen of these drugs into human trials, yet translating the in vitro and cellular efficacy of BACE1 inhibitors into preclinical and clinical trials represents a challenge. This review addresses the promises and also the potential problems associated with BACE1 inhibitors for AD therapy, as the complex biological function of BACE1 in the brain is becoming unraveled.
Collapse
Affiliation(s)
- Genevieve Evin
- Oxidation Biology Laboratory, Mental Health Research Institute, Florey Institute of Neuroscience and Mental Health, University of Melbourne.,Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Adel Barakat
- Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
22
|
Liu L, Martin R, Kohler G, Chan C. Palmitate induces transcriptional regulation of BACE1 and presenilin by STAT3 in neurons mediated by astrocytes. Exp Neurol 2013; 248:482-90. [PMID: 23968646 DOI: 10.1016/j.expneurol.2013.08.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 01/09/2023]
Abstract
Deregulation of calcium has been implicated in neurodegenerative diseases, including Alzheimer's disease (AD). Previously, we showed that saturated free-fatty acid, palmitate, causes AD-like changes in primary cortical neurons mediated by astrocytes. However, the molecular mechanisms by which conditioned medium from astrocytes cultured in palmitate induce AD-like changes in neurons are unknown. This study demonstrates that this condition medium from astrocytes elevates calcium level in the neurons, which subsequently increases calpain activity, a calcium-dependent protease, leading to enhance p25/Cdk5 activity and phosphorylation and activation of the STAT3 (signal transducer and activator of transcription) transcription factor. Inhibiting calpain or Cdk5 significantly reduces the upregulation in nuclear level of pSTAT3, which we found to transcriptionally regulate both BACE1 and presenilin-1, the latter is a catalytic subunit of γ-secretase. Decreasing pSTAT3 levels reduced the mRNA levels of both BACE1 and presenilin-1 to near control levels. These data demonstrate a signal pathway leading to the activation of STAT3, and the generation of the amyloid peptide. Thus, our results suggest that STAT3 is an important potential therapeutic target of AD pathogenesis.
Collapse
Affiliation(s)
- Li Liu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
23
|
Soda T, Frank C, Ishizuka K, Baccarella A, Park YU, Flood Z, Park SK, Sawa A, Tsai LH. DISC1-ATF4 transcriptional repression complex: dual regulation of the cAMP-PDE4 cascade by DISC1. Mol Psychiatry 2013; 18:898-908. [PMID: 23587879 PMCID: PMC3730299 DOI: 10.1038/mp.2013.38] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 01/12/2013] [Accepted: 01/31/2013] [Indexed: 02/08/2023]
Abstract
Disrupted-In-Schizophrenia 1 (DISC1), a risk factor for major mental illnesses, has been studied extensively in the context of neurodevelopment. However, the role of DISC1 in neuronal signaling, particularly in conjunction with intracellular cascades that occur in response to dopamine, a neurotransmitter implicated in numerous psychiatric disorders, remains elusive. Previous data suggest that DISC1 interacts with numerous proteins that impact neuronal function, including activating transcription factor 4 (ATF4). In this study, we identify a novel DISC1 and ATF4 binding region in the genomic locus of phosphodiesterase 4D (PDE4D), a gene implicated in psychiatric disorders. We found that the loss of function of either DISC1 or ATF4 increases PDE4D9 transcription, and that the association of DISC1 with the PDE4D9 locus requires ATF4. We also show that PDE4D9 is increased by D1-type dopamine receptor dopaminergic stimulation. We demonstrate that the mechanism for this increase is due to DISC1 dissociation from the PDE4D locus in mouse brain. We further characterize the interaction of DISC1 with ATF4 to show that it is regulated via protein kinase A-mediated phosphorylation of DISC1 serine-58. Our results suggest that the release of DISC1-mediated transcriptional repression of PDE4D9 acts as feedback inhibition to regulate dopaminergic signaling. Furthermore, as DISC1 loss-of-function leads to a specific increase in PDE4D9, PDE4D9 itself may represent an attractive target for therapeutic approaches in psychiatric disorders.
Collapse
Affiliation(s)
- T Soda
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA,Howard Hughes Medical Institute, Cambridge, MA, USA,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA,Daniel Tosteson Medical Education Center, Boston, MA, USA
| | - C Frank
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA,Howard Hughes Medical Institute, Cambridge, MA, USA,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - K Ishizuka
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Baccarella
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Y-U Park
- Division of Molecular and Life Science, Department of Life Science, Biotechnology Research Center, Pohang University of Science and Technology, Pohang, Korea
| | - Z Flood
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA,Howard Hughes Medical Institute, Cambridge, MA, USA,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - S K Park
- Division of Molecular and Life Science, Department of Life Science, Biotechnology Research Center, Pohang University of Science and Technology, Pohang, Korea
| | - A Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - L-H Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA,Howard Hughes Medical Institute, Cambridge, MA, USA,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA,Howard Hughes Medical Institute, 77 Massachusetts Avenue, Room 46-4235, Cambridge, MA 02139, USA. E-mail:
| |
Collapse
|
24
|
Shukla V, Zheng YL, Mishra SK, Amin ND, Steiner J, Grant P, Kesavapany S, Pant HC. A truncated peptide from p35, a Cdk5 activator, prevents Alzheimer's disease phenotypes in model mice. FASEB J 2012; 27:174-86. [PMID: 23038754 DOI: 10.1096/fj.12-217497] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Alzheimer's disease (AD), one of the leading neurodegenerative disorders of older adults, which causes major socioeconomic burdens globally, lacks effective therapeutics without significant side effects. Besides the hallmark pathology of amyloid plaques and neurofibrillary tangles (NFTs), it has been reported that cyclin-dependent kinase 5 (Cdk5), a critical neuronal kinase, is hyperactivated in AD brains and is, in part, responsible for the above pathology. Here we show that a modified truncated 24-aa peptide (TFP5), derived from the Cdk5 activator p35, penetrates the blood-brain barrier after intraperitoneal injections, inhibits abnormal Cdk5 hyperactivity, and significantly rescues AD pathology (up to 70-80%) in 5XFAD AD model mice. The mutant mice, injected with TFP5 exhibit behavioral rescue, whereas no rescue was observed in mutant mice injected with either saline or scrambled peptide. However, TFP5 does not inhibit cell cycle Cdks or normal Cdk5/p35 activity, and thereby has no toxic side effects (even at 200 mg/kg), a common problem in most current therapeutics for AD. In addition, treated mice displayed decreased inflammation, amyloid plaques, NFTs, cell death, and an extended life by 2 mo. These results suggest TFP5 as a potential therapeutic, toxicity-free candidate for AD.
Collapse
Affiliation(s)
- Varsha Shukla
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hsueh YP. From neurodevelopment to neurodegeneration: the interaction of neurofibromin and valosin-containing protein/p97 in regulation of dendritic spine formation. J Biomed Sci 2012; 19:33. [PMID: 22449146 PMCID: PMC3326706 DOI: 10.1186/1423-0127-19-33] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 03/26/2012] [Indexed: 12/22/2022] Open
Abstract
Both Neurofibromatosis type I (NF1) and inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) are autosomal dominant genetic disorders. These two diseases are fully penetrant but with high heterogeneity in phenotypes, suggesting the involvement of genetic modifiers in modulating patients' phenotypes. Although NF1 is recognized as a developmental disorder and IBMPFD is associated with degeneration of multiple tissues, a recent study discovered the direct protein interaction between neurofibromin, the protein product of the NF1 gene, and VCP/p97, encoded by the causative gene of IBMPFD. Both NF1 and VCP/p97 are critical for dendritic spine formation, which provides the cellular mechanism explaining the cognitive deficits and dementia found in patients. Moreover, disruption of the interaction between neurofibromin and VCP impairs dendritic spinogenesis. Neurofibromin likely influences multiple downstream pathways to control dendritic spinogenesis. One is to activate the protein kinase A pathway to initiate dendritic spine formation; another is to regulate the synaptic distribution of VCP and control the activity of VCP in dendritic spinogenesis. Since neurofibromin and VCP/p97 also regulate cell growth and bone metabolism, the understanding of neurofibromin and VCP/p97 in neurons may be applied to study of cancer and bone. Statin treatment rescues the spine defects caused by VCP deficiency, suggesting the potential role of statin in clinical treatment for these two diseases.
Collapse
Affiliation(s)
- Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, 128, Sec 2, Academia Rd, Taipei 11529, Taiwan.
| |
Collapse
|
26
|
Paeonol Protects Memory after Ischemic Stroke via Inhibiting β-Secretase and Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:932823. [PMID: 22474531 PMCID: PMC3312264 DOI: 10.1155/2012/932823] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 01/12/2023]
Abstract
Poststroke dementia commonly occurs following stroke, with its pathogenesis related to β-amyloid production and apoptosis. The present study evaluate the effects of paeonol, one of the phenolic phytochemicals isolated from the Chinese herb Paeonia suffruticosa Andrews (MC), on protection from memory loss after ischemic stroke in the subacute stage. Rats were subjected to transient middle cerebral artery occlusion (tMCAo) with 10 min of ischemia. The data revealed that paeonol recovered the step-through latency in the retrieval test seven days after tMCAo, but did not improve the neurological deficit induced by tMCAo. Levels of Amyloid precursor protein (APP)- and beta-site APP cleaving enzyme (BACE; β-secretase)-immunoreactive
cells, and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells decreased in the paeonol-administered group. Western blotting revealed decreased levels of Bax protein in mitochondria and apoptosis-inducing factor (AIF) in cytosol following paeonol treatment. In conclusion, we speculate that paeonol protected memory after ischemic stroke via reducing APP, BACE, and apoptosis. Supression the level of Bax and blocking the release of AIF into cytosol might participate in the anti-apoptosis provided by paeonol.
Collapse
|
27
|
Synaptic Protein Alterations in Parkinson’s Disease. Mol Neurobiol 2011; 45:126-43. [DOI: 10.1007/s12035-011-8226-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/07/2011] [Indexed: 10/14/2022]
|