1
|
McCracken S, McCoy L, Hu Z, Hodges JA, Valkova K, Williams PR, Morgan JL. Mistargeted retinal axons induce a synaptically independent subcircuit in the visual thalamus of albino mice. eLife 2025; 13:RP100990. [PMID: 40100272 PMCID: PMC11919250 DOI: 10.7554/elife.100990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
In albino mice and EphB1 knockout mice, mistargeted retinal ganglion cell axons form dense islands of axon terminals in the dorsal lateral geniculate nuclei (dLGN). The formation of these islands of retinal input depends on developmental patterns of spontaneous retinal activity. We reconstructed the microcircuitry of the activity-dependent islands and found that the boundaries of the island represent a remarkably strong segregation within retinogeniculate connectivity. We conclude that when sets of retinal input are established in the wrong part of the dLGN, the developing circuitry responds by forming a synaptically isolated subcircuit within the otherwise fully connected network. The fact that there is a developmental starting condition that can induce a synaptically segregated microcircuit has important implications for our understanding of the organization of visual circuits and our understanding of the implementation of activity-dependent development.
Collapse
Affiliation(s)
- Sean McCracken
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of MedicineSt. LouisUnited States
- Department of Neuroscience, Washington University School of MedicineSt. LouisUnited States
- Hope Center for Neurological Disorders, Washington University School of MedicineSt. LouisUnited States
- Biomedical Engineering, Washington University School of MedicineSt. LouisUnited States
| | - Liam McCoy
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of MedicineSt. LouisUnited States
- Department of Neuroscience, Washington University School of MedicineSt. LouisUnited States
- Biomedical Engineering, Washington University School of MedicineSt. LouisUnited States
| | - Ziyi Hu
- Biomedical Engineering, Washington University School of MedicineSt. LouisUnited States
| | - Julie A Hodges
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of MedicineSt. LouisUnited States
- Department of Neuroscience, Washington University School of MedicineSt. LouisUnited States
- Biomedical Engineering, Washington University School of MedicineSt. LouisUnited States
| | - Katia Valkova
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of MedicineSt. LouisUnited States
- Department of Neuroscience, Washington University School of MedicineSt. LouisUnited States
- Biomedical Engineering, Washington University School of MedicineSt. LouisUnited States
| | - Philip R Williams
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of MedicineSt. LouisUnited States
- Department of Neuroscience, Washington University School of MedicineSt. LouisUnited States
- Hope Center for Neurological Disorders, Washington University School of MedicineSt. LouisUnited States
| | - Josh L Morgan
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of MedicineSt. LouisUnited States
- Department of Neuroscience, Washington University School of MedicineSt. LouisUnited States
- Biomedical Engineering, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
2
|
McCracken S, McCoy L, Hu Z, Hodges J, Valkova K, Williams PR, Morgan J. Mistargeted retinal axons induce a synaptically independent subcircuit in the visual thalamus of albino mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603571. [PMID: 39071408 PMCID: PMC11275878 DOI: 10.1101/2024.07.15.603571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
In albino mice and EphB1 knock out mice, mistargeted retinal ganglion cell (RGC) axons form dense islands of axon terminals in the dorsal lateral geniculate nuclei (dLGN). The formation of these islands of retinal input depends on developmental patterns of spontaneous retinal activity. We reconstructed the microcircuitry of the activity dependent islands and found that the boundaries of the island represent a remarkably strong segregation within retinogeniculate connectivity. We conclude that, when sets of retinal input are established in the wrong part of the dLGN, the developing circuitry responds by forming a synaptically isolated subcircuit within the otherwise fully connected network. The fact that there is a developmental starting condition that can induce a synaptically segregated microcircuit has important implications for our understanding of the organization of visual circuits and for our understanding of the implementation of activity dependent development.
Collapse
Affiliation(s)
- Sean McCracken
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Liam McCoy
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ziyi Hu
- Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julie Hodges
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katia Valkova
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip R Williams
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Josh Morgan
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Wang DC, Santos-Valencia F, Song JH, Franks KM, Luo L. Embryonically active piriform cortex neurons promote intracortical recurrent connectivity during development. Neuron 2024; 112:2938-2954.e6. [PMID: 38964330 PMCID: PMC11377168 DOI: 10.1016/j.neuron.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/28/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Neuronal activity plays a critical role in the maturation of circuits that propagate sensory information into the brain. How widely does early activity regulate circuit maturation across the developing brain? Here, we used targeted recombination in active populations (TRAP) to perform a brain-wide survey for prenatally active neurons in mice and identified the piriform cortex as an abundantly TRAPed region. Whole-cell recordings in neonatal slices revealed preferential interconnectivity within embryonically TRAPed piriform neurons and their enhanced synaptic connectivity with other piriform neurons. In vivo Neuropixels recordings in neonates demonstrated that embryonically TRAPed piriform neurons exhibit broad functional connectivity within piriform and lead spontaneous synchronized population activity during a transient neonatal period, when recurrent connectivity is strengthening. Selectively activating or silencing these neurons in neonates enhanced or suppressed recurrent synaptic strength, respectively. Thus, embryonically TRAPed piriform neurons represent an interconnected hub-like population whose activity promotes recurrent connectivity in early development.
Collapse
Affiliation(s)
- David C Wang
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA; Stanford MSTP, Stanford, CA 94305, USA
| | | | - Jun H Song
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kevin M Franks
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Liqun Luo
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Stebbins K, Somaiya RD, Sabbagh U, Khaksar P, Liang Y, Su J, Fox MA. Retinal Input Is Required for the Maintenance of Neuronal Laminae in the Ventrolateral Geniculate Nucleus. eNeuro 2024; 11:ENEURO.0022-24.2024. [PMID: 39160068 PMCID: PMC11373735 DOI: 10.1523/eneuro.0022-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024] Open
Abstract
Retinal ganglion cell (RGC) axons provide direct input into several brain regions, including the dorsal lateral geniculate nucleus (dLGN), which is important for image-forming vision, and the ventrolateral geniculate nucleus (vLGN), which is associated with nonimage-forming vision. Through both activity- and morphogen-dependent mechanisms, retinal inputs play important roles in the development of dLGN, including the refinement of retinal projections, morphological development of thalamocortical relay cells (TRCs), timing of corticogeniculate innervation, and recruitment and distribution of inhibitory interneurons. In contrast, little is known about the role of retinal inputs in the development of vLGN. Grossly, vLGN is divided into two domains, the retinorecipient external vLGN (vLGNe) and nonretinorecipient internal vLGN (vLGNi). Studies previously found that vLGNe consists of transcriptionally distinct GABAergic subtypes distributed into at least four adjacent laminae. At present, it remains unclear whether retinal inputs influence the development of these cell-type-specific neuronal laminae in vLGNe. Here, we elucidated the developmental timeline for these laminae in the mouse vLGNe, and results indicate that these laminae are specified at or before birth. We observed that mutant mice without retinal inputs have a normal laminar distribution of GABAergic cells at birth; however, after the first week of postnatal development, these mutants exhibited a dramatic disruption in the laminar organization of inhibitory neurons and clear boundaries between vLGNe and vLGNi. Overall, our results show that while the formation of cell-type-specific layers in mouse vLGNe does not depend on RGC inputs, retinal signals are critical for their maintenance.
Collapse
Affiliation(s)
- Katelyn Stebbins
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia 24061
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia 24016
| | - Rachana Deven Somaiya
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia 24061
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Ubadah Sabbagh
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia 24061
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138
| | - Parsa Khaksar
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia 24016
| | - Yanping Liang
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
| | - Jianmin Su
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- School of Neuroscience, College of Science, Virginia Tech, Blacksburg, Virginia 24061
| | - Michael A Fox
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, Virginia 24061
- Department of Biology, College of Natural Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
5
|
Wang DC, Santos-Valencia F, Song JH, Franks KM, Luo L. Embryonically Active Piriform Cortex Neurons Promote Intracortical Recurrent Connectivity during Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593265. [PMID: 38766173 PMCID: PMC11100831 DOI: 10.1101/2024.05.08.593265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Neuronal activity plays a critical role in the maturation of circuits that propagate sensory information into the brain. How widely does early activity regulate circuit maturation across the developing brain? Here, we used Targeted Recombination in Active Populations (TRAP) to perform a brain-wide survey for prenatally active neurons in mice and identified the piriform cortex as an abundantly TRAPed region. Whole-cell recordings in neonatal slices revealed preferential interconnectivity within embryonically TRAPed piriform neurons and their enhanced synaptic connectivity with other piriform neurons. In vivo Neuropixels recordings in neonates demonstrated that embryonically TRAPed piriform neurons exhibit broad functional connectivity within piriform and lead spontaneous synchronized population activity during a transient neonatal period, when recurrent connectivity is strengthening. Selectively activating or silencing of these neurons in neonates enhanced or suppressed recurrent synaptic strength, respectively. Thus, embryonically TRAPed piriform neurons represent an interconnected hub-like population whose activity promotes recurrent connectivity in early development.
Collapse
|
6
|
Kerschensteiner D, Feller MB. Mapping the Retina onto the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041512. [PMID: 38052498 PMCID: PMC10835620 DOI: 10.1101/cshperspect.a041512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Vision begins in the retina, which extracts salient features from the environment and encodes them in the spike trains of retinal ganglion cells (RGCs), the output neurons of the eye. RGC axons innervate diverse brain areas (>50 in mice) to support perception, guide behavior, and mediate influences of light on physiology and internal states. In recent years, complete lists of RGC types (∼45 in mice) have been compiled, detailed maps of their dendritic connections drawn, and their light responses surveyed at scale. We know less about the RGCs' axonal projection patterns, which map retinal information onto the brain. However, some organizing principles have emerged. Here, we review the strategies and mechanisms that govern developing RGC axons and organize their innervation of retinorecipient brain areas.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences
- Department of Neuroscience
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
7
|
Stebbins K, Somaiya RD, Sabbagh U, Liang Y, Su J, Fox MA. Retinal input is required for the maintenance of neuronal laminae in the ventral lateral geniculate nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575402. [PMID: 38293194 PMCID: PMC10827117 DOI: 10.1101/2024.01.12.575402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Retinal ganglion cell (RGC) axons provide direct input into several nuclei of the mouse visual thalamus, including the dorsal lateral geniculate nucleus (dLGN), which is important for classical image-forming vision, and the ventral lateral geniculate nucleus (vLGN), which is associated with non-image-forming vision. Through both activity- and morphogen-dependent mechanisms, retinal inputs play important roles in the development of dLGN, including the refinement of retinal projections, morphological development of thalamocortical relay cells (TRCs), the timing of corticogeniculate innervation, and the recruitment of inhibitory interneurons from progenitor zones. In contrast, little is known about the role of retinal inputs in the development of vLGN. Grossly, vLGN is divided into two domains, the retinorecipient external vLGN (vLGNe) and the non-retinorecipient internal vLGN (vLGNi). We previously found that vLGNe consists of transcriptionally distinct GABAergic subtypes that are distributed into at least four adjacent laminae. At present, it remains unclear whether retinal inputs influence the development of these cell-specific neuronal laminae in vLGNe. Here, we elucidated the developmental timeline for the formation and maintenance of these laminae in the mouse vLGNe and results indicate that these laminae are specified at or before birth, well before eye-opening and the emergence of experience-dependent visual activity. We observed that mutant mice without retinal inputs have a normal laminar distribution of GABAergic cells at birth; however, after the first week of postnatal development, these mutants exhibited a dramatic disruption in the laminar organization of inhibitory neurons and clear boundaries between vLGNe and vLGNi. Overall, our results show that while the formation of cell type-specific layers in vLGNe does not depend on RGC inputs, retinal signals are critical for their maintenance.
Collapse
|
8
|
Willshaw DJ, Gale NM. Reanalysis of EphA3 Knock-In Double Maps in Mouse Suggests That Stochasticity in Topographic Map Formation Acts at the Retina Rather than between Competing Mechanisms at the Colliculus. eNeuro 2023; 10:ENEURO.0135-23.2023. [PMID: 37852780 PMCID: PMC10668230 DOI: 10.1523/eneuro.0135-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023] Open
Abstract
It has been suggested that stochasticity acts in the formation of topographically ordered maps in the visual system through the opposing chemoaffinity and neural activity forces acting on the innervating nerve fibers being held in an unstable equilibrium. Evidence comes from the Islet2-EphA3 knock-in mouse, in which ∼50% of the retinal ganglion cells, distributed across the retina, acquire the EphA3 receptor, thus having an enhanced density of EphA which specifies retinotopic order along the rostrocaudal (RC) axis of the colliculus. Sampling EphA3 knock-in maps in heterozygotes at different positions along the mediolateral (ML) extent of the colliculus had found single 1D maps [as in wild types (WTs)], double maps (as in homozygous knock-ins) or both single and double maps. We constructed full 2D maps from the same mouse dataset. We found either single maps or maps where the visual field projects rostrally, with a part-projection more caudally to form a double map, the extent and location of this duplication varying considerably. Contrary to previous analyses, there was no strict demarcation between heterozygous and homozygous maps. These maps were replicated in a computational model where, as the level of EphA3 was increased, there was a smooth transition from single to double maps. Our results suggest that the diversity in these retinotopic maps has its origin in a variability over the retina in the effective amount of EphA3, such as through variability in gene expression or the proportion of EphA3+ retinal ganglion cells, rather than the result of competing mechanisms acting at the colliculus.
Collapse
Affiliation(s)
- David J Willshaw
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, United Kingdom
| | - Nicholas M Gale
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
9
|
Tomar M, Beros J, Meloni B, Rodger J. Interactions between Guidance Cues and Neuronal Activity: Therapeutic Insights from Mouse Models. Int J Mol Sci 2023; 24:ijms24086966. [PMID: 37108129 PMCID: PMC10138948 DOI: 10.3390/ijms24086966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Topographic mapping of neural circuits is fundamental in shaping the structural and functional organization of brain regions. This developmentally important process is crucial not only for the representation of different sensory inputs but also for their integration. Disruption of topographic organization has been associated with several neurodevelopmental disorders. The aim of this review is to highlight the mechanisms involved in creating and refining such well-defined maps in the brain with a focus on the Eph and ephrin families of axon guidance cues. We first describe the transgenic models where ephrin-A expression has been manipulated to understand the role of these guidance cues in defining topography in various sensory systems. We further describe the behavioral consequences of lacking ephrin-A guidance cues in these animal models. These studies have given us unexpected insight into how neuronal activity is equally important in refining neural circuits in different brain regions. We conclude the review by discussing studies that have used treatments such as repetitive transcranial magnetic stimulation (rTMS) to manipulate activity in the brain to compensate for the lack of guidance cues in ephrin-knockout animal models. We describe how rTMS could have therapeutic relevance in neurodevelopmental disorders with disrupted brain organization.
Collapse
Affiliation(s)
- Maitri Tomar
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Jamie Beros
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Bruno Meloni
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| |
Collapse
|
10
|
Mercurio S, Serra L, Pagin M, Nicolis SK. Deconstructing Sox2 Function in Brain Development and Disease. Cells 2022; 11:cells11101604. [PMID: 35626641 PMCID: PMC9139651 DOI: 10.3390/cells11101604] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
SOX2 is a transcription factor conserved throughout vertebrate evolution, whose expression marks the central nervous system from the earliest developmental stages. In humans, SOX2 mutation leads to a spectrum of CNS defects, including vision and hippocampus impairments, intellectual disability, and motor control problems. Here, we review how conditional Sox2 knockout (cKO) in mouse with different Cre recombinases leads to very diverse phenotypes in different regions of the developing and postnatal brain. Surprisingly, despite the widespread expression of Sox2 in neural stem/progenitor cells of the developing neural tube, some regions (hippocampus, ventral forebrain) appear much more vulnerable than others to Sox2 deletion. Furthermore, the stage of Sox2 deletion is also a critical determinant of the resulting defects, pointing to a stage-specificity of SOX2 function. Finally, cKOs illuminate the importance of SOX2 function in different cell types according to the different affected brain regions (neural precursors, GABAergic interneurons, glutamatergic projection neurons, Bergmann glia). We also review human genetics data regarding the brain defects identified in patients carrying mutations within human SOX2 and examine the parallels with mouse mutants. Functional genomics approaches have started to identify SOX2 molecular targets, and their relevance for SOX2 function in brain development and disease will be discussed.
Collapse
|
11
|
Somaiya RD, Huebschman NA, Chaunsali L, Sabbagh U, Carrillo GL, Tewari BP, Fox MA. Development of astrocyte morphology and function in mouse visual thalamus. J Comp Neurol 2022; 530:945-962. [PMID: 34636034 PMCID: PMC8957486 DOI: 10.1002/cne.25261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 11/10/2022]
Abstract
The rodent visual thalamus has served as a powerful model to elucidate the cellular and molecular mechanisms that underlie sensory circuit formation and function. Despite significant advances in our understanding of the role of axon-target interactions and neural activity in orchestrating circuit formation in visual thalamus, the role of non-neuronal cells, such as astrocytes, is less clear. In fact, we know little about the transcriptional identity and development of astrocytes in mouse visual thalamus. To address this gap in knowledge, we studied the expression of canonical astrocyte molecules in visual thalamus using immunostaining, in situ hybridization, and reporter lines. While our data suggests some level of heterogeneity of astrocytes in different nuclei of the visual thalamus, the majority of thalamic astrocytes appeared to be labeled in Aldh1l1-EGFP mice. This led us to use this transgenic line to characterize the neonatal and postnatal development of these cells in visual thalamus. Our data show that not only have the entire cohort of astrocytes migrated into visual thalamus by eye-opening but they also have acquired their adult-like morphology, even while retinogeniculate synapses are still maturing. Furthermore, ultrastructural, immunohistochemical, and functional approaches revealed that by eye-opening, thalamic astrocytes ensheathe retinogeniculate synapses and are capable of efficient uptake of glutamate. Taken together, our results reveal that the morphological, anatomical, and functional development of astrocytes in visual thalamus occurs prior to eye-opening and the emergence of experience-dependent visual activity.
Collapse
Affiliation(s)
- Rachana D. Somaiya
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24016
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
| | - Natalie A. Huebschman
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Neuroscience Department, Ohio Wesleyan University, Delaware, OH 43015
| | - Lata Chaunsali
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- School of Neuroscience Graduate Program, Virginia Tech, Blacksburg, VA 24061
| | - Ubadah Sabbagh
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24016
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
| | - Gabriela L. Carrillo
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24016
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
| | - Bhanu P. Tewari
- Neuroscience Department, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Michael A. Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| |
Collapse
|
12
|
Poh EZ, Green C, Agostinelli L, Penrose-Menz M, Karl AK, Harvey AR, Rodger J. Manipulating the Level of Sensorimotor Stimulation during LI-rTMS Can Improve Visual Circuit Reorganisation in Adult Ephrin-A2A5 -/- Mice. Int J Mol Sci 2022; 23:ijms23052418. [PMID: 35269561 PMCID: PMC8910719 DOI: 10.3390/ijms23052418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique that has the potential to treat a variety of neurologic and psychiatric disorders. The extent of rTMS-induced neuroplasticity may be dependent on a subject's brain state at the time of stimulation. Chronic low intensity rTMS (LI-rTMS) has previously been shown to induce beneficial structural and functional reorganisation within the abnormal visual circuits of ephrin-A2A5-/- mice in ambient lighting. Here, we administered chronic LI-rTMS in adult ephrin-A2A5-/- mice either in a dark environment or concurrently with voluntary locomotion. One day after the last stimulation session, optokinetic responses were assessed and fluorescent tracers were injected to map corticotectal and geniculocortical projections. We found that LI-rTMS in either treatment condition refined the geniculocortical map. Corticotectal projections were improved in locomotion+LI-rTMS subjects, but not in dark + LI-rTMS and sham groups. Visuomotor behaviour was not improved in any condition. Our results suggest that the beneficial reorganisation of abnormal visual circuits by rTMS can be significantly influenced by simultaneous, ambient visual input and is enhanced by concomitant physical exercise. Furthermore, the observed pathway-specific effects suggest that regional molecular changes and/or the relative proximity of terminals to the induced electric fields influence the outcomes of LI-rTMS on abnormal circuitry.
Collapse
Affiliation(s)
- Eugenia Z. Poh
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (E.Z.P.); (M.P.-M.); (A.-K.K.)
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (C.G.); (L.A.); (A.R.H.)
- Perron Institute for Neurological and Translational Research, 8 Verdun St, Nedlands, WA 6009, Australia
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| | - Courtney Green
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (C.G.); (L.A.); (A.R.H.)
| | - Luca Agostinelli
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (C.G.); (L.A.); (A.R.H.)
| | - Marissa Penrose-Menz
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (E.Z.P.); (M.P.-M.); (A.-K.K.)
| | - Ann-Kathrin Karl
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (E.Z.P.); (M.P.-M.); (A.-K.K.)
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Strasse 11, 97080 Würzburg, Germany
| | - Alan R. Harvey
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (C.G.); (L.A.); (A.R.H.)
- Perron Institute for Neurological and Translational Research, 8 Verdun St, Nedlands, WA 6009, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (E.Z.P.); (M.P.-M.); (A.-K.K.)
- Perron Institute for Neurological and Translational Research, 8 Verdun St, Nedlands, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-6488-2245
| |
Collapse
|
13
|
Prosomeric classification of retinorecipient centers: a new causal scenario. Brain Struct Funct 2022; 227:1171-1193. [PMID: 35171343 DOI: 10.1007/s00429-022-02461-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/17/2021] [Indexed: 12/31/2022]
Abstract
The retina is known to target many superficial areas in the brain. These have always been studied under the tenets of the classic columnar brain model, which was not designed to produce causal explanations, being functionally oriented. This has led over the years to a remarkable absence of understanding or even hypothetical thinking about why the optic tract takes its precise course, why there are so many retinal targets (some of them at surprising sites), what mechanism places each one of them exactly at its standard position, which processes specify spatial aspects of retinotopy and differential physiological properties within the visual system, and so on, including questions about conserved and changing evolutionary aspects of the visual structures. The author posits that the origin of the current causally uninformative state of the field is the columnar model, which worked as a subliminal or cryptic dogma that disregards the molecular developmental advances accruing during the last 40 years, and in general distracts the attention of neuroscientists from causal approaches. There is now an alternative brain model, known as the prosomeric model, that does not have these problems. The author aims to show that once the data on retinal projections are mapped and analyzed within the prosomeric model the scenario changes drastically and multiple opportunities for formulating hypotheses for causal explanation of any aspects about the visual projections become apparent (emphasis is made on mouse and rabbit data, but any set of data on retinal projections in vertebrates can be used, as shown in some examples).
Collapse
|
14
|
Spead O, Weaver CJ, Moreland T, Poulain FE. Live imaging of retinotectal mapping reveals topographic map dynamics and a previously undescribed role for Contactin 2 in map sharpening. Development 2021; 148:272618. [PMID: 34698769 DOI: 10.1242/dev.199584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022]
Abstract
Organization of neuronal connections into topographic maps is essential for processing information. Yet, our understanding of topographic mapping has remained limited by our inability to observe maps forming and refining directly in vivo. Here, we used Cre-mediated recombination of a new colorswitch reporter in zebrafish to generate the first transgenic model allowing the dynamic analysis of retinotectal mapping in vivo. We found that the antero-posterior retinotopic map forms early but remains dynamic, with nasal and temporal retinal axons expanding their projection domains over time. Nasal projections initially arborize in the anterior tectum but progressively refine their projection domain to the posterior tectum, leading to the sharpening of the retinotopic map along the antero-posterior axis. Finally, using a CRISPR-mediated mutagenesis approach, we demonstrate that the refinement of nasal retinal projections requires the adhesion molecule Contactin 2. Altogether, our study provides the first analysis of a topographic map maturing in real time in a live animal and opens new strategies for dissecting the molecular mechanisms underlying precise topographic mapping in vertebrates.
Collapse
Affiliation(s)
- Olivia Spead
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Cory J Weaver
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Trevor Moreland
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Fabienne E Poulain
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
15
|
Ge X, Zhang K, Gribizis A, Hamodi AS, Sabino AM, Crair MC. Retinal waves prime visual motion detection by simulating future optic flow. Science 2021; 373:373/6553/eabd0830. [PMID: 34437090 DOI: 10.1126/science.abd0830] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 05/26/2021] [Indexed: 01/01/2023]
Abstract
The ability to perceive and respond to environmental stimuli emerges in the absence of sensory experience. Spontaneous retinal activity prior to eye opening guides the refinement of retinotopy and eye-specific segregation in mammals, but its role in the development of higher-order visual response properties remains unclear. Here, we describe a transient window in neonatal mouse development during which the spatial propagation of spontaneous retinal waves resembles the optic flow pattern generated by forward self-motion. We show that wave directionality requires the same circuit components that form the adult direction-selective retinal circuit and that chronic disruption of wave directionality alters the development of direction-selective responses of superior colliculus neurons. These data demonstrate how the developing visual system patterns spontaneous activity to simulate ethologically relevant features of the external world and thereby instruct self-organization.
Collapse
Affiliation(s)
- Xinxin Ge
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kathy Zhang
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alexandra Gribizis
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ali S Hamodi
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Aude Martinez Sabino
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael C Crair
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
16
|
Johnson KO, Smith NA, Goldstein EZ, Gallo V, Triplett JW. NMDA Receptor Expression by Retinal Ganglion Cells Is Not Required for Retinofugal Map Formation nor Eye-Specific Segregation in the Mouse. eNeuro 2021; 8:ENEURO.0115-20.2021. [PMID: 34193509 PMCID: PMC8287875 DOI: 10.1523/eneuro.0115-20.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/01/2022] Open
Abstract
Retinal ganglion cells (RGCs) project topographically to the superior colliculus (SC) and dorsal lateral geniculate nucleus (dLGN). Spontaneous activity plays a critical role in retinotopic mapping in both regions; however, the molecular mechanisms underlying activity-dependent refinement remain unclear. Previous pharmacologic studies implicate NMDA receptors (NMDARs) in the establishment of retinotopy. In other brain regions, NMDARs are expressed on both the presynaptic and postsynaptic side of the synapse, and recent work suggests that presynaptic and postsynaptic NMDARs play distinct roles in retinotectal developmental dynamics. To directly test the role of NMDARs expressed by RGCs in retinofugal map formation, we took a conditional genetic knock-out approach to delete the obligate GluN1 subunit of NMDARs in RGCs. Here, we demonstrate reduced GluN1 expression in the retina of Chrnb3-Cre;GluN1flox/flox (pre-cKO) mice without altered expression in the SC. Anatomical tracing experiments revealed no significant changes in termination zone size in the SC and dLGN of pre-cKO mice, suggesting NMDAR function in RGCs is not an absolute requirement for topographic refinement. Further, we observed no change in the eye-specific organization of retinal inputs to the SC nor dLGN. To verify that NMDA induces activity in RGC terminals, we restricted GCaMP5 expression to RGCs and confirmed induction of calcium transients in RGC terminals. Together, these findings demonstrate that NMDARs expressed by RGCs are not required for retinofugal topographic map formation nor eye-specific segregation in the mouse.
Collapse
Affiliation(s)
- Kristy O Johnson
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
- Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052
| | - Nathan A Smith
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052
| | - Evan Z Goldstein
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
- Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052
| | - Jason W Triplett
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
- Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052
| |
Collapse
|
17
|
Espírito-Santo SA, Nunes-Tavares N, Mendonça HR, Serfaty CA, Sholl-Franco A, Campello-Costa P. Intravitreal Interleukin-2 modifies retinal excitatory circuits and retinocollicular innervation. Exp Eye Res 2021; 204:108442. [PMID: 33460624 DOI: 10.1016/j.exer.2021.108442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/14/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
Interleukin-2 is a classical immune cytokine whose neural functions have received little attention. Its levels have been found to be increased in some neuropathologies, such as Alzheimer's disease, multiple sclerosis and uveitis. Mechanistically, it has been demonstrated the role of IL-2 in regulating glutamate and acetylcholine transmission, thus being relevant for CNS physiology. In fact, our previous work showed that an acute intravitreal IL-2 injection during retinotectal development promoted contralateral eye axonal plasticity in the superior colliculus, but the involved mechanisms were not explored. So, our present study aimed to investigate the effect of increased intravitreal IL-2 levels on the retinal glutamatergic and cholinergic signalling required for retinotectal normal development. We showed through HRP neuronal tracing that intravitreal IL-2 also induces ipsilateral eye axonal sprouting. Protein level and/or immunolocalization analysis in the retina confirmed IL-2 pathway activation by increased expression of phospho-STAT-3, coupled to transient (24h) reduced levels of Egr1, PSD-95 and nicotinic acetylcholine receptor β2 subunit, suggesting reduced neural activity and synaptic sites. Also, AChE activity and GluN2B and GluA2 contents were reduced within 96h after IL-2 treatment. Therefore, IL-2-induced retinotectal plasticity might be driven by changes in cholinergic and glutamatergic pathways of the retina.
Collapse
Affiliation(s)
- S A Espírito-Santo
- Instituto de Biologia, Programa de Pós-Graduação Em Neurociências, Universidade Federal Fluminense, Niterói, Brazil; Instituto de Biofísica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil; Universidade Do Estado de Minas Gerais, Departamento de Ciências Biológicas, Minas Gerais, Brazil
| | - N Nunes-Tavares
- Instituto de Biofísica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - H R Mendonça
- Instituto de Biologia, Programa de Pós-Graduação Em Neurociências, Universidade Federal Fluminense, Niterói, Brazil; Laboratório Integrado de Morfologia, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal Do Rio de Janeiro, Campus Macaé, Brazil
| | - C A Serfaty
- Instituto de Biologia, Programa de Pós-Graduação Em Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - A Sholl-Franco
- Instituto de Biofísica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - P Campello-Costa
- Instituto de Biologia, Programa de Pós-Graduação Em Neurociências, Universidade Federal Fluminense, Niterói, Brazil.
| |
Collapse
|
18
|
Sitko AA, Goodrich LV. Making sense of neural development by comparing wiring strategies for seeing and hearing. Science 2021; 371:eaaz6317. [PMID: 33414193 PMCID: PMC8034811 DOI: 10.1126/science.aaz6317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to perceive and interact with the world depends on a diverse array of neural circuits specialized for carrying out specific computations. Each circuit is assembled using a relatively limited number of molecules and common developmental steps, from cell fate specification to activity-dependent synaptic refinement. Given this shared toolkit, how do individual circuits acquire their characteristic properties? We explore this question by comparing development of the circuitry for seeing and hearing, highlighting a few examples where differences in each system's sensory demands necessitate different developmental strategies.
Collapse
Affiliation(s)
- A A Sitko
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - L V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Johnson KO, Triplett JW. Wiring subcortical image-forming centers: Topography, laminar targeting, and map alignment. Curr Top Dev Biol 2020; 142:283-317. [PMID: 33706920 DOI: 10.1016/bs.ctdb.2020.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Efficient sensory processing is a complex and important function for species survival. As such, sensory circuits are highly organized to facilitate rapid detection of salient stimuli and initiate motor responses. For decades, the retina's projections to image-forming centers have served as useful models to elucidate the mechanisms by which such exquisite circuitry is wired. In this chapter, we review the roles of molecular cues, neuronal activity, and axon-axon competition in the development of topographically ordered retinal ganglion cell (RGC) projections to the superior colliculus (SC) and dorsal lateral geniculate nucleus (dLGN). Further, we discuss our current state of understanding regarding the laminar-specific targeting of subclasses of RGCs in the SC and its homolog, the optic tectum (OT). Finally, we cover recent studies examining the alignment of projections from primary visual cortex with RGCs that monitor the same region of space in the SC.
Collapse
Affiliation(s)
- Kristy O Johnson
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, United States; Institute for Biomedical Sciences, The George Washington University School of Medicine, Washington, DC, United States
| | - Jason W Triplett
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, United States; Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, United States.
| |
Collapse
|
20
|
Savier EL, Dunbar J, Cheung K, Reber M. New insights on the modeling of the molecular mechanisms underlying neural maps alignment in the midbrain. eLife 2020; 9:59754. [PMID: 32996883 PMCID: PMC7527235 DOI: 10.7554/elife.59754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022] Open
Abstract
We previously identified and modeled a principle of visual map alignment in the midbrain involving the mapping of the retinal projections and concurrent transposition of retinal guidance cues into the superior colliculus providing positional information for the organization of cortical V1 projections onto the retinal map (Savier et al., 2017). This principle relies on mechanisms involving Epha/Efna signaling, correlated neuronal activity and axon competition. Here, using the 3-step map alignment computational model, we predict and validate in vivo the visual mapping defects in a well-characterized mouse model. Our results challenge previous hypotheses and provide an alternative, although complementary, explanation for the phenotype observed. In addition, we propose a new quantification method to assess the degree of alignment and organization between maps, allowing inter-model comparisons. This work generalizes the validity and robustness of the 3-step map alignment algorithm as a predictive tool and confirms the basic mechanisms of visual map organization.
Collapse
Affiliation(s)
- Elise Laura Savier
- Department of Biology and Psychology, University of Virginia, Charlottesville, United States
| | - James Dunbar
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada.,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Kyle Cheung
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Michael Reber
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada.,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada.,Cell and System Biology, University of Toronto, Toronto, Canada.,CNRS UPR 3212, University of Strasbourg, Strasbourg, France
| |
Collapse
|
21
|
Liang L, Chen C. Organization, Function, and Development of the Mouse Retinogeniculate Synapse. Annu Rev Vis Sci 2020; 6:261-285. [DOI: 10.1146/annurev-vision-121219-081753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual information is encoded in distinct retinal ganglion cell (RGC) types in the eye tuned to specific features of the visual space. These streams of information project to the visual thalamus, the first station of the image-forming pathway. In the mouse, this connection between RGCs and thalamocortical neurons, the retinogeniculate synapse, has become a powerful experimental model for understanding how circuits in the thalamus are constructed to process these incoming lines of information. Using modern molecular and genetic tools, recent studies have suggested a more complex circuit organization than was previously understood. In this review, we summarize the current understanding of the structural and functional organization of the retinogeniculate synapse in the mouse. We discuss a framework by which a seemingly complex circuit can effectively integrate and parse information to downstream stations of the visual pathway. Finally, we review how activity and visual experience can sculpt this exquisite connectivity.
Collapse
Affiliation(s)
- Liang Liang
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Neuroscience, Yale University, New Haven, Connecticut 06520, USA
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
22
|
Sanes JR, Zipursky SL. Synaptic Specificity, Recognition Molecules, and Assembly of Neural Circuits. Cell 2020; 181:536-556. [DOI: 10.1016/j.cell.2020.04.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023]
|
23
|
Xu X, Hanganu-Opatz IL, Bieler M. Cross-Talk of Low-Level Sensory and High-Level Cognitive Processing: Development, Mechanisms, and Relevance for Cross-Modal Abilities of the Brain. Front Neurorobot 2020; 14:7. [PMID: 32116637 PMCID: PMC7034303 DOI: 10.3389/fnbot.2020.00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of cross-modal learning capabilities requires the interaction of neural areas accounting for sensory and cognitive processing. Convergence of multiple sensory inputs is observed in low-level sensory cortices including primary somatosensory (S1), visual (V1), and auditory cortex (A1), as well as in high-level areas such as prefrontal cortex (PFC). Evidence shows that local neural activity and functional connectivity between sensory cortices participate in cross-modal processing. However, little is known about the functional interplay between neural areas underlying sensory and cognitive processing required for cross-modal learning capabilities across life. Here we review our current knowledge on the interdependence of low- and high-level cortices for the emergence of cross-modal processing in rodents. First, we summarize the mechanisms underlying the integration of multiple senses and how cross-modal processing in primary sensory cortices might be modified by top-down modulation of the PFC. Second, we examine the critical factors and developmental mechanisms that account for the interaction between neuronal networks involved in sensory and cognitive processing. Finally, we discuss the applicability and relevance of cross-modal processing for brain-inspired intelligent robotics. An in-depth understanding of the factors and mechanisms controlling cross-modal processing might inspire the refinement of robotic systems by better mimicking neural computations.
Collapse
Affiliation(s)
- Xiaxia Xu
- Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Bieler
- Laboratory for Neural Computation, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Medori M, Spelzini G, Scicolone G. Molecular complexity of visual mapping: a challenge for regenerating therapy. Neural Regen Res 2020; 15:382-389. [PMID: 31571645 PMCID: PMC6921353 DOI: 10.4103/1673-5374.266044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Investigating the cellular and molecular mechanisms involved in the development of topographically ordered connections in the central nervous system constitutes an important issue in neurobiology because these connections are the base of the central nervous system normal function. The dominant model to study the development of topographic maps is the projection from the retinal ganglion cells to the optic tectum/colliculus. The expression pattern of Eph/ephrin system in opposing gradients both in the retina and the tectum, labels the local addresses on the target and gives specific sensitivities to growth cones according to their topographic origin in the retina. The rigid precision of normal retinotopic mapping has prompted the chemoaffinity hypothesis, positing axonal targeting to be based on fixed biochemical affinities between fibers and targets. However, several lines of evidence have shown that the mapping can adjust to experimentally modified targets with flexibility, demonstrating the robustness of the guidance process. Here we discuss the complex ways the Ephs and ephrins interact allowing to understand how the retinotectal mapping is a precise but also a flexible process.
Collapse
Affiliation(s)
- Mara Medori
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN); Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gonzalo Spelzini
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN); Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriel Scicolone
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN); Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
25
|
Li R, Liang Y, Zheng S, He Q, Yang L. The atypical cadherin flamingo determines the competence of neurons for activity-dependent fine-scale topography. Mol Brain 2019; 12:109. [PMID: 31823796 PMCID: PMC6905094 DOI: 10.1186/s13041-019-0531-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/28/2019] [Indexed: 11/10/2022] Open
Abstract
The topographic projection of afferent terminals into two-dimensional maps is essential for sensory systems to encode the locations of sensory stimuli. In vertebrates, guidance cues are critical for establishing a coarse topographic map, while neuronal activity directs fine-scale topography between adjacent afferent terminals. However, the molecular mechanism underlying activity-dependent fine-scale topography is not well known. Studies in the Drosophila visual system have demonstrated that cell-adhesion molecules direct fine-scale topography, but whether or not these molecules are involved in activity-dependent fine-scale topography remains to be determined. We previously reported that the nociceptors in Drosophila larvae form an activity-dependent fine-scale topographic system. The establishment of this system is instructed by the level of neuronal activity in individual nociceptors. Here, we show that the atypical cadherin Flamingo (Fmi) is required for establishing the nociceptor topographic map. We found that the topographic defect caused by loss of fmi was epistatic to the inhibition of neuronal activity and the overexpression of the activity-regulated gene Trim9. These results suggest that Fmi and neuronal activity interact to regulate fine-scale topography. This study provides a link between neuronal activity and the cell-adhesion molecule in the establishment of fine-scale topography.
Collapse
Affiliation(s)
- Ruonan Li
- School of Medicine, Dalian University, Dalian, 116622, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, 110112, China
| | - Yuhua Liang
- School of Medicine, Dalian University, Dalian, 116622, Liaoning, China
| | - Siyang Zheng
- Life Sciences Institute, Dalian National University, Dalian, 116600, Liaoning, China
| | - Qun He
- School of Medicine, Dalian University, Dalian, 116622, Liaoning, China
| | - Limin Yang
- School of Medicine, Dalian University, Dalian, 116622, Liaoning, China. .,Chronic Disease Research Center, Dalian Key Laboratory, Dalian, 116622, Liaoning, China. .,School of Medicine, Jiamusi University, Jiamusi, 154007, Heilongjiang, China.
| |
Collapse
|
26
|
Murcia-Belmonte V, Erskine L. Wiring the Binocular Visual Pathways. Int J Mol Sci 2019; 20:ijms20133282. [PMID: 31277365 PMCID: PMC6651880 DOI: 10.3390/ijms20133282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Retinal ganglion cells (RGCs) extend axons out of the retina to transmit visual information to the brain. These connections are established during development through the navigation of RGC axons along a relatively long, stereotypical pathway. RGC axons exit the eye at the optic disc and extend along the optic nerves to the ventral midline of the brain, where the two nerves meet to form the optic chiasm. In animals with binocular vision, the axons face a choice at the optic chiasm—to cross the midline and project to targets on the contralateral side of the brain, or avoid crossing the midline and project to ipsilateral brain targets. Ipsilaterally and contralaterally projecting RGCs originate in disparate regions of the retina that relate to the extent of binocular overlap in the visual field. In humans virtually all RGC axons originating in temporal retina project ipsilaterally, whereas in mice, ipsilaterally projecting RGCs are confined to the peripheral ventrotemporal retina. This review will discuss recent advances in our understanding of the mechanisms regulating specification of ipsilateral versus contralateral RGCs, and the differential guidance of their axons at the optic chiasm. Recent insights into the establishment of congruent topographic maps in both brain hemispheres also will be discussed.
Collapse
Affiliation(s)
| | - Lynda Erskine
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK
| |
Collapse
|
27
|
Hong YK, Burr EF, Sanes JR, Chen C. Heterogeneity of retinogeniculate axon arbors. Eur J Neurosci 2019; 49:948-956. [PMID: 29883007 PMCID: PMC6286704 DOI: 10.1111/ejn.13986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/10/2018] [Accepted: 05/23/2018] [Indexed: 01/25/2023]
Abstract
The retinogeniculate synapse transmits information from retinal ganglion cells (RGC) in the eye to thalamocortical relay neurons in the visual thalamus, the dorsal lateral geniculate nucleus (dLGN). Studies in mice have identified genetic markers for distinct classes of RGCs encoding different features of the visual space, facilitating the dissection of RGC subtype-specific physiology and anatomy. In this study, we examine the morphological properties of axon arbors of the BD-RGC class of ON-OFF direction selective cells that, by definition, exhibit a stereotypic dendritic arbor and termination pattern in the retina. We find that axon arbors from the same class of RGCs exhibit variations in their structure based on their target region of the dLGN. Our findings suggest that target regions may influence the morphologic and synaptic properties of their afferent inputs.
Collapse
Affiliation(s)
- Y. Kate Hong
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, U.S.A
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, U.S.A
| | - Eliza F. Burr
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, U.S.A
| | - Joshua R. Sanes
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, U.S.A
| | - Chinfei Chen
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, U.S.A
| |
Collapse
|
28
|
Regulation of axonal EphA4 forward signaling is involved in the effect of EphA3 on chicken retinal ganglion cell axon growth during retinotectal mapping. Exp Eye Res 2019; 178:46-60. [DOI: 10.1016/j.exer.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/06/2018] [Accepted: 09/16/2018] [Indexed: 12/22/2022]
|
29
|
Sokhadze G, Seabrook TA, Guido W. The absence of retinal input disrupts the development of cholinergic brainstem projections in the mouse dorsal lateral geniculate nucleus. Neural Dev 2018; 13:27. [PMID: 30541618 PMCID: PMC6291928 DOI: 10.1186/s13064-018-0124-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/29/2018] [Indexed: 01/18/2023] Open
Abstract
Background The dorsal lateral geniculate nucleus (dLGN) of the mouse has become a model system for understanding thalamic circuit assembly. While the development of retinal projections to dLGN has been a topic of extensive inquiry, how and when nonretinal projections innervate this nucleus remains largely unexplored. In this study, we examined the development of a major nonretinal projection to dLGN, the ascending input arising from cholinergic neurons of the brainstem. To visualize these projections, we used a transgenic mouse line that expresses red fluorescent protein exclusively in cholinergic neurons. To assess whether retinal input regulates the timing and pattern of cholinergic innervation of dLGN, we utilized the math5-null (math5−/−) mouse, which lacks retinofugal projections due to a failure of retinal ganglion cell differentiation. Results Cholinergic brainstem innervation of dLGN began at the end of the first postnatal week, increased steadily with age, and reached an adult-like pattern by the end of the first postnatal month. The absence of retinal input led to a disruption in the trajectory, rate, and pattern of cholinergic innervation of dLGN. Anatomical tracing experiments reveal these disruptions were linked to cholinergic projections from parabigeminal nucleus, which normally traverse and reach dLGN through the optic tract. Conclusions The late postnatal arrival of cholinergic projections to dLGN and their regulation by retinal signaling provides additional support for the existence of a conserved developmental plan whereby retinal input regulates the timing and sequencing of nonretinal projections to dLGN.
Collapse
Affiliation(s)
- Guela Sokhadze
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 511 S. Floyd St, Louisville, KY, 40292, USA
| | - Tania A Seabrook
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 511 S. Floyd St, Louisville, KY, 40292, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 511 S. Floyd St, Louisville, KY, 40292, USA.
| |
Collapse
|
30
|
Varadarajan SG, Huberman AD. Assembly and repair of eye-to-brain connections. Curr Opin Neurobiol 2018; 53:198-209. [PMID: 30339988 DOI: 10.1016/j.conb.2018.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/24/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022]
Abstract
Vision is the sense humans rely on most to navigate the world and survive. A tremendous amount of research has focused on understanding the neural circuits for vision and the developmental mechanisms that establish them. The eye-to-brain, or 'retinofugal' pathway remains a particularly important model in these contexts because it is essential for sight, its overt anatomical features relate to distinct functional attributes and those features develop in a tractable sequence. Much progress has been made in understanding the growth of retinal axons out of the eye, their selection of targets in the brain, the development of laminar and cell type-specific connectivity within those targets, and also dendritic connectivity within the retina itself. Moreover, because the retinofugal pathway is prone to degeneration in many common blinding diseases, understanding the cellular and molecular mechanisms that establish connectivity early in life stands to provide valuable insights into approaches that re-wire this pathway after damage or loss. Here we review recent progress in understanding the development of retinofugal pathways and how this information is important for improving visual circuit regeneration.
Collapse
Affiliation(s)
- Supraja G Varadarajan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States; Department of Ophthalmology, Stanford University School of Medicine, Stanford, United States; BioX, Stanford University School of Medicine, Stanford, United States; Neurosciences Institute, Stanford University School of Medicine, Stanford, United States.
| |
Collapse
|
31
|
Guido W. Development, form, and function of the mouse visual thalamus. J Neurophysiol 2018; 120:211-225. [PMID: 29641300 PMCID: PMC6093956 DOI: 10.1152/jn.00651.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022] Open
Abstract
The dorsal lateral geniculate nucleus (dLGN) of the thalamus is the exclusive relay of retinal information en route to the visual cortex. Although much of our understanding about dLGN comes from studies done in higher mammals, such as the cat and primate, the mouse as a model organism has moved to the forefront as a tractable experimental platform to examine cell type-specific relations. This review highlights our current knowledge about the development, structure, and function of the mouse dLGN.
Collapse
Affiliation(s)
- William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine , Louisville, Kentucky
| |
Collapse
|
32
|
Liang L, Fratzl A, Goldey G, Ramesh RN, Sugden AU, Morgan JL, Chen C, Andermann ML. A Fine-Scale Functional Logic to Convergence from Retina to Thalamus. Cell 2018; 173:1343-1355.e24. [PMID: 29856953 DOI: 10.1016/j.cell.2018.04.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/31/2018] [Accepted: 04/27/2018] [Indexed: 11/26/2022]
Abstract
Numerous well-defined classes of retinal ganglion cells innervate the thalamus to guide image-forming vision, yet the rules governing their convergence and divergence remain unknown. Using two-photon calcium imaging in awake mouse thalamus, we observed a functional arrangement of retinal ganglion cell axonal boutons in which coarse-scale retinotopic ordering gives way to fine-scale organization based on shared preferences for other visual features. Specifically, at the ∼6 μm scale, clusters of boutons from different axons often showed similar preferences for either one or multiple features, including axis and direction of motion, spatial frequency, and changes in luminance. Conversely, individual axons could "de-multiplex" information channels by participating in multiple, functionally distinct bouton clusters. Finally, ultrastructural analyses demonstrated that retinal axonal boutons in a local cluster often target the same dendritic domain. These data suggest that functionally specific convergence and divergence of retinal axons may impart diverse, robust, and often novel feature selectivity to visual thalamus.
Collapse
Affiliation(s)
- Liang Liang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alex Fratzl
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Glenn Goldey
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rohan N Ramesh
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Arthur U Sugden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Josh L Morgan
- Department of Ophthalmology and Visual Sciences, Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chinfei Chen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Savier E, Reber M. Visual Maps Development: Reconsidering the Role of Retinal Efnas and Basic Principle of Map Alignment. Front Cell Neurosci 2018; 12:77. [PMID: 29618973 PMCID: PMC5871686 DOI: 10.3389/fncel.2018.00077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Elise Savier
- Centre National de la Recherche Scientifique, UPR3212 - Institute of Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France.,Neuroscience, Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Michael Reber
- Centre National de la Recherche Scientifique, UPR3212 - Institute of Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France.,Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
34
|
Ito S, Feldheim DA. The Mouse Superior Colliculus: An Emerging Model for Studying Circuit Formation and Function. Front Neural Circuits 2018; 12:10. [PMID: 29487505 PMCID: PMC5816945 DOI: 10.3389/fncir.2018.00010] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/22/2018] [Indexed: 11/30/2022] Open
Abstract
The superior colliculus (SC) is a midbrain area where visual, auditory and somatosensory information are integrated to initiate motor commands. The SC plays a central role in visual information processing in the mouse; it receives projections from 85% to 90% of the retinal ganglion cells (RGCs). While the mouse SC has been a long-standing model used to study retinotopic map formation, a number of technological advances in mouse molecular genetic techniques, large-scale physiological recordings and SC-dependent visual behavioral assays have made the mouse an even more ideal model to understand the relationship between circuitry and behavior.
Collapse
Affiliation(s)
- Shinya Ito
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - David A Feldheim
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
35
|
Seabrook TA, Burbridge TJ, Crair MC, Huberman AD. Architecture, Function, and Assembly of the Mouse Visual System. Annu Rev Neurosci 2018; 40:499-538. [PMID: 28772103 DOI: 10.1146/annurev-neuro-071714-033842] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vision is the sense humans rely on most to navigate the world, make decisions, and perform complex tasks. Understanding how humans see thus represents one of the most fundamental and important goals of neuroscience. The use of the mouse as a model for parsing how vision works at a fundamental level started approximately a decade ago, ushered in by the mouse's convenient size, relatively low cost, and, above all, amenability to genetic perturbations. In the course of that effort, a large cadre of new and powerful tools for in vivo labeling, monitoring, and manipulation of neurons were applied to this species. As a consequence, a significant body of work now exists on the architecture, function, and development of mouse central visual pathways. Excitingly, much of that work includes causal testing of the role of specific cell types and circuits in visual perception and behavior-something rare to find in studies of the visual system of other species. Indeed, one could argue that more information is now available about the mouse visual system than any other sensory system, in any species, including humans. As such, the mouse visual system has become a platform for multilevel analysis of the mammalian central nervous system generally. Here we review the mouse visual system structure, function, and development literature and comment on the similarities and differences between the visual system of this and other model species. We also make it a point to highlight the aspects of mouse visual circuitry that remain opaque and that are in need of additional experimentation to enrich our understanding of how vision works on a broad scale.
Collapse
Affiliation(s)
- Tania A Seabrook
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305
| | - Timothy J Burbridge
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520;
| | - Michael C Crair
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520;
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305.,Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California 94303; .,Bio-X, Stanford University, Stanford, California 94305
| |
Collapse
|
36
|
Single-cell transcriptomics of the developing lateral geniculate nucleus reveals insights into circuit assembly and refinement. Proc Natl Acad Sci U S A 2018; 115:E1051-E1060. [PMID: 29343640 PMCID: PMC5798372 DOI: 10.1073/pnas.1717871115] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurons and nonneuronal cells in the developing brain dynamically regulate gene expression as neural connectivity is established. However, the specific gene programs activated in distinct cell populations during the assembly and refinement of many intact neuronal circuits have not been thoroughly characterized. In this study, we take advantage of recent advances in transcriptomic profiling techniques to characterize gene expression in the postnatal developing lateral geniculate nucleus (LGN) at single-cell resolution. Our data reveal that genes involved in brain development are dynamically regulated in all major cell types of the LGN, suggesting that the establishment of neural connectivity depends upon functional collaboration between multiple neuronal and nonneuronal cell types in this brain region. Coordinated changes in gene expression underlie the early patterning and cell-type specification of the central nervous system. However, much less is known about how such changes contribute to later stages of circuit assembly and refinement. In this study, we employ single-cell RNA sequencing to develop a detailed, whole-transcriptome resource of gene expression across four time points in the developing dorsal lateral geniculate nucleus (LGN), a visual structure in the brain that undergoes a well-characterized program of postnatal circuit development. This approach identifies markers defining the major LGN cell types, including excitatory relay neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells. Most cell types exhibit significant transcriptional changes across development, dynamically expressing genes involved in distinct processes including retinotopic mapping, synaptogenesis, myelination, and synaptic refinement. Our data suggest that genes associated with synapse and circuit development are expressed in a larger proportion of nonneuronal cell types than previously appreciated. Furthermore, we used this single-cell expression atlas to identify the Prkcd-Cre mouse line as a tool for selective manipulation of relay neurons during a late stage of sensory-driven synaptic refinement. This transcriptomic resource provides a cellular map of gene expression across several cell types of the LGN, and offers insight into the molecular mechanisms of circuit development in the postnatal brain.
Collapse
|
37
|
Stabio ME, Sabbah S, Quattrochi LE, Ilardi MC, Fogerson PM, Leyrer ML, Kim MT, Kim I, Schiel M, Renna JM, Briggman KL, Berson DM. The M5 Cell: A Color-Opponent Intrinsically Photosensitive Retinal Ganglion Cell. Neuron 2018; 97:150-163.e4. [PMID: 29249284 PMCID: PMC5757626 DOI: 10.1016/j.neuron.2017.11.030] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/09/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) combine direct photosensitivity through melanopsin with synaptically mediated drive from classical photoreceptors through bipolar-cell input. Here, we sought to provide a fuller description of the least understood ipRGC type, the M5 cell, and discovered a distinctive functional characteristic-chromatic opponency (ultraviolet excitatory, green inhibitory). Serial electron microscopic reconstructions revealed that M5 cells receive selective UV-opsin drive from Type 9 cone bipolar cells but also mixed cone signals from bipolar Types 6, 7, and 8. Recordings suggest that both excitation and inhibition are driven by the ON channel and that chromatic opponency results from M-cone-driven surround inhibition mediated by wide-field spiking GABAergic amacrine cells. We show that M5 cells send axons to the dLGN and are thus positioned to provide chromatic signals to visual cortex. These findings underscore that melanopsin's influence extends beyond unconscious reflex functions to encompass cortical vision, perhaps including the perception of color.
Collapse
Affiliation(s)
- Maureen E Stabio
- Department of Cell & Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Shai Sabbah
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | | | - Marissa C Ilardi
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | | | - Megan L Leyrer
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Min Tae Kim
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Inkyu Kim
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Matthew Schiel
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Jordan M Renna
- Department of Biology, University of Akron, Akron, OH 44325, USA
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - David M Berson
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| |
Collapse
|
38
|
Barsh GR, Isabella AJ, Moens CB. Vagus Motor Neuron Topographic Map Determined by Parallel Mechanisms of hox5 Expression and Time of Axon Initiation. Curr Biol 2017; 27:3812-3825.e3. [PMID: 29225029 PMCID: PMC5755714 DOI: 10.1016/j.cub.2017.11.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/13/2017] [Accepted: 11/08/2017] [Indexed: 12/22/2022]
Abstract
Many networks throughout the nervous system are organized into topographic maps, where the positions of neuron cell bodies in the projecting field correspond with the positions of their axons in the target field. Previous studies of topographic map development show evidence for spatial patterning mechanisms, in which molecular determinants expressed across the projecting and target fields are matched directly in a point-to-point mapping process. Here, we describe a novel temporal mechanism of topographic map formation that depends on spatially regulated differences in the timing of axon outgrowth and functions in parallel with spatial point-to-point mapping mechanisms. We focus on the vagus motor neurons, which are topographically arranged in both mammals and fish. We show that cell position along the anterior-posterior axis of hindbrain rhombomere 8 determines expression of hox5 genes, which are expressed in posterior, but not anterior, vagus motor neurons. Using live imaging and transplantation in zebrafish embryos, we additionally reveal that axon initiation is delayed in posterior vagus motor neurons independent of neuron birth time. We show that hox5 expression directs topographic mapping without affecting time of axon outgrowth and that time of axon outgrowth directs topographic mapping without affecting hox5 expression. The vagus motor neuron topographic map is therefore determined by two mechanisms that act in parallel: a hox5-dependent spatial mechanism akin to classic mechanisms of topographic map formation and a novel axon outgrowth-dependent temporal mechanism in which time of axon formation is spatially regulated to direct axon targeting.
Collapse
Affiliation(s)
- Gabrielle R Barsh
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Adam J Isabella
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
39
|
Narushima M. Comparison of the role of metabotropic glutamate receptor subtype 1 in developmental refinement of neuronal connectivity between the cerebellum and the sensory thalamus. Neurosci Res 2017; 129:24-31. [PMID: 28711710 DOI: 10.1016/j.neures.2017.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 11/30/2022]
Abstract
Developmental refinement of neuronal connectivity is crucial for proper brain function. In the early phase of development, input fibers arrive at their target areas guided by specific molecular cues and form abundant immature synapses. Then, functionally important synapses are preserved and strengthened by neural activity while unnecessary synapses are eliminated. Afferent synapses in the sensory thalamus, such as from retina to lateral geniculate nucleus, and climbing fiber (CF)-Purkinje cell (PC) synapses in the cerebellum are valuable models for studying this developmental refinement of synaptic connectivity because only a limited number of input fibers innervate a given postsynaptic thalamocortical (TC) neuron or PC. The metabotropic glutamate receptor subtype 1 (mGluR1) is required for the refinement of both afferent-TC neuron and CF-PC synapses. However, mGluR1 functions differently at these synapses. While mGluR1 is critical for elimination of surplus CF-PC synapses in the cerebellum, retinogeniculate synapses require mGluR1 for maintenance of mature connectivity.
Collapse
Affiliation(s)
- Madoka Narushima
- Department of Physiology (I), School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| |
Collapse
|
40
|
RIM1/2 in retinal ganglion cells are required for the refinement of ipsilateral axons and eye-specific segregation. Sci Rep 2017; 7:3236. [PMID: 28607399 PMCID: PMC5468276 DOI: 10.1038/s41598-017-03361-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 04/24/2017] [Indexed: 12/22/2022] Open
Abstract
Neural activity is crucial for the refinement of neuronal connections during development, but the contribution of synaptic release mechanisms is not known. In the mammalian retina, spontaneous neural activity controls the refinement of retinal projections to the dorsal lateral geniculate nucleus (dLGN) and the superior colliculus (SC) to form appropriate topographic and eye-specific maps. To evaluate the role of synaptic release, the rab-interacting molecules (RIMs), a family of active zone proteins that play a central role in calcium-triggered release, were conditionally ablated in a subset of retinal ganglion cells (RGCs). We found that this deletion is sufficient to reduce presynaptic release probability onto dLGN neurons. Furthermore, eye-specific segregation in the dLGN and topographic refinement of ipsilateral axons in the SC and the dLGN, are impaired in RIM1/2 conditional knock-out (Rim-cDKO) mice. These defects are similar to those found when retinal activity is globally disturbed. However, reduction in synaptic release had no effect on eye-specific lamination in the SC nor on the retinotopic refinement of contralateral axons in the SC. This study highlights a potential distinction between synaptic and non-synaptic roles of neuronal activity for different mapping rules operating in visual system development.
Collapse
|
41
|
Bibollet-Bahena O, Okafuji T, Hokamp K, Tear G, Mitchell KJ. A dual-strategy expression screen for candidate connectivity labels in the developing thalamus. PLoS One 2017; 12:e0177977. [PMID: 28558017 PMCID: PMC5448750 DOI: 10.1371/journal.pone.0177977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
The thalamus or “inner chamber” of the brain is divided into ~30 discrete nuclei, with highly specific patterns of afferent and efferent connectivity. To identify genes that may direct these patterns of connectivity, we used two strategies. First, we used a bioinformatics pipeline to survey the predicted proteomes of nematode, fruitfly, mouse and human for extracellular proteins containing any of a list of motifs found in known guidance or connectivity molecules. Second, we performed clustering analyses on the Allen Developing Mouse Brain Atlas data to identify genes encoding surface proteins expressed with temporal profiles similar to known guidance or connectivity molecules. In both cases, we then screened the resultant genes for selective expression patterns in the developing thalamus. These approaches identified 82 candidate connectivity labels in the developing thalamus. These molecules include many members of the Ephrin, Eph-receptor, cadherin, protocadherin, semaphorin, plexin, Odz/teneurin, Neto, cerebellin, calsyntenin and Netrin-G families, as well as diverse members of the immunoglobulin (Ig) and leucine-rich receptor (LRR) superfamilies, receptor tyrosine kinases and phosphatases, a variety of growth factors and receptors, and a large number of miscellaneous membrane-associated or secreted proteins not previously implicated in axonal guidance or neuronal connectivity. The diversity of their expression patterns indicates that thalamic nuclei are highly differentiated from each other, with each one displaying a unique repertoire of these molecules, consistent with a combinatorial logic to the specification of thalamic connectivity.
Collapse
Affiliation(s)
| | - Tatsuya Okafuji
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Guy Tear
- Department of Developmental Neurobiology, New Hunt’s House, Guy’s Campus, King’s College, London, United Kingdom
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
42
|
Savier E, Eglen SJ, Bathélémy A, Perraut M, Pfrieger FW, Lemke G, Reber M. A molecular mechanism for the topographic alignment of convergent neural maps. eLife 2017; 6. [PMID: 28322188 PMCID: PMC5360444 DOI: 10.7554/elife.20470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/26/2017] [Indexed: 12/01/2022] Open
Abstract
Sensory processing requires proper alignment of neural maps throughout the brain. In the superficial layers of the superior colliculus of the midbrain, converging projections from retinal ganglion cells and neurons in visual cortex must be aligned to form a visuotopic map, but the basic mechanisms mediating this alignment remain elusive. In a new mouse model, ectopic expression of ephrin-A3 (Efna3) in a subset of retinal ganglion cells, quantitatively altering the retinal EFNAs gradient, disrupts cortico-collicular map alignment onto the retino-collicular map, creating a visuotopic mismatch. Genetic inactivation of ectopic EFNA3 restores a wild-type cortico-collicular map. Theoretical analyses using a new mapping algorithm model both map formation and alignment, and recapitulate our experimental observations. The algorithm is based on an initial sensory map, the retino-collicular map, which carries intrinsic topographic information, the retinal EFNAs, to the superior colliculus. These EFNAs subsequently topographically align ingrowing visual cortical axons to the retino-collicular map. DOI:http://dx.doi.org/10.7554/eLife.20470.001
Collapse
Affiliation(s)
- Elise Savier
- CNRS UPR3212 - Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | - Stephen J Eglen
- Department of Applied Mathematics and Theoretical Physics, Cambridge Computational Biology Institute, University of Cambridge, Cambridge, United Kingdom.,University of Strasbourg Institute of Advanced Study, Strasbourg, France
| | - Amélie Bathélémy
- CNRS UPR3212 - Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | - Martine Perraut
- CNRS UPR3212 - Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | - Frank W Pfrieger
- CNRS UPR3212 - Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | - Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, San Diego, United States
| | - Michael Reber
- CNRS UPR3212 - Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France.,University of Strasbourg Institute of Advanced Study, Strasbourg, France
| |
Collapse
|
43
|
Abstract
The dorsal lateral geniculate nucleus (dLGN) of the thalamus is the principal conduit for visual information from retina to visual cortex. Viewed initially as a simple relay, recent studies in the mouse reveal far greater complexity in the way input from the retina is combined, transmitted, and processed in dLGN. Here we consider the structural and functional organization of the mouse retinogeniculate pathway by examining the patterns of retinal projections to dLGN and how they converge onto thalamocortical neurons to shape the flow of visual information to visual cortex.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences,Washington University School of Medicine,Saint Louis,Missouri 63110
| | - William Guido
- Department of Anatomical Sciences and Neurobiology,University of Louisville School of Medicine,Louisville,Kentucky 40292
| |
Collapse
|
44
|
Monavarfeshani A, Sabbagh U, Fox MA. Not a one-trick pony: Diverse connectivity and functions of the rodent lateral geniculate complex. Vis Neurosci 2017; 34:E012. [PMID: 28965517 PMCID: PMC5755970 DOI: 10.1017/s0952523817000098] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Often mislabeled as a simple relay of sensory information, the thalamus is a complicated structure with diverse functions. This diversity is exemplified by roles visual thalamus plays in processing and transmitting light-derived stimuli. Such light-derived signals are transmitted to the thalamus by retinal ganglion cells (RGCs), the sole projection neurons of the retina. Axons from RGCs innervate more than ten distinct nuclei within thalamus, including those of the lateral geniculate complex. Nuclei within the lateral geniculate complex of nocturnal rodents, which include the dorsal lateral geniculate nucleus (dLGN), ventral lateral geniculate nucleus (vLGN), and intergeniculate leaflet (IGL), are each densely innervated by retinal projections, yet, exhibit distinct cytoarchitecture and connectivity. These features suggest that each nucleus within this complex plays a unique role in processing and transmitting light-derived signals. Here, we review the diverse cytoarchitecture and connectivity of these nuclei in nocturnal rodents, in an effort to highlight roles for dLGN in vision and for vLGN and IGL in visuomotor, vestibular, ocular, and circadian function.
Collapse
Affiliation(s)
- Aboozar Monavarfeshani
- Developmental and Translational Neurobiology Center,Virginia Tech Carilion Research Institute,Roanoke,Virginia
| | - Ubadah Sabbagh
- Developmental and Translational Neurobiology Center,Virginia Tech Carilion Research Institute,Roanoke,Virginia
| | - Michael A Fox
- Developmental and Translational Neurobiology Center,Virginia Tech Carilion Research Institute,Roanoke,Virginia
| |
Collapse
|
45
|
Transplanted embryonic neurons integrate into adult neocortical circuits. Nature 2016; 539:248-253. [DOI: 10.1038/nature20113] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 09/23/2016] [Indexed: 12/19/2022]
|
46
|
Arroyo DA, Feller MB. Spatiotemporal Features of Retinal Waves Instruct the Wiring of the Visual Circuitry. Front Neural Circuits 2016; 10:54. [PMID: 27507937 PMCID: PMC4960261 DOI: 10.3389/fncir.2016.00054] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/12/2016] [Indexed: 11/13/2022] Open
Abstract
Coordinated spontaneous activity is present in different sensory systems during early stages of development. This activity is thought to play a critical role in the development of sensory representations before the maturation of sensory experience. In the visual system, the mechanisms by which spatiotemporal properties of retinal spontaneous activity, called retinal waves, drive developmental events has been well studied. Recent advancements in pharmacological, genetic, and optogenetic manipulations have provided further understanding of the contribution of specific spatiotemporal properties of retinal waves to eye-specific segregation and retinotopic refinement of retinofugal projections. Here we review some of the recent progress in understanding the role of retinal waves in the early stages of visual system development, prior to the maturation of vision.
Collapse
Affiliation(s)
- David A Arroyo
- Department of Molecular and Cell Biology, University of California Berkeley Berkeley, CA, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeley, CA, USA; Helen Wills Neuroscience Institute, University of California BerkeleyBerkeley, CA, USA
| |
Collapse
|
47
|
Owens MT, Feldheim DA, Stryker MP, Triplett JW. Stochastic Interaction between Neural Activity and Molecular Cues in the Formation of Topographic Maps. Neuron 2015; 87:1261-1273. [PMID: 26402608 DOI: 10.1016/j.neuron.2015.08.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/23/2015] [Accepted: 08/18/2015] [Indexed: 11/25/2022]
Abstract
Topographic maps in visual processing areas maintain the spatial order of the visual world. Molecular cues and neuronal activity both play critical roles in map formation, but their interaction remains unclear. Here, we demonstrate that when molecular- and activity-dependent cues are rendered nearly equal in force, they drive topographic mapping stochastically. The functional and anatomical representation of azimuth in the superior colliculus of heterozygous Islet2-EphA3 knockin (Isl2(EphA3/+)) mice is variable: maps may be single, duplicated, or a combination of the two. This heterogeneity is not due to genetic differences, since map organizations in individual mutant animals often differ between colliculi. Disruption of spontaneous waves of retinal activity resulted in uniform map organization in Isl2(EphA3/+) mice, demonstrating that correlated spontaneous activity is required for map heterogeneity. Computational modeling replicates this heterogeneity, revealing that molecular- and activity-dependent forces interact simultaneously and stochastically during topographic map formation.
Collapse
Affiliation(s)
- Melinda T Owens
- Center for Integrative Neuroscience and Departments of Physiology and Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David A Feldheim
- Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Michael P Stryker
- Center for Integrative Neuroscience and Departments of Physiology and Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason W Triplett
- Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Center for Neuroscience Research, Children's National Health System, Washington, DC 20010, USA.
| |
Collapse
|
48
|
Dhande OS, Stafford BK, Lim JHA, Huberman AD. Contributions of Retinal Ganglion Cells to Subcortical Visual Processing and Behaviors. Annu Rev Vis Sci 2015; 1:291-328. [PMID: 28532372 DOI: 10.1146/annurev-vision-082114-035502] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Every aspect of visual perception and behavior is built from the neural activity of retinal ganglion cells (RGCs), the output neurons of the eye. Here, we review progress toward understanding the many types of RGCs that communicate visual signals to the brain, along with the subcortical brain regions that use those signals to build and respond to representations of the outside world. We emphasize recent progress in the use of mouse genetics, viral circuit tracing, and behavioral psychophysics to define and map the various RGCs and their associated networks. We also address questions about the homology of RGC types in mice and other species including nonhuman primates and humans. Finally, we propose a framework for understanding RGC typology and for highlighting the relationship between RGC type-specific circuitry and the processing stations in the brain that support and give rise to the perception of sight.
Collapse
Affiliation(s)
- Onkar S Dhande
- Neurosciences Department, Neurobiology Section in the Division of Biological Sciences, and Department of Ophthalmology, University of California, San Diego, La Jolla, California 92093; ,
| | - Benjamin K Stafford
- Neurosciences Department, Neurobiology Section in the Division of Biological Sciences, and Department of Ophthalmology, University of California, San Diego, La Jolla, California 92093; ,
| | - Jung-Hwan A Lim
- Neurosciences Department, Neurobiology Section in the Division of Biological Sciences, and Department of Ophthalmology, University of California, San Diego, La Jolla, California 92093; ,
| | - Andrew D Huberman
- Neurosciences Department, Neurobiology Section in the Division of Biological Sciences, and Department of Ophthalmology, University of California, San Diego, La Jolla, California 92093; ,
| |
Collapse
|
49
|
Wang HC, Bergles DE. Spontaneous activity in the developing auditory system. Cell Tissue Res 2015; 361:65-75. [PMID: 25296716 PMCID: PMC7046314 DOI: 10.1007/s00441-014-2007-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022]
Abstract
Spontaneous electrical activity is a common feature of sensory systems during early development. This sensory-independent neuronal activity has been implicated in promoting their survival and maturation, as well as growth and refinement of their projections to yield circuits that can rapidly extract information about the external world. Periodic bursts of action potentials occur in auditory neurons of mammals before hearing onset. This activity is induced by inner hair cells (IHCs) within the developing cochlea, which establish functional connections with spiral ganglion neurons (SGNs) several weeks before they are capable of detecting external sounds. During this pre-hearing period, IHCs fire periodic bursts of Ca(2+) action potentials that excite SGNs, triggering brief but intense periods of activity that pass through auditory centers of the brain. Although spontaneous activity requires input from IHCs, there is ongoing debate about whether IHCs are intrinsically active and their firing periodically interrupted by external inhibitory input (IHC-inhibition model), or are intrinsically silent and their firing periodically promoted by an external excitatory stimulus (IHC-excitation model). There is accumulating evidence that inner supporting cells in Kölliker's organ spontaneously release ATP during this time, which can induce bursts of Ca(2+) spikes in IHCs that recapitulate many features of auditory neuron activity observed in vivo. Nevertheless, the role of supporting cells in this process remains to be established in vivo. A greater understanding of the molecular mechanisms responsible for generating IHC activity in the developing cochlea will help reveal how these events contribute to the maturation of nascent auditory circuits.
Collapse
Affiliation(s)
- Han Chin Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
50
|
Fine-scale topography in sensory systems: insights from Drosophila and vertebrates. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:911-20. [PMID: 26091779 DOI: 10.1007/s00359-015-1022-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 06/07/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
Abstract
To encode the positions of sensory stimuli, sensory circuits form topographic maps in the central nervous system through specific point-to-point connections between pre- and postsynaptic neurons. In vertebrate visual systems, the establishment of topographic maps involves the formation of a coarse topography followed by that of fine-scale topography that distinguishes the axon terminals of neighboring neurons. It is known that intrinsic differences in the form of broad gradients of guidance molecules instruct coarse topography while neuronal activity is required for fine-scale topography. On the other hand, studies in the Drosophila visual system have shown that intrinsic differences in cell adhesion among the axon terminals of neighboring neurons instruct the fine-scale topography. Recent studies on activity-dependent topography in the Drosophila somatosensory system have revealed a role of neuronal activity in creating molecular differences among sensory neurons for establishing fine-scale topography, implicating a conserved principle. Here we review the findings in both Drosophila and vertebrates and propose an integrated model for fine-scale topography.
Collapse
|