1
|
Martín-Belmonte A, Aguado C, Alfaro-Ruíz R, Luján R. G protein-gated inwardly rectifying K + (GIRK/K ir3) channels: Molecular, cellular, and subcellular diversity. Histol Histopathol 2025; 40:597-620. [PMID: 39434650 DOI: 10.14670/hh-18-822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels are mainly expressed in excitable cells such as neurons and atrial myocytes, where they can respond to a wide variety of neurotransmitters. Four GIRK subunits have been found in mammals (GIRK1-4) and act as downstream targets for various Gαi/o-linked G protein-coupled receptors (GPCRs). Activation of GIRK channels produces a postsynaptic efflux of potassium from the cell, responsible for hyperpolarization/inhibition of the neuron. A growing body of evidence suggests that dysregulation of GIRK signalling can lead to excessive or deficient neuronal excitability, which contributes to neurological diseases and disorders. Therefore, GIRK channels are proposed as new pharmacological targets. The function of GIRK channels in neurons is not only determined by their biophysical properties but also by their cellular and subcellular localization patterns and densities on the neuronal surface. GIRK channels can be located within several subcellular compartments, where they have many different functional implications. This subcellular localization changes dynamically along the neuronal surface in response to drug intake. Ongoing research is focusing on determining the proteins that form macromolecular complexes with GIRK channels and are responsible for fast and precise signalling under physiological conditions, and how their alteration is implicated in pathological conditions. In this review, the distinct regional, cellular, and subcellular distribution of GIRK channel subunits in the brain will be discussed in view of their possible functional and pathological implications.
Collapse
Affiliation(s)
- Alejandro Martín-Belmonte
- Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB-UCLM), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB-UCLM), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Albacete, Spain
| | - Rocio Alfaro-Ruíz
- Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB-UCLM), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Albacete, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB-UCLM), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Albacete, Spain.
| |
Collapse
|
2
|
Marron Fernandez de Velasco E, Tipps ME, Haider B, Souders A, Aguado C, Rose TR, Vo BN, DeBaker MC, Luján R, Wickman K. Ethanol-Induced Suppression of G Protein-Gated Inwardly Rectifying K +-Dependent Signaling in the Basal Amygdala. Biol Psychiatry 2023; 94:863-874. [PMID: 37068702 PMCID: PMC10576835 DOI: 10.1016/j.biopsych.2023.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND The basolateral amygdala (BLA) regulates mood and associative learning and has been linked to the development and persistence of alcohol use disorder. The GABABR (gamma-aminobutyric acid B receptor) is a promising therapeutic target for alcohol use disorder, and previous work suggests that exposure to ethanol and other drugs can alter neuronal GABABR-dependent signaling. The effect of ethanol on GABABR-dependent signaling in the BLA is unknown. METHODS GABABR-dependent signaling in the mouse BLA was examined using slice electrophysiology following repeated ethanol exposure. Neuron-specific viral genetic manipulations were then used to understand the relevance of ethanol-induced neuroadaptations in the basal amygdala subregion (BA) to mood-related behavior. RESULTS The somatodendritic inhibitory effect of GABABR activation on principal neurons in the basal but not the lateral subregion of the BLA was diminished following ethanol exposure. This adaptation was attributable to the suppression of GIRK (G protein-gated inwardly rectifying K+) channel activity and was mirrored by a redistribution of GABABR and GIRK channels from the surface membrane to internal sites. While GIRK1 and GIRK2 subunits are critical for GIRK channel formation in BA principal neurons, GIRK3 is necessary for the ethanol-induced neuroadaptation. Viral suppression of GIRK channel activity in BA principal neurons from ethanol-naïve mice recapitulated some mood-related behaviors observed in C57BL/6J mice during ethanol withdrawal. CONCLUSIONS The ethanol-induced suppression of GIRK-dependent signaling in BA principal neurons contributes to some of the mood-related behaviors associated with ethanol withdrawal in mice. Approaches designed to prevent this neuroadaptation and/or strengthen GIRK-dependent signaling may prove useful for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
| | - Megan E Tipps
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Bushra Haider
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Anna Souders
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Carolina Aguado
- Departmento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha, Campus Biosanitario, La Mancha, Albacete, Spain
| | - Timothy R Rose
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Baovi N Vo
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Margot C DeBaker
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Rafael Luján
- Departmento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha, Campus Biosanitario, La Mancha, Albacete, Spain
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
3
|
Luo H, Marron Fernandez de Velasco E, Wickman K. Neuronal G protein-gated K + channels. Am J Physiol Cell Physiol 2022; 323:C439-C460. [PMID: 35704701 PMCID: PMC9362898 DOI: 10.1152/ajpcell.00102.2022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels exert a critical inhibitory influence on neurons. Neuronal GIRK channels mediate the G protein-dependent, direct/postsynaptic inhibitory effect of many neurotransmitters including γ-aminobutyric acid (GABA), serotonin, dopamine, adenosine, somatostatin, and enkephalin. In addition to their complex regulation by G proteins, neuronal GIRK channel activity is sensitive to PIP2, phosphorylation, regulator of G protein signaling (RGS) proteins, intracellular Na+ and Ca2+, and cholesterol. The application of genetic and viral manipulations in rodent models, together with recent progress in the development of GIRK channel modulators, has increased our understanding of the physiological and behavioral impact of neuronal GIRK channels. Work in rodent models has also revealed that neuronal GIRK channel activity is modified, transiently or persistently, by various stimuli including exposure drugs of abuse, changes in neuronal activity patterns, and aversive experience. A growing body of preclinical and clinical evidence suggests that dysregulation of GIRK channel activity contributes to neurological diseases and disorders. The primary goals of this review are to highlight fundamental principles of neuronal GIRK channel biology, mechanisms of GIRK channel regulation and plasticity, the nascent landscape of GIRK channel pharmacology, and the potential relevance of GIRK channels to the pathophysiology and treatment of neurological diseases and disorders.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
4
|
Bony AR, McArthur JR, Finol-Urdaneta RK, Adams DJ. Analgesic α-conotoxins modulate native and recombinant GIRK1/2 channels via activation of GABA B receptors and reduce neuroexcitability. Br J Pharmacol 2021; 179:179-198. [PMID: 34599513 DOI: 10.1111/bph.15690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of GIRK channels via G protein-coupled GABAB receptors has been shown to attenuate nociceptive transmission. The analgesic α-conotoxin Vc1.1 activates GABAB receptors resulting in inhibition of Cav 2.2 and Cav 2.3 channels in mammalian primary afferent neurons. Here, we investigated the effects of analgesic α-conotoxins on recombinant and native GIRK-mediated K+ currents and on neuronal excitability. EXPERIMENTAL APPROACH The effects of analgesic α-conotoxins, Vc1.1, RgIA, and PeIA, were investigated on inwardly-rectifying K+ currents in HEK293T cells recombinantly co-expressing either heteromeric human GIRK1/2 or homomeric GIRK2 subunits, with GABAB receptors. The effects of α-conotoxin Vc1.1 and baclofen were studied on GIRK-mediated K+ currents and the passive and active electrical properties of adult mouse dorsal root ganglion neurons. KEY RESULTS Analgesic α-conotoxins Vc1.1, RgIA, and PeIA potentiate inwardly-rectifying K+ currents in HEK293T cells recombinantly expressing human GIRK1/2 channels and GABAB receptors. GABAB receptor-dependent GIRK channel potentiation by Vc1.1 and baclofen occurs via a pertussis toxin-sensitive G protein and is inhibited by the selective GABAB receptor antagonist CGP 55845. In adult mouse dorsal root ganglion neurons, GABAB receptor-dependent GIRK channel potentiation by Vc1.1 and baclofen hyperpolarizes the cell membrane potential and reduces excitability. CONCLUSIONS AND IMPLICATIONS This is the first report of GIRK channel potentiation via allosteric α-conotoxin Vc1.1-GABAB receptor agonism, leading to decreased neuronal excitability. Such action potentially contributes to the analgesic effects of Vc1.1 and baclofen observed in vivo.
Collapse
Affiliation(s)
- Anuja R Bony
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
5
|
Chen Q, Zhang W, Sadana N, Chen X. Estrogen receptors in pain modulation: cellular signaling. Biol Sex Differ 2021; 12:22. [PMID: 33568220 PMCID: PMC7877067 DOI: 10.1186/s13293-021-00364-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/28/2021] [Indexed: 12/18/2022] Open
Abstract
Sensory perception and emotional disorders are disproportionally represented in men and women and are thus thought to be modulated by different sex hormones in various conditions. Among the most important hormones perceived to affect sensory processing and transduction is estrogen. Numerous previous researchers have endeavored to demonstrate that estrogen is capable of modulating the activity of sensory neurons in peripheral and central sites in female, male, or castrated animals. However, the underlying mechanisms of its modulation of neuronal activity are somewhat unclear. In the present review, we discuss the possible cellular and molecular mechanisms involved in the modulation of nociception by estrogen.
Collapse
Affiliation(s)
- Qing Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenxin Zhang
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Neeti Sadana
- Department of Anesthesiology & Perioperative Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, USA
| | - Xinzhong Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Leon-Ariza DS, Leon-Ariza JS, Gualdron MA, Bayona-Prieto J, Leon-Sarmiento FE. Territorial and Extraterritorial Trigeminocardiac Reflex: A Review for the Neurosurgeon and a Type IV Reflex Vignette. Cureus 2020; 12:e11646. [PMID: 33376657 PMCID: PMC7755611 DOI: 10.7759/cureus.11646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The trigeminocardiac reflex (TCR) is a complex and, sometimes, fatal event triggered by overstimulation of the trigeminal nerve (TN) and its territorial and spinal cord branches. We reviewed and compiled for the neurosurgeon key aspects of the TCR that include a novel and straightforward classification, as well as morphophysiology, pathophysiology, neuromonitoring and neuromodulation features. Further, we present intraoperative data from a patient who developed extraterritorial, or type IV, TCR while undergoing a cervical surgery. TCR complexity, severity and unwanted outcomes indicate that this event should not be underestimated or overlooked in the surgical room. Timely TCR recognition in surgical settings is valuable for applying effective intraoperative management to prevent catastrophic outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Fidias E Leon-Sarmiento
- Environmental Health, Florida International University, Miami, USA.,Neurology, Baptist Health South Florida, Miami Neuroscience Institute, Miami, USA.,Internal Medicine, National University, Bogota, COL
| |
Collapse
|
7
|
Walsh KB. Screening Technologies for Inward Rectifier Potassium Channels: Discovery of New Blockers and Activators. SLAS DISCOVERY 2020; 25:420-433. [PMID: 32292089 DOI: 10.1177/2472555220905558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
K+ channels play a critical role in maintaining the normal electrical activity of excitable cells by setting the cell resting membrane potential and by determining the shape and duration of the action potential. In nonexcitable cells, K+ channels establish electrochemical gradients necessary for maintaining salt and volume homeostasis of body fluids. Inward rectifier K+ (Kir) channels typically conduct larger inward currents than outward currents, resulting in an inwardly rectifying current versus voltage relationship. This property of inward rectification results from the voltage-dependent block of the channels by intracellular polyvalent cations and makes these channels uniquely designed for maintaining the resting potential near the K+ equilibrium potential (EK). The Kir family of channels consist of seven subfamilies of channels (Kir1.x through Kir7.x) that include the classic inward rectifier (Kir2.x) channel, the G-protein-gated inward rectifier K+ (GIRK) (Kir3.x), and the adenosine triphosphate (ATP)-sensitive (KATP) (Kir 6.x) channels as well as the renal Kir1.1 (ROMK), Kir4.1, and Kir7.1 channels. These channels not only function to regulate electrical/electrolyte transport activity, but also serve as effector molecules for G-protein-coupled receptors (GPCRs) and as molecular sensors for cell metabolism. Of significance, Kir channels represent promising pharmacological targets for treating a number of clinical conditions, including cardiac arrhythmias, anxiety, chronic pain, and hypertension. This review provides a brief background on the structure, function, and pharmacology of Kir channels and then focuses on describing and evaluating current high-throughput screening (HTS) technologies, such as membrane potential-sensitive fluorescent dye assays, ion flux measurements, and automated patch clamp systems used for Kir channel drug discovery.
Collapse
Affiliation(s)
- Kenneth B Walsh
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
8
|
Domenici RA, Campos ACP, Maciel ST, Berzuino MB, Hernandes MS, Fonoff ET, Pagano RL. Parkinson's disease and pain: Modulation of nociceptive circuitry in a rat model of nigrostriatal lesion. Exp Neurol 2019; 315:72-81. [PMID: 30772369 DOI: 10.1016/j.expneurol.2019.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/04/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that causes progressive dysfunction of dopaminergic and non-dopaminergic neurons, generating motor and nonmotor signs and symptoms. Pain is reported as the most bothersome nonmotor symptom in PD; however, pain remains overlooked and poorly understood. In this study, we evaluated the nociceptive behavior and the descending analgesia circuitry in a rat model of PD. Three independent experiments were performed to investigate: i) thermal nociceptive behavior; ii) mechanical nociceptive behavior and dopaminergic repositioning; and iii) modulation of the pain control circuitry. The rat model of PD, induced by unilateral striatal 6-hydroxydopamine (6-OHDA), did not interfere with thermal nociceptive responses; however, the mechanical nociceptive threshold was decreased bilaterally compared to that of naive or striatal saline-injected rats. This response was reversed by apomorphine or levodopa treatment. Striatal 6-OHDA induced motor impairments and reduced dopaminergic neuron immunolabeling as well as the pattern of neuronal activation (c-Fos) in the substantia nigra ipsilateral (IPL) to the lesion. In the midbrain periaqueductal gray (PAG), 6-OHDA-induced lesion increased IPL and decreased contralateral PAG GABAergic labeling compared to control. In the dorsal horn of the spinal cord, lesioned rats showed bilateral inhibition of enkephalin and μ-opioid receptor labeling. Taken together, we demonstrated that the unilateral 6-OHDA-induced PD model induces bilateral mechanical hypernociception, which is reversed by dopamine restoration, changes in the PAG circuitry, and inhibition of spinal opioidergic regulation, probably due to impaired descending analgesic control. A better understanding of pain mechanisms in PD patients is critical for developing better therapeutic strategies to improve their quality of life.
Collapse
Affiliation(s)
- Roberta A Domenici
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | | | - Soraya T Maciel
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Miriã B Berzuino
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Marina S Hernandes
- Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Erich T Fonoff
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil; Division of Functional Neurosurgery, Department of Neurology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Sun J, Chen SR, Chen H, Pan HL. μ-Opioid receptors in primary sensory neurons are essential for opioid analgesic effect on acute and inflammatory pain and opioid-induced hyperalgesia. J Physiol 2019; 597:1661-1675. [PMID: 30578671 DOI: 10.1113/jp277428] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/17/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS μ-Opioid receptors (MORs) are expressed peripherally and centrally, but the loci of MORs responsible for clinically relevant opioid analgesia are uncertain. Crossing Oprm1flox/flox and AdvillinCre/+ mice completely ablates MORs in dorsal root ganglion neurons and reduces the MOR expression level in the spinal cord. Presynaptic MORs expressed at primary afferent central terminals are essential for synaptic inhibition and potentiation of sensory input by opioids. MOR ablation in primary sensory neurons diminishes analgesic effects produced by systemic and intrathecal opioid agonists and abolishes chronic opioid treatment-induced hyperalgesia. These findings demonstrate a critical role of MORs expressed in primary sensory neurons in opioid analgesia and suggest new strategies to increase the efficacy and reduce adverse effects of opioids. ABSTRACT The pain and analgesic systems are complex, and the actions of systemically administered opioids may be mediated by simultaneous activation of μ-opioid receptors (MORs, encoded by the Oprm1 gene) at multiple, interacting sites. The loci of MORs and circuits responsible for systemic opioid-induced analgesia and hyperalgesia remain unclear. Previous studies using mice in which MORs are removed from Nav1.8- or TRPV1-expressing neurons provided only an incomplete and erroneous view about the role of peripheral MORs in opioid actions in vivo. In the present study, we determined the specific role of MORs expressed in primary sensory neurons in the analgesic and hyperalgesic effects produced by systemic opioid administration. We generated Oprm1 conditional knockout (Oprm1-cKO) mice in which MOR expression is completely deleted from dorsal root ganglion neurons and substantially reduced in the spinal cord, which was confirmed by immunoblotting and immunocytochemical labelling. Both opioid-induced inhibition and potentiation of primary sensory input were abrogated in Oprm1-cKO mice. Remarkably, systemically administered morphine potently inhibited acute thermal and mechanical nociception and persistent inflammatory pain in control mice but had little effect in Oprm1-cKO mice. The analgesic effect of intrathecally administered morphine was also profoundly reduced in Oprm1-cKO mice. Additionally, chronic morphine treatment-induced hyperalgesia was absent in Oprm1-cKO mice. Our findings directly challenge the notion that clinically relevant opioid analgesia is mediated mostly by centrally expressed MORs. MORs in primary sensory neurons, particularly those expressed presynaptically at the first sensory synapse in the spinal cord, are crucial for both opioid analgesia and opioid-induced hyperalgesia.
Collapse
Affiliation(s)
- Jie Sun
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Anesthesiology, The First Affiliated Hospital/Jiangsu Province Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
10
|
Abstract
Whilst the nociceptin/orphanin FQ (N/OFQ) receptor (NOP) has similar intracellular coupling mechanisms to opioid receptors, it has distinct modulatory effects on physiological functions such as pain. These actions range from agonistic to antagonistic interactions with classical opioids within the spinal cord and brain, respectively. Understanding the electrophysiological actions of N/OFQ has been crucial in ascertaining the mechanisms by which these agonistic and antagonistic interactions occur. These similarities and differences between N/OFQ and opioids are due to the relative location of NOP versus opioid receptors on specific neuronal elements within these CNS regions. These mechanisms result in varied cellular actions including postsynaptic modulation of ion channels and presynaptic regulation of neurotransmitter release.
Collapse
|
11
|
Merighi A. The histology, physiology, neurochemistry and circuitry of the substantia gelatinosa Rolandi (lamina II) in mammalian spinal cord. Prog Neurobiol 2018; 169:91-134. [PMID: 29981393 DOI: 10.1016/j.pneurobio.2018.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 06/07/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023]
Abstract
The substantia gelatinosa Rolandi (SGR) was first described about two centuries ago. In the following decades an enormous amount of information has permitted us to understand - at least in part - its role in the initial processing of pain and itch. Here, I will first provide a comprehensive picture of the histology, physiology, and neurochemistry of the normal SGR. Then, I will analytically discuss the SGR circuits that have been directly demonstrated or deductively envisaged in the course of the intensive research on this area of the spinal cord, with particular emphasis on the pathways connecting the primary afferent fibers and the intrinsic neurons. The perspective existence of neurochemically-defined sets of primary afferent neurons giving rise to these circuits will be also discussed, with the proposition that a cross-talk between different subsets of peptidergic fibers may be the structural and functional substrate of additional gating mechanisms in SGR. Finally, I highlight the role played by slow acting high molecular weight modulators in these gating mechanisms.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095 Grugliasco (TO), Italy.
| |
Collapse
|
12
|
Kim YR, Shim HG, Kim CE, Kim SJ. The effect of µ-opioid receptor activation on GABAergic neurons in the spinal dorsal horn. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:419-425. [PMID: 29962856 PMCID: PMC6019873 DOI: 10.4196/kjpp.2018.22.4.419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/20/2018] [Accepted: 04/09/2018] [Indexed: 11/15/2022]
Abstract
The superficial dorsal horn of the spinal cord plays an important role in pain transmission and opioid activity. Several studies have demonstrated that opioids modulate pain transmission, and the activation of µ-opioid receptors (MORs) by opioids contributes to analgesic effects in the spinal cord. However, the effect of the activation of MORs on GABAergic interneurons and the contribution to the analgesic effect are much less clear. In this study, using transgenic mice, which allow the identification of GABAergic interneurons, we investigated how the activation of MORs affects the excitability of GABAergic interneurons and synaptic transmission between primary nociceptive afferent and GABAergic interneurons. We found that a selective µ-opioid agonist, [D-Ala2, NMe-Phe4, Gly-ol]-enkephanlin (DAMGO), induced an outward current mediated by K+ channels in GABAergic interneurons. In addition, DAMGO reduced the amplitude of evoked excitatory postsynaptic currents (EPSCs) of GABAergic interneurons which receive monosynaptic inputs from primary nociceptive C fibers. Taken together, we found that DAMGO reduced the excitability of GABAergic interneurons and synaptic transmission between primary nociceptive C fibers and GABAergic interneurons. These results suggest one possibility that suppression of GABAergic interneurons by DMAGO may reduce the inhibition on secondary GABAergic interneurons, which increase the inhibition of the secondary GABAergic interneurons to excitatory neurons in the spinal dorsal horn. In this circumstance, the sum of excitation of the entire spinal network will control the pain transmission.
Collapse
Affiliation(s)
- Yoo Rim Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyun Geun Shim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Chang-Eop Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
13
|
Andersen HK, Piroli GG, Walsh KB. A real time screening assay for cannabinoid CB1 receptor-mediated signaling. J Pharmacol Toxicol Methods 2018; 94:44-49. [PMID: 29730318 DOI: 10.1016/j.vascn.2018.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 01/25/2023]
Abstract
The cannabinoid CB1 receptor is expressed throughout the central nervous system where it functions to regulate neurotransmitter release and synaptic plasticity. While the CB1 receptor has been identified as a target for both natural and synthetic cannabinoids, the specific downstream signaling pathways activated by these various ligands have not been fully described. In this study, we developed a real-time membrane potential fluorescent assay for cannabinoids using pituitary AtT20 cells that endogenously express G protein-gated inward rectifier K+ (GIRK) channels and were stably transfected with the CB1 receptor using a recombinant lentivirus. In whole-cell patch clamp experiments application of the cannabinoid agonist WIN 55,212-2 to AtT20 cells expressing the CB1 receptor (AtT20/CB1) activated GIRK currents that were blocked by BaCl2. WIN 55,212-2 activation of the GIRK channels was associated with a time- and concentration-dependent (EC50 = 309 nM) hyperpolarization of the membrane potential in the AtT20/CB1 cells when monitored using a fluorescent membrane potential-sensitive dye. The WIN 55,212-2-induced fluorescent signal was inhibited by pretreatment of the cells with either the GIRK channel blocker tertiapin-Q or the CB1 receptor antagonist SR141716. The cannabinoids displayed a response of WIN 55,212-2 ≈ anandamide (AEA) > CP 55,940 > Δ9-tetrahydrocannabinol (THC) when maximal concentrations of the four ligands were tested in the assay. Thus, the AtT20/CB1 cell fluorescent assay will provide a straightforward and efficient methodology for examining cannabinoid-stimulated Gi signaling.
Collapse
Affiliation(s)
- Haley K Andersen
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, United States
| | - Gerardo G Piroli
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, United States
| | - Kenneth B Walsh
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, United States.
| |
Collapse
|
14
|
Wang D, Tawfik VL, Corder G, Low SA, François A, Basbaum AI, Scherrer G. Functional Divergence of Delta and Mu Opioid Receptor Organization in CNS Pain Circuits. Neuron 2018; 98:90-108.e5. [PMID: 29576387 PMCID: PMC5896237 DOI: 10.1016/j.neuron.2018.03.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/19/2018] [Accepted: 03/02/2018] [Indexed: 12/21/2022]
Abstract
Cellular interactions between delta and mu opioid receptors (DORs and MORs), including heteromerization, are thought to regulate opioid analgesia. However, the identity of the nociceptive neurons in which such interactions could occur in vivo remains elusive. Here we show that DOR-MOR co-expression is limited to small populations of excitatory interneurons and projection neurons in the spinal cord dorsal horn and unexpectedly predominates in ventral horn motor circuits. Similarly, DOR-MOR co-expression is rare in parabrachial, amygdalar, and cortical brain regions processing nociceptive information. We further demonstrate that in the discrete DOR-MOR co-expressing nociceptive neurons, the two receptors internalize and function independently. Finally, conditional knockout experiments revealed that DORs selectively regulate mechanical pain by controlling the excitability of somatostatin-positive dorsal horn interneurons. Collectively, our results illuminate the functional organization of DORs and MORs in CNS pain circuits and reappraise the importance of DOR-MOR cellular interactions for developing novel opioid analgesics.
Collapse
MESH Headings
- Animals
- Anterior Horn Cells/chemistry
- Anterior Horn Cells/metabolism
- Anterior Horn Cells/pathology
- Central Nervous System/chemistry
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Net/chemistry
- Nerve Net/metabolism
- Nerve Net/pathology
- Pain/metabolism
- Pain/pathology
- Pain Measurement/methods
- Posterior Horn Cells/chemistry
- Posterior Horn Cells/metabolism
- Posterior Horn Cells/pathology
- Receptors, Opioid, delta/biosynthesis
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/genetics
Collapse
Affiliation(s)
- Dong Wang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA 94304, USA; Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94304, USA; Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA 94304, USA; Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94304, USA; Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Gregory Corder
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA 94304, USA; Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94304, USA; Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Sarah A Low
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA 94304, USA; Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94304, USA; Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Amaury François
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA 94304, USA; Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94304, USA; Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Grégory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA 94304, USA; Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94304, USA; Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA; New York Stem Cell Foundation - Robertson Investigator, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
15
|
Estrada JA, Kaufman MP. µ-Opioid receptors inhibit the exercise pressor reflex by closing N-type calcium channels but not by opening GIRK channels in rats. Am J Physiol Regul Integr Comp Physiol 2018; 314:R693-R699. [PMID: 29341826 DOI: 10.1152/ajpregu.00380.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
µ-Opioid G protein-coupled receptors (MOR) interact with ion channels to decrease neuronal excitability. In humans, intrathecal administration of the MOR agonist fentanyl inhibits the exercise pressor reflex, an effect that can be attributed to either the opening of inward rectifying potassium channels (GIRK) or the closing of N-type calcium channels. The purpose of this study was to determine if the highly selective MOR agonist [d-Ala2, N-MePhe4,Gly-ol]-enkephalin (DAMGO) attenuates the exercise pressor reflex and which of these two channels are responsible for this effect. In decerebrate rats, we determined the effect of intrathecal injection of either tertiapin-LQ, which blocks the GIRK channel or ω-conotoxin-GVIA, which blocks the N-type calcium channel on the exercise pressor reflex, which was evoked by contracting the triceps surae muscles. Initially, we established that intrathecal injection of DAMGO inhibited the exercise pressor reflex relative to no intrathecal injection or intrathecal saline injection ( P < 0.001, n = 5). We then found that intrathecal injection of two doses of tertiapin-LQ (1 and 10 µg) had no effect on the exercise pressor reflex ( n = 6 and n = 7, respectively; P > 0.05). Importantly, neither dose of tertiapin-LQ prevented the DAMGO-induced inhibition of the exercise pressor reflex. Last, we found that intrathecal injection of ω-conotoxin-GVIA markedly attenuated the exercise pressor reflex ( P < 0.001, n = 7). The cardioaccelerator response to contraction did not appear to be effected in any of the experiments. We conclude that N-type voltage-gated calcium channel inhibition appears to be the mechanism by which MOR activation inhibits the exercise pressor reflex in decerebrate rats.
Collapse
Affiliation(s)
- Juan A Estrada
- Heart and Vascular Institute, Penn State College of Medicine , Hershey, Pennsylvania
| | - Marc P Kaufman
- Heart and Vascular Institute, Penn State College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
16
|
Marron Fernandez de Velasco E, Zhang L, N Vo B, Tipps M, Farris S, Xia Z, Anderson A, Carlblom N, Weaver CD, Dudek SM, Wickman K. GIRK2 splice variants and neuronal G protein-gated K + channels: implications for channel function and behavior. Sci Rep 2017; 7:1639. [PMID: 28487514 PMCID: PMC5431628 DOI: 10.1038/s41598-017-01820-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/03/2017] [Indexed: 11/21/2022] Open
Abstract
Many neurotransmitters directly inhibit neurons by activating G protein-gated inwardly rectifying K+ (GIRK) channels, thereby moderating the influence of excitatory input on neuronal excitability. While most neuronal GIRK channels are formed by GIRK1 and GIRK2 subunits, distinct GIRK2 isoforms generated by alternative splicing have been identified. Here, we compared the trafficking and function of two isoforms (GIRK2a and GIRK2c) expressed individually in hippocampal pyramidal neurons lacking GIRK2. GIRK2a and GIRK2c supported comparable somato-dendritic GIRK currents in Girk2 -/- pyramidal neurons, although GIRK2c achieved a more uniform subcellular distribution in pyramidal neurons and supported inhibitory postsynaptic currents in distal dendrites better than GIRK2a. While over-expression of either isoform in dorsal CA1 pyramidal neurons restored contextual fear learning in a conditional Girk2 -/- mouse line, GIRK2a also enhanced cue fear learning. Collectively, these data indicate that GIRK2 isoform balance within a neuron can impact the processing of afferent inhibitory input and associated behavior.
Collapse
Affiliation(s)
| | - Lei Zhang
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, 55455, USA
| | - Baovi N Vo
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, 55455, USA
| | - Megan Tipps
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, 55455, USA
| | - Shannon Farris
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Zhilian Xia
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, 55455, USA
| | - Allison Anderson
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, 55455, USA
| | - Nicholas Carlblom
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, 55455, USA
| | - C David Weaver
- Vanderbilt University, Department of Pharmacology, Nashville, TN, 37235, USA
| | - Serena M Dudek
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Kevin Wickman
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, 55455, USA.
| |
Collapse
|
17
|
Li H, Wang R, Lu Y, Xu X, Ni J. Targeting G protein-coupled receptor for pain management. Brain Circ 2017; 3:109-113. [PMID: 30276310 PMCID: PMC6126263 DOI: 10.4103/bc.bc_3_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/09/2017] [Accepted: 04/24/2017] [Indexed: 11/04/2022] Open
Abstract
Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage or described in terms of such damage. Great progress has been made in understanding the important roles of various G protein-coupled receptors in the regulation of pain transmission. However, many important questions remain uncertain about the precise signal transduction mechanisms. This review focuses opioid receptor and CXC receptor 4 on the effects and mechanisms of pain. Taken together, chemokines and their receptors are potential targets for the development of novel pain management and therapy.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Pain Management, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
- Department of Central Laboratory, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
- Department of Liver Cancer Center, The 302 Hospital, Beijing 100039, China
| | - Rong Wang
- Department of Central Laboratory, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yinying Lu
- Department of Liver Cancer Center, The 302 Hospital, Beijing 100039, China
| | - Xuehua Xu
- Department of Immunogenetics Laboratory, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jiaxiang Ni
- Department of Pain Management, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| |
Collapse
|
18
|
GIRK Channels Modulate Opioid-Induced Motor Activity in a Cell Type- and Subunit-Dependent Manner. J Neurosci 2015; 35:7131-42. [PMID: 25948263 DOI: 10.1523/jneurosci.5051-14.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G-protein-gated inwardly rectifying K(+) (GIRK/Kir3) channel activation underlies key physiological effects of opioids, including analgesia and dependence. GIRK channel activation has also been implicated in the opioid-induced inhibition of midbrain GABA neurons and consequent disinhibition of dopamine (DA) neurons in the ventral tegmental area (VTA). Drug-induced disinhibition of VTA DA neurons has been linked to reward-related behaviors and underlies opioid-induced motor activation. Here, we demonstrate that mouse VTA GABA neurons express a GIRK channel formed by GIRK1 and GIRK2 subunits. Nevertheless, neither constitutive genetic ablation of Girk1 or Girk2, nor the selective ablation of GIRK channels in GABA neurons, diminished morphine-induced motor activity in mice. Moreover, direct activation of GIRK channels in midbrain GABA neurons did not enhance motor activity. In contrast, genetic manipulations that selectively enhanced or suppressed GIRK channel function in midbrain DA neurons correlated with decreased and increased sensitivity, respectively, to the motor-stimulatory effect of systemic morphine. Collectively, these data support the contention that the unique GIRK channel subtype in VTA DA neurons, the GIRK2/GIRK3 heteromer, regulates the sensitivity of the mouse mesolimbic DA system to drugs with addictive potential.
Collapse
|
19
|
Lyu C, Mulder J, Barde S, Sahlholm K, Zeberg H, Nilsson J, Århem P, Hökfelt T, Fried K, Shi TJS. G protein-gated inwardly rectifying potassium channel subunits 1 and 2 are down-regulated in rat dorsal root ganglion neurons and spinal cord after peripheral axotomy. Mol Pain 2015. [PMID: 26199148 PMCID: PMC4511542 DOI: 10.1186/s12990-015-0044-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Increased nociceptive neuronal excitability underlies chronic pain conditions. Various ion channels, including sodium, calcium and potassium channels have pivotal roles in the control of neuronal excitability. The members of the family of G protein-gated inwardly rectifying potassium (GIRK) channels, GIRK1–4, have been implicated in modulating excitability. Here, we investigated the expression and distribution of GIRK1 and GIRK2 in normal and injured dorsal root ganglia (DRGs) and spinal cord of rats. Results We found that ~70% of the DRG neurons expressed GIRK1, while only <10% expressed GIRK2. The neurochemical profiles of GIRK1- and GIRK2-immunoreactive neurons were characterized using the neuronal markers calcitonin gene-related peptide, isolectin-B4 and neurofilament-200, and the calcium-binding proteins calbindin D28k, calretinin, parvalbumin and secretagogin. Both GIRK subunits were expressed in DRG neurons with nociceptive characteristics. However, while GIRK1 was widely expressed in several sensory neuronal subtypes, GIRK2 was detected mainly in a group of small C-fiber neurons. In the spinal dorsal horn, GIRK1- and -2-positive cell bodies and processes were mainly observed in lamina II, but also in superficial and deeper layers. Abundant GIRK1-, but not GIRK2-like immunoreactivity, was found in the ventral horn (laminae VI–X). Fourteen days after axotomy, GIRK1 and GIRK2 were down-regulated in DRG neurons at the mRNA and protein levels. Both after axotomy and rhizotomy there was a reduction of GIRK1- and -2-positive processes in the dorsal horn, suggesting a presynaptic localization of these potassium channels. Furthermore, nerve ligation caused accumulation of both subunits on both sides of the lesion, providing evidence for anterograde and retrograde fast axonal transport. Conclusions Our data support the hypothesis that reduced GIRK function is associated with increased neuronal excitability and causes sensory disturbances in post-injury conditions, including neuropathic pain. Electronic supplementary material The online version of this article (doi:10.1186/s12990-015-0044-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chuang Lyu
- School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China. .,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Jan Mulder
- Department of Neuroscience, Science for Life Laboratory, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Kristoffer Sahlholm
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Hugo Zeberg
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Johanna Nilsson
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Peter Århem
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Tie-Jun Sten Shi
- School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China. .,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
20
|
Bao Y, Gao Y, Yang L, Kong X, Yu J, Hou W, Hua B. The mechanism of μ-opioid receptor (MOR)-TRPV1 crosstalk in TRPV1 activation involves morphine anti-nociception, tolerance and dependence. Channels (Austin) 2015; 9:235-43. [PMID: 26176938 DOI: 10.1080/19336950.2015.1069450] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Initiated by the activation of various nociceptors, pain is a reaction to specific stimulus modalities. The μ-opioid receptor (MOR) agonists, including morphine, remain the most potent analgesics to treat patients with moderate to severe pain. However, the utility of MOR agonists is limited by the adverse effects associated with the use of these drugs, including analgesic tolerance and physical dependence. A strong connection has been suggested between the expression of the transient receptor potential vanilloid type 1 (TRPV1) ion channel and the development of inflammatory hyperalgesia. TRPV1 is important for thermal nociception induction, and is mainly expressed on sensory neurons. Recent reports suggest that opioid or TRPV1 receptor agonist exposure has contrasting consequences for anti-nociception, tolerance and dependence. Chronic morphine exposure modulates TRPV1 activation and induces the anti-nociception effects of morphine. The regulation of many downstream targets of TRPV1 plays a critical role in this process, including calcitonin gene-related peptide (CGRP) and substance P (SP). Additional factors also include capsaicin treatment blocking the anti-nociception effects of morphine in rats, as well as opioid modulation of TRPV1 responses through the cAMP-dependent PKA pathway and MAPK signaling pathways. Here, we review new insights concerning the mechanism underlying MOR-TRPV1 crosstalk and signaling pathways and discuss the potential mechanisms of morphine-induced anti-nociception, tolerance and dependence associated with the TRPV1 signaling pathway and highlight how understanding these mechanisms might help find therapeutic targets for the treatment of morphine induced antinociception, tolerance and dependence.
Collapse
Affiliation(s)
- Yanju Bao
- a Department of Oncology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| | - Yebo Gao
- a Department of Oncology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China.,b Beijing University of Chinese Medicine ; Beijing , P. R. China
| | - Liping Yang
- c Department of Nephrology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| | - Xiangying Kong
- d Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| | - Jing Yu
- e Department of Oncology ; Beijing Friendship Hospital, Capital Medical University ; Beijing , China
| | - Wei Hou
- a Department of Oncology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| | - Baojin Hua
- a Department of Oncology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| |
Collapse
|
21
|
Luján R, Aguado C. Localization and Targeting of GIRK Channels in Mammalian Central Neurons. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:161-200. [PMID: 26422985 DOI: 10.1016/bs.irn.2015.05.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
G protein-gated inwardly rectifying K(+) (GIRK/K(ir)3) channels are critical to brain function. They hyperpolarize neurons in response to activation of different G protein-coupled receptors, reducing cell excitability. Molecular cloning has revealed four distinct mammalian genes (GIRK1-4), which, with the exception of GIRK4, are broadly expressed in the central nervous system (CNS) and have been implicated in a variety of neurological disorders. Although the molecular structure and composition of GIRK channels are key determinants of their biophysical properties, their cellular and subcellular localization patterns and densities on the neuronal surface are just as important to nerve function. Current data obtained with high-resolution quantitative localization techniques reveal complex, subcellular compartment-specific distribution patterns of GIRK channel subunits. Recent efforts have focused on determining the associated proteins that form macromolecular complexes with GIRK channels. Demonstration of the precise subcellular compartmentalization of GIRK channels and their associated proteins represents a crucial step in understanding the contribution of these channels to specific aspects of neuronal function under both physiological and pathological conditions. Here, we present an overview of studies aimed at determining the cellular and subcellular localization of GIRK channel subunits in mammalian brain neurons and discuss implications for neuronal physiology.
Collapse
Affiliation(s)
- Rafael Luján
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, Albacete, Spain.
| | - Carolina Aguado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| |
Collapse
|
22
|
Nagi K, Pineyro G. Kir3 channel signaling complexes: focus on opioid receptor signaling. Front Cell Neurosci 2014; 8:186. [PMID: 25071446 PMCID: PMC4085882 DOI: 10.3389/fncel.2014.00186] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/18/2014] [Indexed: 12/03/2022] Open
Abstract
Opioids are among the most effective drugs to treat severe pain. They produce their analgesic actions by specifically activating opioid receptors located along the pain perception pathway where they inhibit the flow of nociceptive information. This inhibition is partly accomplished by activation of hyperpolarizing G protein-coupled inwardly-rectifying potassium (GIRK or Kir3) channels. Kir3 channels control cellular excitability in the central nervous system and in the heart and, because of their ubiquitous distribution, they mediate the effects of a large range of hormones and neurotransmitters which, upon activation of corresponding G protein-coupled receptors (GPCRs) lead to channel opening. Here we analyze GPCR signaling via these effectors in reference to precoupling and collision models. Existing knowledge on signaling bias is discussed in relation to these models as a means of developing strategies to produce novel opioid analgesics with an improved side effects profile.
Collapse
Affiliation(s)
- Karim Nagi
- Département de Pharmacologie, Faculté de Médecine, Université de Montréal Montreal, QC, Canada ; Centre de Recherche du CHU Sainte-Justine Montréal, QC, Canada
| | - Graciela Pineyro
- Département de Pharmacologie, Faculté de Médecine, Université de Montréal Montreal, QC, Canada ; Centre de Recherche du CHU Sainte-Justine Montréal, QC, Canada ; Département de Psychiatrie, Faculté de Médecine, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
23
|
Braz J, Solorzano C, Wang X, Basbaum AI. Transmitting pain and itch messages: a contemporary view of the spinal cord circuits that generate gate control. Neuron 2014; 82:522-36. [PMID: 24811377 DOI: 10.1016/j.neuron.2014.01.018] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The original formulation of Gate Control Theory (GCT) proposed that the perception of pain produced by spinal cord signaling to the brain depends on a balance of activity generated in large (nonnociceptive)- and small (nociceptive)-diameter primary afferent fibers. The theory proposed that activation of the large-diameter afferent "closes" the gate by engaging a superficial dorsal horn interneuron that inhibits the firing of projection neurons. Activation of the nociceptors "opens" the gate through concomitant excitation of projection neurons and inhibition of the inhibitory interneurons. Sixty years after publication of the GCT, we are faced with an ever-growing list of morphologically and neurochemically distinct spinal cord interneurons. The present Review highlights the complexity of superficial dorsal horn circuitry and addresses the question whether the premises outlined in GCT still have relevance today. By examining the dorsal horn circuits that underlie the transmission of "pain" and "itch" messages, we also address the extent to which labeled lines can be incorporated into a contemporary view of GCT.
Collapse
Affiliation(s)
- João Braz
- Department of Anatomy, University California, San Francisco, San Francisco, CA 94158, USA
| | - Carlos Solorzano
- Department of Anatomy, University California, San Francisco, San Francisco, CA 94158, USA
| | - Xidao Wang
- Department of Anatomy, University California, San Francisco, San Francisco, CA 94158, USA
| | - Allan I Basbaum
- Department of Anatomy, University California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
24
|
Jiang YQ, Andrade A, Lipscombe D. Spinal morphine but not ziconotide or gabapentin analgesia is affected by alternative splicing of voltage-gated calcium channel CaV2.2 pre-mRNA. Mol Pain 2013; 9:67. [PMID: 24369063 PMCID: PMC3916075 DOI: 10.1186/1744-8069-9-67] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/18/2013] [Indexed: 01/30/2023] Open
Abstract
Presynaptic voltage-gated calcium CaV2.2 channels play a privileged role in spinal level sensitization following peripheral nerve injury. Direct and indirect inhibitors of CaV2.2 channel activity in spinal dorsal horn are analgesic in chronic pain states. CaV2.2 channels represent a family of splice isoforms that are expressed in different combinations according to cell-type. A pair of mutually exclusive exons in the CaV2.2 encoding Cacna1b gene, e37a and e37b, differentially influence morphine analgesia. In mice that lack exon e37a, which is enriched in nociceptors, the analgesic efficacy of intrathecal morphine against noxious thermal stimuli is reduced. Here we ask if sequences unique to e37a influence: the development of abnormal thermal and mechanical sensitivity associated with peripheral nerve injury; and the actions of two other classes of analgesics that owe part or all of their efficacy to CaV2.2 channel inhibition. We find that: i) the analgesic efficacy of morphine, but not ziconotide or gabapentin, is reduced in mice lacking e37a, ii) the induction and maintenance of behaviors associated with sensitization that accompany peripheral nerve injury, do not require e37a-specific sequence, iii) intrathecal morphine, but not ziconotide or gabapentin analgesia to thermal stimuli is significantly lower in wild-type mice after peripheral nerve injury, iv) the analgesic efficacy of ziconotide and gabapentin to mechanical stimuli is reduced following nerve injury, and iv) intrathecal morphine analgesia to thermal stimuli in mice lacking e37a is not further reduced by peripheral nerve injury. Our findings show that the analgesic action of morphine, but not ziconotide or gabapentin, to thermal stimuli is linked to which Cacna1b exon, e37a or e37b, is selected during alternative pre-mRNA splicing.
Collapse
Affiliation(s)
| | | | - Diane Lipscombe
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
25
|
Small KM, Nag S, Mokha SS. Activation of membrane estrogen receptors attenuates opioid receptor-like1 receptor-mediated antinociception via an ERK-dependent non-genomic mechanism. Neuroscience 2013; 255:177-90. [PMID: 24452062 DOI: 10.1016/j.neuroscience.2013.10.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
Abstract
To our knowledge, the present data are the first to demonstrate that activation of membrane estrogen receptors (mERs) abolishes opioid receptor-like 1 (ORL1) receptor-mediated analgesia via extracellular signal-regulated kinase (ERK)-dependent non-genomic mechanisms. Estrogen was shown previously to both attenuate ORL1-mediated antinociception and down-regulate the ORL1 gene expression. The present study investigated whether non-genomic mechanisms contribute to estrogen-induced attenuation of ORL1-mediated antinociception by the mERs GPR30, Gq-coupled mER, ERα, and ERβ. E2BSA [β-estradiol-6-(O-carboxymethyl)oxime: bovine serum albumin] (0.5mM), a membrane impermeant analog of estradiol, injected intrathecally immediately prior to orphanin FQ (OFQ;10 nmol), the endogenous ligand for the ORL1 receptor, abolished OFQ's antinociceptive effect in both male and ovariectomized (OVX) female rats, assessed using the heat-induced tail-flick assay. This effect was not altered by protein synthesis inhibitor, anisomycin (125 μg), given intrathecally 15 min prior to E2BSA and OFQ. Intrathecal application of selective receptor agonists permitted the relative contributions of various estrogen receptors in mediating this blockade of the antinociceptive response of OFQ. Activation of GPR30, Gq-mER, ERα, but not ERβ abolished ORL1-mediated antinociception in males and OVX females. E2BSA produced a parallel and significant increase in the phosphorylation of ERK 2 only in OVX females, and pre-treatment with MEK/ERK 1/2 inhibitor, U0126 (10 μg), blocked the mER-mediated abolition of ORL1-mediated antinociception in OVX females. Taken together, the data are consistent with the interpretations that mER activation attenuates ORL1-mediated antinociception through a non-genomic, ERK 2-dependent mechanism in females.
Collapse
Affiliation(s)
- K M Small
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - S Nag
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - S S Mokha
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA.
| |
Collapse
|
26
|
Chung MK, Cho YS, Bae YC, Lee J, Zhang X, Ro JY. Peripheral G protein-coupled inwardly rectifying potassium channels are involved in δ-opioid receptor-mediated anti-hyperalgesia in rat masseter muscle. Eur J Pain 2013; 18:29-38. [PMID: 23740773 DOI: 10.1002/j.1532-2149.2013.00343.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2013] [Indexed: 11/06/2022]
Abstract
BACKGROUND Although the efficacy of peripherally administered opioid has been demonstrated in preclinical and clinical studies, the underlying mechanisms of its anti-hyperalgesic effects are poorly understood. G protein-coupled inwardly rectifying potassium (GIRK) channels are linked to opioid receptors in the brain. However, the role of peripheral GIRK channels in analgesia induced by peripherally administered opioid, especially in trigeminal system, is not clear. METHODS Expression of GIRK subunits in rat trigeminal ganglia (TG) was examined with reverse transcription-polymerase chain reaction, Western blot and immunohistochemistry. Chemical profiles of GIRK-expressing neurons in TG were further characterized. Behavioural and Fos experiments were performed to examine the functional involvement of GIRK channels in δ-opioid receptor (DOR)-mediated anti-hyperalgesia under an acute myositis condition. RESULTS TG expressed mRNA and proteins for GIRK1 and GIRK2 subunits. Majority of GIRK1- and GIRK2-expressing neurons were non-peptidergic afferents. Inhibition of peripheral GIRK using Tertiapin-Q (TPQ) attenuated antinociceptive effects of peripherally administered DOR agonist, [D-Pen(2), D-Pen(6) ]-enkephalin (DPDPE), on mechanical hypersensitivity in masseter muscle. Furthermore, TPQ attenuated the suppressive effects of peripheral DPDPE on neuronal activation in the subnucleus caudalis of the trigeminal nucleus (Vc) following masseteric injection of capsaicin. CONCLUSIONS Our data indicate that peripheral DOR agonist-induced suppression of mechanical hypersensitivity in the masseter muscle involves the activity of peripheral GIRK channels. These results could provide a rationale for developing a novel therapeutic approach using peripheral GIRK channel openers to mimic or supplement the effects of peripheral opioid agonist.
Collapse
Affiliation(s)
- M-K Chung
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA
| | | | | | | | | | | |
Collapse
|
27
|
Inward-rectifying potassium (Kir) channels regulate pacemaker activity in spinal nociceptive circuits during early life. J Neurosci 2013; 33:3352-62. [PMID: 23426663 DOI: 10.1523/jneurosci.4365-12.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pacemaker neurons in neonatal spinal nociceptive circuits generate intrinsic burst firing and are distinguished by a lower "leak" membrane conductance compared with adjacent nonbursting neurons. However, little is known about which subtypes of leak channels regulate the level of pacemaker activity within the developing rat superficial dorsal horn (SDH). Here we demonstrate that a hallmark feature of lamina I pacemaker neurons is a reduced conductance through inward-rectifying potassium (K(ir)) channels at physiological membrane potentials. Differences in the strength of inward rectification between pacemakers and nonpacemakers indicate the presence of functionally distinct K(ir) currents in these two populations at room temperature. However, K(ir) currents in both groups showed high sensitivity to block by extracellular Ba²⁺ (IC₅₀ ~ 10 μm), which suggests the presence of "classical" K(ir) (K(ir)2.x) channels in the neonatal SDH. The reduced K(ir) conductance within pacemakers is unlikely to be explained by an absence of particular K(ir)2.x isoforms, as immunohistochemical analysis revealed the expression of K(ir)2.1, K(ir)2.2, and K(ir)2.3 within spontaneously bursting neurons. Importantly, Ba²⁺ application unmasked rhythmic burst firing in ∼42% of nonbursting lamina I neurons, suggesting that pacemaker activity is a latent property of a sizeable population of SDH cells during early life. In addition, the prevalence of spontaneous burst firing within lamina I was enhanced in the presence of high internal concentrations of free Mg²⁺, consistent with its documented ability to block K(ir) channels from the intracellular side. Collectively, the results indicate that K(ir) channels are key modulators of pacemaker activity in newborn central pain networks.
Collapse
|
28
|
Transcriptional expression of voltage-gated Na⁺ and voltage-independent K⁺ channels in the developing rat superficial dorsal horn. Neuroscience 2012; 231:305-14. [PMID: 23219908 DOI: 10.1016/j.neuroscience.2012.11.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 02/06/2023]
Abstract
Neurons within the superficial dorsal horn (SDH) of the rodent spinal cord exhibit distinct firing properties during early life. While this may reflect a unique combination of voltage-gated Na(+) (Na(v)) and voltage-independent (i.e. "leak'') K(+) channels which strongly influence neuronal excitability across the CNS, surprisingly little is known about which genes encoding for Na(v) and leak K(+) channels are expressed within developing spinal pain circuits. The goal of the present study was therefore to characterize the transcriptional expression of these channels within the rat SDH at postnatal days (P) 3, 10, 21 or adulthood using quantitative real-time polymerase chain reaction. The results demonstrate that Na(v) isoforms are developmentally regulated at the mRNA level in a subtype-specific manner, as Na(v)1.2 and Na(v)1.3 decreased significantly from P3 to adulthood, while Na(v)1.1 was up-regulated during this period. The data also indicate selective, age-dependent changes in the mRNA expression of two-pore domain (K(2P)) K(+) channels, as TWIK-related acid-sensitive K(+) channels TASK-1 (KCNK3) and TASK-3 (KCNK9) were down-regulated during postnatal development in the absence of any changes in the tandem of pore domains in a weak inward rectifying K(+) channel (TWIK) isoforms examined (KCNK1 and KCNK6). In addition, a developmental shift occurred within the TREK subfamily due to decreased TREK-2 (KCNK10) mRNA within the mature SDH. Meanwhile, G-protein-coupled inward rectifying K(+) channels (K(ir)3.1 and K(ir)3.2) were expressed in the SDH at mature levels from birth. Overall, the results suggest that the transcription of ion channel genes occurs in a highly age-dependent manner within the SDH, raising the possibility that manipulating the expression or function of ion channels which are preferentially expressed within immature nociceptive networks could yield novel approaches to relieving pain in infants and children.
Collapse
|
29
|
Melnick IV. Cell type-specific postsynaptic effects of neuropeptide Y in substantia gelatinosa neurons of the rat spinal cord. Synapse 2012; 66:640-9. [DOI: 10.1002/syn.21550] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/07/2012] [Indexed: 11/11/2022]
|
30
|
Fernández-Alacid L, Watanabe M, Molnár E, Wickman K, Luján R. Developmental regulation of G protein-gated inwardly-rectifying K+ (GIRK/Kir3) channel subunits in the brain. Eur J Neurosci 2011; 34:1724-36. [PMID: 22098295 DOI: 10.1111/j.1460-9568.2011.07886.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
G protein-gated inwardly-rectifying K(+) (GIRK/family 3 of inwardly-rectifying K(+) ) channels are coupled to neurotransmitter action and can play important roles in modulating neuronal excitability. We investigated the temporal and spatial expression of GIRK1, GIRK2 and GIRK3 subunits in the developing and adult brain of mice and rats using biochemical, immunohistochemical and immunoelectron microscopic techniques. At all ages analysed, the overall distribution patterns of GIRK1-3 were very similar, with high expression levels in the neocortex, cerebellum, hippocampus and thalamus. Focusing on the hippocampus, histoblotting and immunohistochemistry showed that GIRK1-3 protein levels increased with age, and this was accompanied by a shift in the subcellular localization of the subunits. Early in development (postnatal day 5), GIRK subunits were predominantly localized to the endoplasmic reticulum in the pyramidal cells, but by postnatal day 60 they were mostly found along the plasma membrane. During development, GIRK1 and GIRK2 were found primarily at postsynaptic sites, whereas GIRK3 was predominantly detected at presynaptic sites. In addition, GIRK1 and GIRK2 expression on the spine plasma membrane showed identical proximal-to-distal gradients that differed from GIRK3 distribution. Furthermore, although GIRK1 was never found within the postsynaptic density (PSD), the level of GIRK2 in the PSD progressively increased and GIRK3 did not change in the PSD during development. Together, these findings shed new light on the developmental regulation and subcellular diversity of neuronal GIRK channels, and support the contention that distinct subpopulations of GIRK channels exert separable influences on neuronal excitability. The ability to selectively target specific subpopulations of GIRK channels may prove effective in the treatment of disorders of excitability.
Collapse
Affiliation(s)
- Laura Fernández-Alacid
- Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| | | | | | | | | |
Collapse
|
31
|
Chen SR, Chen H, Yuan WX, Pan HL. Increased presynaptic and postsynaptic α2-adrenoceptor activity in the spinal dorsal horn in painful diabetic neuropathy. J Pharmacol Exp Ther 2011; 337:285-92. [PMID: 21248068 PMCID: PMC3063741 DOI: 10.1124/jpet.110.176586] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 01/19/2011] [Indexed: 12/15/2022] Open
Abstract
Diabetic neuropathy is a common cause of chronic pain that is not adequately relieved by conventional analgesics. The α(2)-adrenoceptors are involved in the regulation of glutamatergic input and nociceptive transmission in the spinal dorsal horn, but their functional changes in diabetic neuropathy are not clear. The purpose of the present study was to determine the plasticity of presynaptic and postsynaptic α(2)-adrenoceptors in the control of spinal glutamatergic synaptic transmission in painful diabetic neuropathy. Whole-cell voltage-clamp recordings of lamina II neurons were performed in spinal cord slices from streptozotocin-induced diabetic rats. The amplitude of glutamatergic excitatory postsynaptic currents (EPSCs) evoked from the dorsal root and the frequency of spontaneous EPSCs (sEPSCs) were significantly higher in diabetic than vehicle-control rats. The specific α(2)-adrenoceptor agonist 5-bromo-6-(2-imidazolin-2-ylamino)quinoxaline (UK-14304) (0.1-2 μM) inhibited the frequency of sEPSCs more in diabetic than vehicle-treated rats. UK-14304 also inhibited the amplitude of evoked monosynaptic and polysynaptic EPSCs more in diabetic than control rats. Furthermore, the amplitude of postsynaptic G protein-coupled inwardly rectifying K(+) channel (GIRK) currents elicited by UK-14304 was significantly larger in the diabetic group than in the control group. In addition, intrathecal administration of UK-14304 increased the nociceptive threshold more in diabetic than vehicle-control rats. Our findings suggest that diabetic neuropathy increases the activity of presynaptic and postsynaptic α(2)-adrenoceptors to attenuate glutamatergic transmission in the spinal dorsal horn, which accounts for the potentiated antinociceptive effect of α(2)-adrenoceptor activation in diabetic neuropathic pain.
Collapse
Affiliation(s)
- Shao-Rui Chen
- Department of Anesthesiology and Perioperative Medicine, Unit 110, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030-4009, USA.
| | | | | | | |
Collapse
|
32
|
Styer AM, Mirshahi UL, Wang C, Girard L, Jin T, Logothetis DE, Mirshahi T. G protein {beta}{gamma} gating confers volatile anesthetic inhibition to Kir3 channels. J Biol Chem 2010; 285:41290-9. [PMID: 21044958 DOI: 10.1074/jbc.m110.178541] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-activated inwardly rectifying potassium (GIRK or Kir3) channels are directly gated by the βγ subunits of G proteins and contribute to inhibitory neurotransmitter signaling pathways. Paradoxically, volatile anesthetics such as halothane inhibit these channels. We find that neuronal Kir3 currents are highly sensitive to inhibition by halothane. Given that Kir3 currents result from increased Gβγ available to the channels, we asked whether reducing available Gβγ to the channel would adversely affect halothane inhibition. Remarkably, scavenging Gβγ using the C-terminal domain of β-adrenergic receptor kinase (cβARK) resulted in channel activation by halothane. Consistent with this effect, channel mutants that impair Gβγ activation were also activated by halothane. A single residue, phenylalanine 192, occupies the putative Gβγ gate of neuronal Kir3.2 channels. Mutation of Phe-192 at the gate to other residues rendered the channel non-responsive, either activated or inhibited by halothane. These data indicated that halothane predominantly interferes with Gβγ-mediated Kir3 currents, such as those functioning during inhibitory synaptic activity. Our report identifies the molecular correlate for anesthetic inhibition of Kir3 channels and highlights the significance of these effects in modulating neurotransmitter-mediated inhibitory signaling.
Collapse
Affiliation(s)
- Amanda M Styer
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2621, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Ciruela F, Fernández-Dueñas V, Sahlholm K, Fernández-Alacid L, Nicolau JC, Watanabe M, Luján R. Evidence for oligomerization between GABAB receptors and GIRK channels containing the GIRK1 and GIRK3 subunits. Eur J Neurosci 2010; 32:1265-77. [PMID: 20846323 DOI: 10.1111/j.1460-9568.2010.07356.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The stimulation of inhibitory neurotransmitter receptors, such as γ-aminobutyric acid type B (GABA(B) ) receptors, activates G protein-gated inwardly-rectifying K(+) (GIRK) channels, which influence membrane excitability. There is now evidence suggesting that G protein-coupled receptors and G protein-gated inwardly-rectifying K(+) [GIRK/family 3 of inwardly-rectifying K(+) (Kir3)] channels do not diffuse freely within the plasma membrane, but instead there are direct protein-protein interactions between them. Here, we used bioluminescence resonance energy transfer, co-immunoprecipitation, confocal and electron microscopy techniques to investigate the oligomerization of GABA(B) receptors with GIRK channels containing the GIRK3 subunit, whose contribution to functional channels is still unresolved. Co-expression of GABA(B) receptors and GIRK channels in human embryonic kidney-293 cells in combination with co-immunoprecipitation experiments established that the metabotropic receptor forms stable complexes with GIRK channels. Using bioluminescence resonance energy transfer, we have shown that, in living cells under physiological conditions, GABA(B) receptors interact directly with GIRK1/GIRK3 heterotetramers. In addition, we have provided evidence that the receptor-effector complexes are also found in vivo and identified that the cerebellar granule cells are one neuron population where the interaction probably takes place. Altogether, our data show that signalling complexes containing GABA(B) receptors and GIRK channels are formed shortly after biosynthesis, probably in the endoplasmic reticulum and/or endoplasmic reticulum/Golgi apparatus complex, suggesting that this might be a general feature of receptor-effector ion channel signal transduction and supporting a channel-forming role for the GIRK3 subunit.
Collapse
Affiliation(s)
- Francisco Ciruela
- Unitat de Farmacologia (4102), Departament Patologia i Terapèutica Experimental, Facultat de Medicina-Bellvitge, Universitat de IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
34
|
Arora D, Haluk DM, Kourrïch S, Pravetoni M, Fernández-Alacid L, Nicolau JC, Luján R, Wickman K. Altered neurotransmission in the mesolimbic reward system of Girk mice. J Neurochem 2010; 114:1487-97. [PMID: 20557431 PMCID: PMC2941778 DOI: 10.1111/j.1471-4159.2010.06864.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mice lacking the Girk2 subunit of G protein-gated inwardly rectifying K+ (Girk) channels exhibit dopamine-dependent hyperactivity and elevated responses to drugs that stimulate dopamine neurotransmission. The dopamine-dependent phenotypes seen in Girk2(-/-) mice could reflect increased intrinsic excitability of or diminished inhibitory feedback to midbrain dopamine neurons, or secondary adaptations triggered by Girk2 ablation. We addressed these possibilities by evaluating Girk(-/-) mice in behavioral, electrophysiological, and cell biological assays centered on the mesolimbic dopamine system. Despite differences in the contribution of Girk1 and Girk2 subunits to Girk signaling in midbrain dopamine neurons, Girk1(-/-) and Girk2(-/-) mice exhibited comparable baseline hyperactivities and enhanced responses to cocaine. Girk ablation also correlated with altered afferent input to dopamine neurons in the ventral tegmental area. Dopamine neurons from Girk1(-/-) and Girk2(-/-) mice exhibited elevated glutamatergic neurotransmission, paralleled by increased synaptic levels of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate glutamate receptors. In addition, synapse density, alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor levels, and glutamatergic neurotransmission were elevated in medium spiny neurons of the nucleus accumbens from Girk1(-/-) and Girk2(-/-) mice. We conclude that dopamine-dependent phenotypes in Girk2(-/-) mice are not solely attributable to a loss of Girk signaling in dopamine neurons, and likely involve secondary adaptations facilitating glutamatergic signaling in the mesolimbic reward system.
Collapse
Affiliation(s)
- Devinder Arora
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Desirae M. Haluk
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Said Kourrïch
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Marco Pravetoni
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | | | - Joel C. Nicolau
- Departmento de Ciencias Medicas, Universidad Castilla-La Mancha, 02006 Albacete SPAIN
| | - Rafael Luján
- Departmento de Ciencias Medicas, Universidad Castilla-La Mancha, 02006 Albacete SPAIN
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
35
|
Lüscher C, Slesinger PA. Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat Rev Neurosci 2010; 11:301-15. [PMID: 20389305 PMCID: PMC3052907 DOI: 10.1038/nrn2834] [Citation(s) in RCA: 477] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-gated inwardly rectifying potassium (GIRK) channels hyperpolarize neurons in response to activation of many different G protein-coupled receptors and thus control the excitability of neurons through GIRK-mediated self-inhibition, slow synaptic potentials and volume transmission. GIRK channel function and trafficking are highly dependent on the channel subunit composition. Pharmacological investigations of GIRK channels and studies in animal models suggest that GIRK activity has an important role in physiological responses, including pain perception and memory modulation. Moreover, abnormal GIRK function has been implicated in altering neuronal excitability and cell death, which may be important in the pathophysiology of diseases such as epilepsy, Down's syndrome, Parkinson's disease and drug addiction. GIRK channels may therefore prove to be a valuable new therapeutic target.
Collapse
Affiliation(s)
- Christian Lüscher
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, 1, Michel Servet, CH-1211 Geneva, Switzerland. 41 22 379 5423
- Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, CH-1211 Geneva, Switzerland
- Geneva Neuroscience Center, 1211 Geneva, Switzerland
| | - Paul A. Slesinger
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, California 92037, USA. 858-453-4100 x 1560
| |
Collapse
|
36
|
Zhang L, Hammond DL. Cellular basis for opioid potentiation in the rostral ventromedial medulla of rats with persistent inflammatory nociception. Pain 2010; 149:107-116. [PMID: 20172653 PMCID: PMC2860801 DOI: 10.1016/j.pain.2010.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 01/12/2010] [Accepted: 01/22/2010] [Indexed: 01/05/2023]
Abstract
Direct inhibition of pain facilitatory neurons in the rostral ventromedial medulla (RVM) is one mechanism by which mu opioid receptor (MOPr) agonists are proposed to produce antinociception. The antinociceptive and anti-hyperalgesic effects of the MOPr agonist DAMGO are enhanced after intraplantar injection of complete Freund's adjuvant (CFA). This study therefore examined whether CFA treatment similarly enhanced the ability of DAMGO to induce outward currents in spinally projecting RVM neurons. It further examined whether the electrophysiological properties of RVM neurons are altered by CFA treatment. Whole-cell patch clamp recordings were made from three types of serotonergic as well as non-serotonergic spinally projecting RVM neurons obtained from control rats and rats 4h or four days after CFA. Persistent, but not acute inflammatory nociception increased the percentage of Type 2 non-serotonergic neurons that responded to DAMGO from 17% to 57% and the percentage of Type 3 serotonergic neurons that responded to DAMGO from 5% to 55%. These same two populations of RVM neurons exhibited significant differences in their passive membrane properties or spontaneous discharge rate. The outward currents produced by the GABA(B) receptor agonist baclofen were not enhanced, suggesting that the enhancement does not reflect global changes in levels of G(i/o) or activity of G-protein regulated inwardly rectifying potassium channels. These results provide a cellular basis for the enhanced anti-hyperalgesic and antinociceptive effects of MOPr agonists under conditions of persistent inflammatory nociception. These results also provide intriguing, albeit indirect, evidence for two different populations of pain facilitatory neurons in the RVM.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Anesthesia The University of Iowa Iowa City, IA 52242 U.S.A
| | - Donna L. Hammond
- Department of Anesthesia The University of Iowa Iowa City, IA 52242 U.S.A
- Department of Pharmacology The University of Iowa Iowa City, IA 52242 U.S.A
| |
Collapse
|
37
|
Clayton CC, Xu M, Chavkin C. Tyrosine phosphorylation of Kir3 following kappa-opioid receptor activation of p38 MAPK causes heterologous desensitization. J Biol Chem 2009; 284:31872-81. [PMID: 19773548 PMCID: PMC2797258 DOI: 10.1074/jbc.m109.053793] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/16/2009] [Indexed: 01/05/2023] Open
Abstract
Prior studies showed that tyrosine 12 phosphorylation in the N-terminal, cytoplasmic domain of the G-protein-gated inwardly rectifying potassium channel, K(ir)3.1 facilitates channel deactivation by increasing intrinsic GTPase activity of the channel. Using a phosphoselective antibody directed against this residue (pY12), we now report that partial sciatic nerve ligation increased pY12-K(ir)3.1-immunoreactivity (ir) in the ipsilateral dorsal horn of wild-type mice, but not in mice lacking the kappa-opioid receptor (KOR) or lacking the G-protein receptor kinase 3 (GRK3) genes. Treatment of AtT-20 cells stably expressing KOR-GFP with the selective KOR agonist U50,488 increased both phospho-p38-ir and pY12-K(ir)3.1-ir. The U50,488-induced increase in pY12-K(ir)3.1-ir was blocked by the p38 inhibitor SB203580. Cells expressing KOR(S369A)-GFP did not increase either phospho-p38-ir or pY12-K(ir)3.1-ir following U50,488 treatment. Whole cell voltage clamp of AtT-20 cells expressing KOR-GFP demonstrated that p38 activation by U50,488 reduced somatostatin-evoked K(ir)3 currents. This heterologous desensitization was blocked by SB203580 and was not evident in cells expressing KOR(S369A)-GFP. Tyrosine phosphorylation of K(ir)3.1 was likely mediated by p38 MAPK activation of Src kinase. U50,488 also increased (pY418)Src-ir; this increase was blocked by SB203580 and not evident in KOR(S369A)-GFP expressing AtT20 cells; the Src inhibitor PP2 blocked the U50,488-induced increase in pY12-K(ir)3.1-ir; and the heterologous desensitization of K(ir)3 currents was blocked by PP2. These results suggest that KOR causes phosphorylation of Y12-K(ir)3.1 and channel inhibition through a GRK3-, p38 MAPK- and Src-dependent mechanism. Reduced inward potassium current following nerve ligation would increase dorsal horn neuronal excitability and may contribute to the neuropathic pain response.
Collapse
Affiliation(s)
- Cecilea C. Clayton
- From the Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Mei Xu
- From the Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Charles Chavkin
- From the Department of Pharmacology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
38
|
Fernández-Alacid L, Aguado C, Ciruela F, Martín R, Colón J, Cabañero MJ, Gassmann M, Watanabe M, Shigemoto R, Wickman K, Bettler B, Sánchez-Prieto J, Luján R. Subcellular compartment-specific molecular diversity of pre- and post-synaptic GABA-activated GIRK channels in Purkinje cells. J Neurochem 2009; 110:1363-76. [PMID: 19558451 PMCID: PMC2774143 DOI: 10.1111/j.1471-4159.2009.06229.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation of G protein-gated inwardly-rectifying K(+) (GIRK or Kir3) channels by metabotropic gamma-aminobutyric acid (B) (GABA(B)) receptors is an essential signalling pathway controlling neuronal excitability and synaptic transmission in the brain. To investigate the relationship between GIRK channel subunits and GABA(B) receptors in cerebellar Purkinje cells at post- and pre-synaptic sites, we used biochemical, functional and immunohistochemical techniques. Co-immunoprecipitation analysis demonstrated that GIRK subunits are co-assembled with GABA(B) receptors in the cerebellum. Immunoelectron microscopy showed that the subunit composition of GIRK channels in Purkinje cell spines is compartment-dependent. Thus, at extrasynaptic sites GIRK channels are formed by GIRK1/GIRK2/GIRK3, post-synaptic densities contain GIRK2/GIRK3 and dendritic shafts contain GIRK1/GIRK3. The post-synaptic association of GIRK subunits with GABA(B) receptors in Purkinje cells is supported by the subcellular regulation of the ion channel and the receptor in mutant mice. At pre-synaptic sites, GIRK channels localized to parallel fibre terminals are formed by GIRK1/GIRK2/GIRK3 and co-localize with GABA(B) receptors. Consistent with this morphological evidence we demonstrate their functional interaction at axon terminals in the cerebellum by showing that GIRK channels play a role in the inhibition of glutamate release by GABA(B) receptors. The association of GIRK channels and GABA(B) receptors with excitatory synapses at both post- and pre-synaptic sites indicates their intimate involvement in the modulation of glutamatergic neurotransmission in the cerebellum.
Collapse
Affiliation(s)
- Laura Fernández-Alacid
- Departamento de Ciencias Médicas, CRIB-Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
| | - Carolina Aguado
- Departamento de Ciencias Médicas, CRIB-Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
| | - Francisco Ciruela
- Departamento de Bioquímica i Biologia Molecular, Universitat de Barcelona, Avda. Diagonal 645, 28028 Barcelona, Spain
| | - Ricardo Martín
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - José Colón
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - María José Cabañero
- Departamento de Ciencias Médicas, CRIB-Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
| | - Martin Gassmann
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - Ryuichi Shigemoto
- Division of Cerebral Structure, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8787, SORST Japan Science and Technology Corporation, Japan
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, CH-4056 Basel, Switzerland
| | - José Sánchez-Prieto
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Rafael Luján
- Departamento de Ciencias Médicas, CRIB-Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
| |
Collapse
|
39
|
|
40
|
Pravetoni M, Wickman K. Behavioral characterization of mice lacking GIRK/Kir3 channel subunits. GENES BRAIN AND BEHAVIOR 2008; 7:523-31. [PMID: 18194467 DOI: 10.1111/j.1601-183x.2008.00388.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G protein-gated inwardly rectifying K(+) (GIRK/Kir3) channels mediate the postsynaptic inhibitory effects of many neurotransmitters and drugs of abuse. The lack of drugs selective for GIRK channels has hindered our ability to study their contributions to behavior. Here, we assessed the impact of GIRK subunit ablation on several behavioral endpoints. Mice were evaluated with respect to open-field motor activity and habituation, anxiety-related behavior, motor co-ordination and ataxia and operant performance. GIRK3 knockout ((-/-)) mice behaved indistinguishably from wild-type mice in this panel of tests. GIRK1(-/-) mice and GIRK2(-/-) mice, however, showed elevated motor activity and delayed habituation to an open field. GIRK2(-/-) mice, and to a lesser extent GIRK1(-/-) mice, also displayed reduced anxiety-related behavior in the elevated plus maze. Both GIRK1(-/-) mice and GIRK2(-/-) mice displayed marked resistance to the ataxic effects of the GABA(B) receptor agonist baclofen in the rotarod test. All GIRK(-/-) mice were able to learn an operant task using food as the reinforcing agent. Within-session progressive ratio scheduling, however, showed elevated lever press behavior in GIRK2(-/-) mice and, to a lesser extent, in GIRK1(-/-) mice. Phenotypic differences between mice lacking GIRK1, GIRK2 and GIRK3 correlate well with the known impact of GIRK subunit ablation on neurotransmitter-gated GIRK currents, arguing that most neuronal GIRK channels contain GIRK1 and/or GIRK2. Altogether, our data suggest that GIRK channels make important contribution to a range of behaviors and may represent points of therapeutic intervention in disorders of anxiety, spasticity and reward.
Collapse
Affiliation(s)
- M Pravetoni
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
41
|
Zhou HY, Chen SR, Chen H, Pan HL. Sustained inhibition of neurotransmitter release from nontransient receptor potential vanilloid type 1-expressing primary afferents by mu-opioid receptor activation-enkephalin in the spinal cord. J Pharmacol Exp Ther 2008; 327:375-82. [PMID: 18669865 DOI: 10.1124/jpet.108.141226] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Removing transient receptor potential vanilloid type 1 (TRPV1)-expressing primary afferent neurons reduces presynaptic mu-opioid receptors but potentiates opioid analgesia. However, the sites and underlying cellular mechanisms for this paradoxical effect remain uncertain. In this study, we determined the presynaptic and postsynaptic effects of the mu-opioid receptor agonist [D-Ala(2),N-Me-Phe(4),Gly-ol(5)]-enkephalin (DAMGO) using whole-cell patch-clamp recordings of lamina II neurons in rat spinal cord slices. Treatment with the ultrapotent TRPV1 agonist resiniferotoxin (RTX) eliminated TRPV1-expressing dorsal root ganglion neurons and their central terminals in the spinal dorsal horn and significantly reduced the basal amplitude of glutamatergic excitatory postsynaptic currents (EPSCs) evoked from primary afferents. Although RTX treatment did not significantly alter the concentration-response effect of DAMGO on evoked monosynaptic and polysynaptic EPSCs, it causes a profound long-lasting inhibitory effect of DAMGO on evoked EPSCs. Subsequent naloxone treatment did not reverse the prolonged inhibitory effect of DAMGO on evoked EPSCs. Furthermore, brief application of DAMGO produced a sustained inhibition of miniature EPSCs in RTX-treated rats. However, the concentration response and the duration of the effects of DAMGO on G protein-coupled inwardly rectifying K+ currents in lamina II neurons were not significantly different between vehicle- and RTX-treated groups. These data suggest that stimulation of mu-opioid receptors on non-TRPV1 afferent terminals causes extended inhibition of neurotransmitter release to spinal dorsal horn neurons. The differential effect of mu-opioid receptor agonists on different phenotypes of primary afferents provides a cellular basis to explain why the analgesic action of opioids on mechanonociception is prolonged when TRPV1-expressing primary afferents are removed.
Collapse
Affiliation(s)
- Hong-Yi Zhou
- Department of Anesthesiology and Pain Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
42
|
Torrecilla M, Quillinan N, Williams JT, Wickman K. Pre- and postsynaptic regulation of locus coeruleus neurons after chronic morphine treatment: a study of GIRK-knockout mice. Eur J Neurosci 2008; 28:618-24. [PMID: 18702733 PMCID: PMC2582177 DOI: 10.1111/j.1460-9568.2008.06348.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While the acute inhibitory effect of opioids on locus coeruleus (LC) neurons is mediated primarily by the activation of G protein-gated inwardly-rectifying K(+) (GIRK) channels, the 3'-5'-cyclic adenosine monophosphate (cAMP) system has been implicated in the effects of chronic morphine exposure. Presently, the impact of chronic morphine treatment on GIRK-dependent and GIRK-independent mechanisms underlying the opioid-induced inhibition of LC neurons is unclear. Here, opioid-induced postsynaptic inhibition was studied in LC neurons from wild-type and GIRK2/GIRK3(-/-) mice at baseline and following chronic morphine treatment. The postsynaptic inhibition of LC neurons caused by the opioid agonist [Met](5) enkephalin (ME) was unaffected by chronic morphine treatment in mice of either genotype. Furthermore, chronic morphine treatment had no effect on the forskolin augmentation of the ME-induced current in wild-type LC neurons and only a minor effect on the ME-induced current in LC neurons from GIRK2/GIRK3(-/-) mice. Chronic morphine treatment did, however, lead to an increased frequency of spontaneous excitatory postsynaptic currents (EPSCs) in the LC. Interestingly, while forskolin augmented the EPSC frequency similarly in untreated and morphine-treated wild-type mice, as well as untreated GIRK2/GIRK3(-/-) mice, it failed to increase the frequency of EPSCs in morphine-treated GIRK2/GIRK3(-/-) mice. Altogether, the findings suggest that chronic morphine treatment exerts little impact on ion channels and signaling pathways that mediate the postsynaptic inhibitory effects of opioids but does enhance excitatory neurotransmission in the mouse LC.
Collapse
Affiliation(s)
- Maria Torrecilla
- Vollum Institute, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Nidia Quillinan
- Vollum Institute, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - John T. Williams
- Vollum Institute, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Kevin Wickman
- Vollum Institute, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW To review key mechanisms underlying the transmission of nociceptive information from the periphery to the central nervous system implicated in different acute pain states. RECENT FINDINGS Advances in molecular and transgenic approaches have helped to identify novel therapeutic targets for the treatment of pain from tissue and nerve damage such as acid-sensing ion channels, transient receptor potential and NaV channels. The subsequent development of selective pharmacological ligands has also strengthened the role of other receptors such as hyperpolarization-activated cyclic nucleotide-gated channels and the further development of subunit specific antagonists, such as those available for NR2B, will further advance our understanding of the mechanisms involved in nociceptive transmission. SUMMARY Inflammatory and neuropathic pain differ considerably in their peripheral mechanisms but certain central spinal and brain mechanisms are common to both. The mechanisms of pain are not fully established but are thought to be underpinned by changes in the expression of receptors (nociceptive plasticity), central spinal hyperexcitability (central sensitization) and alterations in descending control from the midbrain. This review considers these mechanisms and highlights recent advances in the understanding of pain perception.
Collapse
|
44
|
Abstract
Although morphine induces both analgesia and dependence through mu-opioid receptors (MORs), the respective contributions of the intracellular effectors engaged by MORs remain unknown. To examine the contribution of G-protein-gated inwardly rectifying K(+) (GIRK, Kir3) channels to morphine dependence and analgesia, we quantified naloxone-precipitated withdrawal behavior and morphine analgesia using GIRK knock-out ((-/-)) mice. The morphine withdrawal syndrome was strongly attenuated, whereas morphine analgesia was mostly preserved in mice lacking both GIRK2 and GIRK3 (GIRK2/3(-/-) mice). In acute slices containing the locus ceruleus (LC) from GIRK2/3(-/-) mice, the increase in spontaneous firing typically associated with morphine withdrawal was absent. Moreover, although morphine elicited normal presynaptic inhibition in the LC, postsynaptic GIRK currents were completely abolished in GIRK2/3(-/-) mice. Altogether, these data suggested that morphine-evoked postsynaptic inhibition of the LC was required for the induction of dependence. Consistent with this hypothesis, morphine withdrawal behavior was rescued in GIRK2/3(-/-) mice by ablation of adrenergic fibers using the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine. Our data suggest that inhibition of adrenergic tone is required for the induction of dependence, and that channels containing GIRK2 and GIRK3 serve as an inhibitory gate.
Collapse
|
45
|
Nakatsuka T, Fujita T, Inoue K, Kumamoto E. Activation of GIRK channels in substantia gelatinosa neurones of the adult rat spinal cord: a possible involvement of somatostatin. J Physiol 2008; 586:2511-22. [PMID: 18356203 DOI: 10.1113/jphysiol.2007.146076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent studies have suggested that spinal G-protein-coupled, inwardly rectifying K(+) (GIRK) channels play an important role in thermal nociception and the analgesic actions of morphine and other agents. In this study, we show that spinal GIRK channels are activated by an endogenous neurotransmitter using whole-cell patch-clamp recordings from substantia gelatinosa (SG) neurones in adult rat spinal cord slices. Although repetitive stimuli applied to the dorsal root did not induce any slow responses, ones focally applied to the spinal dorsal horn produced slow inhibitory postsynaptic currents (IPSCs) at a holding potential of -50 mV in about 30% of the SG neurones recorded. The amplitude and duration of slow IPSCs increased with the number of stimuli and decreased with removal of Ca(2+) from the external Krebs solution. Slow IPSCs were associated with an increase in membrane conductance; their polarity was reversed at a potential close to the equilibrium potential for K(+), calculated from the Nernst equation. Slow IPSCs were blocked by addition of GDP-beta-S into the patch-pipette solution, reduced in amplitude in the presence of Ba(2+), and significantly suppressed in the presence of an antagonist of GIRK channels, tertiapin-Q. Somatostatin produced an outward current in a subpopulation of SG neurones and the slow IPSC was occluded during the somatostatin-induced outward current. Moreover, slow IPSCs were significantly inhibited by the somatostatin receptor antagonist cyclo-somatostatin. These results suggest that endogenously released somatostatin may induce slow IPSCs through the activation of GIRK channels in SG neurones; this slow synaptic transmission might play an important role in spinal antinociception.
Collapse
Affiliation(s)
- Terumasa Nakatsuka
- Department of Physiology, Faculty of Medicine, Saga University, Saga 849-8501, Japan.
| | | | | | | |
Collapse
|
46
|
Spinal mu-opioid receptor-expressing dorsal horn neurons: role in nociception and morphine antinociception. J Neurosci 2008; 28:904-13. [PMID: 18216198 DOI: 10.1523/jneurosci.4452-07.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role of spinal cord mu-opioid receptor (MOR)-expressing dorsal horn neurons in nociception and morphine analgesia is incompletely understood. Using intrathecal dermorphin-saporin (Derm-sap) to selectively destroy MOR-expressing dorsal horn neurons, we sought to determine the role of these neurons in (1) normal baseline reflex nocifensive responses to noxious thermal stimulation (hotplate, tail flick) and to persistent noxious chemical stimulation (formalin) and (2) the antinociceptive activity of intrathecal and systemic morphine in the same tests. Lumbar intrathecal Derm-sap (500 ng) produced (1) partial loss of lamina II MOR-expressing dorsal horn neurons, (2) no effect on MOR-expressing dorsal root ganglion neurons, and (3) no change in baseline tail-flick and hotplate reflex nocifensive responses. Derm-sap treatment attenuated the antinociceptive action of both intrathecal and systemic morphine on hotplate responses. Derm-sap treatment had two effects in the formalin test: (1) increased baseline nocifensive responding and (2) reduced antinociceptive action of systemic morphine. We conclude that MOR-expressing dorsal horn neurons (1) are not essential for determining nocifensive reflex responsiveness to noxious thermal stimuli, (2) are necessary for full antinociceptive action of morphine (intrathecal or systemic) in these tests, and (3) play a significant role in the endogenous modulation of reflex nocifensive responses to persistent pain in the formalin test. Thus, one would predict that altering the activity of MOR-expressing dorsal horn neurons would be antinociceptive and of interest in the search for new approaches to management of chronic pain.
Collapse
|
47
|
Pan HL, Wu ZZ, Zhou HY, Chen SR, Zhang HM, Li DP. Modulation of pain transmission by G-protein-coupled receptors. Pharmacol Ther 2008; 117:141-61. [PMID: 17959251 PMCID: PMC2965406 DOI: 10.1016/j.pharmthera.2007.09.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 09/07/2007] [Indexed: 01/17/2023]
Abstract
The heterotrimeric G-protein-coupled receptors (GPCR) represent the largest and most diverse family of cell surface receptors and proteins. GPCR are widely distributed in the peripheral and central nervous systems and are one of the most important therapeutic targets in pain medicine. GPCR are present on the plasma membrane of neurons and their terminals along the nociceptive pathways and are closely associated with the modulation of pain transmission. GPCR that can produce analgesia upon activation include opioid, cannabinoid, alpha2-adrenergic, muscarinic acetylcholine, gamma-aminobutyric acidB (GABAB), groups II and III metabotropic glutamate, and somatostatin receptors. Recent studies have led to a better understanding of the role of these GPCR in the regulation of pain transmission. Here, we review the current knowledge about the cellular and molecular mechanisms that underlie the analgesic actions of GPCR agonists, with a focus on their effects on ion channels expressed on nociceptive sensory neurons and on synaptic transmission at the spinal cord level.
Collapse
Affiliation(s)
- Hui-Lin Pan
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Program in Neuroscience, The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77225, United States.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
This paper is the 29th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning 30 years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, United States.
| |
Collapse
|