1
|
Safwi SR, Rizvi A, Usmani MA, Husain K, Brar K, Yadava D. Transcranial direct current stimulation and its effect on cognitive symptoms of schizophrenia: An updated review. Schizophr Res Cogn 2025; 39:100335. [PMID: 39512786 PMCID: PMC11541428 DOI: 10.1016/j.scog.2024.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 11/15/2024]
Abstract
Objective Cognitive impairments in schizophrenia significantly affect functional outcomes and quality of life. This meta-analysis evaluates the effectiveness of transcranial direct current stimulation (tDCS) as an intervention for cognitive deficits in individuals with schizophrenia. Methods From May 20 to June 15, 2024, a systematic search of PubMed, Medline, Embase, and the Cochrane central register of controlled trials was conducted. After applying eligibility criteria, 13 randomized sham-controlled trials were included, involving 261 participants in the tDCS group and 247 in the sham group. Standardized mean difference (SMD) was computed to measure the effect size of cognitive outcomes. Statistical analyses were performed using a random-effects model to account for heterogeneity. Results The pooled analysis yielded an SMD of 0.09 (95 % CI: -0.17 to 0.35), indicating a non-significant difference between tDCS and sham on cognitive outcomes. Moderate heterogeneity (I2 = 44 %) was observed, attributed to variations in tDCS protocols, participant demographics, and cognitive assessment tools. Although certain studies showed improvements in specific domains like working memory, the overall impact of tDCS on cognitive symptoms was not statistically significant. Conclusions This meta-analysis underscores the lack of significant evidence for tDCS in improving cognitive deficits in schizophrenia. The findings highlight the urgent need for standardizing tDCS protocols and employing domain-specific cognitive assessments. This standardization, along with the collection of more domain-specific data, is crucial for future research and the improvement of current methodologies.
Collapse
Affiliation(s)
| | - Abid Rizvi
- Department of Behavioral Medicine and Psychiatry, West Virginia University, USA
| | | | - Karrar Husain
- Texas Tech University Health Science Center at Permian Basin, TX, USA
| | | | - Deep Yadava
- Department of Behavioral Medicine and Psychiatry, West Virginia University, USA
| |
Collapse
|
2
|
Sha B, Du Z. Neural repair and regeneration interfaces: a comprehensive review. Biomed Mater 2024; 19:022002. [PMID: 38232383 DOI: 10.1088/1748-605x/ad1f78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Neural interfaces play a pivotal role in neuromodulation, as they enable precise intervention into aberrant neural activity and facilitate recovery from neural injuries and resultant functional impairments by modulating local immune responses and neural circuits. This review outlines the development and applications of these interfaces and highlights the advantages of employing neural interfaces for neural stimulation and repair, including accurate targeting of specific neural populations, real-time monitoring and control of neural activity, reduced invasiveness, and personalized treatment strategies. Ongoing research aims to enhance the biocompatibility, stability, and functionality of these interfaces, ultimately augmenting their therapeutic potential for various neurological disorders. The review focuses on electrophysiological and optophysiology neural interfaces, discussing functionalization and power supply approaches. By summarizing the techniques, materials, and methods employed in this field, this review aims to provide a comprehensive understanding of the potential applications and future directions for neural repair and regeneration devices.
Collapse
Affiliation(s)
- Baoning Sha
- Brain Cognition and Brain Disease Institute, CAS Key Laboratory of Brain Connectome and Manipulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, People's Republic of China
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Zhanhong Du
- Brain Cognition and Brain Disease Institute, CAS Key Laboratory of Brain Connectome and Manipulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| |
Collapse
|
3
|
Bansal A, Shikha S, Zhang Y. Towards translational optogenetics. Nat Biomed Eng 2022; 7:349-369. [PMID: 35027688 DOI: 10.1038/s41551-021-00829-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/21/2021] [Indexed: 02/07/2023]
Abstract
Optogenetics is widely used to interrogate the neural circuits underlying disease and has most recently been harnessed for therapeutic applications. The optogenetic toolkit consists of light-responsive proteins that modulate specific cellular functions, vectors for the delivery of the transgenes that encode the light-responsive proteins to targeted cellular populations, and devices for the delivery of light of suitable wavelengths at effective fluence rates. A refined toolkit with a focus towards translational uses would include efficient and safer viral and non-viral gene-delivery vectors, increasingly red-shifted photoresponsive proteins, nanomaterials that efficiently transduce near-infrared light deep into tissue, and wireless implantable light-delivery devices that allow for spatiotemporally precise interventions at clinically relevant tissue depths. In this Review, we examine the current optogenetics toolkit and the most notable preclinical and translational uses of optogenetics, and discuss future methodological and translational developments and bottlenecks.
Collapse
Affiliation(s)
- Akshaya Bansal
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Swati Shikha
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore. .,NUS Suzhou Research Institute, Suzhou, Jiangsu, P. R. China.
| |
Collapse
|
4
|
Shimba K, Kotani K, Jimbo Y. Microfabricated Device to Record Axonal Conduction Under Pharmacological Treatment for Functional Evaluation of Axon Ion Channel. IEEE Trans Biomed Eng 2021; 68:3574-3581. [PMID: 33970856 DOI: 10.1109/tbme.2021.3078473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Neuronal networks are fundamental structures for information processing in the central nervous system. This processing function is severely impaired by abnormal axonal conduction from changes in functional ion channel expression. The evaluation of axonal conduction properties can be effective in the early diagnosis of information-processing abnormalities. However, little is known about functional ion channel expression in axons owing to lack of an appropriate method. In this study, we developed a device to measure changes in axonal conduction properties by selective pharmacological stimulation for the functional evaluation of Na channels expressed in axons. METHODS Axons of rat cortical neurons were guided across a pair of electrodes through microtunnel structures by employing surface patterning. RESULTS The developed device detected more than 50 axons while recording for 10 min. The conduction delay along the axons decreased by 22.5% with neuron maturation. Tetrodotoxin and lidocaine (Na channel blockers) increased the conduction delay in a concentration-dependent manner depending on their working concentrations, indicating the effectiveness of the device. Finally, selective Na channel blockers for various Na channel subtypes were used. Phrixotoxin, a Nav1.2 blocker, markedly increased the conduction delay, suggesting that Nav1.2 is functionally expressed in the unmyelinated axons of the cerebral cortex. CONCLUSION These results show that our device is feasible for the high-throughput functional evaluation of Na channel subtypes in axons. SIGNIFICANCE The results obtained can contribute to the understanding of the pathogenic mechanisms of neurological diseases that involve changes in the functional expression states of ion channels in axons.
Collapse
|
5
|
Chiola S, Napan KL, Wang Y, Lazarenko RM, Armstrong CJ, Cui J, Shcheglovitov A. Defective AMPA-mediated synaptic transmission and morphology in human neurons with hemizygous SHANK3 deletion engrafted in mouse prefrontal cortex. Mol Psychiatry 2021; 26:4670-4686. [PMID: 33558651 PMCID: PMC8349370 DOI: 10.1038/s41380-021-01023-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 01/12/2023]
Abstract
Genetic abnormalities in synaptic proteins are common in individuals with autism; however, our understanding of the cellular and molecular mechanisms disrupted by these abnormalities is limited. SHANK3 is a postsynaptic scaffolding protein of excitatory synapses that has been found mutated or deleted in most patients with 22q13 deletion syndrome and about 2% of individuals with idiopathic autism and intellectual disability. Here, we generated CRISPR/Cas9-engineered human pluripotent stem cells (PSCs) with complete hemizygous SHANK3 deletion (SHANK3+/-), which is the most common genetic abnormality in patients, and investigated the synaptic and morphological properties of SHANK3-deficient PSC-derived cortical neurons engrafted in the mouse prefrontal cortex. We show that human PSC-derived neurons integrate into the mouse cortex by acquiring appropriate cortical layer identities and by receiving and sending anatomical projections from/to multiple different brain regions. We also demonstrate that SHANK3-deficient human neurons have reduced AMPA-, but not NMDA- or GABA-mediated synaptic transmission and exhibit impaired dendritic arbors and spines, as compared to isogenic control neurons co-engrafted in the same brain region. Together, this study reveals specific synaptic and morphological deficits caused by SHANK3 hemizygosity in human cortical neurons at different developmental stages under physiological conditions and validates the use of co-engrafted control and mutant human neurons as a new platform for studying connectivity deficits in genetic neurodevelopmental disorders associated with autism.
Collapse
Affiliation(s)
- Simone Chiola
- grid.223827.e0000 0001 2193 0096Departments of Neurobiology, University of Utah, Salt Lake City, UT USA
| | - Kandy L. Napan
- grid.223827.e0000 0001 2193 0096Departments of Neurobiology, University of Utah, Salt Lake City, UT USA
| | - Yueqi Wang
- grid.223827.e0000 0001 2193 0096Departments of Neurobiology, University of Utah, Salt Lake City, UT USA ,grid.223827.e0000 0001 2193 0096Neuroscience Graduate Program, University of Utah, Salt Lake City, UT USA
| | - Roman M. Lazarenko
- grid.152326.10000 0001 2264 7217Departments of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Celeste J. Armstrong
- grid.223827.e0000 0001 2193 0096Departments of Neurobiology, University of Utah, Salt Lake City, UT USA
| | - Jun Cui
- grid.41891.350000 0001 2156 6108Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT USA
| | - Aleksandr Shcheglovitov
- Departments of Neurobiology, University of Utah, Salt Lake City, UT, USA. .,Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA. .,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA. .,Department of Adult Psychiatry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Asano T, Teh DBL, Yawo H. Application of Optogenetics for Muscle Cells and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:359-375. [PMID: 33398826 DOI: 10.1007/978-981-15-8763-4_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This chapter describes the current progress of basic research, and potential therapeutic applications primarily focused on the optical manipulation of muscle cells and neural stem cells using microbial rhodopsin as a light-sensitive molecule. Since the contractions of skeletal, cardiac, and smooth muscle cells are mainly regulated through their membrane potential, several studies have been demonstrated to up- or downregulate the muscle contraction directly or indirectly using optogenetic actuators or silencers with defined stimulation patterns and intensities. Light-dependent oscillation of membrane potential also facilitates the maturation of myocytes with the development of T tubules and sarcomere structures, tandem arrays of minimum contractile units consists of contractile proteins and cytoskeletal proteins. Optogenetics has been applied to various stem cells and multipotent/pluripotent cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to generate light-sensitive neurons and to facilitate neuroscience. The chronic optical stimulation of the channelrhodopsin-expressing neural stem cells facilitates their neural differentiation. There are potential therapeutic applications of optogenetics in cardiac pacemaking, muscle regeneration/maintenance, locomotion recovery for the treatment of muscle paralysis due to motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Optogenetics would also facilitate maturation, network integration of grafted neurons, and improve the microenvironment around them when applied to stem cells.
Collapse
Affiliation(s)
- Toshifumi Asano
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Daniel Boon Loong Teh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hiromu Yawo
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan.
| |
Collapse
|
7
|
Pagan-Diaz GJ, Drnevich J, Ramos-Cruz KP, Sam R, Sengupta P, Bashir R. Modulating electrophysiology of motor neural networks via optogenetic stimulation during neurogenesis and synaptogenesis. Sci Rep 2020; 10:12460. [PMID: 32719407 PMCID: PMC7385114 DOI: 10.1038/s41598-020-68988-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Control of electrical activity in neural circuits through network training is a grand challenge for biomedicine and engineering applications. Past efforts have not considered evoking long-term changes in firing patterns of in-vitro networks by introducing training regimens with respect to stages of neural development. Here, we used Channelrhodopsin-2 (ChR2) transfected mouse embryonic stem cell (mESC) derived motor neurons to explore short and long-term programming of neural networks by using optical stimulation implemented during neurogenesis and synaptogenesis. Not only did we see a subsequent increase of neurite extensions and synaptophysin clustering, but by using electrophysiological recording with micro electrode arrays (MEA) we also observed changes in signal frequency spectra, increase of network synchrony, coordinated firing of actions potentials, and enhanced evoked response to stimulation during network formation. Our results demonstrate that optogenetic stimulation during neural differentiation can result in permanent changes that extended to the genetic expression of neurons as demonstrated by RNA Sequencing. To our knowledge, this is the first time that a correlation between training regimens during neurogenesis and synaptogenesis and the resulting plastic responses has been shown in-vitro and traced back to changes in gene expression. This work demonstrates new approaches for training of neural circuits whose electrical activity can be modulated and enhanced, which could lead to improvements in neurodegenerative disease research and engineering of in-vitro multi-cellular living systems.
Collapse
Affiliation(s)
- Gelson J Pagan-Diaz
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Engineering Hall, 1308 W Green St, Urbana, IL, 61801, USA
- Nick Holonyak Micro and Nanotechnology Lab, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jenny Drnevich
- High Performance Biological Computing and the Carver Biotechnology Center, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Karla P Ramos-Cruz
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Engineering Hall, 1308 W Green St, Urbana, IL, 61801, USA
- Nick Holonyak Micro and Nanotechnology Lab, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Richard Sam
- Nick Holonyak Micro and Nanotechnology Lab, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- School of Molecular and Cellular Biology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Parijat Sengupta
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Engineering Hall, 1308 W Green St, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Program in Neuroscience, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Richard and Loan Hill Department of Bioengineering, University of Illinois, Urbana-Champaign, Chicago, 60607, USA
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Engineering Hall, 1308 W Green St, Urbana, IL, 61801, USA.
- Nick Holonyak Micro and Nanotechnology Lab, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
8
|
Habibey R, Sharma K, Swiersy A, Busskamp V. Optogenetics for neural transplant manipulation and functional analysis. Biochem Biophys Res Commun 2020; 527:343-349. [PMID: 32033753 DOI: 10.1016/j.bbrc.2020.01.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/24/2020] [Indexed: 01/02/2023]
Abstract
Transplantation of neural stem cells (NSCs) or NSC-derived neurons into the brain is a promising therapeutic approach to restore neuronal function. Rapid progress in the NSCs research field, particularly due to the exploitation of induced pluripotent stem cells (iPSCs), offers great potential and an unlimited source of stem cell-derived neural grafts. Studying the functional integration of these grafts into host brain tissues and their effects on each other have been boosted by the implementation of optogenetic technologies. Optogenetics provides high spatiotemporal functional manipulations of grafted or host neurons in parallel. This review aims to highlight the impact of optogenetics in neural stem cell transplantations.
Collapse
Affiliation(s)
- Rouhollah Habibey
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies at TU Dresden, D-01307, Dresden, Germany
| | - Kritika Sharma
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies at TU Dresden, D-01307, Dresden, Germany
| | - Anka Swiersy
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies at TU Dresden, D-01307, Dresden, Germany
| | - Volker Busskamp
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies at TU Dresden, D-01307, Dresden, Germany; Universitäts-Augenklinik Bonn, University of Bonn, Dep. of Ophthalmology, D-53127, Bonn, Germany.
| |
Collapse
|
9
|
Pagan-Diaz GJ, Ramos-Cruz KP, Sam R, Kandel ME, Aydin O, Saif MTA, Popescu G, Bashir R. Engineering geometrical 3-dimensional untethered in vitro neural tissue mimic. Proc Natl Acad Sci U S A 2019; 116:25932-25940. [PMID: 31796592 PMCID: PMC6926042 DOI: 10.1073/pnas.1916138116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Formation of tissue models in 3 dimensions is more effective in recapitulating structure and function compared to their 2-dimensional (2D) counterparts. Formation of 3D engineered tissue to control shape and size can have important implications in biomedical research and in engineering applications such as biological soft robotics. While neural spheroids routinely are created during differentiation processes, further geometric control of in vitro neural models has not been demonstrated. Here, we present an approach to form functional in vitro neural tissue mimic (NTM) of different shapes using stem cells, a fibrin matrix, and 3D printed molds. We used murine-derived embryonic stem cells for optimizing cell-seeding protocols, characterization of the resulting internal structure of the construct, and remodeling of the extracellular matrix, as well as validation of electrophysiological activity. Then, we used these findings to biofabricate these constructs using neurons derived from human embryonic stem cells. This method can provide a large degree of design flexibility for development of in vitro functional neural tissue models of varying forms for therapeutic biomedical research, drug discovery, and disease modeling, and engineering applications.
Collapse
Affiliation(s)
- Gelson J Pagan-Diaz
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Karla P Ramos-Cruz
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Richard Sam
- School of Molecular and Cellular Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Mikhail E Kandel
- Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Onur Aydin
- Department of Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - M Taher A Saif
- Department of Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Gabriel Popescu
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801
- Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801;
| |
Collapse
|
10
|
Ryu J, Vincent PFY, Ziogas NK, Xu L, Sadeghpour S, Curtin J, Alexandris AS, Stewart N, Sima R, du Lac S, Glowatzki E, Koliatsos VE. Optogenetically transduced human ES cell-derived neural progenitors and their neuronal progenies: Phenotypic characterization and responses to optical stimulation. PLoS One 2019; 14:e0224846. [PMID: 31710637 PMCID: PMC6844486 DOI: 10.1371/journal.pone.0224846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/22/2019] [Indexed: 02/04/2023] Open
Abstract
Optogenetically engineered human neural progenitors (hNPs) are viewed as promising tools in regenerative neuroscience because they allow the testing of the ability of hNPs to integrate within nervous system of an appropriate host not only structurally, but also functionally based on the responses of their differentiated progenies to light. Here, we transduced H9 embryonic stem cell-derived hNPs with a lentivirus harboring human channelrhodopsin (hChR2) and differentiated them into a forebrain lineage. We extensively characterized the fate and optogenetic functionality of hChR2-hNPs in vitro with electrophysiology and immunocytochemistry. We also explored whether the in vivo phenotype of ChR2-hNPs conforms to in vitro observations by grafting them into the frontal neocortex of rodents and analyzing their survival and neuronal differentiation. Human ChR2-hNPs acquired neuronal phenotypes (TUJ1, MAP2, SMI-312, and synapsin 1 immunoreactivity) in vitro after an average of 70 days of coculturing with CD1 astrocytes and progressively displayed both inhibitory and excitatory neurotransmitter signatures by immunocytochemistry and whole-cell patch clamp recording. Three months after transplantation into motor cortex of naïve or injured mice, 60–70% of hChR2-hNPs at the transplantation site expressed TUJ1 and had neuronal cytologies, whereas 60% of cells also expressed ChR2. Transplant-derived neurons extended axons through major commissural and descending tracts and issued synaptophysin+ terminals in the claustrum, endopiriform area, and corresponding insular and piriform cortices. There was no apparent difference in engraftment, differentiation, or connectivity patterns between injured and sham subjects. Same trends were observed in a second rodent host, i.e. rat, where we employed longer survival times and found that the majority of grafted hChR2-hNPs differentiated into GABAergic neurons that established dense terminal fields and innervated mostly dendritic profiles in host cortical neurons. In physiological experiments, human ChR2+ neurons in culture generated spontaneous action potentials (APs) 100–170 days into differentiation and their firing activity was consistently driven by optical stimulation. Stimulation generated glutamatergic and GABAergic postsynaptic activity in neighboring ChR2- cells, evidence that hChR2-hNP-derived neurons had established functional synaptic connections with other neurons in culture. Light stimulation of hChR2-hNP transplants in vivo generated complicated results, in part because of the variable response of the transplants themselves. Our findings show that we can successfully derive hNPs with optogenetic properties that are fully transferrable to their differentiated neuronal progenies. We also show that these progenies have substantial neurotransmitter plasticity in vitro, whereas in vivo they mostly differentiate into inhibitory GABAergic neurons. Furthermore, neurons derived from hNPs have the capacity of establishing functional synapses with postsynaptic neurons in vitro, but this outcome is technically challenging to explore in vivo. We propose that optogenetically endowed hNPs hold great promise as tools to explore de novo circuit formation in the brain and, in the future, perhaps launch a new generation of neuromodulatory therapies.
Collapse
Affiliation(s)
- Jiwon Ryu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Philippe F. Y. Vincent
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nikolaos K. Ziogas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Leyan Xu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shirin Sadeghpour
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - John Curtin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Athanasios S. Alexandris
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nicholas Stewart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Richard Sima
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sascha du Lac
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elisabeth Glowatzki
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Vassilis E. Koliatsos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
11
|
Bender F, Korotkova T, Ponomarenko A. Optogenetic Entrainment of Hippocampal Theta Oscillations in Behaving Mice. J Vis Exp 2018. [PMID: 30010632 DOI: 10.3791/57349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extensive data on relationships of neural network oscillations to behavior and organization of neuronal discharge across brain regions call for new tools to selectively manipulate brain rhythms. Here we describe an approach combining projection-specific optogenetics with extracellular electrophysiology for high-fidelity control of hippocampal theta oscillations (5-10 Hz) in behaving mice. The specificity of the optogenetic entrainment is achieved by targeting channelrhodopsin-2 (ChR2) to the GABAergic population of medial septal cells, crucially involved in the generation of hippocampal theta oscillations, and a local synchronized activation of a subset of inhibitory septal afferents in the hippocampus. The efficacy of the optogenetic rhythm control is verified by a simultaneous monitoring of the local field potential (LFP) across lamina of the CA1 area and/or of neuronal discharge. Using this readily implementable preparation we show efficacy of various optogenetic stimulation protocols for induction of theta oscillations and for the manipulation of their frequency and regularity. Finally, a combination of the theta rhythm control with projection-specific inhibition addresses the readout of particular aspects of the hippocampal synchronization by efferent regions.
Collapse
Affiliation(s)
- Franziska Bender
- Systems Neurophysiology Research Group, Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf; Behavioural Neurodynamics Group, Leibniz Institute for Molecular Pharmacology (FMP)/ NeuroCure Cluster of Excellence
| | - Tatiana Korotkova
- Behavioural Neurodynamics Group, Leibniz Institute for Molecular Pharmacology (FMP)/ NeuroCure Cluster of Excellence; Neuronal Circuits and Behavior Research Group, Max Planck Institute for Metabolism Research
| | - Alexey Ponomarenko
- Systems Neurophysiology Research Group, Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf; Behavioural Neurodynamics Group, Leibniz Institute for Molecular Pharmacology (FMP)/ NeuroCure Cluster of Excellence;
| |
Collapse
|
12
|
Zhao ML, Chen SJ, Li XH, Wang LN, Chen F, Zhong SJ, Yang C, Sun SK, Li JJ, Dong HJ, Dong YQ, Wang Y, Chen C. Optical Depolarization of DCX-Expressing Cells Promoted Cognitive Recovery and Maturation of Newborn Neurons via the Wnt/β-Catenin Pathway. J Alzheimers Dis 2018; 63:303-318. [PMID: 29614674 DOI: 10.3233/jad-180002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ming-Liang Zhao
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Logistics University of Chinese People’s Armed Police Forces, Tianjin, China
| | - Shi-Jin Chen
- Department of Cardiology, Yichang Second People’s Hospital, Hubei, China
| | - Xiao-Hong Li
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Logistics University of Chinese People’s Armed Police Forces, Tianjin, China
| | - Li-Na Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Logistics University of Chinese People’s Armed Police Forces, Tianjin, China
| | - Feng Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Logistics University of Chinese People’s Armed Police Forces, Tianjin, China
| | - Shi-Jiang Zhong
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Logistics University of Chinese People’s Armed Police Forces, Tianjin, China
| | - Cheng Yang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Logistics University of Chinese People’s Armed Police Forces, Tianjin, China
| | - Sheng-Kai Sun
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Logistics University of Chinese People’s Armed Police Forces, Tianjin, China
| | - Jian-Jun Li
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Logistics University of Chinese People’s Armed Police Forces, Tianjin, China
| | - Hua-Jiang Dong
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Logistics University of Chinese People’s Armed Police Forces, Tianjin, China
| | - Yue-Qing Dong
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Logistics University of Chinese People’s Armed Police Forces, Tianjin, China
| | - Yi Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Logistics University of Chinese People’s Armed Police Forces, Tianjin, China
| | - Chong Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Logistics University of Chinese People’s Armed Police Forces, Tianjin, China
| |
Collapse
|
13
|
Pomeroy JE, Nguyen HX, Hoffman BD, Bursac N. Genetically Encoded Photoactuators and Photosensors for Characterization and Manipulation of Pluripotent Stem Cells. Theranostics 2017; 7:3539-3558. [PMID: 28912894 PMCID: PMC5596442 DOI: 10.7150/thno.20593] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/14/2017] [Indexed: 12/28/2022] Open
Abstract
Our knowledge of pluripotent stem cell biology has advanced considerably in the past four decades, but it has yet to deliver on the great promise of regenerative medicine. The slow progress can be mainly attributed to our incomplete understanding of the complex biologic processes regulating the dynamic developmental pathways from pluripotency to fully-differentiated states of functional somatic cells. Much of the difficulty arises from our lack of specific tools to query, or manipulate, the molecular scale circuitry on both single-cell and organismal levels. Fortunately, the last two decades of progress in the field of optogenetics have produced a variety of genetically encoded, light-mediated tools that enable visualization and control of the spatiotemporal regulation of cellular function. The merging of optogenetics and pluripotent stem cell biology could thus be an important step toward realization of the clinical potential of pluripotent stem cells. In this review, we have surveyed available genetically encoded photoactuators and photosensors, a rapidly expanding toolbox, with particular attention to those with utility for studying pluripotent stem cells.
Collapse
Affiliation(s)
- Jordan E. Pomeroy
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
- Division of Cardiology, Department of Medicine, Duke University Health System, Durham, North Carolina, USA
| | - Hung X. Nguyen
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| | - Brenton D. Hoffman
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| |
Collapse
|
14
|
Roberts-Galbraith RH, Brubacher JL, Newmark PA. A functional genomics screen in planarians reveals regulators of whole-brain regeneration. eLife 2016; 5. [PMID: 27612384 PMCID: PMC5055394 DOI: 10.7554/elife.17002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022] Open
Abstract
Planarians regenerate all body parts after injury, including the central nervous system (CNS). We capitalized on this distinctive trait and completed a gene expression-guided functional screen to identify factors that regulate diverse aspects of neural regeneration in Schmidtea mediterranea. Our screen revealed molecules that influence neural cell fates, support the formation of a major connective hub, and promote reestablishment of chemosensory behavior. We also identified genes that encode signaling molecules with roles in head regeneration, including some that are produced in a previously uncharacterized parenchymal population of cells. Finally, we explored genes downregulated during planarian regeneration and characterized, for the first time, glial cells in the planarian CNS that respond to injury by repressing several transcripts. Collectively, our studies revealed diverse molecules and cell types that underlie an animal’s ability to regenerate its brain. DOI:http://dx.doi.org/10.7554/eLife.17002.001 Animals differ in the extent to which they can regenerate missing body parts after injury. Humans regenerate poorly after many injuries, especially when the brain becomes damaged after stroke, disease or trauma. On the other hand, planarians – small worms that live in fresh water – regenerate exceptionally well. A whole planarian can regenerate from small pieces of tissue. The ability of planarians to regenerate their nervous system relies on stem cells called neoblasts, which can migrate through the body and divide to replace lost cells. However, the specific mechanisms responsible for regenerating nervous tissue are largely unknown. Roberts-Galbraith et al. carried out a screen to identify genes that tell planarians whether to regenerate a new brain, what cells to make and how to arrange them. The study revealed over thirty genes that allow planarians to regenerate their brains after their heads have been amputated. These genes play several different roles in the animal. Some of the genes help neoblasts to make decisions about what kinds of cells they should become. One gene is needed to make an important connection in the planarian brain after injury. Another helps to restore the ability of the planarian to sense its food. The experiments also show that some key genes are switched on in a new cell type that might produce signals to support regeneration. Lastly, Roberts-Galbraith et al. found that the planarian nervous system contains cells called glia. Previous studies have shown that many of the cells in the human brain are glia and that these cells help nerve cells to survive and work properly. The discovery of glia in planarians means that it will be possible to use these worms to study how glia support brain regeneration and how glia themselves are replaced after injury. In the long term, this work might lead to discoveries that shed light on how tissue regeneration could be improved in humans. DOI:http://dx.doi.org/10.7554/eLife.17002.002
Collapse
Affiliation(s)
- Rachel H Roberts-Galbraith
- Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| | - John L Brubacher
- Department of Biology, Canadian Mennonite University, Winnipeg, Canada
| | - Phillip A Newmark
- Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
15
|
Probing Neural Transplant Networks In Vivo with Optogenetics and Optogenetic fMRI. Stem Cells Int 2016; 2016:8612751. [PMID: 27293449 PMCID: PMC4880717 DOI: 10.1155/2016/8612751] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/18/2016] [Indexed: 01/23/2023] Open
Abstract
Understanding how stem cell-derived neurons functionally integrate into the brain upon transplantation has been a long sought-after goal of regenerative medicine. However, methodological limitations have stood as a barrier, preventing key insight into this fundamental problem. A recently developed technology, termed optogenetic functional magnetic resonance imaging (ofMRI), offers a possible solution. By combining targeted activation of transplanted neurons with large-scale, noninvasive measurements of brain activity, ofMRI can directly visualize the effect of engrafted neurons firing on downstream regions. Importantly, this tool can be used to identify not only whether transplanted neurons have functionally integrated into the brain, but also which regions they influence and how. Furthermore, the precise control afforded over activation enables the input-output properties of engrafted neurons to be systematically studied. This review summarizes the efforts in stem cell biology and neuroimaging that made this development possible and outlines its potential applications for improving and optimizing stem cell-based therapies in the future.
Collapse
|
16
|
Shining Light on the Sprout of Life: Optogenetics Applications in Stem Cell Research and Therapy. J Membr Biol 2016; 249:215-20. [DOI: 10.1007/s00232-016-9883-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/18/2016] [Indexed: 12/21/2022]
|
17
|
Livesey MR, Magnani D, Hardingham GE, Chandran S, Wyllie DJA. Functional properties of in vitro excitatory cortical neurons derived from human pluripotent stem cells. J Physiol 2015; 594:6573-6582. [PMID: 26608229 PMCID: PMC5108911 DOI: 10.1113/jp270660] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/04/2015] [Indexed: 12/04/2022] Open
Abstract
The in vitro derivation of regionally defined human neuron types from patient‐derived stem cells is now established as a resource to investigate human development and disease. Characterization of such neurons initially focused on the expression of developmentally regulated transcription factors and neural markers, in conjunction with the development of protocols to direct and chart the fate of differentiated neurons. However, crucial to the understanding and exploitation of this technology is to determine the degree to which neurons recapitulate the key functional features exhibited by their native counterparts, essential for determining their usefulness in modelling human physiology and disease in vitro. Here, we review the emerging data concerning functional properties of human pluripotent stem cell‐derived excitatory cortical neurons, in the context of both maturation and regional specificity.
![]()
Collapse
Affiliation(s)
- Matthew R Livesey
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Dario Magnani
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Giles E Hardingham
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Siddharthan Chandran
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India
| | - David J A Wyllie
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India
| |
Collapse
|
18
|
Current Neurogenic and Neuroprotective Strategies to Prevent and Treat Neurodegenerative and Neuropsychiatric Disorders. Neuromolecular Med 2015; 17:404-22. [PMID: 26374113 DOI: 10.1007/s12017-015-8369-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/22/2015] [Indexed: 12/31/2022]
Abstract
The adult central nervous system is commonly known to have a very limited regenerative capacity. The presence of functional stem cells in the brain can therefore be seen as a paradox, since in other organs these are known to counterbalance cell loss derived from pathological conditions. This fact has therefore raised the possibility to stimulate neural stem cell differentiation and proliferation or survival by either stem cell replacement therapy or direct administration of neurotrophic factors or other proneurogenic molecules, which in turn has also originated regenerative medicine for the treatment of otherwise incurable neurodegenerative and neuropsychiatric disorders that take a huge toll on society. This may be facilitated by the fact that many of these disorders converge on similar pathophysiological pathways: excitotoxicity, oxidative stress, neuroinflammation, mitochondrial failure, excessive intracellular calcium and apoptosis. This review will therefore focus on the most promising achievements in promoting neuroprotection and neuroregeneration reported to date.
Collapse
|
19
|
Daadi MM, Klausner JQ, Bajar B, Goshen I, Lee-Messer C, Lee SY, Winge MCG, Ramakrishnan C, Lo M, Sun G, Deisseroth K, Steinberg GK. Optogenetic Stimulation of Neural Grafts Enhances Neurotransmission and Downregulates the Inflammatory Response in Experimental Stroke Model. Cell Transplant 2015; 25:1371-80. [PMID: 26132738 DOI: 10.3727/096368915x688533] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Compelling evidence suggests that transplantation of neural stem cells (NSCs) from multiple sources ameliorates motor deficits after stroke. However, it is currently unknown to what extent the electrophysiological activity of grafted NSC progeny participates in the improvement of motor deficits and whether excitatory phenotypes of the grafted cells are beneficial or deleterious to sensorimotor performances. To address this question, we used optogenetic tools to drive the excitatory outputs of the grafted NSCs and assess the impact on local circuitry and sensorimotor performance. We genetically engineered NSCs to express the Channelrhodopsin-2 (ChR2), a light-gated cation channel that evokes neuronal depolarization and initiation of action potentials with precise temporal control to light stimulation. To test the function of these cells in a stroke model, rats were subjected to an ischemic stroke and grafted with ChR2-NSCs. The grafted NSCs identified with a human-specific nuclear marker survived in the peri-infarct tissue and coexpressed the ChR2 transgene with the neuronal markers TuJ1 and NeuN. Gene expression analysis in stimulated versus vehicle-treated animals showed a differential upregulation of transcripts involved in neurotransmission, neuronal differentiation, regeneration, axonal guidance, and synaptic plasticity. Interestingly, genes involved in the inflammatory response were significantly downregulated. Behavioral analysis demonstrated that chronic optogenetic stimulation of the ChR2-NSCs enhanced forelimb use on the stroke-affected side and motor activity in an open field test. Together these data suggest that excitatory stimulation of grafted NSCs elicits beneficial effects in experimental stroke model through cell replacement and non-cell replacement, anti-inflammatory/neurotrophic effects.
Collapse
Affiliation(s)
- Marcel M Daadi
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Struzyna LA, Harris JP, Katiyar KS, Chen HI, Cullen DK. Restoring nervous system structure and function using tissue engineered living scaffolds. Neural Regen Res 2015; 10:679-85. [PMID: 26109930 PMCID: PMC4468747 DOI: 10.4103/1673-5374.156943] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2015] [Indexed: 12/23/2022] Open
Abstract
Neural tissue engineering is premised on the integration of engineered living tissue with the host nervous system to directly restore lost function or to augment regenerative capacity following nervous system injury or neurodegenerative disease. Disconnection of axon pathways – the long-distance fibers connecting specialized regions of the central nervous system or relaying peripheral signals – is a common feature of many neurological disorders and injury. However, functional axonal regeneration rarely occurs due to extreme distances to targets, absence of directed guidance, and the presence of inhibitory factors in the central nervous system, resulting in devastating effects on cognitive and sensorimotor function. To address this need, we are pursuing multiple strategies using tissue engineered “living scaffolds”, which are preformed three-dimensional constructs consisting of living neural cells in a defined, often anisotropic architecture. Living scaffolds are designed to restore function by serving as a living labeled pathway for targeted axonal regeneration – mimicking key developmental mechanisms– or by restoring lost neural circuitry via direct replacement of neurons and axonal tracts. We are currently utilizing preformed living scaffolds consisting of neuronal clusters spanned by long axonal tracts as regenerative bridges to facilitate long-distance axonal regeneration and for targeted neurosurgical reconstruction of local circuits in the brain. Although there are formidable challenges in preclinical and clinical advancement, these living tissue engineered constructs represent a promising strategy to facilitate nervous system repair and functional recovery.
Collapse
Affiliation(s)
- Laura A Struzyna
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA ; Center for Neurotrauma, Neurodegeneration, and Restoration, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - James P Harris
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA ; Center for Neurotrauma, Neurodegeneration, and Restoration, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Kritika S Katiyar
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA ; School of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
| | - H Isaac Chen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA ; Center for Neurotrauma, Neurodegeneration, and Restoration, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA ; Center for Neurotrauma, Neurodegeneration, and Restoration, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| |
Collapse
|
21
|
Abstract
Stem cell-based therapies hold considerable promise for many currently devastating neurological disorders. Substantial progress has been made in the derivation of disease-relevant human donor cell populations. Behavioral data in relevant animal models of disease have demonstrated therapeutic efficacy for several cell-based approaches. Consequently, cGMP grade cell products are currently being developed for first in human clinical trials in select disorders. Despite the therapeutic promise, the presumed mechanism of action of donor cell populations often remains insufficiently validated. It depends greatly on the properties of the transplanted cell type and the underlying host pathology. Several new technologies have become available to probe mechanisms of action in real time and to manipulate in vivo cell function and integration to enhance therapeutic efficacy. Results from such studies generate crucial insight into the nature of brain repair that can be achieved today and push the boundaries of what may be possible in the future.
Collapse
|
22
|
Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson's disease model. Nat Biotechnol 2015; 33:204-9. [PMID: 25580598 DOI: 10.1038/nbt.3124] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/15/2014] [Indexed: 12/12/2022]
Abstract
Recent studies have shown evidence of behavioral recovery after transplantation of human pluripotent stem cell (PSC)-derived neural cells in animal models of neurological disease. However, little is known about the mechanisms underlying graft function. Here we use optogenetics to modulate in real time electrophysiological and neurochemical properties of mesencephalic dopaminergic (mesDA) neurons derived from human embryonic stem cells (hESCs). In mice that had recovered from lesion-induced Parkinsonian motor deficits, light-induced selective silencing of graft activity rapidly and reversibly re-introduced the motor deficits. The re-introduction of motor deficits was prevented by the dopamine agonist apomorphine. These results suggest that functionality depends on graft neuronal activity and dopamine release. Combining optogenetics, slice electrophysiology and pharmacological approaches, we further show that mesDA-rich grafts modulate host glutamatergic synaptic transmission onto striatal medium spiny neurons in a manner reminiscent of endogenous mesDA neurons. Thus, application of optogenetics in cell therapy can link transplantation, animal behavior and postmortem analysis to enable the identification of mechanisms that drive recovery.
Collapse
|
23
|
Struzyna LA, Katiyar K, Cullen DK. Living scaffolds for neuroregeneration. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2014; 18:308-318. [PMID: 28736499 PMCID: PMC5520662 DOI: 10.1016/j.cossms.2014.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Neural tissue engineers are exploiting key mechanisms responsible for neural cell migration and axonal path finding during embryonic development to create living scaffolds for neuroregeneration following injury and disease. These mechanisms involve the combined use of haptotactic, chemotactic, and mechanical cues to direct cell movement and re-growth. Living scaffolds provide these cues through the use of cells engineered in a predefined architecture, generally in combination with biomaterial strategies. Although several hurdles exist in the implementation of living regenerative scaffolds, there are considerable therapeutic advantages to using living cells in conjunction with biomaterials. The leading contemporary living scaffolds for neurorepair are utilizing aligned glial cells and neuronal/axonal tracts to direct regenerating axons across damaged tissue to appropriate targets, and in some cases to directly replace the function of lost cells. Future advances in technology, including the use of exogenous stimulation and genetically engineered stem cells, will further the potential of living scaffolds and drive a new era of personalized medicine for neuroregeneration.
Collapse
Affiliation(s)
- Laura A Struzyna
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Kritika Katiyar
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, United States
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, United States
| |
Collapse
|
24
|
Fröhlich F, Schmidt SL. Rational design of transcranial current stimulation (TCS) through mechanistic insights into cortical network dynamics. Front Hum Neurosci 2013; 7:804. [PMID: 24324427 PMCID: PMC3840633 DOI: 10.3389/fnhum.2013.00804] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/05/2013] [Indexed: 11/17/2022] Open
Abstract
Transcranial current stimulation (TCS) is a promising method of non-invasive brain stimulation to modulate cortical network dynamics. Preliminary studies have demonstrated the ability of TCS to enhance cognition and reduce symptoms in both neurological and psychiatric illnesses. Despite the encouraging results of these studies, the mechanisms by which TCS and endogenous network dynamics interact remain poorly understood. Here, we propose that the development of the next generation of TCS paradigms with increased efficacy requires such mechanistic understanding of how weak electric fields (EFs) imposed by TCS interact with the nonlinear dynamics of large-scale cortical networks. We highlight key recent advances in the study of the interaction dynamics between TCS and cortical network activity. In particular, we illustrate an interdisciplinary approach that bridges neurobiology and electrical engineering. We discuss the use of (1) hybrid biological-electronic experimental approaches to disentangle feedback interactions; (2) large-scale computer simulations for the study of weak global perturbations imposed by TCS; and (3) optogenetic manipulations informed by dynamic systems theory to probe network dynamics. Together, we here provide the foundation for the use of rational design for the development of the next generation of TCS neurotherapeutics.
Collapse
Affiliation(s)
- Flavio Fröhlich
- Department of Psychiatry, University of North Carolina Chapel Hill, NC, USA ; Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, NC, USA ; Department of Biomedical Engineering, University of North Carolina Chapel Hill, NC, USA ; Neurobiology Curriculum, University of North Carolina Chapel Hill, NC, USA ; Neuroscience Center, University of North Carolina Chapel Hill, NC, USA
| | | |
Collapse
|
25
|
Aimone JB, Weick JP. Perspectives for computational modeling of cell replacement for neurological disorders. Front Comput Neurosci 2013; 7:150. [PMID: 24223548 PMCID: PMC3818471 DOI: 10.3389/fncom.2013.00150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 10/10/2013] [Indexed: 02/04/2023] Open
Abstract
Mathematical modeling of anatomically-constrained neural networks has provided significant insights regarding the response of networks to neurological disorders or injury. A logical extension of these models is to incorporate treatment regimens to investigate network responses to intervention. The addition of nascent neurons from stem cell precursors into damaged or diseased tissue has been used as a successful therapeutic tool in recent decades. Interestingly, models have been developed to examine the incorporation of new neurons into intact adult structures, particularly the dentate granule neurons of the hippocampus. These studies suggest that the unique properties of maturing neurons, can impact circuit behavior in unanticipated ways. In this perspective, we review the current status of models used to examine damaged CNS structures with particular focus on cortical damage due to stroke. Secondly, we suggest that computational modeling of cell replacement therapies can be made feasible by implementing approaches taken by current models of adult neurogenesis. The development of these models is critical for generating hypotheses regarding transplant therapies and improving outcomes by tailoring transplants to desired effects.
Collapse
Affiliation(s)
- James B Aimone
- 1Cognitive Modeling Group, Sandia National Laboratories Albuquerque, NM, USA
| | | |
Collapse
|
26
|
Biomedical and clinical promises of human pluripotent stem cells for neurological disorders. BIOMED RESEARCH INTERNATIONAL 2013; 2013:656531. [PMID: 24171168 PMCID: PMC3793324 DOI: 10.1155/2013/656531] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/13/2013] [Indexed: 01/25/2023]
Abstract
Neurological disorders are characterized by the chronic and progressive loss of neuronal structures and functions. There is a variability of the onsets and causes of clinical manifestations. Cell therapy has brought a new concept to overcome brain diseases, but the advancement of this therapy is limited by the demands of specialized neurons. Human pluripotent stem cells (hPSCs) have been promised as a renewable resource for generating human neurons for both laboratory and clinical purposes. By the modulations of appropriate signalling pathways, desired neuron subtypes can be obtained, and induced pluripotent stem cells (iPSCs) provide genetically matched neurons for treating patients. These hPSC-derived neurons can also be used for disease modeling and drug screening. Since the most urgent problem today in transplantation is the lack of suitable donor organs and tissues, the derivation of neural progenitor cells from hPSCs has opened a new avenue for regenerative medicine. In this review, we summarize the recent reports that show how to generate neural derivatives from hPSCs, and discuss the current evidence of using these cells in animal studies. We also highlight the possibilities and concerns of translating these hPSC-derived neurons for biomedical and clinical uses in order to fight against neurological disorders.
Collapse
|
27
|
Smedemark-Margulies N, Trapani JG. Tools, methods, and applications for optophysiology in neuroscience. Front Mol Neurosci 2013; 6:18. [PMID: 23882179 PMCID: PMC3713398 DOI: 10.3389/fnmol.2013.00018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/27/2013] [Indexed: 11/13/2022] Open
Abstract
The advent of optogenetics and genetically encoded photosensors has provided neuroscience researchers with a wealth of new tools and methods for examining and manipulating neuronal function in vivo. There exists now a wide range of experimentally validated protein tools capable of modifying cellular function, including light-gated ion channels, recombinant light-gated G protein-coupled receptors, and even neurotransmitter receptors modified with tethered photo-switchable ligands. A large number of genetically encoded protein sensors have also been developed to optically track cellular activity in real time, including membrane-voltage-sensitive fluorophores and fluorescent calcium and pH indicators. The development of techniques for controlled expression of these proteins has also increased their utility by allowing the study of specific populations of cells. Additionally, recent advances in optics technology have enabled both activation and observation of target proteins with high spatiotemporal fidelity. In combination, these methods have great potential in the study of neural circuits and networks, behavior, animal models of disease, as well as in high-throughput ex vivo studies. This review collects some of these new tools and methods and surveys several current and future applications of the evolving field of optophysiology.
Collapse
|
28
|
Engraftment of nonintegrating neural stem cells differentially perturbs cortical activity in a dose-dependent manner. Mol Ther 2013; 21:2258-67. [PMID: 23831593 DOI: 10.1038/mt.2013.163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/28/2013] [Indexed: 12/23/2022] Open
Abstract
Neural stem cell (NSC) therapy represents a potentially powerful approach for gene transfer in the diseased central nervous system. However, transplanted primary, embryonic stem cell- and induced pluripotent stem cell-derived NSCs generate largely undifferentiated progeny. Understanding how physiologically immature cells influence host activity is critical to evaluating the therapeutic utility of NSCs. Earlier inquiries were limited to single-cell recordings and did not address the emergent properties of neuronal ensembles. To interrogate cortical networks post-transplant, we used voltage sensitive dye imaging in mouse neocortical brain slices, which permits high temporal resolution analysis of neural activity. Although moderate NSC engraftment largely preserved host physiology, subtle defects in the activation properties of synaptic inputs were induced. High-density engraftment severely dampened cortical excitability, markedly reducing the amplitude, spatial extent, and velocity of propagating synaptic potentials in layers 2-6. These global effects may be mediated by specific disruptions in excitatory network structure in deep layers. We propose that depletion of endogenous cells in engrafted neocortex contributes to circuit alterations. Our data provide the first evidence that nonintegrating cells cause differential host impairment as a function of engrafted load. Moreover, they emphasize the necessity for efficient differentiation methods and proper controls for engraftment effects that interfere with the benefits of NSC therapy.
Collapse
|
29
|
Bestmann S, Feredoes E. Combined neurostimulation and neuroimaging in cognitive neuroscience: past, present, and future. Ann N Y Acad Sci 2013; 1296:11-30. [PMID: 23631540 PMCID: PMC3760762 DOI: 10.1111/nyas.12110] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Modern neurostimulation approaches in humans provide controlled inputs into the operations of cortical regions, with highly specific behavioral consequences. This enables causal structure–function inferences, and in combination with neuroimaging, has provided novel insights into the basic mechanisms of action of neurostimulation on distributed networks. For example, more recent work has established the capacity of transcranial magnetic stimulation (TMS) to probe causal interregional influences, and their interaction with cognitive state changes. Combinations of neurostimulation and neuroimaging now face the challenge of integrating the known physiological effects of neurostimulation with theoretical and biological models of cognition, for example, when theoretical stalemates between opposing cognitive theories need to be resolved. This will be driven by novel developments, including biologically informed computational network analyses for predicting the impact of neurostimulation on brain networks, as well as novel neuroimaging and neurostimulation techniques. Such future developments may offer an expanded set of tools with which to investigate structure–function relationships, and to formulate and reconceptualize testable hypotheses about complex neural network interactions and their causal roles in cognition.
Collapse
Affiliation(s)
- Sven Bestmann
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, United Kingdom.
| | | |
Collapse
|