1
|
Meissner-Bernard C, Jenkins B, Rupprecht P, Bouldoires EA, Zenke F, Friedrich RW, Frank T. Computational functions of precisely balanced neuronal microcircuits in an olfactory memory network. Cell Rep 2025; 44:115330. [PMID: 39985769 DOI: 10.1016/j.celrep.2025.115330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/12/2024] [Accepted: 01/28/2025] [Indexed: 02/24/2025] Open
Abstract
Models of balanced autoassociative memory networks predict that specific inhibition is critical to store information in connectivity. To explore these predictions, we characterized and manipulated different subtypes of fast-spiking interneurons in the posterior telencephalic area Dp (pDp) of adult zebrafish, the homolog of the piriform cortex. Modeling of recurrent networks with assemblies showed that a precise balance of excitation and inhibition is important to prevent not only excessive firing rates ("runaway activity") but also the stochastic occurrence of high pattern correlations ("runaway correlations"). Consistent with model predictions, runaway correlations emerged in pDp when synaptic balance was perturbed by optogenetic manipulations of feedback inhibition but not feedforward inhibition. Runaway correlations were driven by sparse subsets of strongly active neurons rather than by a general broadening of tuning curves. These results are consistent with balanced neuronal assemblies in pDp and reveal novel computational functions of inhibitory microcircuits in an autoassociative network.
Collapse
Affiliation(s)
- Claire Meissner-Bernard
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
| | - Bethan Jenkins
- University of Göttingen, Faculty of Biology and Psychology, 37073 Göttingen, Germany; Olfactory Memory and Behavior Group, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, Grisebachstraße 5, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Göttingen Campus Institute for Dynamics of Biological Networks, 37073 Göttingen, Germany; Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Peter Rupprecht
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland; Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Neuroscience Center Zurich, University of Zurich, 8006 Zürich, Switzerland
| | - Estelle Arn Bouldoires
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
| | - Friedemann Zenke
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Rainer W Friedrich
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland.
| | - Thomas Frank
- University of Göttingen, Faculty of Biology and Psychology, 37073 Göttingen, Germany; Olfactory Memory and Behavior Group, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, Grisebachstraße 5, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Göttingen Campus Institute for Dynamics of Biological Networks, 37073 Göttingen, Germany; Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
2
|
Elhabbari K, Sireci S, Rothermel M, Brunert D. Olfactory deficits in aging and Alzheimer's-spotlight on inhibitory interneurons. Front Neurosci 2024; 18:1503069. [PMID: 39737436 PMCID: PMC11683112 DOI: 10.3389/fnins.2024.1503069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Cognitive function in healthy aging and neurodegenerative diseases like Alzheimer's disease (AD) correlates to olfactory performance. Aging and disease progression both show marked olfactory deficits in humans and rodents. As a clear understanding of what causes olfactory deficits is still missing, research on this topic is paramount to diagnostics and early intervention therapy. A recent development of this research is focusing on GABAergic interneurons. Both aging and AD show a change in excitation/inhibition balance, indicating reduced inhibitory network functions. In the olfactory system, inhibition has an especially prominent role in processing information, as the olfactory bulb (OB), the first relay station of olfactory information in the brain, contains an unusually high number of inhibitory interneurons. This review summarizes the current knowledge on inhibitory interneurons at the level of the OB and the primary olfactory cortices to gain an overview of how these neurons might influence olfactory behavior. We also compare changes in interneuron composition in different olfactory brain areas between healthy aging and AD as the most common neurodegenerative disease. We find that pathophysiological changes in olfactory areas mirror findings from hippocampal and cortical regions that describe a marked cell loss for GABAergic interneurons in AD but not aging. Rather than differences in brain areas, differences in vulnerability were shown for different interneuron populations through all olfactory regions, with somatostatin-positive cells most strongly affected.
Collapse
Affiliation(s)
| | | | | | - Daniela Brunert
- Institute of Physiology, RG Neurophysiology and Optogenetics, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
3
|
Wang D, Zhang Y, Li S, Liu P, Li X, Liu Z, Li A, Wang D. Orbitofrontal control of the olfactory cortex regulates olfactory discrimination learning. J Physiol 2024; 602:7003-7026. [PMID: 39549300 DOI: 10.1113/jp286606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/24/2024] [Indexed: 11/18/2024] Open
Abstract
Serving as an integral node for cognitive processing and value-based decision-making, the orbitofrontal cortex (OFC) plays a multifaceted role in associative learning and reward-driven behaviours through its widespread synaptic integration with both subcortical structures and sensory cortices. Despite the OFC's robust innervation of the olfactory cortex, the functional implications and underlying mechanisms of this top-down influence remain largely unexplored. In this study, we demonstrated that the OFC formed both direct excitatory and indirect inhibitory synaptic connections with pyramidal neurons in the anterior piriform cortex (aPC). OFC projection predominantly regulated spontaneous and odour-evoked excitatory activity in the aPC of awake mice. Importantly, suppression of this OFC-aPC projection disrupted olfactory discrimination learning, potentially due to a consequent decrease in the excitability of aPC principal output neurons following inhibition of this projection. Whole-cell recordings revealed that olfactory learning increased the intrinsic excitability of aPC neurons while concurrently decreasing OFC input to these neurons. These findings underscore the pivotal influence of orbitofrontal modulation over the olfactory cortex in the context of olfactory learning and provide insight into the associated neurophysiological mechanisms. KEY POINTS: The orbitofrontal cortex (OFC) densely innervates the anterior piriform cortex (aPC) through direct excitatory synaptic connections. The OFC regulates both spontaneous and odour-evoked excitatory activities in the aPC of awake mice. Inhibition of OFC projections disrupts olfactory discrimination learning, probably due to reduced excitability of aPC main output neurons. Following olfactory learning, the intrinsic excitability of aPC neurons increases while the OFC-aPC input decreases, highlighting the importance of adaptable OFC input for olfactory learning. These results provide new perspectives on how the OFC's top-down control modulates sensory integration and associative learning.
Collapse
Affiliation(s)
- Ding Wang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Zhang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shan Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiang Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiqiu Liu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dejuan Wang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
Mori K, Sakano H. One respiratory cycle as a minimum time unit for making behavioral decisions in the mammalian olfactory system. Front Neurosci 2024; 18:1423694. [PMID: 39315076 PMCID: PMC11417025 DOI: 10.3389/fnins.2024.1423694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Voluntary behaviors such as sniffing, moving, and eating require decision-making accompanied by intentional respiration. Based on the study of respiration-coherent activity of rodent olfactory networks, we infer that during the inhalation phase of respiration, olfactory cortical areas process environmental odor information and transmit it to the higher multisensory cognitive areas via feedforward pathways to comprehensively evaluate the surrounding situation. We also infer that during the exhalation phase, the higher multisensory areas generate cognitive-signals and transmit them not only to the behavioral output system but also back to the olfactory cortical areas. We presume that the cortical mechanism couples the intentional respiration with the voluntary behaviors. Thus, in one respiratory cycle, the mammalian brain may transmit and process sensory information to cognize and evaluate the multisensory image of the external world, leading to one behavioral decision and one emotional expression. In this perspective article, we propose that one respiratory cycle provides a minimum time unit for decision making during wakefulness.
Collapse
Affiliation(s)
- Kensaku Mori
- RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Japan
| |
Collapse
|
5
|
Kundu S, Paul B, Reuevni I, Lamprecht R, Barkai E. Learning-induced bidirectional enhancement of inhibitory synaptic metaplasticity. J Physiol 2024; 602:2343-2358. [PMID: 38654583 DOI: 10.1113/jp284761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Training rodents in a particularly difficult olfactory-discrimination (OD) task results in the acquisition of the ability to perform the task well, termed 'rule learning'. In addition to enhanced intrinsic excitability and synaptic excitation in piriform cortex pyramidal neurons, rule learning results in increased synaptic inhibition across the whole cortical network to the point where it precisely maintains the balance between inhibition and excitation. The mechanism underlying such precise inhibitory enhancement remains to be explored. Here, we use brain slices from transgenic mice (VGAT-ChR2-EYFP), enabling optogenetic stimulation of single GABAergic neurons and recordings of unitary synaptic events in pyramidal neurons. Quantal analysis revealed that learning-induced enhanced inhibition is mediated by increased quantal size of the evoked inhibitory events. Next, we examined the plasticity of synaptic inhibition induced by long-lasting, intrinsically evoked spike firing in post-synaptic neurons. Repetitive depolarizing current pulses from depolarized (-70 mV) or hyperpolarized (-90 mV) membrane potentials induced long-term depression (LTD) and long-term potentiation (LTP) of synaptic inhibition, respectively. We found a profound bidirectional increase in the ability to induce both LTD, mediated by L-type calcium channels, and LTP, mediated by R-type calcium channels after rule learning. Blocking the GABAB receptor reversed the effect of intrinsic stimulation at -90 mV from LTP to LTD. We suggest that learning greatly enhances the ability to modify the strength of synaptic inhibition of principal neurons in both directions. Such plasticity of synaptic plasticity allows fine-tuning of inhibition on each particular neuron, thereby stabilizing the network while maintaining the memory of the rule. KEY POINTS: Olfactory discrimination rule learning results in long-lasting enhancement of synaptic inhibition on piriform cortex pyramidal neurons. Quantal analysis of unitary inhibitory synaptic events, evoked by optogenetic minimal stimulation, revealed that enhanced synaptic inhibition is mediated by increased quantal size. Surprisingly, metaplasticity of synaptic inhibition, induced by intrinsically evoked repetitive spike firing, is increased bidirectionally. The susceptibility to both long-term depression (LTD) and long-term potentiation (LTP) of inhibition is enhanced after learning. LTD of synaptic inhibition is mediated by L-type calcium channels and LTP by R-type calcium channels. LTP is also dependent on activation of GABAB receptors. We suggest that learning-induced changes in the metaplasticity of synaptic inhibition enable the fine-tuning of inhibition on each particular neuron, thereby stabilizing the network while maintaining the memory of the rule.
Collapse
Affiliation(s)
- Sankhanava Kundu
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Blesson Paul
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Iris Reuevni
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Edi Barkai
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
6
|
Shen G, Zhao D, Dong Y, Zeng Y. Brain-inspired neural circuit evolution for spiking neural networks. Proc Natl Acad Sci U S A 2023; 120:e2218173120. [PMID: 37729206 PMCID: PMC10523604 DOI: 10.1073/pnas.2218173120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/27/2023] [Indexed: 09/22/2023] Open
Abstract
In biological neural systems, different neurons are capable of self-organizing to form different neural circuits for achieving a variety of cognitive functions. However, the current design paradigm of spiking neural networks is based on structures derived from deep learning. Such structures are dominated by feedforward connections without taking into account different types of neurons, which significantly prevent spiking neural networks from realizing their potential on complex tasks. It remains an open challenge to apply the rich dynamical properties of biological neural circuits to model the structure of current spiking neural networks. This paper provides a more biologically plausible evolutionary space by combining feedforward and feedback connections with excitatory and inhibitory neurons. We exploit the local spiking behavior of neurons to adaptively evolve neural circuits such as forward excitation, forward inhibition, feedback inhibition, and lateral inhibition by the local law of spike-timing-dependent plasticity and update the synaptic weights in combination with the global error signals. By using the evolved neural circuits, we construct spiking neural networks for image classification and reinforcement learning tasks. Using the brain-inspired Neural circuit Evolution strategy (NeuEvo) with rich neural circuit types, the evolved spiking neural network greatly enhances capability on perception and reinforcement learning tasks. NeuEvo achieves state-of-the-art performance on CIFAR10, DVS-CIFAR10, DVS-Gesture, and N-Caltech101 datasets and achieves advanced performance on ImageNet. Combined with on-policy and off-policy deep reinforcement learning algorithms, it achieves comparable performance with artificial neural networks. The evolved spiking neural circuits lay the foundation for the evolution of complex networks with functions.
Collapse
Affiliation(s)
- Guobin Shen
- Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing100190, China
| | - Dongcheng Zhao
- Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing100190, China
| | - Yiting Dong
- Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing100190, China
| | - Yi Zeng
- Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing100190, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
7
|
Bearden DJ, Selawski R, Chern JJ, Martinez EDV, Bhalla S, Al-Ramadhani RR, Ono KE, Pedersen NP, Zhang G, Drane DL, Kheder A. Intracranial investigation of piriform cortex epilepsy during odor presentation. Neurocase 2023; 29:14-17. [PMID: 37021713 PMCID: PMC10556192 DOI: 10.1080/13554794.2023.2199936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/30/2023] [Indexed: 04/07/2023]
Abstract
The piriform cortex (PC) is part of the olfactory system, principally receiving input from the lateral olfactory tract and projecting to downstream components of the olfactory network, including the amygdala. Based on preclinical studies, PC is vulnerable to injury and can be easily kindled as an onset site for seizures. While the role of PC in human epilepsy has been studied indirectly and the subject of speculation, cases of demonstrated PC seizure onset from direct intracranial recording are rare. We present a pediatric patient with drug-resistant focal reflex epilepsy and right mesial temporal sclerosis with habitual seizures triggered by coconut aroma. The patient underwent stereoelectroencephalography with implantation of olfactory cortices including PC, through which we identified PC seizure onset, mapped high-frequency activity associated with presentation of olfactory stimuli and performance on cognitive tasks, and reproduced habitual seizures via cortical stimulation of PC. Coconut odor did not trigger seizures in our work with the patient. Surgical workup resulted in resection of the patient's right amygdala, PC, and mesial temporal pole, following which she has been seizure free for 20 months without functional decline in cognition or smell. Histological findings from resected tissue showed astrogliosis and subpial gliosis.
Collapse
Affiliation(s)
- Donald J. Bearden
- Children’s Healthcare of Atlanta, Department of Neurology, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Robyn Selawski
- Children’s Healthcare of Atlanta, Department of Neurology, Atlanta, GA, USA
| | - Joshua J. Chern
- Department of Neurosurgery, Children’s Healthcare of Atlanta, GA, USA
| | - Eva del Valle Martinez
- Children’s Healthcare of Atlanta, Department of Neurology, Atlanta, GA, USA
- Carlos Albizu University, Department of Psychology, San Juan, Puerto Rico
| | - Sonam Bhalla
- Children’s Healthcare of Atlanta, Department of Neurology, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ruba R Al-Ramadhani
- University of Pittsburgh Medical Center, Children’s Department of Pediatric Neurology, PA, USA
| | - Kim E. Ono
- Children’s Healthcare of Atlanta, Department of Neurology, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nigel P. Pedersen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Guojun Zhang
- Children’s Healthcare of Atlanta, Department of Neurology, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel L. Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ammar Kheder
- Children’s Healthcare of Atlanta, Department of Neurology, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
8
|
Recruitment of interictal- and ictal-like discharges in posterior piriform cortex by delta-rate (1–4 Hz) focal bursts in anterior piriform cortex in vivo. Epilepsy Res 2022; 187:107032. [DOI: 10.1016/j.eplepsyres.2022.107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/10/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022]
|
9
|
Plasticity in the Olfactory Cortex Is Enabled by Disinhibition of Pyramidal Neuron Apical Dendrites. J Neurosci 2022; 42:6484-6486. [PMID: 36002284 PMCID: PMC9410746 DOI: 10.1523/jneurosci.0892-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
|
10
|
Potts Y, Bekkers JM. Dopamine Increases the Intrinsic Excitability of Parvalbumin-Expressing Fast-Spiking Cells in the Piriform Cortex. Front Cell Neurosci 2022; 16:919092. [PMID: 35755774 PMCID: PMC9218566 DOI: 10.3389/fncel.2022.919092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The piriform cortex (PCx) is essential for the adaptive processing of olfactory information. Neuromodulatory systems, including those utilizing serotonin, acetylcholine, noradrenaline, and dopamine, innervate and regulate neuronal activity in the PCx. Previous research has demonstrated the importance of acetylcholine, noradrenaline and serotonin in odor learning and memory. In contrast, the role of dopamine in the PCx remains under-explored. Here we examined how dopamine modulates the intrinsic electrical properties of identified classes of neurons in the PCx. We found that dopamine had no consistent effect on the intrinsic electrical properties of two types of glutamatergic neurons (semilunar and superficial pyramidal cells) or three types of GABAergic interneurons (horizontal, neurogliaform and somatastatin-expressing regular-spiking cells). However, dopamine had a striking effect on the intrinsic excitability of the parvalbumin-expressing fast-spiking (FS) class of GABAergic interneuron. Dopamine depolarized the resting potential, increased the input resistance and increased the firing frequency of FS cells. Co-application of dopamine with the D1-class dopamine receptor antagonist SCH 23390 blocked the effects of dopamine modulation on FS cells. Conversely, co-application of dopamine with the D2-class antagonist RS-(±)-sulpiride had no effect on dopamine modulation of these cells. Our results indicate that dopamine binds to D1-class dopamine receptors to increase the intrinsic excitability of FS cells. These findings suggest that dopamine has a highly targeted effect in the PCx and reveal how dopamine may modulate the balance between excitation and inhibition, with consequences for odor processing. In addition, our findings provide clues for understanding why neurodegenerative disorders that modify the dopamine system, such as Parkinson's disease, have a deleterious effect on the sense of smell, and may suggest novel diagnostics for the early detection of such disorders.
Collapse
Affiliation(s)
- Yasmin Potts
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - John M Bekkers
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
11
|
Matsukawa M, Yoshikawa M, Katsuyama N, Aizawa S, Sato T. The Anterior Piriform Cortex and Predator Odor Responses: Modulation by Inhibitory Circuits. Front Behav Neurosci 2022; 16:896525. [PMID: 35571276 PMCID: PMC9097892 DOI: 10.3389/fnbeh.2022.896525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Rodents acquire more information from the sense of smell than humans because they have a nearly fourfold greater variety of olfactory receptors. They use olfactory information not only for obtaining food, but also for detecting environmental dangers. Predator-derived odor compounds provoke instinctive fear and stress reactions in animals. Inbred lines of experimental animals react in an innate stereotypical manner to predators even without prior exposure. Predator odors have also been used in models of various neuropsychiatric disorders, including post-traumatic stress disorder following a life-threatening event. Although several brain regions have been reported to be involved in predator odor-induced stress responses, in this mini review, we focus on the functional role of inhibitory neural circuits, especially in the anterior piriform cortex (APC). We also discuss the changes in these neural circuits following innate reactions to odor exposure. Furthermore, based on the three types of modulation of the stress response observed by our group using the synthetic fox odorant 2,5-dihydro-2,4,5-trimethylthiazoline, we describe how the APC interacts with other brain regions to regulate the stress response. Finally, we discuss the potential therapeutic application of odors in the treatment of stress-related disorders. A clearer understanding of the odor–stress response is needed to allow targeted modulation of the monoaminergic system and of the intracerebral inhibitory networks. It would be improved the quality of life of those who have stress-related conditions.
Collapse
Affiliation(s)
- Mutsumi Matsukawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi, Japan
- *Correspondence: Mutsumi Matsukawa,
| | - Masaaki Yoshikawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi, Japan
| | - Narumi Katsuyama
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi, Japan
| | - Takaaki Sato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Japan
| |
Collapse
|
12
|
Chen Z, Padmanabhan K. Top-down feedback enables flexible coding strategies in the olfactory cortex. Cell Rep 2022; 38:110545. [PMID: 35320723 DOI: 10.1016/j.celrep.2022.110545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/30/2021] [Accepted: 03/01/2022] [Indexed: 11/03/2022] Open
Abstract
In chemical sensation, multiple models have been proposed to explain how odors are represented in the olfactory cortex. One hypothesis is that the combinatorial identity of active neurons within sniff-related time windows is critical, whereas another model proposes that it is the temporal structure of neural activity that is essential for encoding odor information. We find that top-down feedback to the main olfactory bulb dictates the information transmitted to the piriform cortex and switches between these coding strategies. Using a detailed network model, we demonstrate that feedback control of inhibition influences the excitation-inhibition balance in mitral cells, restructuring the dynamics of piriform cortical cells. This results in performance improvement in odor discrimination tasks. These findings present a framework for early olfactory computation, where top-down feedback to the bulb flexibly shapes the temporal structure of neural activity in the piriform cortex, allowing the early olfactory system to dynamically switch between two distinct coding models.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| | - Krishnan Padmanabhan
- Department of Neuroscience, Neuroscience Graduate Program, Del Monte Institute for Neuroscience, Center for Visual Sciences, Intellectual and Developmental Disability Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
13
|
Suzuki N, Tantirigama MLS, Aung KP, Huang HHY, Bekkers JM. Fast and slow feedforward inhibitory circuits for cortical odor processing. eLife 2022; 11:73406. [PMID: 35297763 PMCID: PMC8929928 DOI: 10.7554/elife.73406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Feedforward inhibitory circuits are key contributors to the complex interplay between excitation and inhibition in the brain. Little is known about the function of feedforward inhibition in the primary olfactory (piriform) cortex. Using in vivo two-photon-targeted patch clamping and calcium imaging in mice, we find that odors evoke strong excitation in two classes of interneurons – neurogliaform (NG) cells and horizontal (HZ) cells – that provide feedforward inhibition in layer 1 of the piriform cortex. NG cells fire much earlier than HZ cells following odor onset, a difference that can be attributed to the faster odor-driven excitatory synaptic drive that NG cells receive from the olfactory bulb. As a result, NG cells strongly but transiently inhibit odor-evoked excitation in layer 2 principal cells, whereas HZ cells provide more diffuse and prolonged feedforward inhibition. Our findings reveal unexpected complexity in the operation of inhibition in the piriform cortex.
Collapse
Affiliation(s)
- Norimitsu Suzuki
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Malinda L S Tantirigama
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia.,Neurocure Center for Excellence, Charité Universitätsmedizin Berlin and Humboldt Universität, Berlin, Germany
| | - K Phyu Aung
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Helena H Y Huang
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - John M Bekkers
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
14
|
Lebovich L, Yunerman M, Scaiewicz V, Loewenstein Y, Rokni D. Paradoxical relationship between speed and accuracy in olfactory figure-background segregation. PLoS Comput Biol 2021; 17:e1009674. [PMID: 34871306 PMCID: PMC8675919 DOI: 10.1371/journal.pcbi.1009674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/16/2021] [Accepted: 11/20/2021] [Indexed: 11/19/2022] Open
Abstract
In natural settings, many stimuli impinge on our sensory organs simultaneously. Parsing these sensory stimuli into perceptual objects is a fundamental task faced by all sensory systems. Similar to other sensory modalities, increased odor backgrounds decrease the detectability of target odors by the olfactory system. The mechanisms by which background odors interfere with the detection and identification of target odors are unknown. Here we utilized the framework of the Drift Diffusion Model (DDM) to consider possible interference mechanisms in an odor detection task. We first considered pure effects of background odors on either signal or noise in the decision-making dynamics and showed that these produce different predictions about decision accuracy and speed. To test these predictions, we trained mice to detect target odors that are embedded in random background mixtures in a two-alternative choice task. In this task, the inter-trial interval was independent of behavioral reaction times to avoid motivating rapid responses. We found that increased backgrounds reduce mouse performance but paradoxically also decrease reaction times, suggesting that noise in the decision making process is increased by backgrounds. We further assessed the contributions of background effects on both noise and signal by fitting the DDM to the behavioral data. The models showed that background odors affect both the signal and the noise, but that the paradoxical relationship between trial difficulty and reaction time is caused by the added noise. Sensory systems are constantly stimulated by signals from many objects in the environment. Segmentation of important signals from the cluttered background is therefore a task that is faced by all sensory systems. For many mammalians, the sense of smell is the primary sense that guides many daily behaviors. As such, the olfactory system must be able to detect and identify odors of interest against varying and dynamic backgrounds. Here we studied how background odors interfere with the detection of target odors. We trained mice on a task in which they are presented with odor mixtures and are required to report whether they include either of two target odors. We analyze the behavioral data using a common model of sensory-guided decision-making—the drift-diffusion-model. In this model, decisions are influenced by two elements: a drift which is the signal produced by the stimulus, and noise. We show that the addition of background odors has a dual effect—a reduction in the drift, as well as an increase in the noise. The increased noise also causes more rapid decisions, thereby producing a paradoxical relationship between trial difficulty and decision speed; mice make faster decisions on more difficult trials.
Collapse
Affiliation(s)
- Lior Lebovich
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Michael Yunerman
- Department of Medical Neurobiology, School of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Viviana Scaiewicz
- Department of Medical Neurobiology, School of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonatan Loewenstein
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
- Department of Cognitive Sciences and The Federmann Center for the Study of Rationality, The Hebrew University, Jerusalem, Israel
| | - Dan Rokni
- Department of Medical Neurobiology, School of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
15
|
Lau CG, Zhang H, Murthy VN. Deletion of TrkB in parvalbumin interneurons alters cortical neural dynamics. J Cell Physiol 2021; 237:949-964. [PMID: 34491578 PMCID: PMC8810709 DOI: 10.1002/jcp.30571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022]
Abstract
Signaling by neurotrophins such as the brain‐derived neurotrophic factor (BDNF) is known to modulate development of interneurons, but the circuit effects of this modulation remain unclear. Here, we examined the impact of deleting TrkB, a BDNF receptor, in parvalbumin‐expressing (PV) interneurons on the balance of excitation and inhibition (E‐I) in cortical circuits. In the mouse olfactory cortex, TrkB deletion impairs multiple aspects of PV neuronal function including synaptic excitation, intrinsic excitability, and the innervation pattern of principal neurons. Impaired PV cell function resulted in aberrant spiking patterns in principal neurons in response to stimulation of sensory inputs. Surprisingly, dampened PV neuronal function leads to a paradoxical decrease in overall excitability in cortical circuits. Our study demonstrates that, by modulating PV circuit plasticity and development, TrkB plays a critical role in shaping the evoked pattern of activity in a cortical network.
Collapse
Affiliation(s)
- Chunyue Geoffrey Lau
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China.,Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - Huiqi Zhang
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Venkatesh N Murthy
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
16
|
Abstract
Olfaction is fundamentally distinct from other sensory modalities. Natural odor stimuli are complex mixtures of volatile chemicals that interact in the nose with a receptor array that, in rodents, is built from more than 1,000 unique receptors. These interactions dictate a peripheral olfactory code, which in the brain is transformed and reformatted as it is broadcast across a set of highly interconnected olfactory regions. Here we discuss the problems of characterizing peripheral population codes for olfactory stimuli, of inferring the specific functions of different higher olfactory areas given their extensive recurrence, and of ultimately understanding how odor representations are linked to perception and action. We argue that, despite the differences between olfaction and other sensory modalities, addressing these specific questions will reveal general principles underlying brain function.
Collapse
Affiliation(s)
- David H Brann
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Sandeep Robert Datta
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
17
|
Spool JA, Macedo-Lima M, Scarpa G, Morohashi Y, Yazaki-Sugiyama Y, Remage-Healey L. Genetically identified neurons in avian auditory pallium mirror core principles of their mammalian counterparts. Curr Biol 2021; 31:2831-2843.e6. [PMID: 33989528 DOI: 10.1016/j.cub.2021.04.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/12/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022]
Abstract
In vertebrates, advanced cognitive abilities are typically associated with the telencephalic pallium. In mammals, the pallium is a layered mixture of excitatory and inhibitory neuronal populations with distinct molecular, physiological, and network phenotypes. This cortical architecture is proposed to support efficient, high-level information processing. Comparative perspectives across vertebrates provide a lens to understand the common features of pallium that are important for advanced cognition. Studies in songbirds have established strikingly parallel features of neuronal types between mammalian and avian pallium. However, lack of genetic access to defined pallial cell types in non-mammalian vertebrates has hindered progress in resolving connections between molecular and physiological phenotypes. A definitive mapping of the physiology of pallial cells onto their molecular identities in birds is critical for understanding how synaptic and computational properties depend on underlying molecular phenotypes. Using viral tools to target excitatory versus inhibitory neurons in the zebra finch auditory association pallium (calmodulin-dependent kinase alpha [CaMKIIα] and glutamate decarboxylase 1 [GAD1] promoters, respectively), we systematically tested predictions derived from mammalian pallium. We identified two genetically distinct neuronal populations that exhibit profound physiological and computational similarities with mammalian excitatory and inhibitory pallial cells, definitively aligning putative cell types in avian caudal nidopallium with these molecular identities. Specifically, genetically identified CaMKIIα and GAD1 cell types in avian auditory association pallium exhibit distinct intrinsic physiological parameters, distinct auditory coding principles, and inhibitory-dependent pallial synchrony, gamma oscillations, and local suppression. The retention, or convergence, of these molecular and physiological features in both birds and mammals clarifies the characteristics of pallial circuits for advanced cognitive abilities.
Collapse
Affiliation(s)
- Jeremy A Spool
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Matheus Macedo-Lima
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA; CAPES Foundation, Ministry of Education of Brazil, Brasília 70040-020, Brazil
| | - Garrett Scarpa
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Yuichi Morohashi
- Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
| | - Yoko Yazaki-Sugiyama
- Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
| | - Luke Remage-Healey
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
18
|
Ryu B, Nagappan S, Santos-Valencia F, Lee P, Rodriguez E, Lackie M, Takatoh J, Franks KM. Chronic loss of inhibition in piriform cortex following brief, daily optogenetic stimulation. Cell Rep 2021; 35:109001. [PMID: 33882304 PMCID: PMC8102022 DOI: 10.1016/j.celrep.2021.109001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/10/2020] [Accepted: 03/24/2021] [Indexed: 12/02/2022] Open
Abstract
It is well established that seizures beget seizures, yet the cellular processes that underlie progressive epileptogenesis remain unclear. Here, we use optogenetics to briefly activate targeted populations of mouse piriform cortex (PCx) principal neurons in vivo. After just 3 or 4 days of stimulation, previously subconvulsive stimuli trigger massive, generalized seizures. Highly recurrent allocortices are especially prone to “optokindling.” Optokindling upsets the balance of recurrent excitation and feedback inhibition. To understand how this balance is disrupted, we then selectively reactivate the same neurons in vitro. Surprisingly, we find no evidence of heterosynaptic potentiation; instead, we observe a marked, pathway-specific decrease in feedback inhibition. We find no loss of inhibitory interneurons; rather, decreased GABA synthesis in feedback inhibitory neurons appears to underlie weakened inhibition. Optokindling will allow precise identification of the molecular processes by which brain activity patterns can progressively and pathologically disrupt the balance of cortical excitation and inhibition. Ryu et al. use optogenetics to briefly activate principal neurons in mouse piriform cortex. After 4 days, previously innocuous stimuli evoke massive, generalized seizures. “Optokindling” does not strengthen recurrent excitation; instead, it weakens feedback inhibition by decreasing synaptic cleft GABA concentrations and slowing vesicle refilling, consistent with decreased GABA synthesis.
Collapse
Affiliation(s)
- Brendan Ryu
- Department of Neurobiology, Duke University Medical School, Durham, NC 27705, USA
| | | | | | - Psyche Lee
- Department of Neurobiology, Duke University Medical School, Durham, NC 27705, USA
| | - Erica Rodriguez
- Department of Neurobiology, Duke University Medical School, Durham, NC 27705, USA
| | - Meredith Lackie
- Department of Neurobiology, Duke University Medical School, Durham, NC 27705, USA
| | - Jun Takatoh
- Department of Neurobiology, Duke University Medical School, Durham, NC 27705, USA
| | - Kevin M Franks
- Department of Neurobiology, Duke University Medical School, Durham, NC 27705, USA.
| |
Collapse
|
19
|
Burns TF, Rajan R. Sensing and processing whisker deflections in rodents. PeerJ 2021; 9:e10730. [PMID: 33665005 PMCID: PMC7906041 DOI: 10.7717/peerj.10730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/17/2020] [Indexed: 11/20/2022] Open
Abstract
The classical view of sensory information mainly flowing into barrel cortex at layer IV, moving up for complex feature processing and lateral interactions in layers II and III, then down to layers V and VI for output and corticothalamic feedback is becoming increasingly undermined by new evidence. We review the neurophysiology of sensing and processing whisker deflections, emphasizing the general processing and organisational principles present along the entire sensory pathway—from the site of physical deflection at the whiskers to the encoding of deflections in the barrel cortex. Many of these principles support the classical view. However, we also highlight the growing number of exceptions to these general principles, which complexify the system and which investigators should be mindful of when interpreting their results. We identify gaps in the literature for experimentalists and theorists to investigate, not just to better understand whisker sensation but also to better understand sensory and cortical processing.
Collapse
Affiliation(s)
- Thomas F Burns
- Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Ramesh Rajan
- Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Synaptic Organization of Anterior Olfactory Nucleus Inputs to Piriform Cortex. J Neurosci 2020; 40:9414-9425. [PMID: 33115926 DOI: 10.1523/jneurosci.0965-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 11/21/2022] Open
Abstract
Odors activate distributed ensembles of neurons within the piriform cortex, forming cortical representations of odor thought to be essential to olfactory learning and behaviors. This odor response is driven by direct input from the olfactory bulb, but is also shaped by a dense network of associative or intracortical inputs to piriform, which may enhance or constrain the cortical odor representation. With optogenetic techniques, it is possible to functionally isolate defined inputs to piriform cortex and assess their potential to activate or inhibit piriform pyramidal neurons. The anterior olfactory nucleus (AON) receives direct input from the olfactory bulb and sends an associative projection to piriform cortex that has potential roles in the state-dependent processing of olfactory behaviors. Here, we provide a detailed functional assessment of the AON afferents to piriform in male and female C57Bl/6J mice. We confirm that the AON forms glutamatergic excitatory synapses onto piriform pyramidal neurons; and while these inputs are not as strong as piriform recurrent collaterals, they are less constrained by disynaptic inhibition. Moreover, AON-to-piriform synapses contain a substantial NMDAR-mediated current that prolongs the synaptic response at depolarized potentials. These properties of limited inhibition and slow NMDAR-mediated currents result in strong temporal summation of AON inputs within piriform pyramidal neurons, and suggest that the AON could powerfully enhance activation of piriform neurons in response to odor.SIGNIFICANCE STATEMENT Odor information is transmitted from olfactory receptors to olfactory bulb, and then to piriform cortex, where ensembles of activated neurons form neural representations of the odor. While these ensembles are driven by primary bulbar afferents, and shaped by intracortical recurrent connections, the potential for another early olfactory area, the anterior olfactory nucleus (AON), to contribute to piriform activity is not known. Here, we use optogenetic circuit-mapping methods to demonstrate that AON inputs can significantly activate piriform neurons, as they are coupled to NMDAR currents and to relatively modest disynaptic inhibition. The AON may enhance the piriform odor response, encouraging further study to determine the states or behaviors through which AON potentiates the cortical response to odor.
Collapse
|
21
|
Penker S, Licht T, Hofer KT, Rokni D. Mixture Coding and Segmentation in the Anterior Piriform Cortex. Front Syst Neurosci 2020; 14:604718. [PMID: 33328914 PMCID: PMC7710992 DOI: 10.3389/fnsys.2020.604718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Coding of odorous stimuli has been mostly studied using single isolated stimuli. However, a single sniff of air in a natural environment is likely to introduce airborne chemicals emitted by multiple objects into the nose. The olfactory system is therefore faced with the task of segmenting odor mixtures to identify objects in the presence of rich and often unpredictable backgrounds. The piriform cortex is thought to be the site of object recognition and scene segmentation, yet the nature of its responses to odorant mixtures is largely unknown. In this study, we asked two related questions. (1) How are mixtures represented in the piriform cortex? And (2) Can the identity of individual mixture components be read out from mixture representations in the piriform cortex? To answer these questions, we recorded single unit activity in the piriform cortex of naïve mice while sequentially presenting single odorants and their mixtures. We find that a normalization model explains mixture responses well, both at the single neuron, and at the population level. Additionally, we show that mixture components can be identified from piriform cortical activity by pooling responses of a small population of neurons-in many cases a single neuron is sufficient. These results indicate that piriform cortical representations are well suited to perform figure-background segmentation without the need for learning.
Collapse
Affiliation(s)
| | | | | | - Dan Rokni
- Department of Medical Neurobiology, School of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
22
|
Blazing RM, Franks KM. Odor coding in piriform cortex: mechanistic insights into distributed coding. Curr Opin Neurobiol 2020; 64:96-102. [PMID: 32422571 PMCID: PMC8782565 DOI: 10.1016/j.conb.2020.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
Abstract
Olfaction facilitates a large variety of animal behaviors such as feeding, mating, and communication. Recent work has begun to reveal the logic of odor transformations that occur throughout the olfactory system to form the odor percept. In this review, we describe the coding principles and mechanisms by which the piriform cortex and other olfactory areas encode three key odor features: odor identity, intensity, and valence. We argue that the piriform cortex produces a multiplexed odor code that allows non-interfering representations of distinct features of the odor stimulus to facilitate odor recognition and learning, which ultimately drives behavior.
Collapse
Affiliation(s)
- Robin M Blazing
- Department of Neurobiology, Duke University Medical School, Durham, NC, 27705, United States
| | - Kevin M Franks
- Department of Neurobiology, Duke University Medical School, Durham, NC, 27705, United States.
| |
Collapse
|
23
|
Chong E, Moroni M, Wilson C, Shoham S, Panzeri S, Rinberg D. Manipulating synthetic optogenetic odors reveals the coding logic of olfactory perception. Science 2020; 368:368/6497/eaba2357. [PMID: 32554567 DOI: 10.1126/science.aba2357] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/01/2020] [Indexed: 12/26/2022]
Abstract
How does neural activity generate perception? Finding the combinations of spatial or temporal activity features (such as neuron identity or latency) that are consequential for perception remains challenging. We trained mice to recognize synthetic odors constructed from parametrically defined patterns of optogenetic activation, then measured perceptual changes during extensive and controlled perturbations across spatiotemporal dimensions. We modeled recognition as the matching of patterns to learned templates. The templates that best predicted recognition were sequences of spatially identified units, ordered by latencies relative to each other (with minimal effects of sniff). Within templates, individual units contributed additively, with larger contributions from earlier-activated units. Our synthetic approach reveals the fundamental logic of the olfactory code and provides a general framework for testing links between sensory activity and perception.
Collapse
Affiliation(s)
- Edmund Chong
- Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA.
| | - Monica Moroni
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy. .,CIMeC, University of Trento, Rovereto, Italy
| | | | - Shy Shoham
- Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA.,Center for Neural Science, New York University, New York, NY 10003, USA.,Tech4Health Institute, NYU Langone Health, New York, NY 10010, USA.,Department of Ophthalmology, NYU Langone Health, New York, NY 10017, USA
| | - Stefano Panzeri
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Dmitry Rinberg
- Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA. .,Center for Neural Science, New York University, New York, NY 10003, USA
| |
Collapse
|
24
|
Ghanbari A, Ren N, Keine C, Stoelzel C, Englitz B, Swadlow HA, Stevenson IH. Modeling the Short-Term Dynamics of in Vivo Excitatory Spike Transmission. J Neurosci 2020; 40:4185-4202. [PMID: 32303648 PMCID: PMC7244199 DOI: 10.1523/jneurosci.1482-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 11/21/2022] Open
Abstract
Information transmission in neural networks is influenced by both short-term synaptic plasticity (STP) as well as nonsynaptic factors, such as after-hyperpolarization currents and changes in excitability. Although these effects have been widely characterized in vitro using intracellular recordings, how they interact in vivo is unclear. Here, we develop a statistical model of the short-term dynamics of spike transmission that aims to disentangle the contributions of synaptic and nonsynaptic effects based only on observed presynaptic and postsynaptic spiking. The model includes a dynamic functional connection with short-term plasticity as well as effects due to the recent history of postsynaptic spiking and slow changes in postsynaptic excitability. Using paired spike recordings, we find that the model accurately describes the short-term dynamics of in vivo spike transmission at a diverse set of identified and putative excitatory synapses, including a pair of connected neurons within thalamus in mouse, a thalamocortical connection in a female rabbit, and an auditory brainstem synapse in a female gerbil. We illustrate the utility of this modeling approach by showing how the spike transmission patterns captured by the model may be sufficient to account for stimulus-dependent differences in spike transmission in the auditory brainstem (endbulb of Held). Finally, we apply this model to large-scale multielectrode recordings to illustrate how such an approach has the potential to reveal cell type-specific differences in spike transmission in vivo Although STP parameters estimated from ongoing presynaptic and postsynaptic spiking are highly uncertain, our results are partially consistent with previous intracellular observations in these synapses.SIGNIFICANCE STATEMENT Although synaptic dynamics have been extensively studied and modeled using intracellular recordings of postsynaptic currents and potentials, inferring synaptic effects from extracellular spiking is challenging. Whether or not a synaptic current contributes to postsynaptic spiking depends not only on the amplitude of the current, but also on many other factors, including the activity of other, typically unobserved, synapses, the overall excitability of the postsynaptic neuron, and how recently the postsynaptic neuron has spiked. Here, we developed a model that, using only observations of presynaptic and postsynaptic spiking, aims to describe the dynamics of in vivo spike transmission by modeling both short-term synaptic plasticity (STP) and nonsynaptic effects. This approach may provide a novel description of fast, structured changes in spike transmission.
Collapse
Affiliation(s)
| | - Naixin Ren
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06268
| | - Christian Keine
- Carver College of Medicine, Iowa Neuroscience Institute, Department of Anatomy and Cell Biology, University of Iowa, Iowa, IA 52242
| | - Carl Stoelzel
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06268
| | - Bernhard Englitz
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 AJ Nijmegen, Netherlands
| | - Harvey A Swadlow
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06268
| | - Ian H Stevenson
- Department of Biomedical Engineering
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06268
| |
Collapse
|
25
|
Terral G, Varilh M, Cannich A, Massa F, Ferreira G, Marsicano G. Synaptic Functions of Type-1 Cannabinoid Receptors in Inhibitory Circuits of the Anterior Piriform Cortex. Neuroscience 2020; 433:121-131. [DOI: 10.1016/j.neuroscience.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/23/2020] [Accepted: 03/03/2020] [Indexed: 02/08/2023]
|
26
|
Zhao F, Meng X, Lu S, Hyde LA, Kennedy ME, Houghton AK, Evelhoch JL, Hines CDG. fMRI study of olfactory processing in mice under three anesthesia protocols: Insight into the effect of ketamine on olfactory processing. Neuroimage 2020; 213:116725. [PMID: 32173412 DOI: 10.1016/j.neuroimage.2020.116725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a valuable tool for studying neural activations in the central nervous system of animals due to its wide spatial coverage and non-invasive nature. However, the advantages of fMRI have not been fully realized in functional studies in mice, especially in the olfactory system, possibly due to the lack of suitable anesthesia protocols with spontaneous breathing. Since mice are widely used in biomedical research, it is desirable to evaluate different anesthesia protocols for olfactory fMRI studies in mice. Dexmedetomidine (DEX) as a sedative/anesthetic has been introduced to fMRI studies in mice, but it has a limited anesthesia duration. To extend the anesthesia duration, DEX has been combined with a low dose of isoflurane (ISO) or ketamine (KET) in previous functional studies in mice. In this report, olfactory fMRI studies were performed under three anesthesia protocols (DEX alone, DEX/ISO, and DEX/KET) in three different groups of mice. Isoamyl-acetate was used as an odorant, and the odorant-induced neural activations were measured by blood oxygenation-level dependent (BOLD) fMRI. BOLD fMRI responses were observed in the olfactory bulb (OB), anterior olfactory nuclei (AON), and piriform cortex (Pir). Interestingly, BOLD fMRI activations were also observed in the prefrontal cortical region (PFC), which are most likely caused by the draining vein effect. The response in the OB showed no adaptation to either repeated odor stimulations or continuous odor exposure, but the response in the Pir showed adaptation during the continuous odor exposure. The data also shows that ISO suppresses the olfactory response in the OB and AON, while KET enhances the olfactory response in the Pir. Thus, DEX/KET should be an attractive anesthesia for olfactory fMRI in mice.
Collapse
Affiliation(s)
| | | | - Sherry Lu
- Merck & Co. Inc, West Point, PA, 19486, USA
| | | | | | | | | | | |
Collapse
|
27
|
Wang L, Zhang Z, Chen J, Manyande A, Haddad R, Liu Q, Xu F. Cell-Type-Specific Whole-Brain Direct Inputs to the Anterior and Posterior Piriform Cortex. Front Neural Circuits 2020; 14:4. [PMID: 32116571 PMCID: PMC7019026 DOI: 10.3389/fncir.2020.00004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/21/2020] [Indexed: 12/20/2022] Open
Abstract
The piriform cortex (PC) is a key brain area involved in both processing and coding of olfactory information. It is implicated in various brain disorders, such as epilepsy, Alzheimer’s disease, and autism. The PC consists of the anterior (APC) and posterior (PPC) parts, which are different anatomically and functionally. However, the direct input networks to specific neuronal populations within the APC and PPC remain poorly understood. Here, we mapped the whole-brain direct inputs to the two major neuronal populations, the excitatory glutamatergic principal neurons and inhibitory γ-aminobutyric acid (GABA)-ergic interneurons within the APC and PPC using the rabies virus (RV)-mediated retrograde trans-synaptic tracing system. We found that for both types of neurons, APC and PPC share some similarities in input networks, with dominant inputs originating from the olfactory region (OLF), followed by the cortical subplate (CTXsp), isocortex, cerebral nuclei (CNU), hippocampal formation (HPF) and interbrain (IB), whereas the midbrain (MB) and hindbrain (HB) were rarely labeled. However, APC and PPC also show distinct features in their input distribution patterns. For both types of neurons, the input proportion from the OLF to the APC was higher than that to the PPC; while the PPC received higher proportions of inputs from the HPF and CNU than the APC did. Overall, our results revealed the direct input networks of both excitatory and inhibitory neuronal populations of different PC subareas, providing a structural basis to analyze the diverse PC functions.
Collapse
Affiliation(s)
- Li Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Zhijian Zhang
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Jiacheng Chen
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex, United Kingdom
| | - Rafi Haddad
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Qing Liu
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Fuqiang Xu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
28
|
de Curtis M, Uva L, Lévesque M, Biella G, Avoli M. Piriform cortex ictogenicity in vitro. Exp Neurol 2019; 321:113014. [DOI: 10.1016/j.expneurol.2019.113014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/07/2019] [Accepted: 07/15/2019] [Indexed: 02/05/2023]
|
29
|
Rennó-Costa C, Teixeira DG, Soltesz I. Regulation of gamma-frequency oscillation by feedforward inhibition: A computational modeling study. Hippocampus 2019; 29:957-970. [PMID: 30990954 PMCID: PMC6744957 DOI: 10.1002/hipo.23093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/07/2019] [Accepted: 03/30/2019] [Indexed: 11/05/2022]
Abstract
Throughout the brain, reciprocally connected excitatory and inhibitory neurons interact to produce gamma-frequency oscillations. The emergent gamma rhythm synchronizes local neural activity and helps to select which cells should fire in each cycle. We previously found that such excitation-inhibition microcircuits, however, have a potentially significant caveat: the frequency of the gamma oscillation and the level of selection (i.e., the percentage of cells that are allowed to fire) vary with the magnitude of the input signal. In networks with varying levels of brain activity, such a feature may produce undesirable instability on the time and spatial structure of the neural signal with a potential for adversely impacting important neural processing mechanisms. Here we propose that feedforward inhibition solves the latter instability problem of the excitation-inhibition microcircuit. Using computer simulations, we show that the feedforward inhibitory signal reduces the dependence of both the frequency of population oscillation and the level of selection on the magnitude of the input excitation. Such a mechanism can produce stable gamma oscillations with its frequency determined only by the properties of the feedforward network, as observed in the hippocampus. As feedforward and feedback inhibition motifs commonly appear together in the brain, we hypothesize that their interaction underlies a robust implementation of general computational principles of neural processing involved in several cognitive tasks, including the formation of cell assemblies and the routing of information between brain areas.
Collapse
Affiliation(s)
- César Rennó-Costa
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Daniel Garcia Teixeira
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Federal Institute of Rio Grande do Norte, Natal, RN, Brazil
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
30
|
Terral G, Busquets-Garcia A, Varilh M, Achicallende S, Cannich A, Bellocchio L, Bonilla-Del Río I, Massa F, Puente N, Soria-Gomez E, Grandes P, Ferreira G, Marsicano G. CB1 Receptors in the Anterior Piriform Cortex Control Odor Preference Memory. Curr Biol 2019; 29:2455-2464.e5. [PMID: 31327715 DOI: 10.1016/j.cub.2019.06.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/23/2019] [Accepted: 06/13/2019] [Indexed: 01/26/2023]
Abstract
The retrieval of odor-related memories shapes animal behavior. The anterior piriform cortex (aPC) is the largest part of the olfactory cortex, and it plays important roles in olfactory processing and memory. However, it is still unclear whether specific cellular mechanisms in the aPC control olfactory memory, depending on the appetitive or aversive nature of the stimuli involved. Cannabinoid-type 1 (CB1) receptors are present in the aPC (aPC-CB1), but their potential impact on olfactory memory was never explored. Here, we used a combination of behavioral, genetic, anatomical, and electrophysiological approaches to characterize the functions of aPC-CB1 receptors in the regulation of appetitive and aversive olfactory memory. Pharmacological blockade or genetic deletion of aPC-CB1 receptors specifically impaired the retrieval of conditioned odor preference (COP). Interestingly, expression of conditioned odor aversion (COA) was unaffected by local CB1 receptor blockade, indicating that the role of aPC endocannabinoid signaling is selective for retrieval of appetitive memory. Anatomical investigations revealed that CB1 receptors are highly expressed on aPC GABAergic interneurons, and ex vivo electrophysiological recordings showed that their pharmacological activation reduces miniature inhibitory post-synaptic currents (mIPSCs) onto aPC semilunar (SL), but not pyramidal principal neurons. COP retrieval, but not COA, was associated with a specific CB1-receptor-dependent decrease of mIPSCs in SL cells. Altogether, these data indicate that aPC-CB1 receptor-dependent mechanisms physiologically control the retrieval of olfactory memory, depending on odor valence and engaging modulation of local inhibitory transmission.
Collapse
Affiliation(s)
- Geoffrey Terral
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Arnau Busquets-Garcia
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Marjorie Varilh
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Svein Achicallende
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Astrid Cannich
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Federico Massa
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Nagore Puente
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Edgar Soria-Gomez
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France; Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Pedro Grandes
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Guillaume Ferreira
- University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France; INRA, Bordeaux INP, Nutrition and Integrative Neurobiology, UMR 1286, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France.
| |
Collapse
|
31
|
Strauch C, Manahan-Vaughan D. In the Piriform Cortex, the Primary Impetus for Information Encoding through Synaptic Plasticity Is Provided by Descending Rather than Ascending Olfactory Inputs. Cereb Cortex 2019; 28:764-776. [PMID: 29186359 DOI: 10.1093/cercor/bhx315] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Indexed: 12/27/2022] Open
Abstract
Information encoding by means of persistent changes in synaptic strength supports long-term information storage and memory in structures such as the hippocampus. In the piriform cortex (PC), that engages in the processing of associative memory, only short-term synaptic plasticity has been described to date, both in vitro and in anesthetized rodents in vivo. Whether the PC maintains changes in synaptic strength for longer periods of time is unknown: Such a property would indicate that it can serve as a repository for long-term memories. Here, we report that in freely behaving animals, frequency-dependent synaptic plasticity does not occur in the anterior PC (aPC) following patterned stimulation of the olfactory bulb (OB). Naris closure changed action potential properties of aPC neurons and enabled expression of long-term potentiation (LTP) by OB stimulation, indicating that an intrinsic ability to express synaptic plasticity is present. Odor discrimination and categorization in the aPC is supported by descending inputs from the orbitofrontal cortex (OFC). Here, OFC stimulation resulted in LTP (>4 h), suggesting that this structure plays an important role in promoting information encoding through synaptic plasticity in the aPC. These persistent changes in synaptic strength are likely to comprise a means through which long-term memories are encoded and/or retained in the PC.
Collapse
Affiliation(s)
- Christina Strauch
- Department of Neurophysiology, Medical Faculty.,International Graduate School for Neuroscience, Ruhr University Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty.,International Graduate School for Neuroscience, Ruhr University Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
32
|
Kumar A, Schiff O, Barkai E, Mel BW, Poleg-Polsky A, Schiller J. NMDA spikes mediate amplification of inputs in the rat piriform cortex. eLife 2018; 7:38446. [PMID: 30575520 PMCID: PMC6333441 DOI: 10.7554/elife.38446] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
The piriform cortex (PCx) receives direct input from the olfactory bulb (OB) and is the brain's main station for odor recognition and memory. The transformation of the odor code from OB to PCx is profound: mitral and tufted cells in olfactory glomeruli respond to individual odorant molecules, whereas pyramidal neurons (PNs) in the PCx responds to multiple, apparently random combinations of activated glomeruli. How these 'discontinuous' receptive fields are formed from OB inputs remains unknown. Counter to the prevailing view that olfactory PNs sum their inputs passively, we show for the first time that NMDA spikes within individual dendrites can both amplify OB inputs and impose combination selectivity upon them, while their ability to compartmentalize voltage signals allows different dendrites to represent different odorant combinations. Thus, the 2-layer integrative behavior of olfactory PN dendrites provides a parsimonious account for the nonlinear remapping of the odor code from bulb to cortex.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Physiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Oded Schiff
- Department of Physiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Edi Barkai
- Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Bartlett W Mel
- Biomedical Engineering Department, University of Southern California, Los Angeles, United States
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, United States
| | - Jackie Schiller
- Department of Physiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
33
|
Zhang Y, Li S, Jiang D, Chen A. Response Properties of Interneurons and Pyramidal Neurons in Macaque MSTd and VPS Areas During Self-Motion. Front Neural Circuits 2018; 12:105. [PMID: 30532695 PMCID: PMC6265351 DOI: 10.3389/fncir.2018.00105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/05/2018] [Indexed: 11/29/2022] Open
Abstract
To perceive self-motion perception, the brain needs to integrate multi-modal sensory signals such as visual, vestibular and proprioceptive cues. Self-motion perception is very complex and involves multi candidate areas. Previous studies related to self-motion perception during passive motion have revealed that some of the areas show selective response to different directions for both visual (optic flow) and vestibular stimuli, such as the dorsal subdivision of the medial superior temporal area (MSTd) and the visual posterior sylvian fissure (VPS), although MSTd is dominated by visual signals and VPS is dominated by vestibular signals. However, none of studies related to self-motion perception have distinguished the different neuron types with distinct neuronal properties in cortical microcircuitry, which limited our understanding of the local circuits for self-motion perception. In the current study, we classified the recorded MSTd and VPS neurons into putative pyramidal neurons and putative interneurons based on the extracellular action potential waveforms and spontaneous firing rates. We found that: (1) the putative interneurons exhibited obviously broader direction tuning than putative pyramidal neurons in response to their dominant (visual for MSTd; vestibular for VPS) stimulation type; (2) either in visual or vestibular condition, the putative interneurons were more responsive but with larger variability than the putative pyramidal neurons for both MSTd and VPS areas; and (3) the timing of vestibular and visual peak directional tuning was earlier in the putative interneurons than that of the putative pyramidal neurons for both MSTd and VPS areas. Based on these findings we speculated that, within the microcircuitry, several adjacent putative interneurons with broad direction tuning receive earlier strong but variable signals, which might act feedforward input to shape the direction tuning of the target putative pyramidal neuron, but each interneuron may participate in several microcircuitries, targeting different output neurons.
Collapse
Affiliation(s)
| | | | | | - Aihua Chen
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China
| |
Collapse
|
34
|
Srinivasan S, Stevens CF. The distributed circuit within the piriform cortex makes odor discrimination robust. J Comp Neurol 2018; 526:2725-2743. [PMID: 30014545 DOI: 10.1002/cne.24492] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022]
Abstract
Distributed circuits wherein connections between subcircuit components seem randomly distributed are common to the olfactory circuit, hippocampus, and cerebellum. In such circuits, activation patterns seem random too, showing no detectable spatial preference, and contrast with regions that have topographic connections between subcircuits and topographic activation patterns. Quantitative studies of topographic circuits in the neocortex have yielded common principles of organization. Whether distributed circuits share similar principles of organization is unknown because similar quantitative information is missing and understanding the way they encode information remains a challenge. We addressed these needs by providing a quantitative description of the mouse piriform cortex, a paleocortical distributed circuit that subserves olfaction. The quantitative information provided two insights. First, with a nearly parameter-free model of the olfactory circuit, we show that the piriform cortex robustly maintains odor information and discrimination ability present in the olfactory bulb. Second, the paleocortex is quantitatively different from the neocortex: it has a lower surface area density, which decreases from the anterior to posterior paleocortex contrasting with the uniform neuronal density of the neocortex. These insights might also apply to other distributed circuits.
Collapse
Affiliation(s)
- Shyam Srinivasan
- Salk Institute for Biological Studies, La Jolla, California.,Kavli Institute for Brain and Mind, University of California, San Diego, California
| | - Charles F Stevens
- Salk Institute for Biological Studies, La Jolla, California.,Kavli Institute for Brain and Mind, University of California, San Diego, California
| |
Collapse
|
35
|
Bolding KA, Franks KM. Recurrent cortical circuits implement concentration-invariant odor coding. Science 2018; 361:361/6407/eaat6904. [PMID: 30213885 DOI: 10.1126/science.aat6904] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 08/03/2018] [Indexed: 12/28/2022]
Abstract
Animals rely on olfaction to find food, attract mates, and avoid predators. To support these behaviors, they must be able to identify odors across different odorant concentrations. The neural circuit operations that implement this concentration invariance remain unclear. We found that despite concentration-dependence in the olfactory bulb (OB), representations of odor identity were preserved downstream, in the piriform cortex (PCx). The OB cells responding earliest after inhalation drove robust responses in sparse subsets of PCx neurons. Recurrent collateral connections broadcast their activation across the PCx, recruiting global feedback inhibition that rapidly truncated and suppressed cortical activity for the remainder of the sniff, discounting the impact of slower, concentration-dependent OB inputs. Eliminating recurrent collateral output amplified PCx odor responses rendered the cortex steeply concentration-dependent and abolished concentration-invariant identity decoding.
Collapse
Affiliation(s)
- Kevin A Bolding
- Department of Neurobiology, Duke University Medical School, Durham, NC, USA
| | - Kevin M Franks
- Department of Neurobiology, Duke University Medical School, Durham, NC, USA.
| |
Collapse
|
36
|
Differential inhibition of pyramidal cells and inhibitory interneurons along the rostrocaudal axis of anterior piriform cortex. Proc Natl Acad Sci U S A 2018; 115:E8067-E8076. [PMID: 30087186 DOI: 10.1073/pnas.1802428115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spatial representation of stimuli in sensory neocortices provides a scaffold for elucidating circuit mechanisms underlying sensory processing. However, the anterior piriform cortex (APC) lacks topology for odor identity as well as afferent and intracortical excitation. Consequently, olfactory processing is considered homogenous along the APC rostral-caudal (RC) axis. We recorded excitatory and inhibitory neurons in APC while optogenetically activating GABAergic interneurons along the RC axis. In contrast to excitation, we find opposing, spatially asymmetric inhibition onto pyramidal cells (PCs) and interneurons. PCs are strongly inhibited by caudal stimulation sites, whereas interneurons are strongly inhibited by rostral sites. At least two mechanisms underlie spatial asymmetries. Enhanced caudal inhibition of PCs is due to increased synaptic strength, whereas rostrally biased inhibition of interneurons is mediated by increased somatostatin-interneuron density. Altogether, we show differences in rostral and caudal inhibitory circuits in APC that may underlie spatial variation in odor processing along the RC axis.
Collapse
|
37
|
Zhao F, Holahan MA, Wang X, Uslaner JM, Houghton AK, Evelhoch JL, Winkelmann CT, Hines CDG. fMRI study of the role of glutamate NMDA receptor in the olfactory processing in monkeys. PLoS One 2018; 13:e0198395. [PMID: 29870538 PMCID: PMC5988321 DOI: 10.1371/journal.pone.0198395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 05/20/2018] [Indexed: 11/24/2022] Open
Abstract
Studies in rodents show that olfactory processing in the principal neurons of olfactory bulb (OB) and piriform cortex (PC) is controlled by local inhibitory interneurons, and glutamate NMDA receptor plays a role in this inhibitory control. It is not clear if findings from studies in rodents translate to olfactory processing in nonhuman primates (NHPs). In this study, the effect of the glutamate NMDA receptor antagonist MK801 on odorant-induced olfactory responses in the OB and PC of anesthetized NHPs (rhesus monkeys) was investigated by cerebral blood volume (CBV) fMRI. Isoamyl-acetate was used as the odor stimulant. For each NHP, sixty fMRI measurements were made during a 4-h period, with each 4-min measurement consisting of a 1-min baseline period, a 1-min odor stimulation period, and a 2-min recovery period. MK801 (0.3 mg/kg) was intravenously delivered 1 hour after starting fMRI. Before MK801 injection, olfactory fMRI activations were observed only in the OB, not in the PC. After MK801 injection, olfactory fMRI activations in the OB increased, and robust olfactory fMRI activations were observed in the PC. The data indicate that MK801 enhances the olfactory responses in both the OB and PC. The enhancement effects of MK801 are most likely from its blockage of NMDA receptors on local inhibitory interneurons and the attenuation of the inhibition onto principal neurons. This study suggests that the mechanism of local inhibitory control of principal neurons in the OB and PC derived from studies in rodents translates to NHPs.
Collapse
Affiliation(s)
- Fuqiang Zhao
- Merck & Co., Inc., West Point, Pennsylvania, United States of America
- * E-mail:
| | - Marie A. Holahan
- Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Xiaohai Wang
- Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Jason M. Uslaner
- Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | | | | | | | | |
Collapse
|
38
|
Stern M, Bolding KA, Abbott LF, Franks KM. A transformation from temporal to ensemble coding in a model of piriform cortex. eLife 2018; 7:34831. [PMID: 29595470 PMCID: PMC5902166 DOI: 10.7554/elife.34831] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/20/2018] [Indexed: 11/29/2022] Open
Abstract
Different coding strategies are used to represent odor information at various stages of the mammalian olfactory system. A temporal latency code represents odor identity in olfactory bulb (OB), but this temporal information is discarded in piriform cortex (PCx) where odor identity is instead encoded through ensemble membership. We developed a spiking PCx network model to understand how this transformation is implemented. In the model, the impact of OB inputs activated earliest after inhalation is amplified within PCx by diffuse recurrent collateral excitation, which then recruits strong, sustained feedback inhibition that suppresses the impact of later-responding glomeruli. We model increasing odor concentrations by decreasing glomerulus onset latencies while preserving their activation sequences. This produces a multiplexed cortical odor code in which activated ensembles are robust to concentration changes while concentration information is encoded through population synchrony. Our model demonstrates how PCx circuitry can implement multiplexed ensemble-identity/temporal-concentration odor coding.
Collapse
Affiliation(s)
- Merav Stern
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem, Israel.,Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Kevin A Bolding
- Department of Neurobiology, Duke University School of Medicine, Durham, United States
| | - L F Abbott
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Kevin M Franks
- Department of Neurobiology, Duke University School of Medicine, Durham, United States
| |
Collapse
|
39
|
Hu R, Zhang J, Luo M, Hu J. Response Patterns of GABAergic Neurons in the Anterior Piriform Cortex of Awake Mice. Cereb Cortex 2018; 27:3110-3124. [PMID: 27252353 DOI: 10.1093/cercor/bhw175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Local inhibition by γ-amino butyric acid (GABA)-containing neurons is of vital importance for the operation of sensory cortices. However, the physiological response patterns of cortical GABAergic neurons are poorly understood, especially in the awake condition. Here, we utilized the recently developed optical tagging technique to specifically record GABAergic neurons in the anterior piriform cortex (aPC) in awake mice. The identified aPC GABAergic neurons were stimulated with robotic delivery of 32 distinct odorants, which covered a broad range of functional groups. We found that aPC GABAergic neurons could be divided into 4 types based on their response patterns. Type I, type II, and type III neurons displayed broad excitatory responses to test odorants with different dynamics. Type I neurons were constantly activated during odorant stimulation, whereas type II neurons were only transiently activated at the onset of odorant delivery. In addition, type III neurons displayed transient excitatory responses both at the onset and termination of odorant presentation. Interestingly, type IV neurons were broadly inhibited by most of the odorants. Taken together, aPC GABAergic neurons adopt different strategies to affect the cortical circuitry. Our results will allow for better understanding of the role of cortical GABAergic interneurons in sensory information processing.
Collapse
Affiliation(s)
- Rongfeng Hu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Juen Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
40
|
Gerrard LB, Tantirigama MLS, Bekkers JM. Pre- and Postsynaptic Activation of GABA B Receptors Modulates Principal Cell Excitation in the Piriform Cortex. Front Cell Neurosci 2018; 12:28. [PMID: 29459821 PMCID: PMC5807346 DOI: 10.3389/fncel.2018.00028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022] Open
Abstract
The piriform cortex (PC), like other cortical regions, normally operates in a state of dynamic equilibrium between excitation and inhibition. Here we examined the roles played by pre- and postsynaptic GABAB receptors in maintaining this equilibrium in the PC. Using whole-cell recordings in brain slices from the anterior PC of mice, we found that synaptic activation of postsynaptic GABAB receptors hyperpolarized the two major classes of layer 2 principal neurons and reduced the intrinsic electrical excitability of these neurons. Presynaptic GABAB receptors are expressed on the terminals of associational (intracortical) glutamatergic axons in the PC. Heterosynaptic activation of these receptors reduced excitatory associational inputs onto principal cells. Presynaptic GABAB receptors are also expressed on the axons of GABAergic interneurons in the PC, and blockade of these autoreceptors enhanced inhibitory inputs onto principal cells. Hence, presynaptic GABAB autoreceptors produce disinhibition of principal cells. To study the functional consequences of GABAB activation in vivo, we used 2-photon calcium imaging to simultaneously monitor the activity of ~200 layer 2 neurons. Superfusion of the GABAB agonist baclofen reduced spontaneous random firing but also promoted synchronous epileptiform activity. These findings suggest that, while GABAB activation can dampen excitability by engaging pre- and postsynaptic GABAB heteroreceptors on glutamatergic neurons, it can also promote excitability by disinhibiting principal cells by activating presynaptic GABAB autoreceptors on interneurons. Thus, depending on the dynamic balance of hetero- and autoinhibition, GABAB receptors can function as variable modulators of circuit excitability in the PC.
Collapse
Affiliation(s)
- Leah B Gerrard
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Malinda L S Tantirigama
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - John M Bekkers
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
41
|
Ghosh S, Reuveni I, Zidan S, Lamprecht R, Barkai E. Learning-induced modulation of the effect of endocannabinoids on inhibitory synaptic transmission. J Neurophysiol 2018; 119:752-760. [DOI: 10.1152/jn.00623.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endocannabinoids are key modulators that regulate central brain functions and behaviors, including learning and memory. At the cellular and molecular levels, endocannabinoids are potent modulators of excitatory and inhibitory synaptic function. Most effects of cannabinoids are thought to be mediated via G protein-coupled cannabinoid receptors. In particular, cannabinoids released from postsynaptic neurons are suggested to act as retrograde messengers, activating presynaptic type-1 cannabinoid receptors (CB1Rs), thereby inducing suppression of synaptic release. Another central mechanism of cannabinoid-induced action requires activation of astroglial CB1Rs. CB1Rs are also implicated in self-modulation of cortical neurons. Rats that are trained in a particularly difficult olfactory-discrimination task show a dramatic increased ability to acquire memories of new odors. The memory of the acquired high-skill acquisition, termed “rule learning” or “learning set,” lasts for many months. Using this behavioral paradigm, we show a novel function of action for CB1Rs, supporting long-term memory by maintaining persistent enhancement of inhibitory synaptic transmission. Long-lasting enhancement of inhibitory synaptic transmission is blocked by a CB1R inverse agonist. This effect is mediated by a novel purely postsynaptic mechanism, obtained by enhancing the single GABAA channel conductance that is PKA dependent. The significant role that CB1R has in maintaining learning-induced long-term strengthening of synaptic inhibition suggests that endocannabinoids have a key role in maintaining long-term memory by enhancing synaptic inhibition. NEW & NOTEWORTHY In this study we show a novel function and mechanism of action for cannabinoids in neurons, mediated by activation of type-1 cannabinoid receptors, supporting long-term memory by maintaining persistent enhancement of inhibitory synaptic transmission on excitatory neurons. This effect is mediated by a novel purely postsynaptic mechanism, obtained by enhancing the single GABAA channel conductance that is PKA dependent. Thus we report for the first time that endocannabinoids have a key role maintaining learning-induced synaptic modification.
Collapse
Affiliation(s)
- Sourav Ghosh
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Iris Reuveni
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Samaa Zidan
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Edi Barkai
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
42
|
Abstract
Cortical networks are composed of glutamatergic excitatory projection neurons and local GABAergic inhibitory interneurons that gate signal flow and sculpt network dynamics. Although they represent a minority of the total neocortical neuronal population, GABAergic interneurons are highly heterogeneous, forming functional classes based on their morphological, electrophysiological, and molecular features, as well as connectivity and in vivo patterns of activity. Here we review our current understanding of neocortical interneuron diversity and the properties that distinguish cell types. We then discuss how the involvement of multiple cell types, each with a specific set of cellular properties, plays a crucial role in diversifying and increasing the computational power of a relatively small number of simple circuit motifs forming cortical networks. We illustrate how recent advances in the field have shed light onto the mechanisms by which GABAergic inhibition contributes to network operations.
Collapse
|
43
|
Gleizes M, Perrier SP, Fonta C, Nowak LG. Prominent facilitation at beta and gamma frequency range revealed with physiological calcium concentration in adult mouse piriform cortex in vitro. PLoS One 2017; 12:e0183246. [PMID: 28820903 PMCID: PMC5562311 DOI: 10.1371/journal.pone.0183246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/01/2017] [Indexed: 12/25/2022] Open
Abstract
Neuronal activity is characterized by a diversity of oscillatory phenomena that are associated with multiple behavioral and cognitive processes, yet the functional consequences of these oscillations are not fully understood. Our aim was to determine whether and how these different oscillatory activities affect short-term synaptic plasticity (STP), using the olfactory system as a model. In response to odorant stimuli, the olfactory bulb displays a slow breathing rhythm as well as beta and gamma oscillations. Since the firing of olfactory bulb projecting neurons is phase-locked with beta and gamma oscillations, structures downstream from the olfactory bulb should be driven preferentially at these frequencies. We examined STP exhibited by olfactory bulb inputs in slices of adult mouse piriform cortex maintained in vitro in an in vivo-like ACSF (calcium concentration: 1.1 mM). We replaced the presynaptic neuronal firing rate by repeated electrical stimulation (frequency between 3.125 and 100 Hz) applied to the lateral olfactory tract. Our results revealed a considerable enhancement of postsynaptic response amplitude for stimulation frequencies in the beta and gamma range. A phenomenological model of STP fitted to the data suggests that the experimental results can be explained by the interplay between three mechanisms: a short-term facilitation mechanism (time constant ≈160 msec), and two short-term depression mechanisms (recovery time constants <20 msec and ≈140 msec). Increasing calcium concentration (2.2 mM) resulted in an increase in the time constant of facilitation and in a strengthening of the slowest depression mechanism. As a result, response enhancement was reduced and its peak shifted toward the low beta and alpha ranges while depression became predominant in the gamma band. Using environmental conditions corresponding to those that prevail in vivo, our study shows that STP in the lateral olfactory tract to layer Ia synapse allows amplification of olfactory bulb inputs at beta and gamma frequencies.
Collapse
Affiliation(s)
- Marie Gleizes
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
- Unité Mixte de Recherche 5549, Centre National de la Recherche Scientifique, Toulouse, France
| | - Simon P. Perrier
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
- Unité Mixte de Recherche 5549, Centre National de la Recherche Scientifique, Toulouse, France
| | - Caroline Fonta
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
- Unité Mixte de Recherche 5549, Centre National de la Recherche Scientifique, Toulouse, France
| | - Lionel G. Nowak
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
- Unité Mixte de Recherche 5549, Centre National de la Recherche Scientifique, Toulouse, France
| |
Collapse
|
44
|
Bolding KA, Franks KM. Complementary codes for odor identity and intensity in olfactory cortex. eLife 2017; 6. [PMID: 28379135 PMCID: PMC5438247 DOI: 10.7554/elife.22630] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/01/2017] [Indexed: 12/18/2022] Open
Abstract
The ability to represent both stimulus identity and intensity is fundamental for perception. Using large-scale population recordings in awake mice, we find distinct coding strategies facilitate non-interfering representations of odor identity and intensity in piriform cortex. Simply knowing which neurons were activated is sufficient to accurately represent odor identity, with no additional information about identity provided by spike time or spike count. Decoding analyses indicate that cortical odor representations are not sparse. Odorant concentration had no systematic effect on spike counts, indicating that rate cannot encode intensity. Instead, odor intensity can be encoded by temporal features of the population response. We found a subpopulation of rapid, largely concentration-invariant responses was followed by another population of responses whose latencies systematically decreased at higher concentrations. Cortical inhibition transforms olfactory bulb output to sharpen these dynamics. Our data therefore reveal complementary coding strategies that can selectively represent distinct features of a stimulus. DOI:http://dx.doi.org/10.7554/eLife.22630.001
Collapse
Affiliation(s)
- Kevin A Bolding
- Department of Neurobiology, Duke University Medical School, Durham, United States
| | - Kevin M Franks
- Department of Neurobiology, Duke University Medical School, Durham, United States
| |
Collapse
|
45
|
Zhao F, Wang X, Zariwala HA, Uslaner JM, Houghton AK, Evelhoch JL, Hostetler E, Winkelmann CT, Hines CD. fMRI study of the role of glutamate NMDA receptor in the olfactory adaptation in rats: Insights into cellular and molecular mechanisms of olfactory adaptation. Neuroimage 2017; 149:348-360. [DOI: 10.1016/j.neuroimage.2017.01.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/23/2016] [Accepted: 01/28/2017] [Indexed: 11/16/2022] Open
|
46
|
Choy JM, Suzuki N, Shima Y, Budisantoso T, Nelson SB, Bekkers JM. Optogenetic Mapping of Intracortical Circuits Originating from Semilunar Cells in the Piriform Cortex. Cereb Cortex 2017; 27:589-601. [PMID: 26503263 PMCID: PMC5939214 DOI: 10.1093/cercor/bhv258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Despite its comparatively simple trilaminar architecture, the primary olfactory (piriform) cortex of mammals is capable of performing sophisticated sensory processing, an ability that is thought to depend critically on its extensive associational (intracortical) excitatory circuits. Here, we used a novel transgenic mouse model and optogenetics to measure the connectivity of associational circuits that originate in semilunar (SL) cells in layer 2a of the anterior piriform cortex (aPC). We generated a mouse line (48L) in which channelrhodopsin-2 (ChR) could be selectively expressed in a subset of SL cells. Light-evoked excitatory postsynaptic currents (EPSCs) could be evoked in superficial pyramidal cells (17.4% of n = 86 neurons) and deep pyramidal cells (33.3%, n = 9) in the aPC, but never in ChR- SL cells (0%, n = 34). Thus, SL cells monosynaptically excite pyramidal cells, but not other SL cells. Light-evoked EPSCs were also selectively elicited in 3 classes of GABAergic interneurons in layer 3 of the aPC. Our results show that SL cells are specialized for providing feedforward excitation of specific classes of neurons in the aPC, confirming that SL cells comprise a functionally distinctive input layer.
Collapse
Affiliation(s)
- Julian M.C. Choy
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Norimitsu Suzuki
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Yasuyuki Shima
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - Timotheus Budisantoso
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
- Department of Physiological Sciences, Graduate University for Advanced Studies, Okazaki444-8787, Japan
- Current address: Department of Physiology, School of Medicine, Keio University, Shinjuku, Tokyo 160-8582, Japan
| | - Sacha B. Nelson
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - John M. Bekkers
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
47
|
Large AM, Kunz NA, Mielo SL, Oswald AMM. Inhibition by Somatostatin Interneurons in Olfactory Cortex. Front Neural Circuits 2016; 10:62. [PMID: 27582691 PMCID: PMC4987344 DOI: 10.3389/fncir.2016.00062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/29/2016] [Indexed: 01/12/2023] Open
Abstract
Inhibitory circuitry plays an integral role in cortical network activity. The development of transgenic mouse lines targeting unique interneuron classes has significantly advanced our understanding of the functional roles of specific inhibitory circuits in neocortical sensory processing. In contrast, considerably less is known about the circuitry and function of interneuron classes in piriform cortex, a paleocortex responsible for olfactory processing. In this study, we sought to utilize transgenic technology to investigate inhibition mediated by somatostatin (SST) interneurons onto pyramidal cells (PCs), parvalbumin (PV) interneurons, and other interneuron classes. As a first step, we characterized the anatomical distributions and intrinsic properties of SST and PV interneurons in four transgenic lines (SST-cre, GIN, PV-cre, and G42) that are commonly interbred to investigate inhibitory connectivity. Surprisingly, the distributions SST and PV cell subtypes targeted in the GIN and G42 lines were sparse in piriform cortex compared to neocortex. Moreover, two-thirds of interneurons recorded in the SST-cre line had electrophysiological properties similar to fast spiking (FS) interneurons rather than regular (RS) or low threshold spiking (LTS) phenotypes. Nonetheless, like neocortex, we find that SST-cells broadly inhibit a number of unidentified interneuron classes including putatively identified PV cells and surprisingly, other SST cells. We also confirm that SST-cells inhibit pyramidal cell dendrites and thus, influence dendritic integration of afferent and recurrent inputs to the piriform cortex. Altogether, our findings suggest that SST interneurons play an important role in regulating both excitation and the global inhibitory network during olfactory processing.
Collapse
Affiliation(s)
- Adam M Large
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh Pittsburgh, PA, USA
| | - Nicholas A Kunz
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh Pittsburgh, PA, USA
| | - Samantha L Mielo
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh Pittsburgh, PA, USA
| | - Anne-Marie M Oswald
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh Pittsburgh, PA, USA
| |
Collapse
|
48
|
Diodato A, Ruinart de Brimont M, Yim YS, Derian N, Perrin S, Pouch J, Klatzmann D, Garel S, Choi GB, Fleischmann A. Molecular signatures of neural connectivity in the olfactory cortex. Nat Commun 2016; 7:12238. [PMID: 27426965 PMCID: PMC4960301 DOI: 10.1038/ncomms12238] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 06/14/2016] [Indexed: 01/01/2023] Open
Abstract
The ability to target subclasses of neurons with defined connectivity is crucial for uncovering neural circuit functions. The olfactory (piriform) cortex is thought to generate odour percepts and memories, and odour information encoded in piriform is routed to target brain areas involved in multimodal sensory integration, cognition and motor control. However, it remains unknown if piriform outputs are spatially organized, and if distinct output channels are delineated by different gene expression patterns. Here we identify genes selectively expressed in different layers of the piriform cortex. Neural tracing experiments reveal that these layer-specific piriform genes mark different subclasses of neurons, which project to distinct target areas. Interestingly, these molecular signatures of connectivity are maintained in reeler mutant mice, in which neural positioning is scrambled. These results reveal that a predictive link between a neuron's molecular identity and connectivity in this cortical circuit is determined independent of its spatial position. The piriform cortex projects to multiple brain regions involved in diverse aspects of olfactory behavior but information about the organization of these outputs is lacking. Here the authors show that piriform neurons exhibit layer specific gene expression patterns that also define distinct projection targets.
Collapse
Affiliation(s)
- Assunta Diodato
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, and CNRS, UMR 7241 and INSERM U1050, F-75005 Paris, France
| | - Marion Ruinart de Brimont
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, and CNRS, UMR 7241 and INSERM U1050, F-75005 Paris, France
| | - Yeong Shin Yim
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Nicolas Derian
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U959, Immunology-Immunopathology-Immunotherapy (I3), and AP-HP, Clinical Investigation Center in Biotherapy, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Sandrine Perrin
- École Normale Supérieure, Institut de Biologie de l'ENS, Plateforme Génomique, and INSERM U1024, CNRS UMR 8197, F-75005 Paris, France
| | - Juliette Pouch
- École Normale Supérieure, Institut de Biologie de l'ENS, Plateforme Génomique, and INSERM U1024, CNRS UMR 8197, F-75005 Paris, France
| | - David Klatzmann
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U959, Immunology-Immunopathology-Immunotherapy (I3), and AP-HP, Clinical Investigation Center in Biotherapy, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Sonia Garel
- École Normale Supérieure, Institut de Biologie de l'ENS, and INSERM U1024, CNRS UMR 8197, F-75005 Paris, France
| | - Gloria B Choi
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Alexander Fleischmann
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, and CNRS, UMR 7241 and INSERM U1050, F-75005 Paris, France
| |
Collapse
|
49
|
Balanced feedforward inhibition and dominant recurrent inhibition in olfactory cortex. Proc Natl Acad Sci U S A 2016; 113:2276-81. [PMID: 26858458 DOI: 10.1073/pnas.1519295113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Throughout the brain, the recruitment of feedforward and recurrent inhibition shapes neural responses. However, disentangling the relative contributions of these often-overlapping cortical circuits is challenging. The piriform cortex provides an ideal system to address this issue because the interneurons responsible for feedforward and recurrent inhibition are anatomically segregated in layer (L) 1 and L2/3 respectively. Here we use a combination of optical and electrical activation of interneurons to profile the inhibitory input received by three classes of principal excitatory neuron in the anterior piriform cortex. In all classes, we find that L1 interneurons provide weaker inhibition than L2/3 interneurons. Nonetheless, feedforward inhibitory strength covaries with the amount of afferent excitation received by each class of principal neuron. In contrast, intracortical stimulation of L2/3 evokes strong inhibition that dominates recurrent excitation in all classes. Finally, we find that the relative contributions of feedforward and recurrent pathways differ between principal neuron classes. Specifically, L2 neurons receive more reliable afferent drive and less overall inhibition than L3 neurons. Alternatively, L3 neurons receive substantially more intracortical inhibition. These three features--balanced afferent drive, dominant recurrent inhibition, and differential recruitment by afferent vs. intracortical circuits, dependent on cell class--suggest mechanisms for olfactory processing that may extend to other sensory cortices.
Collapse
|
50
|
Ben-Shaul Y. Extracting Social Information from Chemosensory Cues: Consideration of Several Scenarios and Their Functional Implications. Front Neurosci 2015; 9:439. [PMID: 26635515 PMCID: PMC4653286 DOI: 10.3389/fnins.2015.00439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/30/2015] [Indexed: 11/16/2022] Open
Abstract
Across all sensory modalities, stimuli can vary along multiple dimensions. Efficient extraction of information requires sensitivity to those stimulus dimensions that provide behaviorally relevant information. To derive social information from chemosensory cues, sensory systems must embed information about the relationships between behaviorally relevant traits of individuals and the distributions of the chemical cues that are informative about these traits. In simple cases, the mere presence of one particular compound is sufficient to guide appropriate behavior. However, more generally, chemosensory information is conveyed via relative levels of multiple chemical cues, in non-trivial ways. The computations and networks needed to derive information from multi-molecule stimuli are distinct from those required by single molecule cues. Our current knowledge about how socially relevant information is encoded by chemical blends, and how it is extracted by chemosensory systems is very limited. This manuscript explores several scenarios and the neuronal computations required to identify them.
Collapse
Affiliation(s)
- Yoram Ben-Shaul
- Department of Medical Neurobiology, Hebrew University Medical School Jerusalem, Israel
| |
Collapse
|