1
|
Lin KH, Ranjan M, Lipstein N, Brose N, Neher E, Taschenberger H. Number and relative abundance of synaptic vesicles in functionally distinct priming states determine synaptic strength and short-term plasticity. J Physiol 2025. [PMID: 40120134 DOI: 10.1113/jp286282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Heterogeneity in synaptic strength and short-term plasticity (STP) was characterized in post-hearing rat calyx of Held synapses at near-physiological external [Ca2+] under control conditions and after experimentally induced synaptic potentiation. Kinetic modelling was combined with non-negative tensor factorization (NTF) to separate changes in synaptic vesicle (SV) priming kinetics from those in SV fusion probability (pfu sion). Heterogeneous synaptic strength and STP under control conditions can be fully accounted for by assuming a uniform pfusion among calyx synapses yet profound synapse-to-synapse variation in the resting equilibrium of SVs in functionally distinct priming states. Although synaptic potentiation induced by either elevated resting [Ca2+]i, elevated external [Ca2+] or stimulation of the diacylglycerol (DAG) signalling pathway leads to seemingly similar changes, that is, stronger synapses with less facilitation and more pronounced depression, the underlying mechanisms are different. Specifically, synaptic potentiation induced by the DAG mimetic and Munc13/PKC activator phorbol 12,13-dibutyrate (PDBu) only moderately enhances pfusion but strongly increases the abundance of fusion-competent maturely primed SVs, demonstrating that the dynamic equilibrium of differentially primed SVs critically determines synaptic strength and STP. Activation of the DAG pathway not only stimulates priming at resting [Ca2+]i but further promotes SV pool replenishment at elevated [Ca2+]i following pool-depleting stimulus trains. A two-step priming and fusion scheme which recapitulates the sequential build-up of the molecular SV fusion machinery is capable of reproducing experimentally induced changes in synaptic strength and STP in numerical simulations with a small number of plausible model parameter changes. KEY POINTS: A relatively simple two-step synaptic vesicle (SV) priming and fusion scheme is capable of reproducing experimentally induced changes in synaptic strength and short-term plasticity with a small number of plausible parameter changes. The combination of non-negative tensor factorization (NTF)-decomposition analysis and state modelling allows one to separate experimentally induced changes in SV priming kinetics from those in SV fusion probability. A relatively low sensitivity of the SV priming equilibrium to changes in resting [Ca2+]i suggests that the amplitude of the 'effective' action potential (AP)-induced Ca2+ transient is quite large, likely representing contributions of global and local Ca2+ signals. Enhanced synaptic strength and stronger depression after stimulation of the diacylglycerol (DAG) signalling pathway is primarily caused by enhanced SV priming, leading to increased abundance of maturely primed SVs at rest with comparably small changes in SV fusion probability. Application of DAG mimetics enhances the Ca2+-dependent acceleration of SV priming causing a faster recovery of synaptic strength after pool-depleting stimuli.
Collapse
Affiliation(s)
- Kun-Han Lin
- Laboratory of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mrinalini Ranjan
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, Göttingen, Germany
| | - Noa Lipstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Erwin Neher
- Laboratory of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
2
|
Aberra AS, Miles MW, Hoppa MB. Subthreshold electric fields bidirectionally modulate neurotransmitter release through axon polarization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.22.639625. [PMID: 40027611 PMCID: PMC11870616 DOI: 10.1101/2025.02.22.639625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Subthreshold electric fields modulate brain activity and demonstrate potential in several therapeutic applications. Electric fields are known to generate heterogenous membrane polarization within neurons due to their complex morphologies. While the effects of somatic and dendritic polarization in postsynaptic neurons have been characterized, the functional consequences of axonal polarization on neurotransmitter release from the presynapse are unknown. Here, we combined noninvasive optogenetic indicators of voltage, calcium and neurotransmitter release to study the subcellular response within single neurons to subthreshold electric fields. We first captured the detailed spatiotemporal polarization profile produced by uniform electric fields within individual neurons. Small polarization of presynaptic boutons produces rapid and powerful modulation of neurotransmitter release, with the direction - facilitation or inhibition - depending on the direction of polarization. We determined that subthreshold electric fields drive this effect by rapidly altering the number of synaptic vesicles participating in neurotransmission, producing effects which resemble short-term plasticity akin to presynaptic homeostatic plasticity. These results provide key insights into the mechanisms of subthreshold electric fields at the cellular level. Abstract Figure
Collapse
Affiliation(s)
- Aman S. Aberra
- Dept. of Biological Sciences, Dartmouth College, Hanover, NH
| | | | | |
Collapse
|
3
|
Rameshkumar N, Shrestha AP, Boff JM, Hoon M, Matveev V, Zenisek D, Vaithianathan T. Nanophysiology Approach Reveals Diversity in Calcium Microdomains across Zebrafish Retinal Bipolar Ribbon Synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.01.617078. [PMID: 39896514 PMCID: PMC11785002 DOI: 10.1101/2024.11.01.617078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Rapid and high local calcium (Ca 2+ ) signals are essential for triggering neurotransmitter release from presynaptic terminals. In specialized bipolar ribbon synapses of the retina, these local Ca 2+ signals control multiple processes, including the priming, docking, and translocation of vesicles on the ribbon before exocytosis, endocytosis, and the replenishment of release-ready vesicles to the fusion sites for sustained neurotransmission. However, our knowledge about Ca 2+ signals along the axis of the ribbon active zone is limited. Here, we used fast confocal quantitative dual-color ratiometric line-scan imaging of a fluorescently labeled ribbon binding peptide and Ca 2+ indicators to monitor the spatial and temporal aspects of Ca 2+ transients of individual ribbon active zones in zebrafish retinal rod bipolar cells (RBCs). We observed that a Ca 2+ transient elicited a much greater fluorescence amplitude when the Ca 2+ indicator was conjugated to a ribeye-binding peptide than when using a soluble Ca 2+ indicator, and the estimated Ca 2+ levels at the ribbon active zone exceeded 26 μM in response to a 10-millisecond stimulus, as measured by a ribbon-bound low-affinity Ca 2+ indicator. Our quantitative modeling of Ca 2+ diffusion and buffering is consistent with this estimate and provides a detailed view of the spatiotemporal [Ca 2+ ] dynamics near the ribbon. Importantly, our data demonstrates that the local Ca 2+ levels may vary between ribbons of different RBCs and within the same cells. The variation in local Ca 2+ signals is correlated to ribbon size, which in turn correlates with active zone extent, as serial electron microscopy provides new information about the heterogeneity in ribbon size, shape, and area of the ribbon in contact with the plasma membrane.
Collapse
|
4
|
López-Murcia FJ, Lin KH, Berns MMM, Ranjan M, Lipstein N, Neher E, Brose N, Reim K, Taschenberger H. Complexin has a dual synaptic function as checkpoint protein in vesicle priming and as a promoter of vesicle fusion. Proc Natl Acad Sci U S A 2024; 121:e2320505121. [PMID: 38568977 PMCID: PMC11009659 DOI: 10.1073/pnas.2320505121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
The presynaptic SNARE-complex regulator complexin (Cplx) enhances the fusogenicity of primed synaptic vesicles (SVs). Consequently, Cplx deletion impairs action potential-evoked transmitter release. Conversely, though, Cplx loss enhances spontaneous and delayed asynchronous release at certain synapse types. Using electrophysiology and kinetic modeling, we show that such seemingly contradictory transmitter release phenotypes seen upon Cplx deletion can be explained by an additional of Cplx in the control of SV priming, where its ablation facilitates the generation of a "faulty" SV fusion apparatus. Supporting this notion, a sequential two-step priming scheme, featuring reduced vesicle fusogenicity and increased transition rates into the faulty primed state, reproduces all aberrations of transmitter release modes and short-term synaptic plasticity seen upon Cplx loss. Accordingly, we propose a dual presynaptic function for the SNARE-complex interactor Cplx, one as a "checkpoint" protein that guarantees the proper assembly of the fusion machinery during vesicle priming, and one in boosting vesicle fusogenicity.
Collapse
Affiliation(s)
- Francisco José López-Murcia
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Kun-Han Lin
- Laboratory of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| | - Manon M. M. Berns
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Mrinalini Ranjan
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, Georg August University Göttingen, Göttingen37077, Germany
| | - Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Erwin Neher
- Laboratory of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
- Cluster of Excellence ‘Multiscale Bioimaging’, Georg August University Göttingen, Göttingen37073, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
- Cluster of Excellence ‘Multiscale Bioimaging’, Georg August University Göttingen, Göttingen37073, Germany
| | - Kerstin Reim
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| |
Collapse
|
5
|
Neher E. Interpretation of presynaptic phenotypes of synaptic plasticity in terms of a two-step priming process. J Gen Physiol 2024; 156:e202313454. [PMID: 38112713 PMCID: PMC10730358 DOI: 10.1085/jgp.202313454] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Studies on synaptic proteins involved in neurotransmitter release often aim at distinguishing between their roles in vesicle priming (the docking of synaptic vesicles to the plasma membrane and the assembly of a release machinery) as opposed to the process of vesicle fusion. This has traditionally been done by estimating two parameters, the size of the pool of fusion-competent vesicles (the readily releasable pool, RRP) and the probability that such vesicles are released by an action potential, with the aim of determining how these parameters are affected by molecular perturbations. Here, it is argued that the assumption of a homogeneous RRP may be too simplistic and may blur the distinction between vesicle priming and fusion. Rather, considering priming as a dynamic and reversible multistep process allows alternative interpretations of mutagenesis-induced changes in synaptic transmission and suggests mechanisms for variability in synaptic strength and short-term plasticity among synapses, as well as for interactions between short- and long-term plasticity. In many cases, assigned roles of proteins or causes for observed phenotypes are shifted from fusion- to priming-related when considering multistep priming. Activity-dependent enhancement of priming is an essential element in this alternative view and its variation among synapse types can explain why some synapses show depression and others show facilitation at low to intermediate stimulation frequencies. Multistep priming also suggests a mechanism for frequency invariance of steady-state release, which can be observed in some synapses involved in sensory processing.
Collapse
Affiliation(s)
- Erwin Neher
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
6
|
Weichard I, Taschenberger H, Gsell F, Bornschein G, Ritzau-Jost A, Schmidt H, Kittel RJ, Eilers J, Neher E, Hallermann S, Nerlich J. Fully-primed slowly-recovering vesicles mediate presynaptic LTP at neocortical neurons. Proc Natl Acad Sci U S A 2023; 120:e2305460120. [PMID: 37856547 PMCID: PMC10614622 DOI: 10.1073/pnas.2305460120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/26/2023] [Indexed: 10/21/2023] Open
Abstract
Pre- and postsynaptic forms of long-term potentiation (LTP) are candidate synaptic mechanisms underlying learning and memory. At layer 5 pyramidal neurons, LTP increases the initial synaptic strength but also short-term depression during high-frequency transmission. This classical form of presynaptic LTP has been referred to as redistribution of synaptic efficacy. However, the underlying mechanisms remain unclear. We therefore performed whole-cell recordings from layer 5 pyramidal neurons in acute cortical slices of rats and analyzed presynaptic function before and after LTP induction by paired pre- and postsynaptic neuronal activity. LTP was successfully induced in about half of the synaptic connections tested and resulted in increased synaptic short-term depression during high-frequency transmission and a decelerated recovery from short-term depression due to an increased fraction of a slow recovery component. Analysis with a recently established sequential two-step vesicle priming model indicates an increase in the abundance of fully-primed and slowly-recovering vesicles. A systematic analysis of short-term plasticity and synapse-to-synapse variability of synaptic strength at various types of synapses revealed that stronger synapses generally recover more slowly from synaptic short-term depression. Finally, pharmacological stimulation of the cyclic adenosine monophosphate and diacylglycerol signaling pathways, which are both known to promote synaptic vesicle priming, mimicked LTP and slowed the recovery from short-term depression. Our data thus demonstrate that LTP at layer 5 pyramidal neurons increases synaptic strength primarily by enlarging a subpool of fully-primed slowly-recovering vesicles.
Collapse
Affiliation(s)
- Iron Weichard
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Felix Gsell
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Grit Bornschein
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Andreas Ritzau-Jost
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Hartmut Schmidt
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Robert J. Kittel
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig04103, Germany
| | - Jens Eilers
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Erwin Neher
- Emeritus Laboratory of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37070, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Göttingen, Göttingen37073, Germany
| | - Stefan Hallermann
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Jana Nerlich
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| |
Collapse
|
7
|
Eisner D, Neher E, Taschenberger H, Smith G. Physiology of intracellular calcium buffering. Physiol Rev 2023; 103:2767-2845. [PMID: 37326298 PMCID: PMC11550887 DOI: 10.1152/physrev.00042.2022] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/08/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Calcium signaling underlies much of physiology. Almost all the Ca2+ in the cytoplasm is bound to buffers, with typically only ∼1% being freely ionized at resting levels in most cells. Physiological Ca2+ buffers include small molecules and proteins, and experimentally Ca2+ indicators will also buffer calcium. The chemistry of interactions between Ca2+ and buffers determines the extent and speed of Ca2+ binding. The physiological effects of Ca2+ buffers are determined by the kinetics with which they bind Ca2+ and their mobility within the cell. The degree of buffering depends on factors such as the affinity for Ca2+, the Ca2+ concentration, and whether Ca2+ ions bind cooperatively. Buffering affects both the amplitude and time course of cytoplasmic Ca2+ signals as well as changes of Ca2+ concentration in organelles. It can also facilitate Ca2+ diffusion inside the cell. Ca2+ buffering affects synaptic transmission, muscle contraction, Ca2+ transport across epithelia, and the killing of bacteria. Saturation of buffers leads to synaptic facilitation and tetanic contraction in skeletal muscle and may play a role in inotropy in the heart. This review focuses on the link between buffer chemistry and function and how Ca2+ buffering affects normal physiology and the consequences of changes in disease. As well as summarizing what is known, we point out the many areas where further work is required.
Collapse
Affiliation(s)
- David Eisner
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Erwin Neher
- Membrane Biophysics Laboratory, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
8
|
Fukaya R, Miyano R, Hirai H, Sakaba T. Mechanistic insights into cAMP-mediated presynaptic potentiation at hippocampal mossy fiber synapses. Front Cell Neurosci 2023; 17:1237589. [PMID: 37519634 PMCID: PMC10372368 DOI: 10.3389/fncel.2023.1237589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Presynaptic plasticity is an activity-dependent change in the neurotransmitter release and plays a key role in dynamic modulation of synaptic strength. Particularly, presynaptic potentiation mediated by cyclic adenosine monophosphate (cAMP) is widely seen across the animals and thought to contribute to learning and memory. Hippocampal mossy fiber-CA3 pyramidal cell synapses have been used as a model because of robust presynaptic potentiation in short- and long-term forms. Moreover, direct presynaptic recordings from large mossy fiber terminals allow one to dissect the potentiation mechanisms. Recently, super-resolution microscopy and flash-and-freeze electron microscopy have revealed the localizations of release site molecules and synaptic vesicles during the potentiation at a nanoscale, identifying the molecular mechanisms of the potentiation. Incorporating these growing knowledges, we try to present plausible mechanisms underlying the cAMP-mediated presynaptic potentiation.
Collapse
Affiliation(s)
- Ryota Fukaya
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Rinako Miyano
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Himawari Hirai
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| |
Collapse
|
9
|
Dual amplification strategy turns TRPM2 channels into supersensitive central heat detectors. Proc Natl Acad Sci U S A 2022; 119:e2212378119. [PMID: 36409885 PMCID: PMC9881722 DOI: 10.1073/pnas.2212378119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Ca2+ and ADP ribose (ADPR)-activated cation channel TRPM2 is the closest homolog of the cold sensor TRPM8 but serves as a deep-brain warmth sensor. To unravel the molecular mechanism of heat sensing by the TRPM2 protein, we study here temperature dependence of TRPM2 currents in cell-free membrane patches across ranges of agonist concentrations. We find that channel gating remains strictly agonist-dependent even at 40°C: heating alone or in combination with just Ca2+, just ADPR, Ca2+ + cyclic ADPR, or H2O2 pretreatment only marginally activates TRPM2. For fully liganded TRPM2, pore opening is intrinsically endothermic, due to ~10-fold larger activation enthalpy for opening (~200 kJ/mol) than for closure (~20 kJ/mol). However, the temperature threshold is too high (>40°C) for unliganded but too low (<15°C) for fully liganded channels. Thus, warmth sensitivity around 37°C is restricted to narrow ranges of agonist concentrations. For ADPR, that range matches, but for Ca2+, it exceeds bulk cytosolic values. The supraphysiological [Ca2+] needed for TRPM2 warmth sensitivity is provided by Ca2+ entering through the channel's pore. That positive feedback provides further strong amplification to the TRPM2 temperature response (Q10 ~ 1,000), enabling the TRPM2 protein to autonomously respond to tiny temperature fluctuations around 37°C. These functional data together with published structures suggest a molecular mechanism for opposite temperature dependences of two closely related channel proteins.
Collapse
|
10
|
Lopez-Manzaneda M, Fuentes-Moliz A, Tabares L. Presynaptic Mitochondria Communicate With Release Sites for Spatio-Temporal Regulation of Exocytosis at the Motor Nerve Terminal. Front Synaptic Neurosci 2022; 14:858340. [PMID: 35645766 PMCID: PMC9133601 DOI: 10.3389/fnsyn.2022.858340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Presynaptic Ca2+ regulation is critical for accurate neurotransmitter release, vesicle reloading of release sites, and plastic changes in response to electrical activity. One of the main players in the regulation of cytosolic Ca2+ in nerve terminals is mitochondria, which control the size and spread of the Ca2+ wave during sustained electrical activity. However, the role of mitochondria in Ca2+ signaling during high-frequency short bursts of action potentials (APs) is not well known. Here, we studied spatial and temporal relationships between mitochondrial Ca2+ (mCa2+) and exocytosis by live imaging and electrophysiology in adult motor nerve terminals of transgenic mice expressing synaptophysin-pHluorin (SypHy). Our results show that hot spots of exocytosis and mitochondria are organized in subsynaptic functional regions and that mitochondria start to uptake Ca2+ after a few APs. We also show that mitochondria contribute to the regulation of the mode of fusion (synchronous and asynchronous) and the kinetics of release and replenishment of the readily releasable pool (RRP) of vesicles. We propose that mitochondria modulate the timing and reliability of neurotransmission in motor nerve terminals during brief AP trains.
Collapse
|
11
|
Knodel MM, Dutta Roy R, Wittum G. Influence of T-Bar on Calcium Concentration Impacting Release Probability. Front Comput Neurosci 2022; 16:855746. [PMID: 35586479 PMCID: PMC9108211 DOI: 10.3389/fncom.2022.855746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
The relation of form and function, namely the impact of the synaptic anatomy on calcium dynamics in the presynaptic bouton, is a major challenge of present (computational) neuroscience at a cellular level. The Drosophila larval neuromuscular junction (NMJ) is a simple model system, which allows studying basic effects in a rather simple way. This synapse harbors several special structures. In particular, in opposite to standard vertebrate synapses, the presynaptic boutons are rather large, and they have several presynaptic zones. In these zones, different types of anatomical structures are present. Some of the zones bear a so-called T-bar, a particular anatomical structure. The geometric form of the T-bar resembles the shape of the letter “T” or a table with one leg. When an action potential arises, calcium influx is triggered. The probability of vesicle docking and neurotransmitter release is superlinearly proportional to the concentration of calcium close to the vesicular release site. It is tempting to assume that the T-bar causes some sort of calcium accumulation and hence triggers a higher release probability and thus enhances neurotransmitter exocytosis. In order to study this influence in a quantitative manner, we constructed a typical T-bar geometry and compared the calcium concentration close to the active zones (AZs). We compared the case of synapses with and without T-bars. Indeed, we found a substantial influence of the T-bar structure on the presynaptic calcium concentrations close to the AZs, indicating that this anatomical structure increases vesicle release probability. Therefore, our study reveals how the T-bar zone implies a strong relation between form and function. Our study answers the question of experimental studies (namely “Wichmann and Sigrist, Journal of neurogenetics 2010”) concerning the sense of the anatomical structure of the T-bar.
Collapse
Affiliation(s)
- Markus M. Knodel
- Goethe Center for Scientific Computing (GCSC), Goethe Universität Frankfurt, Frankfurt, Germany
- *Correspondence: Markus M. Knodel ; orcid.org/0000-0001-8739-0803
| | | | - Gabriel Wittum
- Goethe Center for Scientific Computing (GCSC), Goethe Universität Frankfurt, Frankfurt, Germany
- Applied Mathematics and Computational Science, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
12
|
Martínez-Valencia A, Ramírez-Santiago G, De-Miguel FF. Dynamics of Neuromuscular Transmission Reproduced by Calcium-Dependent and Reversible Serial Transitions in the Vesicle Fusion Complex. Front Synaptic Neurosci 2022; 13:785361. [PMID: 35242023 PMCID: PMC8885725 DOI: 10.3389/fnsyn.2021.785361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/30/2021] [Indexed: 11/28/2022] Open
Abstract
Neuromuscular transmission, from spontaneous release to facilitation and depression, was accurately reproduced by a mechanistic kinetic model of sequential maturation transitions in the molecular fusion complex. The model incorporates three predictions. First, calcium-dependent forward transitions take vesicles from docked to preprimed to primed states, followed by fusion. Second, prepriming and priming are reversible. Third, fusion and recycling are unidirectional. The model was fed with experimental data from previous studies, whereas the backward (β) and recycling (ρ) rate constant values were fitted. Classical experiments were successfully reproduced with four transition states in the model when every forward (α) rate constant had the same value, and both backward rate constants were 50–100 times larger. Such disproportion originated an abruptly decreasing gradient of resting vesicles from docked to primed states. By contrast, a three-state version of the model failed to reproduce the dynamics of transmission by using the same set of parameters. Simulations predict the following: (1) Spontaneous release reflects primed to fusion spontaneous transitions. (2) Calcium elevations synchronize the series of forward transitions that lead to fusion. (3) Facilitation reflects a transient increase of priming following the calcium-dependent maturation transitions. (4) The calcium sensors that produce facilitation are those that evoke the transitions form docked to primed states. (5) Backward transitions and recycling restore the resting state. (6) Depression reflects backward transitions and slow recycling after intense release. Altogether, our results predict that fusion is produced by one calcium sensor, whereas the modulation of the number of vesicles that fuse depends on the calcium sensors that promote the early transition states. Such finely tuned kinetics offers a mechanism for collective non-linear transitional adaptations of a homogeneous vesicle pool to the ever-changing pattern of electrical activity in the neuromuscular junction.
Collapse
Affiliation(s)
- Alejandro Martínez-Valencia
- Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Francisco F. De-Miguel
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: Francisco F. De-Miguel,
| |
Collapse
|
13
|
Lipstein N, Chang S, Lin KH, López-Murcia FJ, Neher E, Taschenberger H, Brose N. Munc13-1 is a Ca 2+-phospholipid-dependent vesicle priming hub that shapes synaptic short-term plasticity and enables sustained neurotransmission. Neuron 2021; 109:3980-4000.e7. [PMID: 34706220 PMCID: PMC8691950 DOI: 10.1016/j.neuron.2021.09.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022]
Abstract
During ongoing presynaptic action potential (AP) firing, transmitter release is limited by the availability of release-ready synaptic vesicles (SVs). The rate of SV recruitment (SVR) to release sites is strongly upregulated at high AP frequencies to balance SV consumption. We show that Munc13-1-an essential SV priming protein-regulates SVR via a Ca2+-phospholipid-dependent mechanism. Using knockin mouse lines with point mutations in the Ca2+-phospholipid-binding C2B domain of Munc13-1, we demonstrate that abolishing Ca2+-phospholipid binding increases synaptic depression, slows recovery of synaptic strength after SV pool depletion, and reduces temporal fidelity of synaptic transmission, while increased Ca2+-phospholipid binding has the opposite effects. Thus, Ca2+-phospholipid binding to the Munc13-1-C2B domain accelerates SVR, reduces short-term synaptic depression, and increases the endurance and temporal fidelity of neurotransmission, demonstrating that Munc13-1 is a core vesicle priming hub that adjusts SV re-supply to demand.
Collapse
Affiliation(s)
- Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Shuwen Chang
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kun-Han Lin
- Emeritus Laboratory of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Erwin Neher
- Emeritus Laboratory of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging," Georg August University, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging," Georg August University, Göttingen, Germany.
| |
Collapse
|
14
|
Eshra A, Schmidt H, Eilers J, Hallermann S. Calcium dependence of neurotransmitter release at a high fidelity synapse. eLife 2021; 10:70408. [PMID: 34612812 PMCID: PMC8494478 DOI: 10.7554/elife.70408] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/24/2021] [Indexed: 11/15/2022] Open
Abstract
The Ca2+-dependence of the priming, fusion, and replenishment of synaptic vesicles are fundamental parameters controlling neurotransmitter release and synaptic plasticity. Despite intense efforts, these important steps in the synaptic vesicles’ cycle remain poorly understood due to the technical challenge in disentangling vesicle priming, fusion, and replenishment. Here, we investigated the Ca2+-sensitivity of these steps at mossy fiber synapses in the rodent cerebellum, which are characterized by fast vesicle replenishment mediating high-frequency signaling. We found that the basal free Ca2+ concentration (<200 nM) critically controls action potential-evoked release, indicating a high-affinity Ca2+ sensor for vesicle priming. Ca2+ uncaging experiments revealed a surprisingly shallow and non-saturating relationship between release rate and intracellular Ca2+ concentration up to 50 μM. The rate of vesicle replenishment during sustained elevated intracellular Ca2+ concentration exhibited little Ca2+-dependence. Finally, quantitative mechanistic release schemes with five Ca2+ binding steps incorporating rapid vesicle replenishment via parallel or sequential vesicle pools could explain our data. We thus show that co-existing high- and low-affinity Ca2+ sensors mediate priming, fusion, and replenishment of synaptic vesicles at a high-fidelity synapse.
Collapse
Affiliation(s)
- Abdelmoneim Eshra
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Hartmut Schmidt
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jens Eilers
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Stefan Hallermann
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
15
|
Lujan BJ, Singh M, Singh A, Renden RB. Developmental shift to mitochondrial respiration for energetic support of sustained transmission during maturation at the calyx of Held. J Neurophysiol 2021; 126:976-996. [PMID: 34432991 PMCID: PMC8560424 DOI: 10.1152/jn.00333.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
A considerable amount of energy is expended following presynaptic activity to regenerate electrical polarization and maintain efficient release and recycling of neurotransmitter. Mitochondria are the major suppliers of neuronal energy, generating ATP via oxidative phosphorylation. However, the specific utilization of energy from cytosolic glycolysis rather than mitochondrial respiration at the presynaptic terminal during synaptic activity remains unclear and controversial. We use a synapse specialized for high-frequency transmission in mice, the calyx of Held, to test the sources of energy used to maintain energy during short activity bursts (<1 s) and sustained neurotransmission (30-150 s). We dissect the role of presynaptic glycolysis versus mitochondrial respiration by acutely and selectively blocking these ATP-generating pathways in a synaptic preparation where mitochondria and synaptic vesicles are prolific, under near-physiological conditions. Surprisingly, if either glycolysis or mitochondrial ATP production is intact, transmission during repetitive short bursts of activity is not affected. In slices from young animals before the onset of hearing, where the synapse is not yet fully specialized, both glycolytic and mitochondrial ATP production are required to support sustained, high-frequency neurotransmission. In mature synapses, sustained transmission relies exclusively on mitochondrial ATP production supported by bath lactate, but not glycolysis. At both ages, we observe that action potential propagation begins to fail before defects in synaptic vesicle recycling. Our data describe a specific metabolic profile to support high-frequency information transmission at the mature calyx of Held, shifting during postnatal synaptic maturation from glycolysis to rely on monocarboxylates as a fuel source.NEW & NOTEWORTHY We dissect the role of presynaptic glycolysis versus mitochondrial respiration in supporting high-frequency neurotransmission, by acutely blocking these ATP-generating pathways at a synapse tuned for high-frequency transmission. We find that massive energy expenditure is required to generate failure when only one pathway is inhibited. Action potential propagation is lost before impaired synaptic vesicle recycling. Synaptic transmission is exclusively dependent on oxidative phosphorylation in mature synapses, indicating presynaptic glycolysis may be dispensable for ATP maintenance.
Collapse
Affiliation(s)
- Brendan J Lujan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Mahendra Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Abhyudai Singh
- Electrical & Computer Engineering, University of Delaware, Newark, Delaware
| | - Robert B Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| |
Collapse
|
16
|
Yang CH, Ho WK, Lee SH. Postnatal maturation of glutamate clearance and release kinetics at the rat and mouse calyx of Held synapses. Synapse 2021; 75:e22215. [PMID: 34057239 DOI: 10.1002/syn.22215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/04/2021] [Accepted: 05/23/2021] [Indexed: 11/09/2022]
Abstract
Although calyx of Held synapses undergo dramatic changes around the hearing onset, previous in vivo studies suggest that the calyx synapses undergo further post-hearing maturation process. While developmental changes over the hearing onset have been extensively studied, this post-hearing maturation process remained relatively little investigated. Because of post-hearing maturation, previous results from studies around hearing onset and studies of post-hearing calyx synapses are somewhat inconsistent. Here, we characterized the post-hearing maturation of calyx synapses with regard to in vitro electrophysiological properties in rats and mice. We found that parameters for residual glutamate in the cleft during a train, EPSC kinetics, and vesicle pool size became close to a full mature level by P14, but they further matured until P16 in the rats. Consistently, the phasic and slow EPSCs evoked by action potential trains at P16 calyx synapses were not different from those at P18 or P25 under physiological extracellular [Ca2+ ]o (1.2 mM). In contrast, the parameters for residual current and EPSC kinetics displayed drastic changes until P16 in mice, and slow EPSCs during the train further decreased between P16 and P18, suggesting that maturation of calyx synapses progresses at least up to P16 in rats and P18 in mice.
Collapse
Affiliation(s)
- Che Ho Yang
- Cell Physiology Lab, Department of Physiology, Seoul National University College of Medicine and Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Won-Kyung Ho
- Cell Physiology Lab, Department of Physiology, Seoul National University College of Medicine and Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Department of Brain and Cognitive Science, Seoul National University, Seoul, Republic of Korea
| | - Suk-Ho Lee
- Cell Physiology Lab, Department of Physiology, Seoul National University College of Medicine and Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Department of Brain and Cognitive Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
17
|
A Trio of Active Zone Proteins Comprised of RIM-BPs, RIMs, and Munc13s Governs Neurotransmitter Release. Cell Rep 2021; 32:107960. [PMID: 32755572 DOI: 10.1016/j.celrep.2020.107960] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/01/2020] [Accepted: 07/02/2020] [Indexed: 11/21/2022] Open
Abstract
At the presynaptic active zone, action-potential-triggered neurotransmitter release requires that fusion-competent synaptic vesicles are placed next to Ca2+ channels. The active zone resident proteins RIM, RBP, and Munc13 are essential contributors for vesicle priming and Ca2+-channel recruitment. Although the individual contributions of these scaffolds have been extensively studied, their respective functions in neurotransmission are still incompletely understood. Here, we analyze the functional interactions of RIMs, RBPs, and Munc13s at the genetic, molecular, functional, and ultrastructural levels in a mammalian synapse. We find that RBP, together with Munc13, promotes vesicle priming at the expense of RBP's role in recruiting presynaptic Ca2+ channels, suggesting that the support of RBP for vesicle priming and Ca2+-secretion coupling is mutually exclusive. Our results demonstrate that the functional interaction of RIM, RBP, and Munc13 is more profound than previously envisioned, acting as a functional trio that govern basic and short-term plasticity properties of neurotransmission.
Collapse
|
18
|
Hu H, Wang X, Li C, Li Y, Hao J, Zhou Y, Yang X, Chen P, Shen X, Zhang S. Loss of Dysbindin Implicates Synaptic Vesicle Replenishment Dysregulation as a Potential Pathogenic Mechanism in Schizophrenia. Neuroscience 2020; 452:138-152. [PMID: 33186610 DOI: 10.1016/j.neuroscience.2020.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/18/2022]
Abstract
The schizophrenia-susceptibility gene, dystrobrevin-binding protein 1 (DTNBP1), encodes the dysbindin protein and mediates neurotransmission and neurodevelopment in normal subjects. Functional studies show that DTNBP1 loss may cause deficient presynaptic vesicle transmission, which is related to multiple psychiatric disorders. However, the functional mechanism of dysbindin-mediated synaptic vesicle transmission has not been investigated systematically. In this study, we performed electrophysiological recordings in calyx of Held synapses. We found that excitatory postsynaptic current (EPSC) and miniature EPSC (mEPSC) amplitudes were unchanged in dysbindin-deficient synapses, but readily releasable pool (RRP) size and calcium dependent vesicle replenishment were affected during high-frequency stimulation. Moreover, dysbindin loss accompanied slightly decreases in Munc18-1 and snapin expression levels, which are associated with vesicle priming and synaptic homeostasis under high-frequency stimulation. Together, we inferred that dysbindin directly interacts with Munc18-1 and snapin to mediate calcium dependent RRP replenishment. Dysbindin loss may lead to RRP replenishment dysregulation during high-frequency stimulation, potentially causing cognitive impairment in schizophrenia.
Collapse
Affiliation(s)
- Han Hu
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefeng Wang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Li
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Hao
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanli Zhou
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaopeng Yang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peihua Chen
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, CAS, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| | - Xuefeng Shen
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, CAS, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| | - Shuli Zhang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Blanchard K, Zorrilla de San Martín J, Marty A, Llano I, Trigo FF. Differentially poised vesicles underlie fast and slow components of release at single synapses. J Gen Physiol 2020; 152:e201912523. [PMID: 32243497 PMCID: PMC7201884 DOI: 10.1085/jgp.201912523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/12/2020] [Indexed: 12/25/2022] Open
Abstract
In several types of central mammalian synapses, sustained presynaptic stimulation leads to a sequence of two components of synaptic vesicle release, reflecting the consecutive contributions of a fast-releasing pool (FRP) and of a slow-releasing pool (SRP). Previous work has shown that following common depletion by a strong stimulation, FRP and SRP recover with different kinetics. However, it has remained unclear whether any manipulation could lead to a selective enhancement of either FRP or SRP. To address this question, we have performed local presynaptic calcium uncaging in single presynaptic varicosities of cerebellar interneurons. These varicosities typically form "simple synapses" onto postsynaptic interneurons, involving several (one to six) docking/release sites within a single active zone. We find that strong uncaging laser pulses elicit two phases of release with time constants of ∼1 ms (FRP release) and ∼20 ms (SRP release). When uncaging was preceded by action potential-evoked vesicular release, the extent of SRP release was specifically enhanced. We interpret this effect as reflecting an increased likelihood of two-step release (docking then release) following the elimination of docked synaptic vesicles by action potential-evoked release. In contrast, a subthreshold laser-evoked calcium elevation in the presynaptic varicosity resulted in an enhancement of the FRP release. We interpret this latter effect as reflecting an increased probability of occupancy of docking sites following subthreshold calcium increase. In conclusion, both fast and slow components of release can be specifically enhanced by certain presynaptic manipulations. Our results have implications for the mechanism of docking site replenishment and the regulation of synaptic responses, in particular following activation of ionotropic presynaptic receptors.
Collapse
Affiliation(s)
- Kris Blanchard
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Centre National de la Recherche Scientifique, UMR 8003, Paris, France
| | - Javier Zorrilla de San Martín
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Centre National de la Recherche Scientifique, UMR 8003, Paris, France
| | - Alain Marty
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Centre National de la Recherche Scientifique, UMR 8003, Paris, France
| | - Isabel Llano
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Centre National de la Recherche Scientifique, UMR 8003, Paris, France
| | - Federico F Trigo
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Centre National de la Recherche Scientifique, UMR 8003, Paris, France
| |
Collapse
|
20
|
Wesseling JF. Considerations for Measuring Activity-Dependence of Recruitment of Synaptic Vesicles to the Readily Releasable Pool. Front Synaptic Neurosci 2019; 11:32. [PMID: 31824292 PMCID: PMC6879548 DOI: 10.3389/fnsyn.2019.00032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/06/2019] [Indexed: 11/29/2022] Open
Abstract
The connection strength of most chemical synapses changes dynamically during normal use as a function of the recent history of activity. The phenomenon is known as short-term synaptic plasticity or synaptic dynamics, and is thought to be involved in processing and filtering information as it is transmitted across the synaptic cleft. Multiple presynaptic mechanisms have been implicated, but large gaps remain in our understanding of how the mechanisms are modulated and how they interact. One important factor is the timing of recruitment of synaptic vesicles to a readily-releasable pool. A number of studies have concluded that activity and/or residual Ca2+ can accelerate the mechanism, but alternative explanations for some of the evidence have emerged. Here I review the methodology that we have developed for isolating the recruitment and the dependence on activity from other kinds of mechanisms that are activated concurrently.
Collapse
Affiliation(s)
- John F Wesseling
- CSIC/Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
21
|
Dong W, Radulovic T, Goral RO, Thomas C, Suarez Montesinos M, Guerrero-Given D, Hagiwara A, Putzke T, Hida Y, Abe M, Sakimura K, Kamasawa N, Ohtsuka T, Young SM. CAST/ELKS Proteins Control Voltage-Gated Ca 2+ Channel Density and Synaptic Release Probability at a Mammalian Central Synapse. Cell Rep 2019; 24:284-293.e6. [PMID: 29996090 PMCID: PMC6372087 DOI: 10.1016/j.celrep.2018.06.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/25/2018] [Accepted: 06/05/2018] [Indexed: 12/29/2022] Open
Abstract
In the presynaptic terminal, the magnitude and location of Ca2+ entry through voltage-gated Ca2+ channels (VGCCs) regulate the efficacy of neurotransmitter release. However, how presynaptic active zone proteins control mammalian VGCC levels and organization is unclear. To address this, we deleted the CAST/ELKS protein family at the calyx of Held, a CaV2.1 channel-exclusive presynaptic terminal. We found that loss of CAST/ELKS reduces the CaV2.1 current density with concomitant reductions in CaV2.1 channel numbers and clusters. Surprisingly, deletion of CAST/ELKS increases release probability while decreasing the readily releasable pool, with no change in active zone ultrastructure. In addition, Ca2+ channel coupling is unchanged, but spontaneous release rates are elevated. Thus, our data identify distinct roles for CAST/ELKS as positive regulators of CaV2.1 channel density and suggest that they regulate release probability through a post-priming step that controls synaptic vesicle fusogenicity. Dong et al. show that CAST/ELKS have multiple roles in presynaptic function. These proteins positively regulate CaV2.1 channel abundance and negatively regulate release probability. The authors propose that CAST/ELKS regulate release probability at a step in synaptic vesicle release that regulates the energy barrier for synaptic vesicle fusion.
Collapse
Affiliation(s)
- Wei Dong
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA; Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Tamara Radulovic
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - R Oliver Goral
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Connon Thomas
- Max Planck Florida Institute for Neuroscience Electron Microscopy Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Monica Suarez Montesinos
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Debbie Guerrero-Given
- Max Planck Florida Institute for Neuroscience Electron Microscopy Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Akari Hagiwara
- Department of Biochemistry, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Travis Putzke
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Yamato Hida
- Department of Biochemistry, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Naomi Kamasawa
- Max Planck Florida Institute for Neuroscience Electron Microscopy Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Toshihisa Ohtsuka
- Department of Biochemistry, University of Yamanashi, Yamanashi 409-3898, Japan.
| | - Samuel M Young
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA; Department of Otolaryngology, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA; Aging Mind Brain Initiative, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
22
|
Synaptotagmin-1 enables frequency coding by suppressing asynchronous release in a temperature dependent manner. Sci Rep 2019; 9:11341. [PMID: 31383906 PMCID: PMC6683208 DOI: 10.1038/s41598-019-47487-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023] Open
Abstract
To support frequency-coded information transfer, mammalian synapses tightly synchronize neurotransmitter release to action potentials (APs). However, release desynchronizes during AP trains, especially at room temperature. Here we show that suppression of asynchronous release by Synaptotagmin-1 (Syt1), but not release triggering, is highly temperature sensitive, and enhances synchronous release during high-frequency stimulation. In Syt1-deficient synapses, asynchronous release increased with temperature, opposite to wildtype synapses. Mutations in Syt1 C2B-domain polybasic stretch (Syt1 K326Q,K327Q,K331Q) did not affect synchronization during sustained activity, while the previously observed reduced synchronous response to a single AP was confirmed. However, an inflexible linker between the C2-domains (Syt1 9Pro) reduced suppression, without affecting synchronous release upon a single AP. Syt1 9Pro expressing synapses showed impaired synchronization during AP trains, which was rescued by buffering global Ca2+ to prevent asynchronous release. Hence, frequency coding relies on Syt1's temperature sensitive suppression of asynchronous release, an aspect distinct from its known vesicle recruitment and triggering functions.
Collapse
|
23
|
Chen S, Yu C, Rong L, Li CH, Qin X, Ryu H, Park H. Altered Synaptic Vesicle Release and Ca 2+ Influx at Single Presynaptic Terminals of Cortical Neurons in a Knock-in Mouse Model of Huntington's Disease. Front Mol Neurosci 2018; 11:478. [PMID: 30618623 PMCID: PMC6311661 DOI: 10.3389/fnmol.2018.00478] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the abnormal expansion of CAG repeats in the huntingtin (HTT) gene, which leads to progressive loss of neurons starting in the striatum and cortex. One possible mechanism for this selective loss of neurons in the early stage of HD is altered neurotransmission at synapses. Despite the recent finding that presynaptic terminals play an important role in HD, neurotransmitter release at synapses in HD remains poorly understood. Here, we measured synaptic vesicle release in real time at single presynaptic terminals during electrical field stimulation. We found the increase in synaptic vesicle release at presynaptic terminals in primary cortical neurons in a knock-in mouse model of HD (zQ175). We also found the increase in Ca2+ influx at presynaptic terminals in HD neurons during the electrical stimulation. Consistent with increased Ca2+-dependent neurotransmission in HD neurons, the increase in vesicle release and Ca2+ influx was rescued with Ca2+ chelators or by blocking N-type voltage-gated Ca2+ channels, suggesting N-type voltage-gated Ca2+ channels play an important role in HD. Taken together, our results suggest that the increased synaptic vesicles release due to increased Ca2+ influx at presynaptic terminals in cortical neurons contributes to the selective neurodegeneration of these neurons in early HD and provide a possible therapeutic target.
Collapse
Affiliation(s)
- Sidong Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Chenglong Yu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Li Rong
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Chun Hei Li
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Xianan Qin
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Hoon Ryu
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
24
|
Lujan B, von Gersdorff H. Tuning auditory synapses for resilience, reliability and precision. J Physiol 2018; 595:621-622. [PMID: 28145017 DOI: 10.1113/jp273496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Brendan Lujan
- The Vollum Institute, Oregon Health and Science University, Portland, Oregon, 97239, USA
| | - Henrique von Gersdorff
- The Vollum Institute, Oregon Health and Science University, Portland, Oregon, 97239, USA
| |
Collapse
|
25
|
Neher E, Brose N. Dynamically Primed Synaptic Vesicle States: Key to Understand Synaptic Short-Term Plasticity. Neuron 2018; 100:1283-1291. [DOI: 10.1016/j.neuron.2018.11.024] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/26/2018] [Accepted: 11/13/2018] [Indexed: 01/09/2023]
|
26
|
Singh M, Denny H, Smith C, Granados J, Renden R. Presynaptic loss of dynamin-related protein 1 impairs synaptic vesicle release and recycling at the mouse calyx of Held. J Physiol 2018; 596:6263-6287. [PMID: 30285293 DOI: 10.1113/jp276424] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS This study characterizes the mechanisms underlying defects in synaptic transmission when dynamin-related protein 1 (DRP1) is genetically eliminated. Viral-mediated knockout of DRP1 from the presynaptic terminal at the mouse calyx of Held increased initial release probability, reduced the size of the synaptic vesicle recycling pool and impaired synaptic vesicle recycling. Transmission defects could be partially restored by increasing the intracellular calcium buffering capacity with EGTA-AM, implying close coupling of Ca2+ channels to synaptic vesicles was compromised. Acute restoration of ATP to physiological levels in the presynaptic terminal did not reverse the synaptic defects. Loss of DRP1 impairs mitochondrial morphology in the presynaptic terminal, which in turn seems to arrest synaptic maturation. ABSTRACT Impaired mitochondrial biogenesis and function is implicated in many neurodegenerative diseases, and likely affects synaptic neurotransmission prior to cellular loss. Dynamin-related protein 1 (DRP1) is essential for mitochondrial fission and is disrupted in neurodegenerative disease. In this study, we used the mouse calyx of Held synapse as a model to investigate the impact of presynaptic DRP1 loss on synaptic vesicle (SV) recycling and sustained neurotransmission. In vivo viral expression of Cre recombinase in ventral cochlear neurons of floxed-DRP1 mice generated a presynaptic-specific DRP1 knockout (DRP1-preKO), where the innervated postsynaptic cell was unperturbed. Confocal reconstruction of the calyx terminal suggested SV clusters and mitochondrial content were disrupted, and presynaptic terminal volume was decreased. Using postsynaptic voltage-clamp recordings, we found that DRP1-preKO synapses had larger evoked responses at low frequency stimulation. DRP1-preKO synapses also had profoundly altered short-term plasticity, due to defects in SV recycling. Readily releasable pool size, estimated with high-frequency trains, was dramatically reduced in DRP1-preKO synapses, suggesting an important role for DRP1 in maintenance of release-competent SVs at the presynaptic terminal. Presynaptic Ca2+ accumulation in the terminal was also enhanced in DRP1-preKO synapses. Synaptic transmission defects could be partially rescued with EGTA-AM, indicating close coupling of Ca2+ channels to SV distance normally found in mature terminals may be compromised by DRP1-preKO. Using paired recordings of the presynaptic and postsynaptic compartments, recycling defects could not be reversed by acute dialysis of ATP into the calyx terminals. Taken together, our results implicate a requirement for mitochondrial fission to coordinate postnatal synapse maturation.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Henry Denny
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Christina Smith
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Jorge Granados
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Robert Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| |
Collapse
|
27
|
Böhme MA, Grasskamp AT, Walter AM. Regulation of synaptic release-site Ca 2+ channel coupling as a mechanism to control release probability and short-term plasticity. FEBS Lett 2018; 592:3516-3531. [PMID: 29993122 DOI: 10.1002/1873-3468.13188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022]
Abstract
Synaptic transmission relies on the rapid fusion of neurotransmitter-containing synaptic vesicles (SVs), which happens in response to action potential (AP)-induced Ca2+ influx at active zones (AZs). A highly conserved molecular machinery cooperates at SV-release sites to mediate SV plasma membrane attachment and maturation, Ca2+ sensing, and membrane fusion. Despite this high degree of conservation, synapses - even within the same organism, organ or neuron - are highly diverse regarding the probability of APs to trigger SV fusion. Additionally, repetitive activation can lead to either strengthening or weakening of transmission. In this review, we discuss mechanisms controlling release probability and this short-term plasticity. We argue that an important layer of control is exerted by evolutionarily conserved AZ scaffolding proteins, which determine the coupling distance between SV fusion sites and voltage-gated Ca2+ channels (VGCC) and, thereby, shape synapse-specific input/output behaviors. We propose that AZ-scaffold modifications may occur to adapt the coupling distance during synapse maturation and plastic regulation of synapse strength.
Collapse
Affiliation(s)
- Mathias A Böhme
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Alexander M Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| |
Collapse
|
28
|
Singh M, Lujan B, Renden R. Presynaptic GCaMP expression decreases vesicle release probability at the calyx of Held. Synapse 2018; 72:e22040. [PMID: 29935099 PMCID: PMC6186185 DOI: 10.1002/syn.22040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022]
Abstract
Synaptic vesicle (SV) exocytosis is intimately dependent on free local Ca2+ near active zones. Genetically encoded calcium indicators (GECIs) have become an indispensable tool to monitor calcium dynamics during physiological responses, and they are widely used as a proxy to monitor activity in neuronal ensembles and at synaptic terminals. However, GECIs’ ability to bind Ca2+ at physiologically relevant concentration makes them strong candidates to affect calcium homeostasis and alter synaptic transmission by exogenously increasing Ca2+ buffering. In the present study, we show that genetically expressed GCaMP6m modulates SV release probability at the mouse calyx of Held synapse. GCaMP6m expression for approximately three weeks decreased initial SV release for both low‐frequency stimulation and high‐frequency stimulation trains, and slowed presynaptic short‐term depression. However, GCaMP6m does not affect quantal events during spontaneous activity at this synapse. This study emphasizes the careful use of GECIs as monitors of neuronal activity and inspects the role of these transgenic indicators which may alter calcium‐dependent physiological responses.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno, Nevada, 89557
| | - Brendan Lujan
- Department of Physiology and Cell Biology, University of Nevada, Reno, Nevada, 89557.,Currently at Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | - Robert Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno, Nevada, 89557
| |
Collapse
|
29
|
Singh M, Miura P, Renden R. Age-related defects in short-term plasticity are reversed by acetyl-L-carnitine at the mouse calyx of Held. Neurobiol Aging 2018; 67:108-119. [PMID: 29656010 PMCID: PMC5955853 DOI: 10.1016/j.neurobiolaging.2018.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 12/19/2022]
Abstract
Hearing acuity and sound localization are affected by aging and may contribute to cognitive dementias. Although loss of sensorineural conduction is well documented to occur with age, little is known regarding short-term synaptic plasticity in central auditory nuclei. Age-related changes in synaptic transmission properties were evaluated at the mouse calyx of Held, a sign-inverting relay synapse in the circuit for sound localization, in juvenile adults (1 month old) and late middle-aged (18-21 months old) mice. Synaptic timing and short-term plasticity were severely disrupted in older mice. Surprisingly, acetyl-l-carnitine (ALCAR), an anti-inflammatory agent that facilitates mitochondrial function, fully reversed synaptic transmission delays and defects in short-term plasticity in aged mice to reflect transmission similar to that seen in juvenile adults. These findings support ALCAR supplementation as an adjuvant to improve short-term plasticity and potentially central nervous system performance in animals compromised by age and/or neurodegenerative disease.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Pedro Miura
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Robert Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| |
Collapse
|
30
|
Krinner S, Butola T, Jung S, Wichmann C, Moser T. RIM-Binding Protein 2 Promotes a Large Number of Ca V1.3 Ca 2+-Channels and Contributes to Fast Synaptic Vesicle Replenishment at Hair Cell Active Zones. Front Cell Neurosci 2017; 11:334. [PMID: 29163046 PMCID: PMC5673845 DOI: 10.3389/fncel.2017.00334] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
Ribbon synapses of inner hair cells (IHCs) mediate high rates of synchronous exocytosis to indefatigably track the stimulating sound with sub-millisecond precision. The sophisticated molecular machinery of the inner hair cell active zone realizes this impressive performance by enabling a large number of synaptic voltage-gated CaV1.3 Ca2+-channels, their tight coupling to synaptic vesicles (SVs) and fast replenishment of fusion competent SVs. Here we studied the role of RIM-binding protein 2 (RIM-BP2)—a multidomain cytomatrix protein known to directly interact with Rab3 interacting molecules (RIMs), bassoon and CaV1.3—that is present at the inner hair cell active zones. We combined confocal and stimulated emission depletion (STED) immunofluorescence microscopy, electron tomography, patch-clamp and confocal Ca2+-imaging, as well as auditory systems physiology to explore the morphological and functional effects of genetic RIM-BP2 disruption in constitutive RIM-BP2 knockout mice. We found that RIM-BP2 (1) positively regulates the number of synaptic CaV1.3 channels and thereby facilitates synaptic vesicle release and (2) supports fast synaptic vesicle recruitment after readily releasable pool (RRP) depletion. However, Ca2+-influx—exocytosis coupling seemed unaltered for readily releasable SVs. Recordings of auditory brainstem responses (ABR) and of single auditory nerve fiber firing showed that RIM-BP2 disruption results in a mild deficit of synaptic sound encoding.
Collapse
Affiliation(s)
- Stefanie Krinner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center, University of Göttingen, Göttingen, Germany.,IMPRS Molecular Biology, Göttingen Graduate School for Neuroscience and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Tanvi Butola
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,IMPRS Neuroscience, Göttingen Graduate School for Neuroscience and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - SangYong Jung
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany.,Neuromodulation and Neurocircuitry Group, Singapore Bioimaging Consortium (SBIC), Biomedical Sciences Institutes (BMSI), Agency for Science Technology and Research (A∗STAR), Singapore, Singapore
| | - Carolin Wichmann
- Collaborative Research Center, University of Göttingen, Göttingen, Germany.,Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center, University of Göttingen, Göttingen, Germany.,IMPRS Molecular Biology, Göttingen Graduate School for Neuroscience and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| |
Collapse
|
31
|
Rudnicki M, Hemmert W. High Entrainment Constrains Synaptic Depression Levels of an In vivo Globular Bushy Cell Model. Front Comput Neurosci 2017; 11:16. [PMID: 28373839 PMCID: PMC5357671 DOI: 10.3389/fncom.2017.00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/02/2017] [Indexed: 12/15/2022] Open
Abstract
Globular bushy cells (GBCs) located in the ventral cochlear nucleus are an essential part of the sound localization pathway in the mammalian auditory system. They receive inputs directly from the auditory nerve and are particularly sensitive to temporal cues due to their synaptic and membrane specializations. GBCs act as coincidence detectors for incoming spikes through large synapses-endbulbs of Held-which connect to their soma. Since endbulbs of Held are an integral part of the auditory information conveying and processing pathway, they were extensively studied. Virtually all in vitro studies showed large synaptic depression, but on the other hand a few in vivo studies showed relatively small depression. It is also still not well understood how synaptic properties functionally influence firing properties of GBCs. Here we show how different levels of synaptic depression shape firing properties of GBCs in in vivo-like conditions using computer simulations. We analyzed how an interplay of synaptic depression (0-70%) and the number of auditory nerve fiber inputs (10-70) contributes to the variability of the experimental data from previous studies. We predict that the majority of synapses of GBCs with high characteristic frequencies (CF > 500 Hz) have a rate dependent depression of less than 20%. GBCs with lower CF (<500 Hz) work also with strong depressing synapses (up to 50% or more). We also showed that synapses explicitly fitted to in vitro experiments with paired-pulse stimuli did not operate properly in in vivo-like conditions and required further extension to capture the differences between in vitro and in vivo experimental conditions. Overall, this study helps to understand how synaptic properties shape temporal processing in the auditory system. It also integrates, compares, and reconciles results of various experimental studies.
Collapse
Affiliation(s)
- Marek Rudnicki
- Bio-Inspired Information Processing, Technische Universität München München, Germany
| | - Werner Hemmert
- Bio-Inspired Information Processing, Technische Universität München München, Germany
| |
Collapse
|
32
|
Li YC, Chanaday NL, Xu W, Kavalali ET. Synaptotagmin-1- and Synaptotagmin-7-Dependent Fusion Mechanisms Target Synaptic Vesicles to Kinetically Distinct Endocytic Pathways. Neuron 2017; 93:616-631.e3. [PMID: 28111077 DOI: 10.1016/j.neuron.2016.12.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/30/2016] [Accepted: 12/02/2016] [Indexed: 12/26/2022]
Abstract
Synaptic vesicle recycling is essential for maintaining normal synaptic function. The coupling of exocytosis and endocytosis is assumed to be Ca2+ dependent, but the exact role of Ca2+ and its key effector synaptotagmin-1 (syt1) in regulation of endocytosis is poorly understood. Here, we probed the role of syt1 in single- as well as multi-vesicle endocytic events using high-resolution optical recordings. Our experiments showed that the slowed endocytosis phenotype previously reported after syt1 loss of function can also be triggered by other manipulations that promote asynchronous release such as Sr2+ substitution and complexin loss of function. The link between asynchronous release and slowed endocytosis was due to selective targeting of fused synaptic vesicles toward slow retrieval by the asynchronous release Ca2+ sensor synaptotagmin-7. In contrast, after single synaptic vesicle fusion, syt1 acted as an essential determinant of synaptic vesicle endocytosis time course by delaying the kinetics of vesicle retrieval in response to increasing Ca2+ levels.
Collapse
Affiliation(s)
- Ying C Li
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Natali L Chanaday
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Wei Xu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ege T Kavalali
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
33
|
Bird AD, Wall MJ, Richardson MJE. Bayesian Inference of Synaptic Quantal Parameters from Correlated Vesicle Release. Front Comput Neurosci 2016; 10:116. [PMID: 27932970 PMCID: PMC5122579 DOI: 10.3389/fncom.2016.00116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/28/2016] [Indexed: 11/13/2022] Open
Abstract
Synaptic transmission is both history-dependent and stochastic, resulting in varying responses to presentations of the same presynaptic stimulus. This complicates attempts to infer synaptic parameters and has led to the proposal of a number of different strategies for their quantification. Recently Bayesian approaches have been applied to make more efficient use of the data collected in paired intracellular recordings. Methods have been developed that either provide a complete model of the distribution of amplitudes for isolated responses or approximate the amplitude distributions of a train of post-synaptic potentials, with correct short-term synaptic dynamics but neglecting correlations. In both cases the methods provided significantly improved inference of model parameters as compared to existing mean-variance fitting approaches. However, for synapses with high release probability, low vesicle number or relatively low restock rate and for data in which only one or few repeats of the same pattern are available, correlations between serial events can allow for the extraction of significantly more information from experiment: a more complete Bayesian approach would take this into account also. This has not been possible previously because of the technical difficulty in calculating the likelihood of amplitudes seen in correlated post-synaptic potential trains; however, recent theoretical advances have now rendered the likelihood calculation tractable for a broad class of synaptic dynamics models. Here we present a compact mathematical form for the likelihood in terms of a matrix product and demonstrate how marginals of the posterior provide information on covariance of parameter distributions. The associated computer code for Bayesian parameter inference for a variety of models of synaptic dynamics is provided in the Supplementary Material allowing for quantal and dynamical parameters to be readily inferred from experimental data sets.
Collapse
Affiliation(s)
- Alex D Bird
- Theoretical Neuroscience Group, Warwick Systems Biology Centre, University of WarwickCoventry, UK; Ernst Strüngmann Institute for Neuroscience, Max Planck SocietyFrankfurt, Germany; Frankfurt Institute for Advanced StudiesFrankfurt, Germany
| | - Mark J Wall
- School of Life Sciences, University of Warwick Coventry, UK
| | - Magnus J E Richardson
- Theoretical Neuroscience Group, Warwick Systems Biology Centre, University of WarwickCoventry, UK; Warwick Mathematics Institute, University of WarwickCoventry, UK
| |
Collapse
|
34
|
Delvendahl I, Hallermann S. The Cerebellar Mossy Fiber Synapse as a Model for High-Frequency Transmission in the Mammalian CNS. Trends Neurosci 2016; 39:722-737. [DOI: 10.1016/j.tins.2016.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/17/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022]
|
35
|
Miki T, Malagon G, Pulido C, Llano I, Neher E, Marty A. Actin- and Myosin-Dependent Vesicle Loading of Presynaptic Docking Sites Prior to Exocytosis. Neuron 2016; 91:808-823. [DOI: 10.1016/j.neuron.2016.07.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/17/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
|
36
|
Mahfooz K, Singh M, Renden R, Wesseling JF. A Well-Defined Readily Releasable Pool with Fixed Capacity for Storing Vesicles at Calyx of Held. PLoS Comput Biol 2016; 12:e1004855. [PMID: 27035349 PMCID: PMC4818018 DOI: 10.1371/journal.pcbi.1004855] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 03/07/2016] [Indexed: 11/19/2022] Open
Abstract
The readily releasable pool (RRP) of vesicles is a core concept in studies of presynaptic function. However, operating principles lack consensus definition and the utility for quantitative analysis has been questioned. Here we confirm that RRPs at calyces of Held from 14 to 21 day old mice have a fixed capacity for storing vesicles that is not modulated by Ca2+. Discrepancies with previous studies are explained by a dynamic flow-through pool, established during heavy use, containing vesicles that are released with low probability despite being immediately releasable. Quantitative analysis ruled out a posteriori explanations for the vesicles with low release probability, such as Ca2+-channel inactivation, and established unexpected boundary conditions for remaining alternatives. Vesicles in the flow-through pool could be incompletely primed, in which case the full sequence of priming steps downstream of recruitment to the RRP would have an average unitary rate of at least 9/s during heavy use. Alternatively, vesicles with low and high release probability could be recruited to distinct types of release sites; in this case the timing of recruitment would be similar at the two types, and the downstream transition from recruited to fully primed would be much faster. In either case, further analysis showed that activity accelerates the upstream step where vesicles are initially recruited to the RRP. Overall, our results show that the RRP can be well defined in the mathematical sense, and support the concept that the defining mechanism is a stable group of autonomous release sites. Short-term plasticity has a dramatic impact on the connection strength of almost every type of synapse during normal use. Some synapses enhance, some depress, and many enhance or depress depending on the recent history of use. A better understanding is needed for modeling information processing in biological circuits and for studying the molecular biology of neurotransmission. Here we show that first principles at the calyx of Held, such as whether or not a readily-releasable pool of vesicles in the presynaptic terminal has a fixed capacity for storing vesicles, are unexpectedly similar to synapse types that are used at much lower frequencies. Our study establishes new methods for studying the function of presynaptic molecules, and the results suggest that a tractable general model of short-term plasticity can capture the full computational power of dynamic synaptic modulation across a large range of synapse types and situations.
Collapse
Affiliation(s)
- Kashif Mahfooz
- Department Neurociencias (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Mahendra Singh
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Robert Renden
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - John F. Wesseling
- Department Neurociencias (CIMA), Universidad de Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|
37
|
Thanawala MS, Regehr WG. Determining synaptic parameters using high-frequency activation. J Neurosci Methods 2016; 264:136-152. [PMID: 26972952 DOI: 10.1016/j.jneumeth.2016.02.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND The specific properties of a synapse determine how neuronal activity evokes neurotransmitter release. Evaluating changes in synaptic properties during sustained activity is essential to understanding how genetic manipulations and neuromodulators regulate neurotransmitter release. Analyses of postsynaptic responses to high-frequency stimulation have provided estimates of the size of the readily-releasable pool (RRP) of vesicles (N0) and the probability of vesicular release (p) at multiple synapses. NEW METHOD Here, we introduce a model-based approach at the calyx of Held synapse in which depletion and the rate of replenishment (R) determine the number of available vesicles, and facilitation leads to a use-dependent increase in p when initial p is low. RESULTS When p is high and R is low, we find excellent agreement between estimates based on all three methods and the model. However, when p is low or when significant replenishment occurs between stimuli, estimates of different methods diverge, and model estimates are between the extreme estimates provided by the other approaches. COMPARISON WITH OTHER METHODS We compare our model-based approach to three other approaches that rely on different simplifying assumptions. Our findings suggest that our model provides a better estimate of N0 and p than previously-established methods, likely due to inaccurate assumptions about replenishment. More generally, our findings suggest that approaches commonly used to estimate N0 and p at other synapses are often applied under experimental conditions that yield inaccurate estimates. CONCLUSIONS Careful application of appropriate methods can greatly improve estimates of synaptic parameters.
Collapse
Affiliation(s)
- Monica S Thanawala
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
38
|
Körber C, Kuner T. Molecular Machines Regulating the Release Probability of Synaptic Vesicles at the Active Zone. Front Synaptic Neurosci 2016; 8:5. [PMID: 26973506 PMCID: PMC4773589 DOI: 10.3389/fnsyn.2016.00005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/17/2016] [Indexed: 11/13/2022] Open
Abstract
The fusion of synaptic vesicles (SVs) with the plasma membrane of the active zone (AZ) upon arrival of an action potential (AP) at the presynaptic compartment is a tightly regulated probabilistic process crucial for information transfer. The probability of a SV to release its transmitter content in response to an AP, termed release probability (Pr), is highly diverse both at the level of entire synapses and individual SVs at a given synapse. Differences in Pr exist between different types of synapses, between synapses of the same type, synapses originating from the same axon and even between different SV subpopulations within the same presynaptic terminal. The Pr of SVs at the AZ is set by a complex interplay of different presynaptic properties including the availability of release-ready SVs, the location of the SVs relative to the voltage-gated calcium channels (VGCCs) at the AZ, the magnitude of calcium influx upon arrival of the AP, the buffering of calcium ions as well as the identity and sensitivity of the calcium sensor. These properties are not only interconnected, but can also be regulated dynamically to match the requirements of activity patterns mediated by the synapse. Here, we review recent advances in identifying molecules and molecular machines taking part in the determination of vesicular Pr at the AZ.
Collapse
Affiliation(s)
- Christoph Körber
- Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| |
Collapse
|
39
|
Ahn J, MacLeod KM. Target-specific regulation of presynaptic release properties at auditory nerve terminals in the avian cochlear nucleus. J Neurophysiol 2016; 115:1679-90. [PMID: 26719087 DOI: 10.1152/jn.00752.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/23/2015] [Indexed: 02/04/2023] Open
Abstract
Short-term synaptic plasticity (STP) acts as a time- and firing rate-dependent filter that mediates the transmission of information across synapses. In the auditory brain stem, the divergent pathways that encode acoustic timing and intensity information express differential STP. To investigate what factors determine the plasticity expressed at different terminals, we tested whether presynaptic release probability differed in the auditory nerve projections to the two divisions of the avian cochlear nucleus, nucleus angularis (NA) and nucleus magnocellularis (NM). Estimates of release probability were made with an open-channel blocker ofN-methyl-d-aspartate (NMDA) receptors. Activity-dependent blockade of NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) with application of 20 μM (+)-MK801 maleate was more rapid in NM than in NA, indicating that release probability was significantly higher at terminals in NM. Paired-pulse ratio (PPR) was tightly correlated with the blockade rate at terminals in NA, suggesting that PPR was a reasonable proxy for relative release probability at these synapses. To test whether release probability was similar across convergent inputs onto NA neurons, PPRs of different nerve inputs onto the same postsynaptic NA target neuron were measured. The PPRs, as well as the plasticity during short trains, were tightly correlated across multiple inputs, further suggesting that release probability is coordinated at auditory nerve terminals in a target-specific manner. This highly specific regulation of STP in the auditory brain stem provides evidence that the synaptic dynamics are tuned to differentially transmit the auditory information in nerve activity into parallel ascending pathways.
Collapse
Affiliation(s)
- J Ahn
- Department of Biology, University of Maryland, College Park, Maryland
| | - K M MacLeod
- Department of Biology, University of Maryland, College Park, Maryland; Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland; and Center for the Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland
| |
Collapse
|
40
|
Synaptotagmin-7 Is Essential for Ca2+-Triggered Delayed Asynchronous Release But Not for Ca2+-Dependent Vesicle Priming in Retinal Ribbon Synapses. J Neurosci 2015; 35:11024-33. [PMID: 26245964 DOI: 10.1523/jneurosci.0759-15.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Most synapses release neurotransmitters in two phases: (1) a fast synchronous phase lasting a few milliseconds; and (2) a delayed "asynchronous" phase lasting hundreds of milliseconds. Ca(2+) triggers fast synchronous neurotransmitter release by binding to synaptotagmin-1, synaptotagmin-2, or synaptotagmin-9, but how Ca(2+) triggers delayed asynchronous release has long remained enigmatic. Recent results suggested that consistent with the Ca(2+)-sensor function of synaptotagmin-7 in neuroendocrine exocytosis, synaptotagmin-7 also functions as a Ca(2+) sensor for synaptic vesicle exocytosis but operates during delayed asynchronous release. Puzzlingly, a subsequent study postulated that synaptotagmin-7 is not a Ca(2+) sensor for release but mediates Ca(2+)-dependent vesicle repriming after intense stimulation. To address these issues, we here analyzed synaptic transmission at rod bipolar neuron-AII amacrine cell synapses in acute mouse retina slices as a model system. Using paired recordings, we show that knock-out of synaptotagmin-7 selectively impairs delayed asynchronous release but not fast synchronous release. Delayed asynchronous release was blocked in wild-type synapses by intracellular addition of high concentrations of the slow Ca(2+)-chelator EGTA, but EGTA had no effect in synaptotagmin-7 knock-out neurons because delayed asynchronous release was already impaired. Moreover, direct measurements of vesicle repriming failed to uncover an effect of the synaptotagmin-7 knock-out on vesicle repriming. Our data demonstrate that synaptotagmin-7 is selectively essential for Ca(2+)-dependent delayed asynchronous release in retinal rod bipolar cell synapses, that its function can be blocked by simply introducing a slow Ca(2+) buffer into the cells, and that synaptotagmin-7 is not required for normal vesicle repriming. SIGNIFICANCE STATEMENT How Ca(2+) triggers delayed asynchronous release has long remained enigmatic. Synaptotagmin-7 has been implicated recently as Ca(2+) sensor in mediating delayed asynchronous release, or vesicle repriming, in cultured neurons. To test the precise function of synaptotagmin-7 in a physiologically important synapse in situ, we have used pair recordings to study the synaptic transmission between retinal rod bipolar cells and AII amacrine cells. Our data demonstrate that the knock-out of synaptotagmin-7 selectively impaired delayed asynchronous release but not synchronous release. In contrast, the readily releasable vesicles after depletion recover normally in knock-out mice. Therefore, our findings extend our knowledge of synaptotagmins as Ca(2+) sensors in vesicle fusion and support the idea that synapses are governed universally by different synaptotagmin Ca(2+) sensors mediating distinct release.
Collapse
|
41
|
Synaptic Depression Influences Inspiratory-Expiratory Phase Transition in Dbx1 Interneurons of the preBötzinger Complex in Neonatal Mice. J Neurosci 2015; 35:11606-11. [PMID: 26290237 DOI: 10.1523/jneurosci.0351-15.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The brainstem preBötzinger complex (preBötC) generates the rhythm underlying inspiratory breathing movements and its core interneurons are derived from Dbx1-expressing precursors. Recurrent synaptic excitation is required to initiate inspiratory bursts, but whether excitatory synaptic mechanisms also contribute to inspiratory-expiratory phase transition is unknown. Here, we examined the role of short-term synaptic depression using a rhythmically active neonatal mouse brainstem slice preparation. We show that afferent axonal projections to Dbx1 preBötC neurons undergo activity-dependent depression and we identify a refractory period (∼2 s) after endogenous inspiratory bursts that precludes light-evoked bursts in channelrhodopsin-expressing Dbx1 preBötC neurons. We demonstrate that the duration of the refractory period-but neither the cycle period nor the magnitude of endogenous inspiratory bursts-is sensitive to changes in extracellular Ca(2+). Further, we show that postsynaptic factors are unlikely to explain the refractory period or its modulation by Ca(2+). Our findings are consistent with the hypothesis that short-term synaptic depression in Dbx1 preBötC neurons influences the inspiratory-expiratory phase transition during respiratory rhythmogenesis. SIGNIFICANCE STATEMENT Theories of breathing's neural origins have heretofore focused on intrinsically bursting "pacemaker" cells operating in conjunction with synaptic inhibition for phase transition and cycle timing. However, contemporary studies falsify an obligatory role for pacemaker-like neurons and synaptic inhibition, giving credence to burst-generating mechanisms based on recurrent excitation among glutamatergic interneurons of the respiratory kernel. Here, we investigated the role of short-term synaptic depression in inspiratory-expiratory phase transition. Until now, this role remained an untested prediction of mathematical models. The present data emphasize that synaptic properties of excitatory interneurons of the respiratory rhythmogenic kernel, derived from Dbx1-expressing precursors, may provide the core logic underlying the rhythm for breathing.
Collapse
|
42
|
Neher E. Merits and Limitations of Vesicle Pool Models in View of Heterogeneous Populations of Synaptic Vesicles. Neuron 2015; 87:1131-1142. [DOI: 10.1016/j.neuron.2015.08.038] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Complexin stabilizes newly primed synaptic vesicles and prevents their premature fusion at the mouse calyx of held synapse. J Neurosci 2015; 35:8272-90. [PMID: 26019341 DOI: 10.1523/jneurosci.4841-14.2015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Complexins (Cplxs) are small synaptic proteins that cooperate with SNARE-complexes in the control of synaptic vesicle (SV) fusion. Studies involving genetic mutation, knock-down, or knock-out indicated two key functions of Cplx that are not mutually exclusive but cannot easily be reconciled, one in facilitating SV fusion, and one in "clamping" SVs to prevent premature fusion. Most studies on the role of Cplxs in mammalian synapse function have relied on cultured neurons, heterologous expression systems, or membrane fusion assays in vitro, whereas little is known about the function of Cplxs in native synapses. We therefore studied consequences of genetic ablation of Cplx1 in the mouse calyx of Held synapse, and discovered a developmentally exacerbating phenotype of reduced spontaneous and evoked transmission but excessive asynchronous release after stimulation, compatible with combined facilitating and clamping functions of Cplx1. Because action potential waveforms, Ca(2+) influx, readily releasable SV pool size, and quantal size were unaltered, the reduced synaptic strength in the absence of Cplx1 is most likely a consequence of a decreased release probability, which is caused, in part, by less tight coupling between Ca(2+) channels and docked SV. We found further that the excessive asynchronous release in Cplx1-deficient calyces triggered aberrant action potentials in their target neurons, and slowed-down the recovery of EPSCs after depleting stimuli. The augmented asynchronous release had a delayed onset and lasted hundreds of milliseconds, indicating that it predominantly represents fusion of newly recruited SVs, which remain unstable and prone to premature fusion in the absence of Cplx1.
Collapse
|
44
|
Synaptic plasticity in the auditory system: a review. Cell Tissue Res 2015; 361:177-213. [PMID: 25896885 DOI: 10.1007/s00441-015-2176-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/18/2015] [Indexed: 01/19/2023]
Abstract
Synaptic transmission via chemical synapses is dynamic, i.e., the strength of postsynaptic responses may change considerably in response to repeated synaptic activation. Synaptic strength is increased during facilitation, augmentation and potentiation, whereas a decrease in synaptic strength is characteristic for depression and attenuation. This review attempts to discuss the literature on short-term and long-term synaptic plasticity in the auditory brainstem of mammals and birds. One hallmark of the auditory system, particularly the inner ear and lower brainstem stations, is information transfer through neurons that fire action potentials at very high frequency, thereby activating synapses >500 times per second. Some auditory synapses display morphological specializations of the presynaptic terminals, e.g., calyceal extensions, whereas other auditory synapses do not. The review focuses on short-term depression and short-term facilitation, i.e., plastic changes with durations in the millisecond range. Other types of short-term synaptic plasticity, e.g., posttetanic potentiation and depolarization-induced suppression of excitation, will be discussed much more briefly. The same holds true for subtypes of long-term plasticity, like prolonged depolarizations and spike-time-dependent plasticity. We also address forms of plasticity in the auditory brainstem that do not comprise synaptic plasticity in a strict sense, namely short-term suppression, paired tone facilitation, short-term adaptation, synaptic adaptation and neural adaptation. Finally, we perform a meta-analysis of 61 studies in which short-term depression (STD) in the auditory system is opposed to short-term depression at non-auditory synapses in order to compare high-frequency neurons with those that fire action potentials at a lower rate. This meta-analysis reveals considerably less STD in most auditory synapses than in non-auditory ones, enabling reliable, failure-free synaptic transmission even at frequencies >100 Hz. Surprisingly, the calyx of Held, arguably the best-investigated synapse in the central nervous system, depresses most robustly. It will be exciting to reveal the molecular mechanisms that set high-fidelity synapses apart from other synapses that function much less reliably.
Collapse
|
45
|
A three-pool model dissecting readily releasable pool replenishment at the calyx of held. Sci Rep 2015; 5:9517. [PMID: 25825223 PMCID: PMC4379469 DOI: 10.1038/srep09517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/06/2015] [Indexed: 12/20/2022] Open
Abstract
Although vesicle replenishment is critical in maintaining exo-endocytosis recycling, the underlying mechanisms are not well understood. Previous studies have shown that both rapid and slow endocytosis recycle into a very large recycling pool instead of within the readily releasable pool (RRP), and the time course of RRP replenishment is slowed down by more intense stimulation. This finding contradicts the calcium/calmodulin-dependence of RRP replenishment. Here we address this issue and report a three-pool model for RRP replenishment at a central synapse. Both rapid and slow endocytosis provide vesicles to a large reserve pool (RP) ~42.3 times the RRP size. When moving from the RP to the RRP, vesicles entered an intermediate pool (IP) ~2.7 times the RRP size with slow RP-IP kinetics and fast IP-RRP kinetics, which was responsible for the well-established slow and rapid components of RRP replenishment. Depletion of the IP caused the slower RRP replenishment observed after intense stimulation. These results establish, for the first time, a realistic cycling model with all parameters measured, revealing the contribution of each cycling step in synaptic transmission. The results call for modification of the current view of the vesicle recycling steps and their roles.
Collapse
|
46
|
Ehmann N, Sauer M, Kittel RJ. Super-resolution microscopy of the synaptic active zone. Front Cell Neurosci 2015; 9:7. [PMID: 25688186 PMCID: PMC4311638 DOI: 10.3389/fncel.2015.00007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/07/2015] [Indexed: 12/31/2022] Open
Abstract
Brain function relies on accurate information transfer at chemical synapses. At the presynaptic active zone (AZ) a variety of specialized proteins are assembled to complex architectures, which set the basis for speed, precision and plasticity of synaptic transmission. Calcium channels are pivotal for the initiation of excitation-secretion coupling and, correspondingly, capture a central position at the AZ. Combining quantitative functional studies with modeling approaches has provided predictions of channel properties, numbers and even positions on the nanometer scale. However, elucidating the nanoscopic organization of the surrounding protein network requires direct ultrastructural access. Without this information, knowledge of molecular synaptic structure-function relationships remains incomplete. Recently, super-resolution microscopy (SRM) techniques have begun to enter the neurosciences. These approaches combine high spatial resolution with the molecular specificity of fluorescence microscopy. Here, we discuss how SRM can be used to obtain information on the organization of AZ proteins.
Collapse
Affiliation(s)
- Nadine Ehmann
- Department of Neurophysiology, Institute of Physiology, University of Würzburg Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg Würzburg, Germany
| | - Robert J Kittel
- Department of Neurophysiology, Institute of Physiology, University of Würzburg Würzburg, Germany
| |
Collapse
|
47
|
de Jong APH, Fioravante D. Translating neuronal activity at the synapse: presynaptic calcium sensors in short-term plasticity. Front Cell Neurosci 2014; 8:356. [PMID: 25400547 PMCID: PMC4212674 DOI: 10.3389/fncel.2014.00356] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/09/2014] [Indexed: 01/03/2023] Open
Abstract
The complex manner in which patterns of presynaptic neural activity are translated into short-term plasticity (STP) suggests the existence of multiple presynaptic calcium (Ca(2+)) sensors, which regulate the amplitude and time-course of STP and are the focus of this review. We describe two canonical Ca(2+)-binding protein domains (C2 domains and EF-hands) and define criteria that need to be met for a protein to qualify as a Ca(2+) sensor mediating STP. With these criteria in mind, we discuss various forms of STP and identify established and putative Ca(2+) sensors. We find that despite the multitude of proposed sensors, only three are well established in STP: Munc13, protein kinase C (PKC) and synaptotagmin-7. For putative sensors, we pinpoint open questions and potential pitfalls. Finally, we discuss how the molecular properties and modes of action of Ca(2+) sensors can explain their differential involvement in STP and shape net synaptic output.
Collapse
Affiliation(s)
| | - Diasynou Fioravante
- Department of Neurobiology, Physiology and Behavior, Center for Neuroscience, University of California Davis Davis, CA, USA
| |
Collapse
|
48
|
Deng PY, Klyachko VA. The diverse functions of short-term plasticity components in synaptic computations. Commun Integr Biol 2014. [DOI: 10.4161/cib.15870] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
49
|
Stone E, Haario H, Lawrence JJ. A kinetic model for the frequency dependence of cholinergic modulation at hippocampal GABAergic synapses. Math Biosci 2014; 258:162-75. [PMID: 25445738 DOI: 10.1016/j.mbs.2014.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 01/31/2023]
Abstract
In this paper we use a simple model of presynaptic neuromodulation of GABA signaling to decipher paired whole-cell recordings of frequency dependent cholinergic neuromodulation at CA1 parvalbumin-containing basket cell (PV BC)-pyramidal cell synapses. Variance-mean analysis is employed to normalize the data, which is then used to estimate parameters in the mathematical model. Various parameterizations and hidden parameter dependencies are investigated using Markov Chain Monte Carlo (MCMC) parameter estimation techniques. This analysis reveals that frequency dependence of cholinergic modulation requires both calcium-dependent recovery from depression and mAChR-induced inhibition of presynaptic calcium entry. A reduction in calcium entry into the presynaptic terminal in the kinetic model accounted for the frequency-dependent effects of mAChR activation.
Collapse
Affiliation(s)
- Emily Stone
- Department of Mathematical Sciences, The University of Montana Missoula, MT 59812, USA.
| | - Heikki Haario
- Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta, Finland
| | - J Josh Lawrence
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana Missoula, MT 59812, USA
| |
Collapse
|
50
|
Midorikawa M, Okamoto Y, Sakaba T. Developmental changes in Ca2+ channel subtypes regulating endocytosis at the calyx of Held. J Physiol 2014; 592:3495-510. [PMID: 24907302 DOI: 10.1113/jphysiol.2014.273243] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
At the mammalian central synapse, Ca(2+) influx through Ca(2+) channels triggers neurotransmitter release by exocytosis of synaptic vesicles, which fuse with the presynaptic membrane and are subsequently retrieved by endocytosis. At the calyx of Held terminal, P/Q-type Ca(2+) channels mainly mediate exocytosis, while N- and R-type channels have a minor role in young terminals (postnatal days 8-11). The role of each Ca(2+) channel subtype in endocytosis remains to be elucidated; therefore, we examined the role of each type of Ca(2+) channel in endocytosis, by using whole-cell patch-clamp recordings in conjunction with capacitance measurement techniques. We found that at the young calyx terminal, when R-type Ca(2+) channels were blocked, the slow mode of endocytosis was further slowed, while blocking of either P/Q- or N-type Ca(2+) channels had no major effect. In more mature terminals (postnatal days 14-17), the slow mode of endocytosis was mainly triggered by P/Q-type Ca(2+) channels, suggesting developmental changes in the regulation of the slow mode of endocytosis by different Ca(2+) channel subtypes. In contrast, a fast mode of endocytosis was observed after strong stimulation in young terminals that was mediated mainly by P/Q-type, but not R- or N-type Ca(2+) channels. These results suggest that different types of Ca(2+) channels regulate the two different modes of endocytosis. The results may also suggest that exo- and endocytosis are regulated independently at different sites in young animals but are more tightly coupled in older animals, allowing more efficient synaptic vesicle cycling adapted for fast signalling.
Collapse
Affiliation(s)
| | - Yuji Okamoto
- Graduate School of Brain Science, Doshisha University, Kyoto, 6190225, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyoto, 6190225, Japan
| |
Collapse
|