1
|
Yun Y, Jeong H, Laboute T, Martemyanov KA, Lee HH. Cryo-EM structure of human class C orphan GPCR GPR179 involved in visual processing. Nat Commun 2024; 15:8299. [PMID: 39333506 PMCID: PMC11437087 DOI: 10.1038/s41467-024-52584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
GPR179, an orphan class C GPCR, is expressed at the dendritic tips of ON-bipolar cells in the retina. It plays a pivotal role in the initial synaptic transmission of visual signals from photoreceptors, and its deficiency is known to be the cause of complete congenital stationary night blindness. Here, we present the cryo-electron microscopy structure of human GPR179. Notably, the transmembrane domain (TMD) of GPR179 forms a homodimer through the TM1/7 interface with a single inter-protomer disulfide bond, adopting a noncanonical dimerization mode. Furthermore, the TMD dimer exhibits architecture well-suited for the highly curved membrane of the dendritic tip and distinct from the flat membrane arrangement observed in other class C GPCR dimers. Our structure reveals unique structural features of GPR179 TMD, setting it apart from other class C GPCRs. These findings provide a foundation for understanding signal transduction through GPR179 in visual processing and offers insights into the underlying causes of ocular diseases.
Collapse
Affiliation(s)
- Yaejin Yun
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeongseop Jeong
- Center for Research Equipment, Korea Basic Science Institute, Chungcheongbuk-do, 28119, Republic of Korea
| | - Thibaut Laboute
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Kirill A Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA.
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Barrett JE, Shekarabi A, Inan S. Oxycodone: A Current Perspective on Its Pharmacology, Abuse, and Pharmacotherapeutic Developments. Pharmacol Rev 2023; 75:1062-1118. [PMID: 37321860 PMCID: PMC10595024 DOI: 10.1124/pharmrev.121.000506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Oxycodone, a semisynthetic derivative of naturally occurring thebaine, an opioid alkaloid, has been available for more than 100 years. Although thebaine cannot be used therapeutically due to the occurrence of convulsions at higher doses, it has been converted to a number of other widely used compounds that include naloxone, naltrexone, buprenorphine, and oxycodone. Despite the early identification of oxycodone, it was not until the 1990s that clinical studies began to explore its analgesic efficacy. These studies were followed by the pursuit of several preclinical studies to examine the analgesic effects and abuse liability of oxycodone in laboratory animals and the subjective effects in human volunteers. For a number of years oxycodone was at the forefront of the opioid crisis, playing a significant role in contributing to opioid misuse and abuse, with suggestions that it led to transitioning to other opioids. Several concerns were expressed as early as the 1940s that oxycodone had significant abuse potential similar to heroin and morphine. Both animal and human abuse liability studies have confirmed, and in some cases amplified, these early warnings. Despite sharing a similar structure with morphine and pharmacological actions also mediated by the μ-opioid receptor, there are several differences in the pharmacology and neurobiology of oxycodone. The data that have emerged from the many efforts to analyze the pharmacological and molecular mechanism of oxycodone have generated considerable insight into its many actions, reviewed here, which, in turn, have provided new information on opioid receptor pharmacology. SIGNIFICANCE STATEMENT: Oxycodone, a μ-opioid receptor agonist, was synthesized in 1916 and introduced into clinical use in Germany in 1917. It has been studied extensively as a therapeutic analgesic for acute and chronic neuropathic pain as an alternative to morphine. Oxycodone emerged as a drug with widespread abuse. This article brings together an integrated, detailed review of the pharmacology of oxycodone, preclinical and clinical studies of pain and abuse, and recent advances to identify potential opioid analgesics without abuse liability.
Collapse
Affiliation(s)
- James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Aryan Shekarabi
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Serafini RA, Estill M, Pekarskaya EA, Sakloth F, Shen L, Javitch JA, Zachariou V. Tianeptine promotes lasting antiallodynic effects in a mouse model of neuropathic pain. Neuropsychopharmacology 2023; 48:1680-1689. [PMID: 37474762 PMCID: PMC10517169 DOI: 10.1038/s41386-023-01645-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023]
Abstract
Tricyclic antidepressants (TCAs), such as desipramine (DMI), are effective at managing neuropathic pain symptoms but often take several weeks to become effective and also lead to considerable side effects. Tianeptine (TIAN) is an atypical antidepressant that activates the mu-opioid receptor but does not produce analgesic tolerance or withdrawal in mice, nor euphoria in humans, at clinically-relevant doses. Here, we evaluate the efficacy of TIAN at persistently alleviating mechanical allodynia in the spared nerve injury (SNI) model of neuropathic pain, even well after drug clearance. After finding an accelerated onset of antiallodynic action compared to DMI, we used genetically modified mice to gain insight into RGS protein-associated pathways that modulate the efficacy of TIAN relative to DMI in models of neuropathic pain. Because we observed similar behavioral responses to both TIAN and DMI treatment in RGS4, RGSz1, and RGS9 knockout mice, we performed RNA sequencing on the NAc of TIAN- and DMI-treated mice after prolonged SNI to further clarify potential mechanisms underlying TIANs faster therapeutic actions. Our bioinformatic analysis revealed distinct transcriptomic signatures between the two drugs, with TIAN more directly reversing SNI-induced differentially expressed genes, and further predicted several upstream regulators that may be implicated in onset of action. This new understanding of the molecular pathways underlying TIAN action may enable the development of novel and more efficacious pharmacological approaches for the management of neuropathic pain.
Collapse
Affiliation(s)
- Randal A Serafini
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacology, Physiology and Biophysics, Chobanian & Avedisian School of Medicine at Boston University, Boston, MA, USA
| | - Molly Estill
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elizabeth A Pekarskaya
- Department of Neuroscience, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Farhana Sakloth
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacology, Physiology and Biophysics, Chobanian & Avedisian School of Medicine at Boston University, Boston, MA, USA.
| |
Collapse
|
4
|
Laboute T, Zucca S, Holcomb M, Patil DN, Garza C, Wheatley BA, Roy RN, Forli S, Martemyanov KA. Orphan receptor GPR158 serves as a metabotropic glycine receptor: mGlyR. Science 2023; 379:1352-1358. [PMID: 36996198 PMCID: PMC10751545 DOI: 10.1126/science.add7150] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/03/2023] [Indexed: 04/01/2023]
Abstract
Glycine is a major neurotransmitter involved in several fundamental neuronal processes. The identity of the metabotropic receptor mediating slow neuromodulatory effects of glycine is unknown. We identified an orphan G protein-coupled receptor, GPR158, as a metabotropic glycine receptor (mGlyR). Glycine and a related modulator, taurine, directly bind to a Cache domain of GPR158, and this event inhibits the activity of the intracellular signaling complex regulator of G protein signaling 7-G protein β5 (RGS7-Gβ5), which is associated with the receptor. Glycine signals through mGlyR to inhibit production of the second messenger adenosine 3',5'-monophosphate. We further show that glycine, but not taurine, acts through mGlyR to regulate neuronal excitability in cortical neurons. These results identify a major neuromodulatory system involved in mediating metabotropic effects of glycine, with implications for understanding cognition and affective states.
Collapse
Affiliation(s)
- Thibaut Laboute
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Stefano Zucca
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Matthew Holcomb
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Dipak N. Patil
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Christina Garza
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Brittany A. Wheatley
- Department of Integrative Structural and Computational Biology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Raktim N. Roy
- Department of Integrative Structural and Computational Biology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
5
|
Margolis EB, Moulton MG, Lambeth PS, O'Meara MJ. The life and times of endogenous opioid peptides: Updated understanding of synthesis, spatiotemporal dynamics, and the clinical impact in alcohol use disorder. Neuropharmacology 2023; 225:109376. [PMID: 36516892 PMCID: PMC10548835 DOI: 10.1016/j.neuropharm.2022.109376] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The opioid G-protein coupled receptors (GPCRs) strongly modulate many of the central nervous system structures that contribute to neurological and psychiatric disorders including pain, major depressive disorder, and substance use disorders. To better treat these and related diseases, it is essential to understand the signaling of their endogenous ligands. In this review, we focus on what is known and unknown about the regulation of the over two dozen endogenous peptides with high affinity for one or more of the opioid receptors. We briefly describe which peptides are produced, with a particular focus on the recently proposed possible synthesis pathways for the endomorphins. Next, we describe examples of endogenous opioid peptide expression organization in several neural circuits and how they appear to be released from specific neural compartments that vary across brain regions. We discuss current knowledge regarding the strength of neural activity required to drive endogenous opioid peptide release, clues about how far peptides diffuse from release sites, and their extracellular lifetime after release. Finally, as a translational example, we discuss the mechanisms of action of naltrexone (NTX), which is used clinically to treat alcohol use disorder. NTX is a synthetic morphine analog that non-specifically antagonizes the action of most endogenous opioid peptides developed in the 1960s and FDA approved in the 1980s. We review recent studies clarifying the precise endogenous activity that NTX prevents. Together, the works described here highlight the challenges and opportunities the complex opioid system presents as a therapeutic target.
Collapse
Affiliation(s)
- Elyssa B Margolis
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, CA, USA.
| | - Madelyn G Moulton
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Philip S Lambeth
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
6
|
Sakloth F, Sanchez-Reyes OB, Ruiz A, Nicolais A, Serafini RA, Pryce KD, Bertherat F, Torres-Berrío A, Gomes I, Devi LA, Wacker D, Zachariou V. A Regional and Projection-Specific Role of RGSz1 in the Ventrolateral Periaqueductal Grey in the Modulation of Morphine Reward. Mol Pharmacol 2023; 103:1-8. [PMID: 36310031 PMCID: PMC11033942 DOI: 10.1124/molpharm.122.000528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/12/2022] [Accepted: 10/11/2022] [Indexed: 02/03/2023] Open
Abstract
Opioid analgesics exert their therapeutic and adverse effects by activating μ opioid receptors (MOPR); however, functional responses to MOPR activation are modulated by distinct signal transduction complexes within the brain. The ventrolateral periaqueductal gray (vlPAG) plays a critical role in modulation of nociception and analgesia, but the exact intracellular pathways associated with opioid responses in this region are not fully understood. We previously showed that knockout of the signal transduction modulator Regulator of G protein Signaling z1 (RGSz1) enhanced analgesic responses to opioids, whereas it decreased the rewarding efficacy of morphine. Here, we applied viral mediated gene transfer methodology and delivered adeno-associated virus (AAV) expressing Cre recombinase to the vlPAG of RGSz1fl\fl mice to demonstrate that downregulation of RGSz1 in this region decreases sensitivity to morphine in the place preference paradigm, under pain-free as well as neuropathic pain states. We also used retrograde viral vectors along with flippase-dependent Cre vectors to conditionally downregulate RGSz1 in vlPAG projections to the ventral tegmental area (VTA) and show that downregulation of RGSz1 prevents the development of place conditioning to low morphine doses. Consistent with the role for RGSz1 as a negative modulator of MOPR activity, RGSz1KO enhances opioid-induced cAMP inhibition in periaqueductal gray (PAG) membranes. Furthermore, using a new generation of bioluminescence resonance energy transfer (BRET) sensors, we demonstrate that RGSz1 modulates Gαz but not other Gαi family subunits and selectively impedes MOPR-mediated Gαz signaling events invoked by morphine and other opioids. Our work highlights a regional and circuit-specific role of the G protein-signaling modulator RGSz1 in morphine reward, providing insights on midbrain intracellular pathways that control addiction-related behaviors. SIGNIFICANCE STATEMENT: This study used advanced genetic mouse models to highlight the role of the signal transduction modulator named RGSz1 in responses to clinically used opioid analgesics. We show that RGSz1 controls the rewarding efficacy of opioids by actions in ventrolateral periaqueductal gray projections to the ventral tegmental area, a key component of the midbrain dopamine pathway. These studies highlight novel mechanisms by which pain-modulating structures control the rewarding efficacy of opioids.
Collapse
Affiliation(s)
- Farhana Sakloth
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Omar B Sanchez-Reyes
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Anne Ruiz
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Andrew Nicolais
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Randal A Serafini
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Kerri D Pryce
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Feodora Bertherat
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Angélica Torres-Berrío
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Ivone Gomes
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Lakshmi A Devi
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Daniel Wacker
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| |
Collapse
|
7
|
Co-Expression of Adaptor Protein FAM159B with Different Markers for Neuroendocrine Cells: An Immunocytochemical and Immunohistochemical Study. Int J Mol Sci 2022; 23:ijms232113503. [DOI: 10.3390/ijms232113503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
Little is known about the adaptor protein FAM159B. Recently, FAM159B was shown to be particularly expressed in neuroendocrine cells and tissues, such as pancreatic islets and neuroendocrine cells of the bronchopulmonary and gastrointestinal tracts, as well as in different types of neuroendocrine tumours. To gain insights into possible interactions of FAM159B with other proteins and/or receptors, we analysed the co-expression of FAM159B and various neuroendocrine-specific markers in the cancer cell lines BON-1, PC-3, NCI-h82, OH-1, and A431 and also in human pancreatic tissues and pancreatic neuroendocrine tumours. The markers included prominent markers of neuroendocrine differentiation, such as chromogranin A (CgA), neuron-specific enolase (NSE), synaptophysin (SYP), insulinoma-associated protein 1 (INSM1), neural cell adhesion molecule 1 (NCAM1), serotonin (5-HT), somatostatin-14/28 (SST), and several receptors that are typically expressed by neuroendocrine cells, such as dopamine receptor 2 (D2R), somatostatin receptor (SSTR) 1, 2, 3, 4 and 5, and regulator of G-protein signalling 9 (RGS9). FAM159B was expressed evenly throughout the cytosol in all five cancer cell lines. Immunocytochemical and immunohistochemical analyses revealed co-expression of FAM159B with SYP, INSM1, RGS9, D2R, SSTR2, SSTR3, SSTR4, and SSTR5 and strong overlapping co-localisation with NSE. Double-labelling and co-immunoprecipitation Western blot analyses confirmed a direct association between FAM159B and NSE. These results suggest the involvement of FAM159B in several intracellular signalling pathways and a direct or indirect influence on diverse membrane proteins and receptors.
Collapse
|
8
|
Defining Specific Cell States of MPTP-Induced Parkinson's Disease by Single-Nucleus RNA Sequencing. Int J Mol Sci 2022; 23:ijms231810774. [PMID: 36142685 PMCID: PMC9504791 DOI: 10.3390/ijms231810774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 01/11/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with an impairment of movement execution that is related to age and genetic and environmental factors. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin widely used to induce PD models, but the effect of MPTP on the cells and genes of PD has not been fully elucidated. By single-nucleus RNA sequencing, we uncovered the PD-specific cells and revealed the changes in their cellular states, including astrocytosis and endothelial cells' absence, as well as a cluster of medium spiny neuron cells unique to PD. Furthermore, trajectory analysis of astrocyte and endothelial cell populations predicted candidate target gene sets that might be associated with PD. Notably, the detailed regulatory roles of astrocyte-specific transcription factors Dbx2 and Sox13 in PD were revealed in our work. Finally, we characterized the cell-cell communications of PD-specific cells and found that the overall communication strength was enhanced in PD compared with a matched control, especially the signaling pathways of NRXN and NEGR. Our work provides an overview of the changes in cellular states of the MPTP-induced mouse brain.
Collapse
|
9
|
Single nucleus transcriptomic analysis of rat nucleus accumbens reveals cell type-specific patterns of gene expression associated with volitional morphine intake. Transl Psychiatry 2022; 12:374. [PMID: 36075888 PMCID: PMC9458645 DOI: 10.1038/s41398-022-02135-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Opioid exposure is known to cause transcriptomic changes in the nucleus accumbens (NAc). However, no studies to date have investigated cell type-specific transcriptomic changes associated with volitional opioid taking. Here, we use single nucleus RNA sequencing (snRNAseq) to comprehensively characterize cell type-specific alterations of the NAc transcriptome in rats self-administering morphine. One cohort of male Brown Norway rats was injected with acute morphine (10 mg/kg, i.p.) or saline. A second cohort of rats was allowed to self-administer intravenous morphine (1.0 mg/kg/infusion) for 10 consecutive days. Each morphine-experienced rat was paired with a yoked saline control rat. snRNAseq libraries were generated from NAc punches and used to identify cell type-specific gene expression changes associated with volitional morphine taking. We identified 1106 differentially expressed genes (DEGs) in the acute morphine group, compared to 2453 DEGs in the morphine self-administration group, across 27 distinct cell clusters. Importantly, we identified 1329 DEGs that were specific to morphine self-administration. DEGs were identified in novel clusters of astrocytes, oligodendrocytes, and D1R- and D2R-expressing medium spiny neurons in the NAc. Cell type-specific DEGs included Rgs9, Celf5, Oprm1, and Pde10a. Upregulation of Rgs9 and Celf5 in D2R-expressing neurons was validated by RNAscope. Approximately 85% of all oligodendrocyte DEGs, nearly all of which were associated with morphine taking, were identified in two subtypes. Bioinformatic analyses identified cell type-specific upstream regulatory mechanisms of the observed transcriptome alterations and downstream signaling pathways, including both novel and previously identified molecular pathways. These findings show that volitional morphine taking is associated with distinct cell type-specific transcriptomic changes in the rat NAc and highlight specific striatal cell populations and novel molecular substrates that could be targeted to reduce compulsive opioid taking.
Collapse
|
10
|
Winters BL, Vaughan CW. Mechanisms of endocannabinoid control of synaptic plasticity. Neuropharmacology 2021; 197:108736. [PMID: 34343612 DOI: 10.1016/j.neuropharm.2021.108736] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/13/2023]
Abstract
The endogenous cannabinoid transmitter system regulates synaptic transmission throughout the nervous system. Unlike conventional transmitters, specific stimuli induce synthesis of endocannabinoids (eCBs) in the postsynaptic neuron, and these travel backwards to modulate presynaptic inputs. In doing so, eCBs can induce short-term changes in synaptic strength and longer-term plasticity. While this eCB regulation is near ubiquitous, it displays major regional and synapse specific variations with different synapse specific forms of short-versus long-term plasticity throughout the brain. These differences are due to the plethora of pre- and postsynaptic mechanisms which have been implicated in eCB signalling, the intricacies of which are only just being realised. In this review, we shall describe the current understanding and highlight new advances in this area, with a focus on the retrograde action of eCBs at CB1 receptors (CB1Rs).
Collapse
Affiliation(s)
- Bryony Laura Winters
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia.
| | - Christopher Walter Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia
| |
Collapse
|
11
|
Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system. Pharmacol Ther 2021; 223:107808. [PMID: 33476640 DOI: 10.1016/j.pharmthera.2021.107808] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
G protein-gated inwardly rectifying potassium channels (Kir3/GirK) are important for maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Coupled to numerous G protein-coupled receptors (GPCRs), they mediate the effects of many neurotransmitters, neuromodulators and hormones contributing to the general homeostasis and particular synaptic plasticity processes, learning, memory and pain signaling. A growing number of behavioral and genetic studies suggest a critical role for the appropriate functioning of the central nervous system, as well as their involvement in many neurologic and psychiatric conditions, such as neurodegenerative diseases, mood disorders, attention deficit hyperactivity disorder, schizophrenia, epilepsy, alcoholism and drug addiction. Hence, GirK channels emerge as a very promising tool to be targeted in the current scenario where these conditions already are or will become a global public health problem. This review examines recent findings on the physiology, function, dysfunction, and pharmacology of GirK channels in the central nervous system and highlights the relevance of GirK channels as a worthful potential target to improve therapies for related diseases.
Collapse
|
12
|
Sakloth F, Polizu C, Bertherat F, Zachariou V. Regulators of G Protein Signaling in Analgesia and Addiction. Mol Pharmacol 2020; 98:739-750. [PMID: 32474445 PMCID: PMC7662521 DOI: 10.1124/mol.119.119206] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins are multifunctional proteins expressed in peripheral and neuronal cells, playing critical roles in development, physiologic processes, and pharmacological responses. RGS proteins primarily act as GTPase accelerators for activated Gα subunits of G-protein coupled receptors, but they may also modulate signal transduction by several other mechanisms. Over the last two decades, preclinical work identified members of the RGS family with unique and critical roles in intracellular responses to drugs of abuse. New information has emerged on the mechanisms by which RGS proteins modulate the efficacy of opioid analgesics in a brain region- and agonist-selective fashion. There has also been progress in the understanding of the protein complexes and signal transduction pathways regulated by RGS proteins in addiction and analgesia circuits. In this review, we summarize findings on the mechanisms by which RGS proteins modulate functional responses to opioids in models of analgesia and addiction. We also discuss reports on the regulation and function of RGS proteins in models of psychostimulant addiction. Using information from preclinical studies performed over the last 20 years, we highlight the diverse mechanisms by which RGS protein complexes control plasticity in response to opioid and psychostimulant drug exposure; we further discuss how the understanding of these pathways may lead to new opportunities for therapeutic interventions in G protein pathways. SIGNIFICANCE STATEMENT: Regulator of G protein signaling (RGS) proteins are signal transduction modulators, expressed widely in various tissues, including brain regions mediating addiction and analgesia. Evidence from preclinical work suggests that members of the RGS family act by unique mechanisms in specific brain regions to control drug-induced plasticity. This review highlights interesting findings on the regulation and function of RGS proteins in models of analgesia and addiction.
Collapse
Affiliation(s)
- Farhana Sakloth
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Claire Polizu
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Feodora Bertherat
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
13
|
Regulators of G protein signalling as pharmacological targets for the treatment of neuropathic pain. Pharmacol Res 2020; 160:105148. [PMID: 32858121 DOI: 10.1016/j.phrs.2020.105148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 12/30/2022]
Abstract
Neuropathic pain, a specific type of chronic pain resulting from persistent nervous tissue lesions, is a debilitating condition that affects about 7% of the population. This condition remains particularly difficult to treat because of the poor understanding of its underlying mechanisms. Drugs currently used to alleviate this chronic pain syndrome are of limited benefit due to their lack of efficacy and the elevated risk of side effects, especially after a prolonged period of treatment. Although drugs targeting G protein-coupled receptors (GPCR) also have several limitations, such as progressive loss of efficacy due to receptor desensitization or unavoidable side effects due to wide receptor distribution, the identification of several molecular partners that contribute to the fine-tuning of receptor activity has raised new opportunities for the development of alternative therapeutic approaches. Regulators of G protein signalling (RGS) act intracellularly by influencing the coupling process and activity of G proteins, and are amongst the best-characterized physiological modulators of GPCR. Changes in RGS expression have been documented in a range of models of neuropathic pain, or after prolonged treatment with diverse analgesics, and could participate in altered pain processing as well as impaired physiological or pharmacological control of nociceptive signals. The present review summarizes the experimental data that implicates RGS in the development of pain with focus on the pathological mechanisms of neuropathic pain, including the impact of neuropathic lesions on RGS expression and, reciprocally, the influence of modifying RGS on GPCRs involved in the modulation of nociception as well as on the outcome of pain. In this context, we address the question of the relevance of RGS as promising targets in the treatment of neuropathic pain.
Collapse
|
14
|
Senese NB, Kandasamy R, Kochan KE, Traynor JR. Regulator of G-Protein Signaling (RGS) Protein Modulation of Opioid Receptor Signaling as a Potential Target for Pain Management. Front Mol Neurosci 2020; 13:5. [PMID: 32038168 PMCID: PMC6992652 DOI: 10.3389/fnmol.2020.00005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/09/2020] [Indexed: 12/23/2022] Open
Abstract
Opioid drugs are the gold standard for the management of pain, but their use is severely limited by dangerous and unpleasant side effects. All clinically available opioid analgesics bind to and activate the mu-opioid receptor (MOR), a heterotrimeric G-protein-coupled receptor, to produce analgesia. The activity of these receptors is modulated by a family of intracellular RGS proteins or regulators of G-protein signaling proteins, characterized by the presence of a conserved RGS Homology (RH) domain. These proteins act as negative regulators of G-protein signaling by serving as GTPase accelerating proteins or GAPS to switch off signaling by both the Gα and βγ subunits of heterotrimeric G-proteins. Consequently, knockdown or knockout of RGS protein activity enhances signaling downstream of MOR. In this review we discuss current knowledge of how this activity, across the different families of RGS proteins, modulates MOR activity, as well as activity of other members of the opioid receptor family, and so pain and analgesia in animal models, with particular emphasis on RGS4 and RGS9 families. We discuss inhibition of RGS proteins with small molecule inhibitors that bind to sensitive cysteine moieties in the RH domain and the potential for targeting this family of intracellular proteins as adjuncts to provide an opioid sparing effect or as standalone analgesics by promoting the activity of endogenous opioid peptides. Overall, we conclude that RGS proteins may be a novel drug target to provide analgesia with reduced opioid-like side effects, but that much basic work is needed to define the roles for specific RGS proteins, particularly in chronic pain, as well as a need to develop newer inhibitors.
Collapse
Affiliation(s)
- Nicolas B Senese
- Department of Pharmacology, Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Psychiatry, Chicago, IL, United States
| | - Ram Kandasamy
- Department of Pharmacology, Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Psychology, California State University, East Bay, Hayward, CA, United States
| | - Kelsey E Kochan
- Department of Pharmacology, Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - John R Traynor
- Department of Pharmacology, Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
15
|
Coussens NP, Sittampalam GS, Jonson SG, Hall MD, Gorby HE, Tamiz AP, McManus OB, Felder CC, Rasmussen K. The Opioid Crisis and the Future of Addiction and Pain Therapeutics. J Pharmacol Exp Ther 2019; 371:396-408. [PMID: 31481516 PMCID: PMC6863454 DOI: 10.1124/jpet.119.259408] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/29/2019] [Indexed: 12/26/2022] Open
Abstract
Opioid misuse and addiction are a public health crisis resulting in debilitation, deaths, and significant social and economic impact. Curbing this crisis requires collaboration among academic, government, and industrial partners toward the development of effective nonaddictive pain medications, interventions for opioid overdose, and addiction treatments. A 2-day meeting, The Opioid Crisis and the Future of Addiction and Pain Therapeutics: Opportunities, Tools, and Technologies Symposium, was held at the National Institutes of Health (NIH) to address these concerns and to chart a collaborative path forward. The meeting was supported by the NIH Helping to End Addiction Long-TermSM (HEAL) Initiative, an aggressive, trans-agency effort to speed scientific solutions to stem the national opioid crisis. The event was unique in bringing together two research disciplines, addiction and pain, in order to create a forum for crosscommunication and collaboration. The output from the symposium will be considered by the HEAL Initiative; this article summarizes the scientific presentations and key takeaways. Improved understanding of the etiology of acute and chronic pain will enable the discovery of novel targets and regulatable pain circuits for safe and effective therapeutics, as well as relevant biomarkers to ensure adequate testing in clinical trials. Applications of improved technologies including reagents, assays, model systems, and validated probe compounds will likely increase the delivery of testable hypotheses and therapeutics to enable better health outcomes for patients. The symposium goals were achieved by increasing interdisciplinary collaboration to accelerate solutions for this pressing public health challenge and provide a framework for focused efforts within the research community. SIGNIFICANCE STATEMENT: This article summarizes key messages and discussions resulting from a 2-day symposium focused on challenges and opportunities in developing addiction- and pain-related medications. Speakers and attendees came from 40 states in the United States and 15 countries, bringing perspectives from academia, industry, government, and healthcare by researchers, clinicians, regulatory experts, and patient advocates.
Collapse
Affiliation(s)
- Nathan P Coussens
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - G Sitta Sittampalam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Samantha G Jonson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Heather E Gorby
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Amir P Tamiz
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Owen B McManus
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Christian C Felder
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Kurt Rasmussen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| |
Collapse
|
16
|
The in vivo specificity of synaptic Gβ and Gγ subunits to the α 2a adrenergic receptor at CNS synapses. Sci Rep 2019; 9:1718. [PMID: 30737458 PMCID: PMC6368627 DOI: 10.1038/s41598-018-37222-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/26/2018] [Indexed: 11/21/2022] Open
Abstract
G proteins are major transducers of signals from G-protein coupled receptors (GPCRs). They are made up of α, β, and γ subunits, with 16 Gα, 5 Gβ and 12 Gγ subunits. Though much is known about the specificity of Gα subunits, the specificity of Gβγs activated by a given GPCR and that activate each effector in vivo is not known. Here, we examined the in vivo Gβγ specificity of presynaptic α2a-adrenergic receptors (α2aARs) in both adrenergic (auto-α2aARs) and non-adrenergic neurons (hetero-α2aARs) for the first time. With a quantitative MRM proteomic analysis of neuronal Gβ and Gγ subunits, and co-immunoprecipitation of tagged α2aARs from mouse models including transgenic FLAG-α2aARs and knock-in HA-α2aARs, we investigated the in vivo specificity of Gβ and Gγ subunits to auto-α2aARs and hetero-α2aARs activated with epinephrine to understand the role of Gβγ specificity in diverse physiological functions such as anesthetic sparing, and working memory enhancement. We detected Gβ2, Gγ2, Gγ3, and Gγ4 with activated auto α2aARs, whereas we found Gβ4 and Gγ12 preferentially interacted with activated hetero-α2aARs. Further understanding of in vivo Gβγ specificity to various GPCRs offers new insights into the multiplicity of genes for Gβ and Gγ, and the mechanisms underlying GPCR signaling through Gβγ subunits.
Collapse
|
17
|
Comer SD, Cahill CM. Fentanyl: Receptor pharmacology, abuse potential, and implications for treatment. Neurosci Biobehav Rev 2018; 106:49-57. [PMID: 30528374 DOI: 10.1016/j.neubiorev.2018.12.005] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022]
Abstract
Opioid overdoses, many of which are attributed to use of illicit fentanyl, are currently one of the leading causes of death in the U.S. Although fentanyl has been used safely for decades in clinical settings, the widespread use of illicit fentanyl is a recent phenomenon. Starting in 2013, illicitly manufactured fentanyl and its analogs began to appear on the streets. These substances were added to or sold as heroin, often unbeknownst to the user. Because fentanyl is so potent, only small amounts are needed to produce pharmacological effects, but the margin between safe and toxic doses is narrow. Surprisingly little is known about the exact signaling mechanisms underlying fentanyl-related respiratory depression or the effectiveness of naloxone in reversing this effect. Similarly, little is known about the ability of treatment medications such as buprenorphine, methadone, or naltrexone to reduce illicit fentanyl use. The present article reviews the receptor, preclinical and clinical pharmacology of fentanyl, and how its pharmacology may predict the effectiveness of currently approved medications for treating illicit fentanyl use.
Collapse
Affiliation(s)
- Sandra D Comer
- New York State Psychiatric Institute and Columbia University, New York, NY, 10027, United States.
| | - Catherine M Cahill
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, 90095, United States
| |
Collapse
|
18
|
Regulators of G-Protein Signaling (RGS) Proteins Promote Receptor Coupling to G-Protein-Coupled Inwardly Rectifying Potassium (GIRK) Channels. J Neurosci 2018; 38:8737-8744. [PMID: 30150362 DOI: 10.1523/jneurosci.0516-18.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023] Open
Abstract
Regulators of G-protein signaling (RGS) proteins negatively modulate presynaptic μ-opioid receptor inhibition of GABA release in the ventrolateral periaqueductal gray (vlPAG). Paradoxically, we find that G-protein-coupled receptor (GPCR) activation of G-protein-gated inwardly rectifying K+ channels (GIRKs) in the vlPAG is reduced in an agonist- and receptor-dependent manner in transgenic knock-in mice of either sex expressing mutant RGS-insensitive Gαo proteins. μ-Opioid receptor agonist activation of GIRK currents was reduced for DAMGO and fentanyl but not for [Met5]-enkephalin acetate salt hydrate (ME) in the RGS-insensitive heterozygous (Het) mice compared with wild-type mice. The GABAB agonist baclofen-induced GIRK currents were also reduced in the Het mice. We confirmed the role of Gαo proteins in μ-opioid receptor and GABAB receptor signaling pathways in wild-type mice using myristoylated peptide inhibitors of Gαo1 and Gαi1-3 The results using these inhibitors indicate that receptor activation of GIRK channels is dependent on the preference of the agonist-stimulated receptor for Gαo versus that for Gαi. DAMGO and fentanyl-mediated GIRK currents were reduced in the presence of the Gαo1 inhibitor, but not the Gαi1-3 inhibitors. In contrast, the Gαo1 peptide inhibitor did not affect ME activation of GIRK currents, which is consistent with results in the Het mice, but the Gαi1-3 inhibitors significantly reduced ME-mediated GIRK currents. Finally, the reduction in GIRK activation in the Het mice plays a role in opioid- and baclofen-mediated spinal antinociception, but not supraspinal antinociception. Thus, our studies indicate that RGS proteins have multiple mechanisms of modulating GPCR signaling that produce negative and positive regulation of signaling depending on the effector.SIGNIFICANCE STATEMENT Regulators of G-protein signaling (RGS) proteins positively modulate GPCR coupling to GIRKs, and this coupling is critical for opioid- and baclofen-mediated spinal antinociception, whereas μ-opioid receptor-mediated supraspinal antinociception depends on presynaptic inhibition that is negatively regulated by RGS proteins. The identification of these opposite roles for RGS proteins has implications for signaling via other GPCRs.
Collapse
|
19
|
Selective Role of RGS9-2 in Regulating Retrograde Synaptic Signaling of Indirect Pathway Medium Spiny Neurons in Dorsal Striatum. J Neurosci 2018; 38:7120-7131. [PMID: 30006367 DOI: 10.1523/jneurosci.0493-18.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 11/21/2022] Open
Abstract
In the striatum, medium spiny neurons (MSNs) are heavily involved in controlling movement and reward. MSNs form two distinct populations expressing either dopamine receptor 1 (D1-MSN) or dopamine receptor 2 (D2-MSN), which differ in their projection targets and neurochemical composition. The activity of both types of MSNs is shaped by multiple neuromodulatory inputs processed by GPCRs that fundamentally impact their synaptic properties biasing behavioral outcomes. How these GPCR signaling cascades are regulated and what downstream targets they recruit in D1-MSN and D2-MSN populations are incompletely understood. In this study, we examined the cellular and molecular mechanisms underlying the action of RGS9-2, a key GPCR regulator in MSNs implicated in both movement control and actions of addictive drugs. Imaging cultured striatal neurons, we found that ablation of RGS9-2 significantly reduced calcium influx through NMDARs. Electrophysiological recordings in slices confirmed inhibition of NMDAR function in MSNs, resulting in enhanced AMPAR/NMDAR ratio. Accordingly, male mice lacking RGS9-2 displayed behavioral hypersensitivity to NMDAR blockade by MK-801 or ketamine. Recordings from genetically identified populations of striatal neurons revealed that these changes were selective to D2-MSNs. Surprisingly, we found that these postsynaptic effects resulted in remodeling of presynaptic inputs to D2-MSNs increasing the frequency of mEPSC and inhibiting paired-pulse ratio. Pharmacological dissection revealed that these adaptations were mediated by the NMDAR-dependent inhibition of retrograde endocannabinoid signaling from D2-MSNs to CB1 receptor on presynaptic terminals. Together, these data demonstrate a novel mechanism for pathway selective regulation of synaptic plasticity in MSNs controlled by GPCR signaling.SIGNIFICANCE STATEMENT This study identifies a role for a major G-protein regulator in controlling synaptic properties of striatal neurons in a pathway selective fashion.
Collapse
|
20
|
Squires KE, Montañez-Miranda C, Pandya RR, Torres MP, Hepler JR. Genetic Analysis of Rare Human Variants of Regulators of G Protein Signaling Proteins and Their Role in Human Physiology and Disease. Pharmacol Rev 2018; 70:446-474. [PMID: 29871944 PMCID: PMC5989036 DOI: 10.1124/pr.117.015354] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins modulate the physiologic actions of many neurotransmitters, hormones, and other signaling molecules. Human RGS proteins comprise a family of 20 canonical proteins that bind directly to G protein-coupled receptors/G protein complexes to limit the lifetime of their signaling events, which regulate all aspects of cell and organ physiology. Genetic variations account for diverse human traits and individual predispositions to disease. RGS proteins contribute to many complex polygenic human traits and pathologies such as hypertension, atherosclerosis, schizophrenia, depression, addiction, cancers, and many others. Recent analysis indicates that most human diseases are due to extremely rare genetic variants. In this study, we summarize physiologic roles for RGS proteins and links to human diseases/traits and report rare variants found within each human RGS protein exome sequence derived from global population studies. Each RGS sequence is analyzed using recently described bioinformatics and proteomic tools for measures of missense tolerance ratio paired with combined annotation-dependent depletion scores, and protein post-translational modification (PTM) alignment cluster analysis. We highlight selected variants within the well-studied RGS domain that likely disrupt RGS protein functions and provide comprehensive variant and PTM data for each RGS protein for future study. We propose that rare variants in functionally sensitive regions of RGS proteins confer profound change-of-function phenotypes that may contribute, in newly appreciated ways, to complex human diseases and/or traits. This information provides investigators with a valuable database to explore variation in RGS protein function, and for targeting RGS proteins as future therapeutic targets.
Collapse
Affiliation(s)
- Katherine E Squires
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Carolina Montañez-Miranda
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Rushika R Pandya
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Matthew P Torres
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - John R Hepler
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| |
Collapse
|
21
|
Suppression of RGSz1 function optimizes the actions of opioid analgesics by mechanisms that involve the Wnt/β-catenin pathway. Proc Natl Acad Sci U S A 2018; 115:E2085-E2094. [PMID: 29440403 DOI: 10.1073/pnas.1707887115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Regulator of G protein signaling z1 (RGSz1), a member of the RGS family of proteins, is present in several networks expressing mu opioid receptors (MOPRs). By using genetic mouse models for global or brain region-targeted manipulations of RGSz1 expression, we demonstrated that the suppression of RGSz1 function increases the analgesic efficacy of MOPR agonists in male and female mice and delays the development of morphine tolerance while decreasing the sensitivity to rewarding and locomotor activating effects. Using biochemical assays and next-generation RNA sequencing, we identified a key role of RGSz1 in the periaqueductal gray (PAG) in morphine tolerance. Chronic morphine administration promotes RGSz1 activity in the PAG, which in turn modulates transcription mediated by the Wnt/β-catenin signaling pathway to promote analgesic tolerance to morphine. Conversely, the suppression of RGSz1 function stabilizes Axin2-Gαz complexes near the membrane and promotes β-catenin activation, thereby delaying the development of analgesic tolerance. These data show that the regulation of RGS complexes, particularly those involving RGSz1-Gαz, represents a promising target for optimizing the analgesic actions of opioids without increasing the risk of dependence or addiction.
Collapse
|
22
|
Hayes MP, Bodle CR, Roman DL. Evaluation of the Selectivity and Cysteine Dependence of Inhibitors across the Regulator of G Protein-Signaling Family. Mol Pharmacol 2018; 93:25-35. [PMID: 29051318 PMCID: PMC5708088 DOI: 10.1124/mol.117.109843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/16/2017] [Indexed: 01/03/2023] Open
Abstract
Since their discovery more than 20 years ago, regulators of G protein-signaling (RGS) proteins have received considerable attention as potential drug targets because of their ability to modulate Gα activity. Efforts to identify small molecules capable of inhibiting the protein-protein interactions between activated Gα subunits and RGS proteins have yielded a substantial number of inhibitors, especially toward the well studied RGS4. These efforts also determined that many of these small molecules inhibit the protein-protein interactions through covalent modification of cysteine residues within the RGS domain that are located distal to the Gα-binding interface. As some of these cysteine residues are highly conserved within the RGS family, many of these inhibitors display activity toward multiple RGS family members. In this work, we sought to determine the selectivity of these small-molecule inhibitors against 12 RGS proteins, as well as against the cysteine-null mutants for 10 of these proteins. Using both biochemical and cell-based methods to assess Gα-RGS complex formation and Gα enzymatic activity, we found that several previously identified RGS4 inhibitors were active against other RGS members, such as RGS14, with comparable or greater potency. Additionally, for every compound tested, activity was dependent on the presence of cysteine residues. This work defines the selectivity of commercially available RGS inhibitors and provides insight into the RGS family members for which drug discovery efforts may be most likely to succeed.
Collapse
Affiliation(s)
- Michael P Hayes
- Department of Pharmaceutical Sciences and Experimental Therapeutics University of Iowa (M.P.H., C.R.B., D.L.R.) and Cancer Signaling and Experimental Therapeutics Program, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics (D.L.R.), Iowa City, Iowa
| | - Christopher R Bodle
- Department of Pharmaceutical Sciences and Experimental Therapeutics University of Iowa (M.P.H., C.R.B., D.L.R.) and Cancer Signaling and Experimental Therapeutics Program, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics (D.L.R.), Iowa City, Iowa
| | - David L Roman
- Department of Pharmaceutical Sciences and Experimental Therapeutics University of Iowa (M.P.H., C.R.B., D.L.R.) and Cancer Signaling and Experimental Therapeutics Program, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics (D.L.R.), Iowa City, Iowa
| |
Collapse
|
23
|
Yim YY, McDonald WH, Hyde K, Cruz-Rodríguez O, Tesmer JJG, Hamm HE. Quantitative Multiple-Reaction Monitoring Proteomic Analysis of Gβ and Gγ Subunits in C57Bl6/J Brain Synaptosomes. Biochemistry 2017; 56:5405-5416. [PMID: 28880079 DOI: 10.1021/acs.biochem.7b00433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Gβγ dimers are one of the essential signaling units of activated G protein-coupled receptors (GPCRs). There are five Gβ and 12 Gγ subunits in humans; numerous studies have demonstrated that different Gβ and Gγ subunits selectively interact to form unique Gβγ dimers, which in turn may target specific receptors and effectors. Perturbation of Gβγ signaling can lead to impaired physiological responses. Moreover, previous targeted multiple-reaction monitoring (MRM) studies of Gβ and Gγ subunits have shown distinct regional and subcellular localization patterns in four brain regions. Nevertheless, no studies have quantified or compared their individual protein levels. In this study, we have developed a quantitative MRM method not only to quantify but also to compare the protein abundance of neuronal Gβ and Gγ subunits. In whole and fractionated crude synaptosomes, we were able to identify the most abundant neuronal Gβ and Gγ subunits and their subcellular localizations. For example, Gβ1 was mostly localized at the membrane while Gβ2 was evenly distributed throughout synaptosomal fractions. The protein expression levels and subcellular localizations of Gβ and Gγ subunits may affect the Gβγ dimerization and Gβγ-effector interactions. This study offers not only a new tool for quantifying and comparing Gβ and Gγ subunits but also new insights into the in vivo distribution of Gβ and Gγ subunits, and Gβγ dimer assembly in normal brain function.
Collapse
Affiliation(s)
- Yun Young Yim
- Department of Pharmacology, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| | - W Hayes McDonald
- Department of Biochemistry, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| | - Karren Hyde
- Department of Pharmacology, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| | | | | | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| |
Collapse
|
24
|
Gaspari S, Cogliani V, Manouras L, Anderson EM, Mitsi V, Avrampou K, Carr FB, Zachariou V. RGS9-2 Modulates Responses to Oxycodone in Pain-Free and Chronic Pain States. Neuropsychopharmacology 2017; 42:1548-1556. [PMID: 28074831 PMCID: PMC5436127 DOI: 10.1038/npp.2017.4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/28/2016] [Accepted: 12/23/2016] [Indexed: 12/11/2022]
Abstract
Regulator of G-protein signaling 9-2 (RGS9-2) is a striatal-enriched signal-transduction modulator known to have a critical role in the development of addiction-related behaviors following exposure to psychostimulants or opioids. RGS9-2 controls the function of several G-protein-coupled receptors, including dopamine receptor and mu opioid receptor (MOR). We previously showed that RGS9-2 complexes negatively control morphine analgesia, and promote the development of morphine tolerance. In contrast, RGS9-2 positively modulates the actions of other opioid analgesics, such as fentanyl and methadone. Here we investigate the role of RGS9-2 in regulating responses to oxycodone, an MOR agonist prescribed for the treatment of severe pain conditions that has addictive properties. Using mice lacking the Rgs9 gene (RGS9KO), we demonstrate that RGS9-2 positively regulates the rewarding effects of oxycodone in pain-free states, and in a model of neuropathic pain. Furthermore, although RGS9-2 does not affect the analgesic efficacy of oxycodone or the expression of physical withdrawal, it opposes the development of oxycodone tolerance, in both acute pain and chronic neuropathic pain models. Taken together, these data provide new information on the signal-transduction mechanisms that modulate the rewarding and analgesic actions of oxycodone.
Collapse
Affiliation(s)
- Sevasti Gaspari
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
- University of Crete Faculty of Medicine, Department of Basic Sciences, Heraklion, Greece
| | - Valeria Cogliani
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Lefteris Manouras
- University of Crete Faculty of Medicine, Department of Basic Sciences, Heraklion, Greece
| | - Ethan M Anderson
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Vasiliki Mitsi
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Kleopatra Avrampou
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Fiona B Carr
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Venetia Zachariou
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| |
Collapse
|
25
|
A new model of nerve injury in the rat reveals a role of Regulator of G protein Signaling 4 in tactile hypersensitivity. Exp Neurol 2016; 286:1-11. [PMID: 27641322 DOI: 10.1016/j.expneurol.2016.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/15/2022]
Abstract
Tactile hypersensitivity is one of the most debilitating symptoms of neuropathic pain syndromes. Clinical studies have suggested that its presence at early postoperative stages may predict chronic (neuropathic) pain after surgery. Currently available animal models are typically associated with consistent tactile hypersensitivity and are therefore limited to distinguish between mechanisms that underlie tactile hypersensitivity as opposed to mechanisms that protect against it. In this study we have modified the rat model of spared nerve injury, restricting the surgical lesion to a single peripheral branch of the sciatic nerve. This modification reduced the prevalence of tactile hypersensitivity from nearly 100% to approximately 50%. With this model, we here also demonstrated that the Regulator of G protein Signaling 4 (RGS4) was specifically up-regulated in the lumbar dorsal root ganglia and dorsal horn of rats developing tactile hypersensitivity. Intrathecal delivery of the RGS4 inhibitor CCG63802 was found to reverse tactile hypersensitivity for a 1h period. Moreover, tactile hypersensitivity after modified spared nerve injury was most frequently persistent for at least four weeks and associated with higher reactivity of glial cells in the lumbar dorsal horn. Based on these data we suggest that this new animal model of nerve injury represents an asset in understanding divergent neuropathic pain outcomes, so far unravelling a role of RGS4 in tactile hypersensitivity. Whether this model also holds promise in the study of the transition from acute to chronic pain will have to be seen in future investigations.
Collapse
|
26
|
Sutton LP, Ostrovskaya O, Dao M, Xie K, Orlandi C, Smith R, Wee S, Martemyanov KA. Regulator of G-Protein Signaling 7 Regulates Reward Behavior by Controlling Opioid Signaling in the Striatum. Biol Psychiatry 2016; 80:235-45. [PMID: 26364547 PMCID: PMC4753143 DOI: 10.1016/j.biopsych.2015.07.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/02/2015] [Accepted: 07/27/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Morphine mediates its euphoric and analgesic effects by acting on the μ-opioid receptor (MOR). MOR belongs to the family of G-protein coupled receptors whose signaling efficiency is controlled by the regulator of G-protein signaling (RGS) proteins. Our understanding of the molecular diversity of RGS proteins that control MOR signaling, their circuit specific actions, and underlying cellular mechanisms is very limited. METHODS We used genetic approaches to ablate regulator of G-protein signaling 7 (RGS7) both globally and in specific neuronal populations. We used conditioned place preference and self-administration paradigms to examine reward-related behavior and a battery of tests to assess analgesia, tolerance, and physical dependence to morphine. Electrophysiology approaches were applied to investigate the impact of RGS7 on morphine-induced alterations in neuronal excitability and plasticity of glutamatergic synapses. At least three animals were used for each assessment. RESULTS Elimination of RGS7 enhanced reward, increased analgesia, delayed tolerance, and heightened withdrawal in response to morphine administration. RGS7 in striatal neurons was selectively responsible for determining the sensitivity of rewarding and reinforcing behaviors to morphine without affecting analgesia, tolerance, and withdrawal. In contrast, deletion of RGS7 in dopaminergic neurons did not influence morphine reward. RGS7 exerted its effects by controlling morphine-induced changes in excitability of medium spiny neurons in nucleus accumbens and gating the compositional plasticity of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptors. CONCLUSIONS This study identifies RGS7 as a novel regulator of MOR signaling by dissecting its circuit specific actions and pinpointing its role in regulating morphine reward by controlling the activity of nucleus accumbens neurons.
Collapse
Affiliation(s)
- Laurie P. Sutton
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Olga Ostrovskaya
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Maria Dao
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458 USA,Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Keqiang Xie
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Roy Smith
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Sunmee Wee
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 USA,Corresponding author: Dr. Kirill Martemyanov, Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, 3C2, Jupiter, FL 33458, Phone: (561) 228-2770,
| |
Collapse
|
27
|
Salaga M, Storr M, Martemyanov KA, Fichna J. RGS proteins as targets in the treatment of intestinal inflammation and visceral pain: New insights and future perspectives. Bioessays 2016; 38:344-54. [PMID: 26817719 PMCID: PMC4916644 DOI: 10.1002/bies.201500118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regulators of G protein signaling (RGS) proteins provide timely termination of G protein-coupled receptor (GPCR) responses. Serving as a central control point in GPCR signaling cascades, RGS proteins are promising targets for drug development. In this review, we discuss the involvement of RGS proteins in the pathophysiology of the gastrointestinal inflammation and their potential to become a target for anti-inflammatory drugs. Specifically, we evaluate the emerging evidence for modulation of selected receptor families: opioid, cannabinoid and serotonin by RGS proteins. We discuss how the regulation of RGS protein level and activity may modulate immunological pathways involved in the development of intestinal inflammation. Finally, we propose that RGS proteins may serve as a prognostic factor for survival rate in colorectal cancer. The ideas introduced in this review set a novel conceptual framework for the utilization of RGS proteins in the treatment of gastrointestinal inflammation, a growing major concern worldwide.
Collapse
Affiliation(s)
- Maciej Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| | - Martin Storr
- Walter Brendel Center of Experimental Medicine, University of Munich, Germany
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
- Corresponding authors: J.F. Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland, Phone: ++48 42 272 57 07, Fax: ++48 42 272 56 94, . K.A.M., Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way C347, Jupiter, FL 33458, USA, Phone: ++1 561 228 2770,
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
- Corresponding authors: J.F. Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland, Phone: ++48 42 272 57 07, Fax: ++48 42 272 56 94, . K.A.M., Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way C347, Jupiter, FL 33458, USA, Phone: ++1 561 228 2770,
| |
Collapse
|
28
|
Muntean BS, Martemyanov KA. Association with the Plasma Membrane Is Sufficient for Potentiating Catalytic Activity of Regulators of G Protein Signaling (RGS) Proteins of the R7 Subfamily. J Biol Chem 2016; 291:7195-204. [PMID: 26811338 PMCID: PMC4807299 DOI: 10.1074/jbc.m115.713446] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/21/2016] [Indexed: 12/23/2022] Open
Abstract
Regulators of G protein Signaling (RGS) promote deactivation of heterotrimeric G proteins thus controlling the magnitude and kinetics of responses mediated by G protein-coupled receptors (GPCR). In the nervous system, RGS7 and RGS9-2 play essential role in vision, reward processing, and movement control. Both RGS7 and RGS9-2 belong to the R7 subfamily of RGS proteins that form macromolecular complexes with R7-binding protein (R7BP). R7BP targets RGS proteins to the plasma membrane and augments their GTPase-accelerating protein (GAP) activity, ultimately accelerating deactivation of G protein signaling. However, it remains unclear if R7BP serves exclusively as a membrane anchoring subunit or further modulates RGS proteins to increase their GAP activity. To directly answer this question, we utilized a rapidly reversible chemically induced protein dimerization system that enabled us to control RGS localization independent from R7BP in living cells. To monitor kinetics of Gα deactivation, we coupled this strategy with measuring changes in the GAP activity by bioluminescence resonance energy transfer-based assay in a cellular system containing μ-opioid receptor. This approach was used to correlate changes in RGS localization and activity in the presence or absence of R7BP. Strikingly, we observed that RGS activity is augmented by membrane recruitment, in an orientation independent manner with no additional contributions provided by R7BP. These findings argue that the association of R7 RGS proteins with the membrane environment provides a major direct contribution to modulation of their GAP activity.
Collapse
Affiliation(s)
- Brian S Muntean
- From the Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| | - Kirill A Martemyanov
- From the Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| |
Collapse
|
29
|
Ahlers KE, Chakravarti B, Fisher RA. RGS6 as a Novel Therapeutic Target in CNS Diseases and Cancer. AAPS JOURNAL 2016; 18:560-72. [PMID: 27002730 DOI: 10.1208/s12248-016-9899-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/25/2016] [Indexed: 12/17/2022]
Abstract
Regulator of G protein signaling (RGS) proteins are gatekeepers regulating the cellular responses induced by G protein-coupled receptor (GPCR)-mediated activation of heterotrimeric G proteins. Specifically, RGS proteins determine the magnitude and duration of GPCR signaling by acting as a GTPase-activating protein for Gα subunits, an activity facilitated by their semiconserved RGS domain. The R7 subfamily of RGS proteins is distinguished by two unique domains, DEP/DHEX and GGL, which mediate membrane targeting and stability of these proteins. RGS6, a member of the R7 subfamily, has been shown to specifically modulate Gαi/o protein activity which is critically important in the central nervous system (CNS) for neuronal responses to a wide array of neurotransmitters. As such, RGS6 has been implicated in several CNS pathologies associated with altered neurotransmission, including the following: alcoholism, anxiety/depression, and Parkinson's disease. In addition, unlike other members of the R7 subfamily, RGS6 has been shown to regulate G protein-independent signaling mechanisms which appear to promote both apoptotic and growth-suppressive pathways that are important in its tumor suppressor function in breast and possibly other tissues. Further highlighting the importance of RGS6 as a target in cancer, RGS6 mediates the chemotherapeutic actions of doxorubicin and blocks reticular activating system (Ras)-induced cellular transformation by promoting degradation of DNA (cytosine-5)-methyltransferase 1 (DNMT1) to prevent its silencing of pro-apoptotic and tumor suppressor genes. Together, these findings demonstrate the critical role of RGS6 in regulating both G protein-dependent CNS pathology and G protein-independent cancer pathology implicating RGS6 as a novel therapeutic target.
Collapse
Affiliation(s)
- Katelin E Ahlers
- Department of Pharmacology, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 2-505 Bowen Science Building, Iowa City, Iowa, 52242, USA
| | - Bandana Chakravarti
- Department of Pharmacology, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 2-505 Bowen Science Building, Iowa City, Iowa, 52242, USA
| | - Rory A Fisher
- Department of Pharmacology, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 2-505 Bowen Science Building, Iowa City, Iowa, 52242, USA. .,Department of Internal Medicine, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
30
|
Bosier B, Doyen PJ, Brolet A, Muccioli GG, Ahmed E, Desmet N, Hermans E, Deumens R. Inhibition of the regulator of G protein signalling RGS4 in the spinal cord decreases neuropathic hyperalgesia and restores cannabinoid CB1 receptor signalling. Br J Pharmacol 2015; 172:5333-46. [PMID: 26478461 PMCID: PMC5341217 DOI: 10.1111/bph.13324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/24/2015] [Accepted: 09/04/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Regulators of G protein signalling (RGS) are major determinants of metabotropic receptor activity, reducing the lifespan of the GTP-bound state of G proteins. Because the reduced potency of analgesic agents in neuropathic pain may reflect alterations in RGS, we assessed the effects of CCG 63802, a specific RGS4 inhibitor, on pain hypersensitivity and signalling through cannabinoid receptors, in a model of neuropathic pain. EXPERIMENTAL APPROACH The partial sciatic nerve ligation (PSNL) model in male Sprague Dawley rats was used to measure paw withdrawal thresholds to mechanical (von Frey hairs) or thermal (Hargreaves method) stimuli, during and after intrathecal injection of CCG 63802. HEK293 cells expressing CB1 receptors and conditional expression of RGS4 were used to correlate cAMP production and ERK phosphorylation with receptor activation and RGS4 action. KEY RESULTS Treatment of PSNL rats with CCG 63802, twice daily for 7 days after nerve injury, attenuated thermal hyperalgesia during treatment. Spinal levels of anandamide were higher in PSNL animals, irrespective of the treatment. Although expression of CB1 receptors was unaffected, HU210-induced CB1 receptor signalling was inhibited in PSNL rats and restored after intrathecal CCG 63802. In transfected HEK cells expressing CB1 receptors and RGS4, inhibition of cAMP production, a downstream effect of CB1 receptor signalling, was blunted after RGS4 overexpression. RGS4 expression also attenuated the CB1 receptor-controlled activation of ERK1/2. CONCLUSIONS AND IMPLICATIONS Inhibition of spinal RGS4 restored endogenous analgesic signalling pathways and mitigated neuropathic pain. Signalling through CB1 receptors may be involved in this beneficial effect.
Collapse
Affiliation(s)
- Barbara Bosier
- Neuropharmacology Group, Institute of NeuroscienceUniversité catholique de LouvainBrusselsBelgium
| | - Pierre J. Doyen
- Neuropharmacology Group, Institute of NeuroscienceUniversité catholique de LouvainBrusselsBelgium
| | - Amandine Brolet
- Neuropharmacology Group, Institute of NeuroscienceUniversité catholique de LouvainBrusselsBelgium
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research InstituteUniversité catholique de LouvainBrusselsBelgium
| | - Eman Ahmed
- Neuropharmacology Group, Institute of NeuroscienceUniversité catholique de LouvainBrusselsBelgium
- Department of Clinical PharmacologyFaculty of Medicine, Suez Canal UniversityIsmailiaEgypt
| | - Nathalie Desmet
- Neuropharmacology Group, Institute of NeuroscienceUniversité catholique de LouvainBrusselsBelgium
| | - Emmanuel Hermans
- Neuropharmacology Group, Institute of NeuroscienceUniversité catholique de LouvainBrusselsBelgium
| | - Ronald Deumens
- Neuropharmacology Group, Institute of NeuroscienceUniversité catholique de LouvainBrusselsBelgium
| |
Collapse
|
31
|
RGS9-2--controlled adaptations in the striatum determine the onset of action and efficacy of antidepressants in neuropathic pain states. Proc Natl Acad Sci U S A 2015; 112:E5088-97. [PMID: 26305935 DOI: 10.1073/pnas.1504283112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The striatal protein Regulator of G-protein signaling 9-2 (RGS9-2) plays a key modulatory role in opioid, monoamine, and other G-protein-coupled receptor responses. Here, we use the murine spared-nerve injury model of neuropathic pain to investigate the mechanism by which RGS9-2 in the nucleus accumbens (NAc), a brain region involved in mood, reward, and motivation, modulates the actions of tricyclic antidepressants (TCAs). Prevention of RGS9-2 action in the NAc increases the efficacy of the TCA desipramine and dramatically accelerates its onset of action. By controlling the activation of effector molecules by G protein α and βγ subunits, RGS9-2 affects several protein interactions, phosphoprotein levels, and the function of the epigenetic modifier histone deacetylase 5, which are important for TCA responsiveness. Furthermore, information from RNA-sequencing analysis reveals that RGS9-2 in the NAc affects the expression of many genes known to be involved in nociception, analgesia, and antidepressant drug actions. Our findings provide novel information on NAc-specific cellular mechanisms that mediate the actions of TCAs in neuropathic pain states.
Collapse
|
32
|
Santhappan R, Crowder AT, Gouty S, Cox BM, Côté TE. Mu opioid receptor activation enhances regulator of G protein signaling 4 association with the mu opioid receptor/G protein complex in a GTP-dependent manner. J Neurochem 2015; 135:76-87. [PMID: 26119705 PMCID: PMC5034817 DOI: 10.1111/jnc.13222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/19/2015] [Accepted: 06/25/2015] [Indexed: 11/26/2022]
Abstract
The interaction of Regulator of G protein Signaling 4 (RGS4) with the rat mu opioid receptor (MOR)/G protein complex was investigated. Solubilized MOR from rat brain membranes was immunoprecipitated in the presence of RGS4 with antibodies against the N-terminus of MOR (anti-MOR10-70 ). Activation of MOR with [D-Ala(2) , N-Me-Phe(4) , Gly(5) -ol] enkephalin (DAMGO) during immunoprecipitation caused a 150% increase in Goα and a 50% increase in RGS4 in the pellet. When 10 μM GTP was included with DAMGO, there was an additional 72% increase in RGS4 co-immunoprecipitating with MOR (p = 0.003). Guanosine 5'-O-(3-thiotriphosphate) (GTPγS) increased the amount of co-precipitating RGS4 by 93% (compared to DAMGO alone, p = 0.008), and the inclusion of GTPγS caused the ratio of MOR to RGS4 to be 1 : 1 (31 fmoles : 28 fmoles, respectively). GTPγS also increased the association of endogenous RGS4 with MOR. In His6 RGS4/Ni(2+) -NTA agarose pull down experiments, 0.3 μM GTPγS tripled the binding of Goα to His6 RGS4, whereas the addition of 100 μM GDP blocked this effect. Importantly, activation of solubilized MOR with DAMGO in the presence of 100 μM GDP and 0.3 μM GTPγS increased Goα binding to His6 RGS4/Ni(2+) -NTA agarose (p = 0.001). Regulators of G protein Signaling (RGS) shorten the time that G proteins are active. Activation of the mu opioid receptor (MOR) causes GTP to bind to and to activate Go (αoβγ). RGS4 then binds to the activated αo-GTP/MOR complex and accelerates the intrinsic GTPase of αo. After αo dissociates from MOR, RGS4 remains bound to the C-terminal region of MOR.
Collapse
Affiliation(s)
- Rema Santhappan
- Department of Pharmacology, The Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Alicia Tamara Crowder
- Department of Pharmacology, The Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Neuroscience Program, The Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Shawn Gouty
- Department of Pharmacology, The Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Brian M Cox
- Department of Pharmacology, The Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Neuroscience Program, The Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Thomas E Côté
- Department of Pharmacology, The Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Neuroscience Program, The Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Kelly E. Efficacy and ligand bias at the μ-opioid receptor. Br J Pharmacol 2014; 169:1430-46. [PMID: 23646826 DOI: 10.1111/bph.12222] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/10/2013] [Accepted: 04/20/2013] [Indexed: 12/11/2022] Open
Abstract
In order to describe drug action at a GPCR, a full understanding of the pharmacological terms affinity, efficacy and potency is necessary. This is true whether comparing the ability of different agonists to produce a measurable response in a cell or tissue, or determining the relative ability of an agonist to activate a single receptor subtype and produce multiple responses. There is a great deal of interest in the μ-opioid receptor (MOP receptor) and the ligands that act at this GPCR not only because of the clinically important analgesic effects produced by MOP agonists but also because of their liability to induce adverse effects such as respiratory depression and dependence. Our understanding of the mechanisms underlying these effects, as well as the ability to develop new, more effective MOP receptor drugs, depends upon the accurate determination of the efficacy with which these ligands induce coupling of MOP receptors to downstream signalling events. In this review, which is written with the minimum of mathematical content, the basic meaning of terms including efficacy, intrinsic activity and intrinsic efficacy is discussed, along with their relevance to the field of MOP receptor pharmacology, and in particular in relation to biased agonism at this important GPCR.
Collapse
Affiliation(s)
- E Kelly
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK.
| |
Collapse
|
34
|
Lamberts JT, Traynor JR. Opioid receptor interacting proteins and the control of opioid signaling. Curr Pharm Des 2014; 19:7333-47. [PMID: 23448476 DOI: 10.2174/138161281942140105160625] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/18/2013] [Indexed: 12/31/2022]
Abstract
Opioid receptors are seven-transmembrane domain receptors that couple to intracellular signaling molecules by activating heterotrimeric G proteins. However, the receptor and G protein do not function in isolation but their activities are modulated by several accessory and scaffolding proteins. Examples include arrestins, kinases, and regulators of G protein signaling proteins. Accessory proteins contribute to the observed potency and efficacy of agonists, but also to the direction of signaling and the phenomenon of biased agonism. This review will present current knowledge of such proteins and how they may provide targets for future drug design.
Collapse
Affiliation(s)
| | - John R Traynor
- Department of Pharmacology, University of Michigan Medical School, 1301 MSRB III, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5632, USA.
| |
Collapse
|
35
|
Kanbara T, Nakamura A, Shibasaki M, Mori T, Suzuki T, Sakaguchi G, Kanemasa T. Morphine and oxycodone, but not fentanyl, exhibit antinociceptive effects mediated by G-protein inwardly rectifying potassium (GIRK) channels in an oxaliplatin-induced neuropathy rat model. Neurosci Lett 2014; 580:119-24. [DOI: 10.1016/j.neulet.2014.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/26/2014] [Accepted: 08/04/2014] [Indexed: 11/16/2022]
|
36
|
Terzi D, Gaspari S, Manouras L, Descalzi G, Mitsi V, Zachariou V. RGS9-2 modulates sensory and mood related symptoms of neuropathic pain. Neurobiol Learn Mem 2014; 115:43-8. [PMID: 25150149 DOI: 10.1016/j.nlm.2014.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/07/2014] [Accepted: 08/09/2014] [Indexed: 10/24/2022]
Abstract
The signal transduction modulator Rgs9-2 (Regulator of G protein signaling 9-2) plays a key role in dopaminergic and opioidergic transmission in the striatum. Rgs9-2 is a potent modulator of opiate reward and analgesia, but its role in chronic pain remains unknown. Here, we use the spared nerve injury model (SNI), to evaluate the influence of Rgs9-2 in sensory symptoms, as well as in anxiety and depression-like behaviors observed under neuropathic pain conditions. Our data demonstrate that knockout of the Rgs9 gene reduces the intensity of thermal hyperalgesia and mechanical allodynia the first few days after nerve injury. This small, but significant effect is only observed at early time points after nerve injury, whereas after the first week of SNI, Rgs9 knockout (Rgs9KO) and Rgs9 wildtype (Rgs9WT) mice show similar levels of mechanical allodynia and thermal hyperalgesia. Furthermore, Rgs9-2 deletion exacerbates anxiety and depression like behaviors several weeks after the emergence of the neuropathic pain symptoms. Our findings also reveal a temporal and regional regulation of Rgs9-2 protein expression by neuropathic pain, as Rgs9-2 levels are reduced in the spinal cord a few days after nerve injury, whereas decreased Rgs9-2 levels in the Nucleus Accumbens (NAc) are only observed several weeks after nerve injury. Thus, adaptations in Rgs9-2 activity in the spinal cord and in the NAc may contribute to sensory and affective components of neuropathic pain.
Collapse
Affiliation(s)
- Dimitra Terzi
- University of Crete Faculty of Medicine, Department of Basic Sciences, Heraklion, Crete 71003, Greece
| | - Sevasti Gaspari
- University of Crete Faculty of Medicine, Department of Basic Sciences, Heraklion, Crete 71003, Greece
| | - Lefteris Manouras
- University of Crete Faculty of Medicine, Department of Basic Sciences, Heraklion, Crete 71003, Greece
| | - Giannina Descalzi
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, Department of Pharmacology and Systems Therapeutics, United States
| | - Vassiliki Mitsi
- University of Crete Faculty of Medicine, Department of Basic Sciences, Heraklion, Crete 71003, Greece
| | - Venetia Zachariou
- University of Crete Faculty of Medicine, Department of Basic Sciences, Heraklion, Crete 71003, Greece; Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, Department of Pharmacology and Systems Therapeutics, United States.
| |
Collapse
|
37
|
Gendron L, Mittal N, Beaudry H, Walwyn W. Recent advances on the δ opioid receptor: from trafficking to function. Br J Pharmacol 2014; 172:403-19. [PMID: 24665909 DOI: 10.1111/bph.12706] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Within the opioid family of receptors, δ (DOPrs) and μ opioid receptors (MOPrs) are typical GPCRs that activate canonical second-messenger signalling cascades to influence diverse cellular functions in neuronal and non-neuronal cell types. These receptors activate well-known pathways to influence ion channel function and pathways such as the map kinase cascade, AC and PI3K. In addition new information regarding opioid receptor-interacting proteins, downstream signalling pathways and resultant functional effects has recently come to light. In this review, we will examine these novel findings focusing on the DOPr and, in doing so, will contrast and compare DOPrs with MOPrs in terms of differences and similarities in function, signalling pathways, distribution and interactions. We will also discuss and clarify issues that have recently surfaced regarding the expression and function of DOPrs in different cell types and analgesia. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- Louis Gendron
- Département de physiologie et biophysique, Institut de pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | |
Collapse
|
38
|
Gaspari S, Papachatzaki MM, Koo JW, Carr FB, Tsimpanouli ME, Stergiou E, Bagot RC, Ferguson D, Mouzon E, Chakravarty S, Deisseroth K, Lobo MK, Zachariou V. Nucleus accumbens-specific interventions in RGS9-2 activity modulate responses to morphine. Neuropsychopharmacology 2014; 39:1968-77. [PMID: 24561386 PMCID: PMC4059906 DOI: 10.1038/npp.2014.45] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/20/2022]
Abstract
Regulator of G protein signalling 9-2 (Rgs9-2) modulates the actions of a wide range of CNS-acting drugs by controlling signal transduction of several GPCRs in the striatum. RGS9-2 acts via a complex mechanism that involves interactions with Gα subunits, the Gβ5 protein, and the adaptor protein R7BP. Our recent work identified Rgs9-2 complexes in the striatum associated with acute or chronic exposures to mu opioid receptor (MOR) agonists. In this study we use several new genetic tools that allow manipulations of Rgs9-2 activity in particular brain regions of adult mice in order to better understand the mechanism via which this protein modulates opiate addiction and analgesia. We used adeno-associated viruses (AAVs) to express forms of Rgs9-2 in the dorsal and ventral striatum (nucleus accumbens, NAc) in order to examine the influence of this protein in morphine actions. Consistent with earlier behavioural findings from constitutive Rgs9 knockout mice, we show that Rgs9-2 actions in the NAc modulate morphine reward and dependence. Notably, Rgs9-2 in the NAc affects the analgesic actions of morphine as well as the development of analgesic tolerance. Using optogenetics we demonstrate that activation of Channelrhodopsin2 in Rgs9-2-expressing neurons, or in D1 dopamine receptor (Drd1)-enriched medium spiny neurons, accelerates the development of morphine tolerance, whereas activation of D2 dopamine receptor (Drd2)-enriched neurons does not significantly affect the development of tolerance. Together, these data provide new information on the signal transduction mechanisms underlying opiate actions in the NAc.
Collapse
Affiliation(s)
- Sevasti Gaspari
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Maria M Papachatzaki
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Ja Wook Koo
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | - Fiona B Carr
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | | | - Eugenia Stergiou
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Rosemary C Bagot
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | - Deveroux Ferguson
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | - Ezekiell Mouzon
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | - Sumana Chakravarty
- Division of Chemical Biology, Indian Institute of Chemical Technology, Hyderabad, India
| | - Karl Deisseroth
- Departments of Bioengineering and Physiology and Behavioural Sciences, Stanford Univerity, Stanford, CA, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Venetia Zachariou
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY 10029, USA, Tel: +1 212 6598612; E-mail:
| |
Collapse
|
39
|
Betke KM, Rose KL, Friedman DB, Baucum AJ, Hyde K, Schey KL, Hamm HE. Differential localization of G protein βγ subunits. Biochemistry 2014; 53:2329-43. [PMID: 24568373 PMCID: PMC4004276 DOI: 10.1021/bi500091p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
G protein βγ subunits play essential roles in regulating cellular signaling cascades, yet little is known about their distribution in tissues or their subcellular localization. While previous studies have suggested specific isoforms may exhibit a wide range of distributions throughout the central nervous system, a thorough investigation of the expression patterns of both Gβ and Gγ isoforms within subcellular fractions has not been conducted. To address this, we applied a targeted proteomics approach known as multiple-reaction monitoring to analyze localization patterns of Gβ and Gγ isoforms in pre- and postsynaptic fractions isolated from cortex, cerebellum, hippocampus, and striatum. Particular Gβ and Gγ subunits were found to exhibit distinct regional and subcellular localization patterns throughout the brain. Significant differences in subcellular localization between pre- and postsynaptic fractions were observed within the striatum for most Gβ and Gγ isoforms, while others exhibited completely unique expression patterns in all four brain regions examined. Such differences are a prerequisite for understanding roles of individual subunits in regulating specific signaling pathways throughout the central nervous system.
Collapse
Affiliation(s)
- Katherine M Betke
- Department of Pharmacology, ‡Mass Spectrometry Research Center, §Department of Molecular Physiology and Biophysics, and ∥Department of Biochemistry, Vanderbilt University Medical Center , Nashville, Tennessee 37232-6600, United States
| | | | | | | | | | | | | |
Collapse
|
40
|
Masuho I, Xie K, Martemyanov KA. Macromolecular composition dictates receptor and G protein selectivity of regulator of G protein signaling (RGS) 7 and 9-2 protein complexes in living cells. J Biol Chem 2013; 288:25129-25142. [PMID: 23857581 DOI: 10.1074/jbc.m113.462283] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins play essential roles in the regulation of signaling via G protein-coupled receptors (GPCRs). With hundreds of GPCRs and dozens of G proteins, it is important to understand how RGS regulates selective GPCR-G protein signaling. In neurons of the striatum, two RGS proteins, RGS7 and RGS9-2, regulate signaling by μ-opioid receptor (MOR) and dopamine D2 receptor (D2R) and are implicated in drug addiction, movement disorders, and nociception. Both proteins form trimeric complexes with the atypical G protein β subunit Gβ5 and a membrane anchor, R7BP. In this study, we examined GTPase-accelerating protein (GAP) activity as well as Gα and GPCR selectivity of RGS7 and RGS9-2 complexes in live cells using a bioluminescence resonance energy transfer-based assay that monitors dissociation of G protein subunits. We showed that RGS9-2/Gβ5 regulated both Gi and Go with a bias toward Go, but RGS7/Gβ5 could serve as a GAP only for Go. Interestingly, R7BP enhanced GAP activity of RGS7 and RGS9-2 toward Go and Gi and enabled RGS7 to regulate Gi signaling. Neither RGS7 nor RGS9-2 had any activity toward Gz, Gs, or Gq in the absence or presence of R7BP. We also observed no effect of GPCRs (MOR and D2R) on the G protein bias of R7 RGS proteins. However, the GAP activity of RGS9-2 showed a strong receptor preference for D2R over MOR. Finally, RGS7 displayed an four times greater GAP activity relative to RGS9-2. These findings illustrate the principles involved in establishing G protein and GPCR selectivity of striatal RGS proteins.
Collapse
Affiliation(s)
- Ikuo Masuho
- From the Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida 33410
| | - Keqiang Xie
- From the Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida 33410
| | - Kirill A Martemyanov
- From the Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida 33410.
| |
Collapse
|
41
|
Nitric Oxide and Zinc-Mediated Protein Assemblies Involved in Mu Opioid Receptor Signaling. Mol Neurobiol 2013; 48:769-82. [DOI: 10.1007/s12035-013-8465-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/18/2013] [Indexed: 01/06/2023]
|
42
|
Differential control of opioid antinociception to thermal stimuli in a knock-in mouse expressing regulator of G-protein signaling-insensitive Gαo protein. J Neurosci 2013; 33:4369-77. [PMID: 23467353 DOI: 10.1523/jneurosci.5470-12.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regulator of G-protein signaling (RGS) proteins classically function as negative modulators of G-protein-coupled receptor signaling. In vitro, RGS proteins have been shown to inhibit signaling by agonists at the μ-opioid receptor, including morphine. The goal of the present study was to evaluate the contribution of endogenous RGS proteins to the antinociceptive effects of morphine and other opioid agonists. To do this, a knock-in mouse that expresses an RGS-insensitive (RGSi) mutant Gαo protein, Gαo(G184S) (Gαo RGSi), was evaluated for morphine or methadone antinociception in response to noxious thermal stimuli. Mice expressing Gαo RGSi subunits exhibited a naltrexone-sensitive enhancement of baseline latency in both the hot-plate and warm-water tail-withdrawal tests. In the hot-plate test, a measure of supraspinal nociception, morphine antinociception was increased, and this was associated with an increased ability of opioids to inhibit presynaptic GABA neurotransmission in the periaqueductal gray. In contrast, antinociception produced by either morphine or methadone was reduced in the tail-withdrawal test, a measure of spinal nociception. In whole-brain and spinal cord homogenates from mice expressing Gαo RGSi subunits, there was a small loss of Gαo expression and an accompanying decrease in basal G-protein activity. Our results strongly support a role for RGS proteins as negative regulators of opioid supraspinal antinociception and also reveal a potential novel function of RGS proteins as positive regulators of opioid spinal antinociceptive pathways.
Collapse
|
43
|
The plasticity of the association between mu-opioid receptor and glutamate ionotropic receptor N in opioid analgesic tolerance and neuropathic pain. Eur J Pharmacol 2013; 716:94-105. [PMID: 23499699 DOI: 10.1016/j.ejphar.2013.01.066] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 12/13/2012] [Accepted: 01/09/2013] [Indexed: 02/08/2023]
Abstract
Multiple groups have reported the functional cross-regulation between mu-opioid (MOP) receptor and glutamate ionotropic receptor N (GluN), and the post-synaptic association of these receptors has been implicated in the transmission and modulation of nociceptive signals. Opioids, such as morphine, disrupt the MOP receptor-GluN receptor complex to stimulate the activity of GluN receptors via protein kinase C (PKC)/Src. This increased GluN receptor activity opposes MOP receptor signalling, and via neural nitric oxide synthase (nNOS) and calcium and calmodulin regulated kinase II (CaMKII) induces the phosphorylation and uncoupling of the opioid receptor, which results in the development of morphine analgesic tolerance. Both experimental in vivo activation of GluN receptors and neuropathic pain separate the MOP receptor-GluN receptor complex via protein kinase A (PKA) and reduce the analgesic capacity of morphine. The histidine triad nucleotide-binding protein 1 (HINT1) associates with the MOP receptor C-terminus and connects the activities of MOP receptor and GluN receptor. In HINT1⁻/⁻ mice, morphine promotes enhanced analgesia and produces tolerance that is not related to GluN receptor activity. In these mice, the GluN receptor agonist N-methyl-D-aspartate acid (NMDA) does not antagonise the analgesic effects of morphine. Treatments that rescue morphine from analgesic tolerance, such as GluN receptor antagonism or PKC, nNOS and CaMKII inhibitors, all induce MOP receptor-GluN receptor re-association and reduce GluN receptor/CaMKII activity. In mice treated with NMDA or suffering from neuropathic pain (induced by chronic constriction injury, CCI), GluN receptor antagonists, PKA inhibitors or certain antidepressants also diminish CaMKII activity and restore the MOP receptor-GluN receptor association. Thus, the HINT1 protein stabilises the association between MOP receptor and GluN receptor, necessary for the analgesic efficacy of morphine, and this coupling is reduced following the activation of GluN receptors, similar to what is observed in neuropathic pain.
Collapse
|
44
|
Morphine epigenomically regulates behavior through alterations in histone H3 lysine 9 dimethylation in the nucleus accumbens. J Neurosci 2013. [PMID: 23197736 DOI: 10.1523/jneurosci.1357-12.2012] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dysregulation of histone modifying enzymes has been associated with numerous psychiatric disorders. Alterations in G9a (Ehmt2), a histone methyltransferase that catalyzes the euchromatic dimethylation of histone H3 at lysine 9 (H3K9me2), has been implicated recently in mediating neural and behavioral plasticity in response to chronic cocaine administration. Here, we show that chronic morphine, like cocaine, decreases G9a expression, and global levels of H3K9me2, in mouse nucleus accumbens (NAc), a key brain reward region. In contrast, levels of other histone methyltransferases or demethylases, or of other methylated histone marks, were not affected in NAc by chronic morphine. Through viral-mediated gene transfer and conditional mutagenesis, we found that overexpression of G9a in NAc opposes morphine reward and locomotor sensitization and concomitantly promotes analgesic tolerance and naloxone-precipitated withdrawal, whereas downregulation of G9a in NAc enhances locomotor sensitization and delays the development of analgesic tolerance. We identified downstream targets of G9a by providing a comprehensive chromatin immunoprecipitation followed by massively parallel sequencing analysis of H3K9me2 distribution in NAc in the absence and presence of chronic morphine. These data provide novel insight into the epigenomic regulation of H3K9me2 by chronic morphine and suggest novel chromatin-based mechanisms through which morphine-induced addictive-like behaviors arise.
Collapse
|
45
|
Wang Q, Traynor JR. Modulation of μ-opioid receptor signaling by RGS19 in SH-SY5Y cells. Mol Pharmacol 2013; 83:512-20. [PMID: 23197645 PMCID: PMC3558815 DOI: 10.1124/mol.112.081992] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 11/29/2012] [Indexed: 02/03/2023] Open
Abstract
Regulator of G-protein signaling protein 19 (RGS19), also known as Gα-interacting protein (GAIP), acts as a GTPase accelerating protein for Gαz as well as Gαi/o subunits. Interactions with GAIP-interacting protein N-terminus and GAIP-interacting protein C-terminus (GIPC) link RGS19 to a variety of intracellular proteins. Here we show that RGS19 is abundantly expressed in human neuroblastoma SH-SY5Y cells that also express µ- and δ- opioid receptors (MORs and DORs, respectively) and nociceptin receptors (NOPRs). Lentiviral delivery of short hairpin RNA specifically targeted to RGS19 reduced RGS19 protein levels by 69%, with a similar reduction in GIPC. In RGS19-depleted cells, there was an increase in the ability of MOR (morphine) but not of DOR [(4-[(R)-[(2S,5R)-4-allyl-2,5-dimethylpiperazin-1-yl](3-methoxyphenyl)methyl]-N,N-diethylbenzamide (SNC80)] or NOPR (nociceptin) agonists to inhibit forskolin-stimulated adenylyl cyclase and increase mitogen-activated protein kinase (MAPK) activity. Overnight treatment with either MOR [D-Ala, N-Me-Phe, Gly-ol(5)-enkephalin (DAMGO) or morphine] or DOR (D-Pen(5)-enkephalin or SNC80) agonists increased RGS19 and GIPC protein levels in a time- and concentration-dependent manner. The MOR-induced increase in RGS19 protein was prevented by pretreatment with pertussis toxin or the opioid antagonist naloxone. Protein kinase C (PKC) activation alone increased the level of RGS19 and inhibitors of PKC 5,6,7,13-tetrahydro-13-methyl-5-oxo-12H-indolo[2,3-a]pyrrolo[3,4-c]carbazole-12-propanenitrile and mitogen-activated protein kinase kinase 1 2-(2-amino-3-methoxyphenyl)-4H-chromen-4-one, but not protein kinase A (H89), completely blocked DAMGO-induced RGS19 protein accumulation. The findings show that RGS19 and GIPC are jointly regulated, that RGS19 is a GTPase accelerating protein for MOR with selectivity over DOR and NOPR, and that chronic MOR or DOR agonist treatment increases RGS19 levels by a PKC and the MAPK pathway-dependent mechanism.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Animals
- Benzamides/pharmacology
- Colforsin/pharmacology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- HEK293 Cells
- Humans
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Morphine/pharmacology
- Opioid Peptides/pharmacology
- PC12 Cells
- Piperazines/pharmacology
- Protein Kinase C/genetics
- Protein Kinase C/metabolism
- RGS Proteins/genetics
- RGS Proteins/metabolism
- Rats
- Receptors, Opioid/genetics
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
- Nociceptin Receptor
- Nociceptin
Collapse
Affiliation(s)
- Qin Wang
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-5632, USA
| | | |
Collapse
|
46
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
47
|
Xie K, Masuho I, Brand C, Dessauer CW, Martemyanov KA. The complex of G protein regulator RGS9-2 and Gβ(5) controls sensitization and signaling kinetics of type 5 adenylyl cyclase in the striatum. Sci Signal 2012; 5:ra63. [PMID: 22932702 DOI: 10.1126/scisignal.2002922] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multiple neurotransmitter systems in the striatum converge to regulate the excitability of striatal neurons by activating several heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) that signal to the type 5 adenylyl cyclase (AC5), the key effector enzyme that produces the intracellular second messenger cyclic adenosine monophosphate (cAMP). Plasticity of cAMP signaling in the striatum is thought to play an essential role in the development of drug addiction. We showed that the complex of the ninth regulator of G protein signaling (RGS9-2) with the G protein β subunit (Gβ(5)) critically controlled signaling from dopamine and opioid GPCRs to AC5 in the striatum. RGS9-2/Gβ(5) directly interacted with and suppressed the basal activity of AC5. In addition, the RGS9-2/Gβ(5) complex attenuated the stimulatory action of Gβγ on AC5 by facilitating the GTPase (guanosine triphosphatase) activity of Gα(o), thus promoting the formation of the inactive heterotrimer and inhibiting Gβγ. Furthermore, by increasing the deactivation rate of Gα(i), RGS9-2/Gβ(5) facilitated the recovery of AC5 from inhibition. Mice lacking RGS9 showed increased cAMP production and, upon withdrawal from opioid administration, enhanced sensitization of AC5. Our findings establish RGS9-2/Gβ(5) complexes as regulators of three key aspects of cAMP signaling: basal activity, sensitization, and temporal kinetics of AC5, thus highlighting the role of this complex in regulating both inhibitory and stimulatory GPCRs that shape cAMP signaling in the striatum.
Collapse
Affiliation(s)
- Keqiang Xie
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | | | |
Collapse
|
48
|
Lee JK, Chung J, Druey KM, Tansey MG. RGS10 exerts a neuroprotective role through the PKA/c-AMP response-element (CREB) pathway in dopaminergic neuron-like cells. J Neurochem 2012; 122:333-43. [PMID: 22564151 DOI: 10.1111/j.1471-4159.2012.07780.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulator of G-protein signaling-10 (RGS10) is a GTPase activating protein for Gαi/q/z subunits that is highly expressed in the immune system and in a broad range of brain regions including the hippocampus, striatum, dorsal raphe, and ventral midbrain. Previously, we reported that RGS10-null mice display increased vulnerability to chronic systemic inflammation-induced degeneration of nigral dopaminergic (DA) neurons. Given that RGS10 is expressed in DA neurons, we investigated the extent to which RGS10 regulates cell survival under conditions of inflammatory stress. Because of the inherent limitations associated with use of primary DA neurons for biochemical analyses, we employed a well-characterized ventral mesencephalon DA neuroblastoma cell line (MN9D) for our studies. We found that stable over-expression of RGS10 rendered them resistant to TNF-induced cytotoxicity; whereas MN9D cells expressing mutant RGS10-S168A (which is resistant to phosphorylation by protein kinase A at a serine residue that promotes its nuclear translocation) showed similar sensitivity to TNF as the parental MN9D cells. Using biochemical and pharmacologic approaches, we identified protein kinase A and the downstream phospho-cAMP response element-binding signaling pathway (and ruled out ERK 1/2, JNK, and NFkB) as key mediators of the neuroprotective effect of RGS10 against inflammatory stress.
Collapse
Affiliation(s)
- Jae-Kyung Lee
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
49
|
Wani KA, Catanese M, Normantowicz R, Herd M, Maher KN, Chase DL. D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons. PLoS One 2012; 7:e37831. [PMID: 22629462 PMCID: PMC3357403 DOI: 10.1371/journal.pone.0037831] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 04/27/2012] [Indexed: 11/18/2022] Open
Abstract
Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1) required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior.
Collapse
Affiliation(s)
- Khursheed A. Wani
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Mary Catanese
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Robyn Normantowicz
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Muriel Herd
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Kathryn N. Maher
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Daniel L. Chase
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
50
|
Traynor J. μ-Opioid receptors and regulators of G protein signaling (RGS) proteins: from a symposium on new concepts in mu-opioid pharmacology. Drug Alcohol Depend 2012; 121:173-80. [PMID: 22129844 PMCID: PMC3288798 DOI: 10.1016/j.drugalcdep.2011.10.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/19/2011] [Accepted: 10/22/2011] [Indexed: 02/07/2023]
Abstract
Mu-opioid receptors (MOR) are the therapeutic target for opiate analgesic drugs and also mediate many of the side-effects and addiction liability of these compounds. MOR is a seven-transmembrane domain receptor that couples to intracellular signaling molecules by activating heterotrimeric G proteins. However, the receptor and G protein do not function in isolation but their activities are moderated by several accessory and scaffolding proteins. One important group of accessory proteins is the regulator of G protein signaling (RGS) protein family, a large family of more than thirty members which bind to the activated Gα subunit of the heterotrimeric G protein and serve to accelerate signal termination. This action negatively modulates receptor signaling and subsequent behavior. Several members of this family, in particular RGS4 and RGS9-2 have been demonstrated to influence MOR signaling and morphine-induced behaviors, including reward. Moreover, this interaction is not unidirectional since morphine has been demonstrated to modulate expression levels of RGS proteins, especially RGS4 and RGS9-2, in a tissue and time dependent manner. In this article, I will discuss our work on the regulation of MOR signaling by RGS protein activity in cultured cell systems in the context of other in vitro and behavioral studies. In addition I will consider implications of the bi-directional interaction between MOR receptor activation and RGS protein activity and whether RGS proteins might provide a suitable and novel target for medications to manage addictive behaviors.
Collapse
Affiliation(s)
- John Traynor
- Department of Pharmacology and Substance Abuse Research Center, University of Michigan, Ann Arbor, MI 48109-5632, United States.
| |
Collapse
|