1
|
Liu J, He Y, Lavoie A, Bouvier G, Liu BH. A direction-selective cortico-brainstem pathway adaptively modulates innate behaviors. Nat Commun 2023; 14:8467. [PMID: 38123558 PMCID: PMC10733370 DOI: 10.1038/s41467-023-42910-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/25/2023] [Indexed: 12/23/2023] Open
Abstract
Sensory cortices modulate innate behaviors through corticofugal projections targeting phylogenetically-old brainstem nuclei. However, the principles behind the functional connectivity of these projections remain poorly understood. Here, we show that in mice visual cortical neurons projecting to the optic-tract and dorsal-terminal nuclei (NOT-DTN) possess distinct response properties and anatomical connectivity, supporting the adaption of an essential innate eye movement, the optokinetic reflex (OKR). We find that these corticofugal neurons are enriched in specific visual areas, and they prefer temporo-nasal visual motion, matching the direction bias of downstream NOT-DTN neurons. Remarkably, continuous OKR stimulation selectively enhances the activity of these temporo-nasally biased cortical neurons, which can efficiently promote OKR plasticity. Lastly, we demonstrate that silencing downstream NOT-DTN neurons, which project specifically to the inferior olive-a key structure in oculomotor plasticity, impairs the cortical modulation of OKR and OKR plasticity. Our results unveil a direction-selective cortico-brainstem pathway that adaptively modulates innate behaviors.
Collapse
Affiliation(s)
- Jiashu Liu
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Yingtian He
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Andreanne Lavoie
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Guy Bouvier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France
| | - Bao-Hua Liu
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|
2
|
Wagner H, Pappe I, Brill S, Nalbach HO. Development of the horizontal optocollic reflex in juvenile barn owls (Tyto furcata pratincola). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:479-492. [PMID: 35695937 PMCID: PMC9250920 DOI: 10.1007/s00359-022-01555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/19/2022] [Indexed: 10/25/2022]
Abstract
Adult barn owls and primates possess an almost symmetric monocular rotational horizontal optocollic reflex. In primates, the reflex is initially asymmetric and becomes symmetric with time after birth. The condition in barn owls has not been studied so far. Here, we present data on the development of this reflex in this bird. We tested juvenile barn owls from the time before they open their eyes after hatching to the time they reach adult feather length. Wide-field visual patterns served as stimuli. They were presented at different rotational speeds in binocular and monocular settings. The binocular horizontal optocollic responses of juvenile barn owls were symmetric and adult-like on the first day that the birds responded to the stimulus. The monocular responses showed different rates of development in respect to stimulus velocity and stimulus direction. For velocities up to 20 deg/s, the monocular reflex was also adult-like on the first day that the birds responded to the stimulus. An initially higher asymmetry for 30 deg/s compared to adults disappeared within about two weeks. The development at even higher velocities remained unclear.
Collapse
Affiliation(s)
- Hermann Wagner
- RWTH Aachen University, Institut für Biologie II, Worringerweg 3, D-52074, Aachen, Germany.
- Max-Planck-Institut für Biologische Kybernetik, Max-Planck-Ring 11, D-72076, Tübingen, Germany.
| | - Ina Pappe
- Universitätsklinik Für Anaesthesiologie, Waldhörnlestrasse 22, D-72072, Tübingen, Germany
- Max-Planck-Institut für Biologische Kybernetik, Max-Planck-Ring 11, D-72076, Tübingen, Germany
| | - Sandra Brill
- RWTH Aachen University, Institut für Biologie II, Worringerweg 3, D-52074, Aachen, Germany
| | - Hans-Ortwin Nalbach
- Max-Planck-Institut für Biologische Kybernetik, Max-Planck-Ring 11, D-72076, Tübingen, Germany
| |
Collapse
|
3
|
Kim YJ, Peterson BB, Crook JD, Joo HR, Wu J, Puller C, Robinson FR, Gamlin PD, Yau KW, Viana F, Troy JB, Smith RG, Packer OS, Detwiler PB, Dacey DM. Origins of direction selectivity in the primate retina. Nat Commun 2022; 13:2862. [PMID: 35606344 PMCID: PMC9126974 DOI: 10.1038/s41467-022-30405-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
From mouse to primate, there is a striking discontinuity in our current understanding of the neural coding of motion direction. In non-primate mammals, directionally selective cell types and circuits are a signature feature of the retina, situated at the earliest stage of the visual process. In primates, by contrast, direction selectivity is a hallmark of motion processing areas in visual cortex, but has not been found in the retina, despite significant effort. Here we combined functional recordings of light-evoked responses and connectomic reconstruction to identify diverse direction-selective cell types in the macaque monkey retina with distinctive physiological properties and synaptic motifs. This circuitry includes an ON-OFF ganglion cell type, a spiking, ON-OFF polyaxonal amacrine cell and the starburst amacrine cell, all of which show direction selectivity. Moreover, we discovered that macaque starburst cells possess a strong, non-GABAergic, antagonistic surround mediated by input from excitatory bipolar cells that is critical for the generation of radial motion sensitivity in these cells. Our findings open a door to investigation of a precortical circuitry that computes motion direction in the primate visual system.
Collapse
Affiliation(s)
- Yeon Jin Kim
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Beth B Peterson
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Joanna D Crook
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Hannah R Joo
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Jiajia Wu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Christian Puller
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Farrel R Robinson
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
- Washington National Primate Research Center, Seattle, WA, 98195, USA
| | - Paul D Gamlin
- Department of Ophthalmology and Vision Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294-4390, USA
| | - King-Wai Yau
- Departments of Neuroscience and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205-2185, USA
| | - Felix Viana
- Institute of Neuroscience, UMH-CSIC, San Juan de Alicante, 03550, Spain
| | - John B Troy
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Orin S Packer
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Peter B Detwiler
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Dennis M Dacey
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA.
- Washington National Primate Research Center, Seattle, WA, 98195, USA.
| |
Collapse
|
4
|
Patterson SS, Bembry BN, Mazzaferri MA, Neitz M, Rieke F, Soetedjo R, Neitz J. Conserved circuits for direction selectivity in the primate retina. Curr Biol 2022; 32:2529-2538.e4. [PMID: 35588744 DOI: 10.1016/j.cub.2022.04.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/25/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023]
Abstract
The detection of motion direction is a fundamental visual function and a classic model for neural computation. In the non-primate retina, direction selectivity arises in starburst amacrine cell (SAC) dendrites, which provide selective inhibition to direction-selective retinal ganglion cells (dsRGCs). Although SACs are present in primates, their connectivity and the existence of dsRGCs remain open questions. Here, we present a connectomic reconstruction of the primate ON SAC circuit from a serial electron microscopy volume of the macaque central retina. We show that the structural basis for the SACs' ability to confer directional selectivity on postsynaptic neurons is conserved. SACs selectively target a candidate homolog to the mammalian ON-sustained dsRGCs that project to the accessory optic system (AOS) and contribute to gaze-stabilizing reflexes. These results indicate that the capacity to compute motion direction is present in the retina, which is earlier in the primate visual system than classically thought.
Collapse
Affiliation(s)
- Sara S Patterson
- Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA.
| | - Briyana N Bembry
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| | - Marcus A Mazzaferri
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Robijanto Soetedjo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA; Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
5
|
Wahle P, Sobierajski E, Gasterstädt I, Lehmann N, Weber S, Lübke JHR, Engelhardt M, Distler C, Meyer G. Neocortical pyramidal neurons with axons emerging from dendrites are frequent in non-primates, but rare in monkey and human. eLife 2022; 11:76101. [PMID: 35441590 PMCID: PMC9159751 DOI: 10.7554/elife.76101] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Abstract
The canonical view of neuronal function is that inputs are received by dendrites and somata, become integrated in the somatodendritic compartment and upon reaching a sufficient threshold, generate axonal output with axons emerging from the cell body. The latter is not necessarily the case. Instead, axons may originate from dendrites. The terms ‘axon carrying dendrite’ (AcD) and ‘AcD neurons’ have been coined to describe this feature. In rodent hippocampus, AcD cells are shown to be functionally ‘privileged’, since inputs here can circumvent somatic integration and lead to immediate action potential initiation in the axon. Here, we report on the diversity of axon origins in neocortical pyramidal cells of rodent, ungulate, carnivore, and primate. Detection methods were Thy-1-EGFP labeling in mouse, retrograde biocytin tracing in rat, cat, ferret, and macaque, SMI-32/βIV-spectrin immunofluorescence in pig, cat, and macaque, and Golgi staining in macaque and human. We found that in non-primate mammals, 10–21% of pyramidal cells of layers II–VI had an AcD. In marked contrast, in macaque and human, this proportion was lower and was particularly low for supragranular neurons. A comparison of six cortical areas (being sensory, association, and limbic in nature) in three macaques yielded percentages of AcD cells which varied by a factor of 2 between the areas and between the individuals. Unexpectedly, pyramidal cells in the white matter of postnatal cat and aged human cortex exhibit AcDs to much higher percentages. In addition, interneurons assessed in developing cat and adult human cortex had AcDs at type-specific proportions and for some types at much higher percentages than pyramidal cells. Our findings expand the current knowledge regarding the distribution and proportion of AcD cells in neocortex of non-primate taxa, which strikingly differ from primates where these cells are mainly found in deeper layers and white matter.
Collapse
Affiliation(s)
- Petra Wahle
- Developmental Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Eric Sobierajski
- Developmental Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Ina Gasterstädt
- Developmental Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Nadja Lehmann
- Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
| | - Susanna Weber
- Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
| | | | | | - Claudia Distler
- Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Gundela Meyer
- Department of Basic Medical Science, University of La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
6
|
Zamore SA, Araujo N, Socha JJ. Visual acuity in the flying snake, Chrysopelea paradisi. Integr Comp Biol 2020; 63:icaa143. [PMID: 33084888 DOI: 10.1093/icb/icaa143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Visual control during high-speed aerial locomotion requires a visual system adapted for such behaviors. Flying snakes (genus: Chrysopelea) are capable of gliding at speeds up to 11 m s-1 and perform visual assessments before take-off. Determining nuances of control requires a closed-loop experimental system, such as immersive virtual arenas. To characterize vision in the flying snake Chrysopelea paradisi, we used digitally reconstructed models of the head to determine a 3D field of vision. We also used optokinetic drum experiments and compared slowphase optokinetic nystagmus (OKN) speeds to calculate visual acuity and conducted preliminary experiments to determine whether snakes would respond to closed-loop virtual stimuli. Visual characterization showed that C. paradisi likely has a large field of view (308.5 ± 6.5° azimuthal range), with a considerable binocular region (33.0 ± 11.0° azimuthal width) that extends overhead. Their visual systems are broadly tuned and motion-sensitive, with peak OKN response gains of 0.50 ± 0.11 seen at 46.06 ± 11.08 Hz, and a low spatial acuity, with peak gain of 0.92 ± 0.41 seen at 2.89 ± 0.16 cpd (cycles per degree). These characteristics were used to inform settings in an immersive virtual arena, including framerate, brightness, and stimulus size. In turn, the immersive virtual arena was used to reproduce the optokinetic drum experiments. We elicited OKN in open-loop experiments, with a mean gain of 0.21 ± 0.9 seen at 0.019 ± 6x10-5 cpd and 1.79 ± 0.01 Hz. In closed-loop experiments, snakes did not exhibit OKN, but held the image fixed, indicating visual stabilization. These results demonstrate for that C. paradisi responds to visual stimuli in a digital virtual arena. The accessibility and adaptability of the virtual setup make it suitable for future studies of visual control in snakes and other animals in an unconstrained setting.
Collapse
Affiliation(s)
- Sharri A Zamore
- ATLAS Institute, University of Colorado Boulder, Boulder, CO, 80309, United States
| | - Nicole Araujo
- Dept. of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - John J Socha
- Dept. of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
7
|
Farnsworth KD. How Organisms Gained Causal Independence and How It Might Be Quantified. BIOLOGY 2018; 7:E38. [PMID: 29966241 PMCID: PMC6163937 DOI: 10.3390/biology7030038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/30/2018] [Accepted: 06/23/2018] [Indexed: 12/20/2022]
Abstract
Two broad features are jointly necessary for autonomous agency: organisational closure and the embodiment of an objective-function providing a ‘goal’: so far only organisms demonstrate both. Organisational closure has been studied (mostly in abstract), especially as cell autopoiesis and the cybernetic principles of autonomy, but the role of an internalised ‘goal’ and how it is instantiated by cell signalling and the functioning of nervous systems has received less attention. Here I add some biological ‘flesh’ to the cybernetic theory and trace the evolutionary development of step-changes in autonomy: (1) homeostasis of organisationally closed systems; (2) perception-action systems; (3) action selection systems; (4) cognitive systems; (5) memory supporting a self-model able to anticipate and evaluate actions and consequences. Each stage is characterised by the number of nested goal-directed control-loops embodied by the organism, summarised as will-nestedness N. Organism tegument, receptor/transducer system, mechanisms of cellular and whole-organism re-programming and organisational integration, all contribute to causal independence. CONCLUSION organisms are cybernetic phenomena whose identity is created by the information structure of the highest level of causal closure (maximum N), which has increased through evolution, leading to increased causal independence, which might be quantifiable by ‘Integrated Information Theory’ measures.
Collapse
|
8
|
Gaede AH, Goller B, Lam JPM, Wylie DR, Altshuler DL. Neurons Responsive to Global Visual Motion Have Unique Tuning Properties in Hummingbirds. Curr Biol 2017; 27:279-285. [PMID: 28065606 DOI: 10.1016/j.cub.2016.11.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 09/27/2016] [Accepted: 11/21/2016] [Indexed: 01/30/2023]
Abstract
Neurons in animal visual systems that respond to global optic flow exhibit selectivity for motion direction and/or velocity. The avian lentiformis mesencephali (LM), known in mammals as the nucleus of the optic tract (NOT), is a key nucleus for global motion processing [1-4]. In all animals tested, it has been found that the majority of LM and NOT neurons are tuned to temporo-nasal (back-to-front) motion [4-11]. Moreover, the monocular gain of the optokinetic response is higher in this direction, compared to naso-temporal (front-to-back) motion [12, 13]. Hummingbirds are sensitive to small visual perturbations while hovering, and they drift to compensate for optic flow in all directions [14]. Interestingly, the LM, but not other visual nuclei, is hypertrophied in hummingbirds relative to other birds [15], which suggests enhanced perception of global visual motion. Using extracellular recording techniques, we found that there is a uniform distribution of preferred directions in the LM in Anna's hummingbirds, whereas zebra finch and pigeon LM populations, as in other tetrapods, show a strong bias toward temporo-nasal motion. Furthermore, LM and NOT neurons are generally classified as tuned to "fast" or "slow" motion [10, 16, 17], and we predicted that most neurons would be tuned to slow visual motion as an adaptation for slow hovering. However, we found the opposite result: most hummingbird LM neurons are tuned to fast pattern velocities, compared to zebra finches and pigeons. Collectively, these results suggest a role in rapid responses during hovering, as well as in velocity control and collision avoidance during forward flight of hummingbirds.
Collapse
Affiliation(s)
- Andrea H Gaede
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Benjamin Goller
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jessica P M Lam
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Douglas R Wylie
- Neuroscience and Mental Health Institute and Department of Psychology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Douglas L Altshuler
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
9
|
Yonehara K, Fiscella M, Drinnenberg A, Esposti F, Trenholm S, Krol J, Franke F, Scherf BG, Kusnyerik A, Müller J, Szabo A, Jüttner J, Cordoba F, Reddy AP, Németh J, Nagy ZZ, Munier F, Hierlemann A, Roska B. Congenital Nystagmus Gene FRMD7 Is Necessary for Establishing a Neuronal Circuit Asymmetry for Direction Selectivity. Neuron 2015; 89:177-93. [PMID: 26711119 PMCID: PMC4712192 DOI: 10.1016/j.neuron.2015.11.032] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/14/2015] [Accepted: 11/18/2015] [Indexed: 12/24/2022]
Abstract
Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells. In wild-type retinas, we found FRMD7 specifically expressed in starburst amacrine cells, the interneuron type that provides asymmetric inhibition to direction-selective retinal ganglion cells. This work identifies FRMD7 as a key regulator in establishing a neuronal circuit asymmetry, and it suggests the involvement of a specific inhibitory neuron type in the pathophysiology of a neurological disease. Video Abstract
FRMD7 is required for the horizontal optokinetic reflex in mice as in humans Horizontal direction selectivity is lost in the retina of FRMD7 mutant mice Asymmetry of inhibitory inputs to horizontal DS cells is lost in FRMD7 mutant mice FRMD7 is expressed in ChAT-expressing cells in the retina of mice and primates
Collapse
Affiliation(s)
- Keisuke Yonehara
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Michele Fiscella
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering of ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Antonia Drinnenberg
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Federico Esposti
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Stuart Trenholm
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Jacek Krol
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Felix Franke
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering of ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Brigitte Gross Scherf
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Akos Kusnyerik
- Department of Ophthalmology, Semmelweis University, Mária u. 39, 1085 Budapest, Hungary
| | - Jan Müller
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering of ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Arnold Szabo
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Tűzoltó u. 58, 1094 Budapest, Hungary
| | - Josephine Jüttner
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Francisco Cordoba
- Laboratory and Animal Services, Novartis Institute for Biomedical Research, Fabrikstrasse 28, 4056 Basel, Switzerland
| | - Ashrithpal Police Reddy
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - János Németh
- Department of Ophthalmology, Semmelweis University, Mária u. 39, 1085 Budapest, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Mária u. 39, 1085 Budapest, Hungary
| | - Francis Munier
- Jules-Gonin Eye Hospital, Avenue de France 15, 1000 Lausanne, Switzerland
| | - Andreas Hierlemann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering of ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Botond Roska
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Department of Ophthalmology, University of Basel, Mittlere Strasse 91, 4031 Basel, Switzerland.
| |
Collapse
|
10
|
Papanagnu E, Brodsky MC. Is there a role for optokinetic nystagmus testing in contemporary orthoptic practice? Old tricks and new perspectives. ACTA ACUST UNITED AC 2015; 64:1-10. [PMID: 25313104 DOI: 10.3368/aoj.64.1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Optokinetic nystagmus is a physiological oscillation of the eyes that requires intact development of motion perception, pursuit function, and saccadic function to be smoothly executed. Neuro-ophthalmological disorders often produce distinct perturbations in optokinetic responses that can be used to unmask the clinical diagnosis. With the advent of modern neuroimaging, optokinetic testing has slowly become a lost art in clinical examination. The purpose of this paper is to review the conditions wherein optokinetic testing provides a critical neurodiagnostic role, and to revitalize interest in this simple and valuable clinical tool.
Collapse
Affiliation(s)
| | - Michael C Brodsky
- Departments of Ophthalmology and Neurology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
11
|
Brown AM, Lindsey DT, Cammenga JG, Giannone PJ, Stenger MR. The contrast sensitivity of the newborn human infant. Invest Ophthalmol Vis Sci 2015; 56:625-32. [PMID: 25564453 DOI: 10.1167/iovs.14-14757] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To measure the binocular contrast sensitivity (CS) of newborn infants using a fixation-and-following card procedure. METHODS The CS of 119 healthy newborn infants was measured using stimuli printed on cards under the descending method of limits (93 infants) and randomized/masked designs (26 infants). One experienced and one novice adult observer tested the infants using vertical square-wave gratings (0.06 and 0.10 cyc/deg; 20/10,000 and 20/6000 nominal Snellen equivalent); the experienced observer also tested using horizontal gratings (0.10 cyc/deg) and using the Method of Constant Stimuli while being kept unaware of the stimulus values. RESULTS The CS of the newborn infant was 2.0 (contrast threshold = 0.497; 95% confidence interval: 0.475-0.524) for vertically oriented gratings and 1.74 (threshold = 0.575; 95% confidence interval: 0.523-0.633) for horizontally oriented gratings (P < 0.0006). The standard deviation of infant CS was comparable to that obtained by others on adults using the Pelli-Robson chart. The two observers showed similar practice effects. Randomization of stimulus order and masking of the adult observer had no effect on CS. CONCLUSIONS The CS of individual newborn human infants can be measured using a fixation-and-following card procedure.
Collapse
Affiliation(s)
- Angela M Brown
- College of Optometry, The Ohio State University, Columbus, Ohio, United States
| | - Delwin T Lindsey
- College of Optometry, The Ohio State University, Columbus, Ohio, United States Department of Psychology, The Ohio State University, Mansfield, Columbus, Ohio, United States
| | - Joanna G Cammenga
- College of Optometry, The Ohio State University, Columbus, Ohio, United States
| | - Peter J Giannone
- College of Medicine, The Ohio State University, Columbus, Ohio, United States Kentucky Children's Hospital, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Michael R Stenger
- College of Medicine, The Ohio State University, Columbus, Ohio, United States Nationwide Children's Hospital, Columbus, Ohio, United States
| |
Collapse
|
12
|
Yu TY, Jacobs RJ, Anstice NS, Paudel N, Harding JE, Thompson B. Global motion perception in 2-year-old children: a method for psychophysical assessment and relationships with clinical measures of visual function. Invest Ophthalmol Vis Sci 2013; 54:8408-19. [PMID: 24282224 DOI: 10.1167/iovs.13-13051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We developed and validated a technique for measuring global motion perception in 2-year-old children, and assessed the relationship between global motion perception and other measures of visual function. METHODS Random dot kinematogram (RDK) stimuli were used to measure motion coherence thresholds in 366 children at risk of neurodevelopmental problems at 24 ± 1 months of age. RDKs of variable coherence were presented and eye movements were analyzed offline to grade the direction of the optokinetic reflex (OKR) for each trial. Motion coherence thresholds were calculated by fitting psychometric functions to the resulting datasets. Test-retest reliability was assessed in 15 children, and motion coherence thresholds were measured in a group of 10 adults using OKR and behavioral responses. Standard age-appropriate optometric tests also were performed. RESULTS Motion coherence thresholds were measured successfully in 336 (91.8%) children using the OKR technique, but only 31 (8.5%) using behavioral responses. The mean threshold was 41.7 ± 13.5% for 2-year-old children and 3.3 ± 1.2% for adults. Within-assessor reliability and test-retest reliability were high in children. Children's motion coherence thresholds were significantly correlated with stereoacuity (LANG I & II test, ρ = 0.29, P < 0.001; Frisby, ρ = 0.17, P = 0.022), but not with binocular visual acuity (ρ = 0.11, P = 0.07). In adults OKR and behavioral motion coherence thresholds were highly correlated (intraclass correlation = 0.81, P = 0.001). CONCLUSIONS Global motion perception can be measured in 2-year-old children using the OKR. This technique is reliable and data from adults suggest that motion coherence thresholds based on the OKR are related to motion perception. Global motion perception was related to stereoacuity in children.
Collapse
Affiliation(s)
- Tzu-Ying Yu
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
13
|
|