1
|
Costanzo M, Cutrona C, Leodori G, Malimpensa L, D'antonio F, Conte A, Belvisi D. Exploring easily accessible neurophysiological biomarkers for predicting Alzheimer's disease progression: a systematic review. Alzheimers Res Ther 2024; 16:244. [PMID: 39497149 PMCID: PMC11533378 DOI: 10.1186/s13195-024-01607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/19/2024] [Indexed: 11/06/2024]
Abstract
Alzheimer disease (AD) remains a significant global health concern. The progression from preclinical stages to overt dementia has become a crucial point of interest for researchers. This paper reviews the potential of neurophysiological biomarkers in predicting AD progression, based on a systematic literature search following PRISMA guidelines, including 55 studies. EEG-based techniques have been predominantly employed, whereas TMS studies are less common. Among the investigated neurophysiological measures, spectral power measurements and event-related potentials-based measures, including P300 and N200 latencies, have emerged as the most consistent and reliable biomarkers for predicting the likelihood of conversion to AD. In addition, TMS-based indices of cortical excitability and synaptic plasticity have also shown potential in assessing the risk of conversion to AD. However, concerns persist regarding the methodological discrepancies among studies, the accuracy of these neurophysiological measures in comparison to established AD biomarkers, and their immediate clinical applicability. Further research is needed to validate the predictive capabilities of EEG and TMS measures. Advancements in this area could lead to cost-effective, reliable biomarkers, enhancing diagnostic processes and deepening our understanding of AD pathophysiology.
Collapse
Affiliation(s)
- Matteo Costanzo
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy
| | - Carolina Cutrona
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy
| | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy
- IRCCS Neuromed, Via Atinense 18, Pozzilli, 86077, IS, Italy
| | | | - Fabrizia D'antonio
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy
- IRCCS Neuromed, Via Atinense 18, Pozzilli, 86077, IS, Italy
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy.
- IRCCS Neuromed, Via Atinense 18, Pozzilli, 86077, IS, Italy.
| |
Collapse
|
2
|
Zhou DW, Conte MM, Curley WH, Spencer-Salmon CA, Chatelle C, Rosenthal ES, Bodien YG, Victor JD, Schiff ND, Brown EN, Edlow BL. Alpha coherence is a network signature of cognitive recovery from disorders of consciousness. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.08.24314953. [PMID: 39417105 PMCID: PMC11482980 DOI: 10.1101/2024.10.08.24314953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alpha (8-12 Hz) frequency band oscillations are among the most informative features in electroencephalographic (EEG) assessment of patients with disorders of consciousness (DoC). Because interareal alpha synchrony is thought to facilitate long-range communication in healthy brains, coherence measures of resting-state alpha oscillations may provide insights into a patient's capacity for higher-order cognition beyond channel-wise estimates of alpha power. In multi-channel EEG, global coherence methods may be used to augment standard spectral analysis methods by both estimating the strength and identifying the structure of coherent oscillatory networks. We performed global coherence analysis in 95 separate clinical EEG recordings (28 healthy controls and 33 patients with acute or chronic DoC, 25 of whom returned for follow-up) collected between two academic medical centers. We found that posterior alpha coherence is associated with recovery of higher-level cognition. We developed a measure of network organization, based on the distance between eigenvectors of the alpha cross-spectral matrix, that detects recovery of posterior alpha networks. In patients who have emerged from a minimally conscious state, we showed that coherence-based alpha networks are reconfigured prior to restoration of alpha power to resemble those seen in healthy controls. This alpha network measure performs well in classifying recovery from DoC (AUC = 0.78) compared to common representations of functional connectivity using the weighted phase lag index (AUC = 0.50 - 0.57). Lastly, we observed that activity within these alpha networks is suppressed during positive responses to task-based EEG command-following paradigms, supporting the potential utility of this biomarker to detect covert cognition. Our findings suggest that restored alpha networks may represent a sensitive early signature of cognitive recovery in patients with DoC. Therefore, network detection methods may augment the utility of EEG assessments for DoC.
Collapse
Affiliation(s)
- David W Zhou
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Mary M Conte
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - William H Curley
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Camille A Spencer-Salmon
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Camille Chatelle
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Eric S Rosenthal
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Boston, MA
- Epilepsy Service and Division of Clinical Neurophysiology, Massachusetts General Hospital, Boston, MA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Jonathan D Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
- Department of Neurology, New York Presbyterian Hospital, New York, NY, USA
| | - Nicholas D Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
- Department of Neurology, New York Presbyterian Hospital, New York, NY, USA
| | - Emery N Brown
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Harvard Medical School/Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
3
|
Geiger M, Hurewitz SR, Pawlowski K, Baumer NT, Wilkinson CL. Alterations in aperiodic and periodic EEG activity in young children with Down syndrome. Neurobiol Dis 2024; 200:106643. [PMID: 39173846 PMCID: PMC11452906 DOI: 10.1016/j.nbd.2024.106643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/18/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
Down syndrome (DS) is the most common cause of intellectual disability, yet little is known about the neurobiological pathways leading to cognitive impairments. Electroencephalographic (EEG) measures are commonly used to study neurodevelopmental disorders, but few studies have focused on young children with DS. Here we assess resting state EEG data collected from toddlers/preschoolers with DS (n = 29, age 13-48 months old) and compare their aperiodic and periodic EEG features with both age-matched (n = 29) and developmental-matched (n = 58) comparison groups. DS participants exhibited significantly reduced aperiodic slope, increased periodic theta power, and decreased alpha peak amplitude. A majority of DS participants displayed a prominent peak in the theta range, whereas a theta peak was not present in age-matched participants. Overall, similar findings were also observed when comparing DS and developmental-matched groups, suggesting that EEG differences are not explained by delayed cognitive ability.
Collapse
Affiliation(s)
- McKena Geiger
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Sophie R Hurewitz
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Katherine Pawlowski
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Nicole T Baumer
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Carol L Wilkinson
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Wang B, Li M, Haihambo N, Qiu Z, Sun M, Guo M, Zhao X, Han C. Characterizing Major Depressive Disorder (MDD) using alpha-band activity in resting-state electroencephalogram (EEG) combined with MATRICS Consensus Cognitive Battery (MCCB). J Affect Disord 2024; 355:254-264. [PMID: 38561155 DOI: 10.1016/j.jad.2024.03.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND The diagnosis of major depressive disorder (MDD) is commonly based on the subjective evaluation by experienced psychiatrists using clinical scales. Hence, it is particularly important to find more objective biomarkers to aid in diagnosis and further treatment. Alpha-band activity (7-13 Hz) is the most prominent component in resting electroencephalogram (EEG), which is also thought to be a potential biomarker. Recent studies have shown the existence of multiple sub-oscillations within the alpha band, with distinct neural underpinnings. However, the specific contribution of these alpha sub-oscillations to the diagnosis and treatment of MDD remains unclear. METHODS In this study, we recorded the resting-state EEG from MDD and HC populations in both open and closed-eye state conditions. We also assessed cognitive processing using the MATRICS Consensus Cognitive Battery (MCCB). RESULTS We found that the MDD group showed significantly higher power in the high alpha range (10.5-11.5 Hz) and lower power in the low alpha range (7-8.5 Hz) compared to the HC group. Notably, high alpha power in the MDD group is negatively correlated with working memory performance in MCCB, whereas no such correlation was found in the HC group. Furthermore, using five established classification algorithms, we discovered that combining alpha oscillations with MCCB scores as features yielded the highest classification accuracy compared to using EEG or MCCB scores alone. CONCLUSIONS Our results demonstrate the potential of sub-oscillations within the alpha frequency band as a potential distinct biomarker. When combined with psychological scales, they may provide guidance relevant for the diagnosis and treatment of MDD.
Collapse
Affiliation(s)
- Bin Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100191 Beijing, China
| | - Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Zihan Qiu
- Avenues the World School Shenzhen Campus, Shenzhen 518000, China
| | - Meirong Sun
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Mingrou Guo
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong
| | - Xixi Zhao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100191 Beijing, China.
| | - Chuanliang Han
- School of Biomedical Sciences and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
5
|
Griffith EY, ElSayed M, Dura-Bernal S, Neymotin SA, Uhlrich DJ, Lytton WW, Zhu JJ. Mechanism of an Intrinsic Oscillation in Rat Geniculate Interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597830. [PMID: 38895250 PMCID: PMC11185623 DOI: 10.1101/2024.06.06.597830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Depolarizing current injections produced a rhythmic bursting of action potentials - a bursting oscillation - in a set of local interneurons in the lateral geniculate nucleus (LGN) of rats. The current dynamics underlying this firing pattern have not been determined, though this cell type constitutes an important cellular component of thalamocortical circuitry, and contributes to both pathologic and non-pathologic brain states. We thus investigated the source of the bursting oscillation using pharmacological manipulations in LGN slices in vitro and in silico. 1. Selective blockade of calcium channel subtypes revealed that high-threshold calcium currentsI L andI P contributed strongly to the oscillation. 2. Increased extracellular K+ concentration (decreased K+currents) eliminated the oscillation. 3. Selective blockade of K+ channel subtypes demonstrated that the calcium-sensitive potassium current (I A H P ) was of primary importance. A morphologically simplified, multicompartment model of the thalamic interneuron characterized the oscillation as follows: 1. The low-threshold calcium currentI T provided the strong initial burst characteristic of the oscillation. 2. Alternating fluxes through high-threshold calcium channels andI A H P then provided the continuing oscillation's burst and interburst periods respectively. This interplay betweenI L andI A H P contrasts with the current dynamics underlying oscillations in thalamocortical and reticularis neurons, which primarily involveI T andI H , orI T andI A H P respectively. These findings thus point to a novel electrophysiological mechanism for generating intrinsic oscillations in a major thalamic cell type. Because local interneurons can sculpt the behavior of thalamocortical circuits, these results suggest new targets for the manipulation of ascending thalamocortical network activity.
Collapse
Affiliation(s)
- Erica Y Griffith
- Department of Neural and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY
| | - Mohamed ElSayed
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanover, NH
- Department of Biomedical Engineering, SUNY Downstate School of Graduate Studies, Brooklyn, NY
- Department of Psychiatry, New Hampshire Hospital, Concord, NH
| | - Salvador Dura-Bernal
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY
| | - Samuel A Neymotin
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY
- Department of Psychiatry, New York University School of Medicine, New York, NY
| | - Daniel J Uhlrich
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - William W Lytton
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY
- Department of Neurology, Kings County Hospital, Brooklyn, NY
| | - J Julius Zhu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
6
|
Geiger M, Hurewitz SR, Pawlowski K, Baumer NT, Wilkinson CL. Alterations in aperiodic and periodic EEG activity in young children with Down syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.01.24306729. [PMID: 38746335 PMCID: PMC11092732 DOI: 10.1101/2024.05.01.24306729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Down syndrome is the most common cause of intellectual disability, yet little is known about the neurobiological pathways leading to cognitive impairments. Electroencephalographic (EEG) measures are commonly used to study neurodevelopmental disorders, but few studies have focused on young children with DS. Here we assess resting state EEG data collected from toddlers/preschoolers with DS (n=29, age 13-48 months old) and compare their aperiodic and periodic EEG features with both age-matched (n=29) and cognitive-matched (n=58) comparison groups. DS participants exhibited significantly reduced aperiodic slope, increased periodic theta power, and decreased alpha peak amplitude. A majority of DS participants displayed a prominent peak in the theta range, whereas a theta peak was not present in age-matched participants. Overall, similar findings were also observed when comparing DS and cognitive-matched groups, suggesting that EEG differences are not explained by delayed cognitive ability.
Collapse
|
7
|
Deiber MP, Piguet C, Berchio C, Michel CM, Perroud N, Ros T. Resting-State EEG Microstates and Power Spectrum in Borderline Personality Disorder: A High-Density EEG Study. Brain Topogr 2024; 37:397-409. [PMID: 37776472 PMCID: PMC11026215 DOI: 10.1007/s10548-023-01005-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/30/2023] [Indexed: 10/02/2023]
Abstract
Borderline personality disorder (BPD) is a debilitating psychiatric condition characterized by emotional dysregulation, unstable sense of self, and impulsive, potentially self-harming behavior. In order to provide new neurophysiological insights on BPD, we complemented resting-state EEG frequency spectrum analysis with EEG microstates (MS) analysis to capture the spatiotemporal dynamics of large-scale neural networks. High-density EEG was recorded at rest in 16 BPD patients and 16 age-matched neurotypical controls. The relative power spectrum and broadband MS spatiotemporal parameters were compared between groups and their inter-correlations were examined. Compared to controls, BPD patients showed similar global spectral power, but exploratory univariate analyses on single channels indicated reduced relative alpha power and enhanced relative delta power at parietal electrodes. In terms of EEG MS, BPD patients displayed similar MS topographies as controls, indicating comparable neural generators. However, the MS temporal dynamics were significantly altered in BPD patients, who demonstrated opposite prevalence of MS C (lower than controls) and MS E (higher than controls). Interestingly, MS C prevalence correlated positively with global alpha power and negatively with global delta power, while MS E did not correlate with any measures of spectral power. Taken together, these observations suggest that BPD patients exhibit a state of cortical hyperactivation, represented by decreased posterior alpha power, together with an elevated presence of MS E, consistent with symptoms of elevated arousal and/or vigilance. This is the first study to investigate resting-state MS patterns in BPD, with findings of elevated MS E and the suggestion of reduced posterior alpha power indicating a disorder-specific neurophysiological signature previously unreported in a psychiatric population.
Collapse
Affiliation(s)
- Marie-Pierre Deiber
- Department of Psychiatry, University Hospitals of Geneva, Chemin du Petit-Bel-Air 2, 1226 Thônex, Geneva, Switzerland.
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Camille Piguet
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pediatrics, University Hospitals of Geneva, Geneva, Switzerland
| | - Cristina Berchio
- Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging, CIBM, Lausanne, Switzerland
| | - Nader Perroud
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Psychiatric Specialties, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Tomas Ros
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging, CIBM, Lausanne, Switzerland
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Babiloni C, Noce G, Tucci F, Jakhar D, Ferri R, Panerai S, Catania V, Soricelli A, Salvatore M, Nobili F, Arnaldi D, Famà F, Buttinelli C, Giubilei F, Onofrj M, Stocchi F, Vacca L, Radicati F, Fuhr P, Gschwandtner U, Ransmayr G, Parnetti L, Marizzoni M, D'Antonio F, Bruno G, De Lena C, Güntekin B, Yıldırım E, Hanoğlu L, Yener G, Hünerli D, Taylor JP, Schumacher J, McKeith I, Frisoni GB, Antonini A, Ferreri F, Bonanni L, De Pandis MF, Del Percio C. Poor reactivity of posterior electroencephalographic alpha rhythms during the eyes open condition in patients with dementia due to Parkinson's disease. Neurobiol Aging 2024; 135:1-14. [PMID: 38142464 DOI: 10.1016/j.neurobiolaging.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Here, we hypothesized that the reactivity of posterior resting-state electroencephalographic (rsEEG) alpha rhythms during the transition from eyes-closed to -open condition might be lower in patients with Parkinson's disease dementia (PDD) than in patients with Alzheimer's disease dementia (ADD). A Eurasian database provided clinical-demographic-rsEEG datasets in 73 PDD patients, 35 ADD patients, and 25 matched cognitively unimpaired (Healthy) persons. The eLORETA freeware was used to estimate cortical rsEEG sources. Results showed substantial (greater than -10%) reduction (reactivity) in the posterior alpha source activities from the eyes-closed to the eyes-open condition in 88% of the Healthy seniors, 57% of the ADD patients, and only 35% of the PDD patients. In these alpha-reactive participants, there was lower reactivity in the parietal alpha source activities in the PDD group than in the healthy control seniors and the ADD patients. These results suggest that PDD patients show poor reactivity of mechanisms desynchronizing posterior rsEEG alpha rhythms in response to visual inputs. That neurophysiological biomarker may provide an endpoint for (non) pharmacological interventions for improving vigilance regulation in those patients.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, FR, Italy.
| | | | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Dharmendra Jakhar
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | | | | | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | - Flavio Nobili
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Marco Onofrj
- Department of Neuroscience Imaging and Clinical Sciences, CESI, and Department of Medicine and Aging Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Fabrizio Stocchi
- IRCCS San Raffaele, Rome, Italy; Telematic University San Raffaele, Rome, Italy
| | | | | | - Peter Fuhr
- Universitätsspital Basel, Abteilung Neurophysiologie, Petersgraben 4, 4031 Basel, Switzerland; Departments of Neurology and of Clinical Research, University Hospital Basel, Switzerland
| | - Ute Gschwandtner
- Universitätsspital Basel, Abteilung Neurophysiologie, Petersgraben 4, 4031 Basel, Switzerland; Departments of Neurology and of Clinical Research, University Hospital Basel, Switzerland
| | - Gerhard Ransmayr
- Department of Neurology 2, Med Campus III, Faculty of Medicine, Johannes Kepler University, Kepler University Hospital, Krankenhausstr. 9, A-4020 Linz., Austria
| | - Lucilla Parnetti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Fabrizia D'Antonio
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Yıldırım
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir University of Economics, Faculty of Medicine, Izmir, Turkey
| | - Duygu Hünerli
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Julia Schumacher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Ian McKeith
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Angelo Antonini
- Unit and Study Center for Neurodegenerative diseases (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
| | - Florinda Ferreri
- Unit and Study Center for Neurodegenerative diseases (CESNE), Department of Neuroscience, University of Padua, Padua, Italy; Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Chmiel J, Rybakowski F, Leszek J. EEG in Down Syndrome-A Review and Insights into Potential Neural Mechanisms. Brain Sci 2024; 14:136. [PMID: 38391711 PMCID: PMC10886507 DOI: 10.3390/brainsci14020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction: Down syndrome (DS) stands out as one of the most prevalent genetic disorders, imposing a significant burden on both society and the healthcare system. Scientists are making efforts to understand the neural mechanisms behind the pathophysiology of this disorder. Among the valuable methods for studying these mechanisms is electroencephalography (EEG), a non-invasive technique that measures the brain's electrical activity, characterised by its excellent temporal resolution. This review aims to consolidate studies examining EEG usage in individuals with DS. The objective was to identify shared elements of disrupted EEG activity and, crucially, to elucidate the neural mechanisms underpinning these deviations. Searches were conducted on Pubmed/Medline, Research Gate, and Cochrane databases. Results: The literature search yielded 17 relevant articles. Despite the significant time span, small sample size, and overall heterogeneity of the included studies, three common features of aberrant EEG activity in people with DS were found. Potential mechanisms for this altered activity were delineated. Conclusions: The studies included in this review show altered EEG activity in people with DS compared to the control group. To bolster these current findings, future investigations with larger sample sizes are imperative.
Collapse
Affiliation(s)
- James Chmiel
- Institute of Neurofeedback and tDCS Poland, 70-393 Szczecin, Poland
| | - Filip Rybakowski
- Department and Clinic of Psychiatry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wrocław Medical University, 54-235 Wrocław, Poland
| |
Collapse
|
10
|
Ortiz O, Kuruganti U, Chester V, Wilson A, Blustein D. Changes in EEG alpha-band power during prehension indicates neural motor drive inhibition. J Neurophysiol 2023; 130:1588-1601. [PMID: 37910541 DOI: 10.1152/jn.00506.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023] Open
Abstract
Changes in alpha band activity (8-12 Hz) indicate the downregulation of brain regions during cognitive tasks, reflecting real-time cognitive load. Despite this, its feasibility to be used in a more dynamic environment with ongoing motor corrections has not been studied. This research used electroencephalography (EEG) to explore how different brain regions are engaged during a simple grasp and lift task where unexpected changes to the object's weight or surface friction are introduced. The results suggest that alpha activity changes related to motor error correction occur only in motor-related areas (i.e. central areas) but not in error processing areas (i.e., frontoparietal network) during unexpected weight changes. This suggests that oscillations over motor areas reflect the reduction of motor drive related to motor error correction, thus, being a potential cortical electrophysiological biomarker for the process and not solely as a proxy for cognitive demands. This observation is particularly relevant in scenarios where these signals are used to evaluate high cognitive demands co-occurring with high levels of motor errors and corrections, such as prosthesis use. The establishment of electrophysiological biomarkers of mental resource allocation during movement and cognition can help identify indicators of mental workload and motor drive, which may be useful for improving brain-machine interfaces.NEW & NOTEWORTHY We demonstrated that alpha suppression, an EEG phenomenon with high temporal resolution, occurs over the primary sensorimotor area during error correction during lift movements. Interpretations of alpha activity are often attributed to high cognitive demands, thus recognizing that it is also influenced by motor processes is important in situations where cognitive demands are paired with movement errors. This could further have application as a biomarker for error correction in human-machine interfaces, such as neuroprostheses.
Collapse
Affiliation(s)
- Oscar Ortiz
- Andrew and Marjorie McCain Human Performance Laboratory, Faculty of Kinesiology, University of New Brunswick Fredericton, New Brunswick, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Usha Kuruganti
- Andrew and Marjorie McCain Human Performance Laboratory, Faculty of Kinesiology, University of New Brunswick Fredericton, New Brunswick, Canada
| | - Victoria Chester
- Andrew and Marjorie McCain Human Performance Laboratory, Faculty of Kinesiology, University of New Brunswick Fredericton, New Brunswick, Canada
| | - Adam Wilson
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Daniel Blustein
- Department of Psychology, Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
11
|
Sauer A, Grent-'t-Jong T, Zeev-Wolf M, Singer W, Goldstein A, Uhlhaas PJ. Spectral and phase-coherence correlates of impaired auditory mismatch negativity (MMN) in schizophrenia: A MEG study. Schizophr Res 2023; 261:60-71. [PMID: 37708723 DOI: 10.1016/j.schres.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/21/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Reduced auditory mismatch negativity (MMN) is robustly impaired in schizophrenia. However, mechanisms underlying dysfunctional MMN generation remain incompletely understood. This study aimed to examine the role of evoked spectral power and phase-coherence towards deviance detection and its impairments in schizophrenia. METHODS Magnetoencephalography data was collected in 16 male schizophrenia patients and 16 male control participants during an auditory MMN paradigm. Analyses of event-related fields (ERF), spectral power and inter-trial phase-coherence (ITPC) focused on Heschl's gyrus, superior temporal gyrus, inferior/medial frontal gyrus and thalamus. RESULTS MMNm ERF amplitudes were reduced in patients in temporal, frontal and subcortical regions, accompanied by decreased theta-band responses, as well as by a diminished gamma-band response in auditory cortex. At theta/alpha frequencies, ITPC to deviant tones was reduced in patients in frontal cortex and thalamus. Patients were also characterized by aberrant responses to standard tones as indexed by reduced theta-/alpha-band power and ITPC in temporal and frontal regions. Moreover, stimulus-specific adaptation was decreased at theta/alpha frequencies in left temporal regions, which correlated with reduced MMNm spectral power and ERF amplitude. Finally, phase-reset of alpha-oscillations after deviant tones in left thalamus was impaired, which correlated with impaired MMNm generation in auditory cortex. Importantly, both non-rhythmic and rhythmic components of spectral activity contributed to the MMNm response. CONCLUSIONS Our data indicate that deficits in theta-/alpha- and gamma-band activity in cortical and subcortical regions as well as impaired spectral responses to standard sounds could constitute potential mechanisms for dysfunctional MMN generation in schizophrenia, providing a novel perspective towards MMN deficits in the disorder.
Collapse
Affiliation(s)
- Andreas Sauer
- Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, 60438 Frankfurt am Main, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstr. 46, 60528 Frankfurt am Main, Germany
| | - Tineke Grent-'t-Jong
- Department of Child and Adolescent Psychiatry, Charité-Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany; Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, G12 8QB Glasgow, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Maor Zeev-Wolf
- Department of Education and Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Beer Sheva 84105, Israel; Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Wolf Singer
- Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, 60438 Frankfurt am Main, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstr. 46, 60528 Frankfurt am Main, Germany; Frankfurt Institute for Advanced Studies (FIAS), Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany
| | - Abraham Goldstein
- Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité-Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany; Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, G12 8QB Glasgow, Scotland, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
12
|
Sinha AK, Lee C, Holt JC. Elucidating the role of muscarinic acetylcholine receptor (mAChR) signaling in efferent mediated responses of vestibular afferents in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.549902. [PMID: 37577578 PMCID: PMC10418111 DOI: 10.1101/2023.07.31.549902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The peripheral vestibular system detects head position and movement through activation of vestibular hair cells (HCs) in vestibular end organs. HCs transmit this information to the CNS by way of primary vestibular afferent neurons. The CNS, in turn, modulates HCs and afferents via the efferent vestibular system (EVS) through activation of cholinergic signaling mechanisms. In mice, we previously demonstrated that activation of muscarinic acetylcholine receptors (mAChRs), during EVS stimulation, gives rise to a slow excitation that takes seconds to peak and tens of seconds to decay back to baseline. This slow excitation is mimicked by muscarine and ablated by the non-selective mAChR blockers scopolamine, atropine, and glycopyrrolate. While five distinct mAChRs (M1-M5) exist, the subtype(s) driving EVS-mediated slow excitation remain unidentified and details on how these mAChRs alter vestibular function is not well understood. The objective of this study is to characterize which mAChR subtypes drive the EVS-mediated slow excitation, and how their activation impacts vestibular physiology and behavior. In C57Bl/6J mice, M3mAChR antagonists were more potent at blocking slow excitation than M1mAChR antagonists, while M2/M4 blockers were ineffective. While unchanged in M2/M4mAChR double KO mice, EVS-mediated slow excitation in M3 mAChR-KO animals were reduced or absent in irregular afferents but appeared unchanged in regular afferents. In agreement, vestibular sensory-evoked potentials (VsEP), known to be predominantly generated from irregular afferents, were significantly less enhanced by mAChR activation in M3mAChR-KO mice compared to controls. Finally, M3mAChR-KO mice display distinct behavioral phenotypes in open field activity, and thermal profiles, and balance beam and forced swim test. M3mAChRs mediate efferent-mediated slow excitation in irregular afferents, while M1mAChRs may drive the same process in regular afferents.
Collapse
|
13
|
Lopez S, Del Percio C, Lizio R, Noce G, Padovani A, Nobili F, Arnaldi D, Famà F, Moretti DV, Cagnin A, Koch G, Benussi A, Onofrj M, Borroni B, Soricelli A, Ferri R, Buttinelli C, Giubilei F, Güntekin B, Yener G, Stocchi F, Vacca L, Bonanni L, Babiloni C. Patients with Alzheimer's disease dementia show partially preserved parietal 'hubs' modeled from resting-state alpha electroencephalographic rhythms. Front Aging Neurosci 2023; 15:780014. [PMID: 36776437 PMCID: PMC9908964 DOI: 10.3389/fnagi.2023.780014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Graph theory models a network by its nodes (the fundamental unit by which graphs are formed) and connections. 'Degree' hubs reflect node centrality (the connection rate), while 'connector' hubs are those linked to several clusters of nodes (mainly long-range connections). Methods Here, we compared hubs modeled from measures of interdependencies of between-electrode resting-state eyes-closed electroencephalography (rsEEG) rhythms in normal elderly (Nold) and Alzheimer's disease dementia (ADD) participants. At least 5 min of rsEEG was recorded and analyzed. As ADD is considered a 'network disease' and is typically associated with abnormal rsEEG delta (<4 Hz) and alpha rhythms (8-12 Hz) over associative posterior areas, we tested the hypothesis of abnormal posterior hubs from measures of interdependencies of rsEEG rhythms from delta to gamma bands (2-40 Hz) using eLORETA bivariate and multivariate-directional techniques in ADD participants versus Nold participants. Three different definitions of 'connector' hub were used. Results Convergent results showed that in both the Nold and ADD groups there were significant parietal 'degree' and 'connector' hubs derived from alpha rhythms. These hubs had a prominent outward 'directionality' in the two groups, but that 'directionality' was lower in ADD participants than in Nold participants. Discussion In conclusion, independent methodologies and hub definitions suggest that ADD patients may be characterized by low outward 'directionality' of partially preserved parietal 'degree' and 'connector' hubs derived from rsEEG alpha rhythms.
Collapse
Affiliation(s)
- Susanna Lopez
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Claudio Del Percio
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Roberta Lizio
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | | | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Flavio Nobili
- Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy
| | - Dario Arnaldi
- Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy
| | - Davide V. Moretti
- Alzheimer’s Disease Rehabilitation Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
- Stroke Unit, Department of Neuroscience, Tor Vergata Policlinic, Rome, Italy
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Marco Onofrj
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University “G. D’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy
- Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Görsev Yener
- Department of Neurology, Dokuz Eylül University Medical School, Izmir, Türkiye
- Faculty of Medicine, Izmir University of Economics, Izmir, Türkiye
| | - Fabrizio Stocchi
- Institute for Research and Medical Care, IRCCS San Raffaele Roma, Rome, Italy
- Telematic University San Raffaele, Rome, Italy
| | - Laura Vacca
- Institute for Research and Medical Care, IRCCS San Raffaele Roma, Rome, Italy
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University G. D’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
- San Raffaele of Cassino, Cassino, Italy
| |
Collapse
|
14
|
Rizzo M, Petrini L, Del Percio C, Lopez S, Arendt‐Nielsen L, Babiloni C. Mirror visual feedback during unilateral finger movements is related to the desynchronization of cortical electroencephalographic somatomotor alpha rhythms. Psychophysiology 2022; 59:e14116. [PMID: 35657095 PMCID: PMC9788070 DOI: 10.1111/psyp.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 12/30/2022]
Abstract
Using a mirror adequately oriented, the motion of just one hand induces the illusion of the movement with the other hand. Here, we tested the hypothesis that such a mirror phenomenon may be underpinned by an electroencephalographic (EEG) event-related desynchronization/synchronization (ERD/ERS) of central alpha rhythms (around 10 Hz) as a neurophysiological measure of the interactions among cerebral cortex, basal ganglia, and thalamus during movement preparation and execution. Eighteen healthy right-handed male participants performed standard auditory-triggered unilateral (right) or bilateral finger movements in the No Mirror (M-) conditions. In the Mirror (M+) condition, the unilateral right finger movements were performed in front of a mirror oriented to induce the illusion of simultaneous left finger movements. EEG activity was recorded from 64 scalp electrodes, and the artifact-free event-related EEG epochs were used to compute alpha ERD. In the M- conditions, a bilateral prominent central alpha ERD was observed during the bilateral movements, while left central alpha ERD and right alpha ERS were seen during unilateral right movements. In contrast, the M+ condition showed significant bilateral and widespread alpha ERD during the unilateral right movements. These results suggest that the above illusion of the left movements may be related to alpha ERD measures reflecting excitatory desynchronizing signals in right lateral premotor and primary somatomotor areas possibly in relation to basal ganglia-thalamic loops.
Collapse
Affiliation(s)
- Marco Rizzo
- Center for Neuroplasticity and Pain (CNAP), SMIDepartment of Health Science and TechnologyAalborg UniversityAalborgDenmark
| | - Laura Petrini
- Center for Neuroplasticity and Pain (CNAP), SMIDepartment of Health Science and TechnologyAalborg UniversityAalborgDenmark
| | - Claudio Del Percio
- Department of Physiology and Pharmacology “V. Erspamer”Sapienza University of RomeRomeItaly
| | - Susanna Lopez
- Department of Physiology and Pharmacology “V. Erspamer”Sapienza University of RomeRomeItaly
| | - Lars Arendt‐Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMIDepartment of Health Science and TechnologyAalborg UniversityAalborgDenmark,Department of Medical Gastroenterology, Mech‐SenseAalborg University HospitalAalborgDenmark
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “V. Erspamer”Sapienza University of RomeRomeItaly
| |
Collapse
|
15
|
Wang K, Wei A, Fu Y, Wang T, Gao X, Fu B, Zhu Y, Cui B, Zhu M. State-dependent modulation of thalamocortical oscillations by gamma light flicker with different frequencies, intensities, and duty cycles. Front Neuroinform 2022; 16:968907. [PMID: 36081653 PMCID: PMC9445583 DOI: 10.3389/fninf.2022.968907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Rhythmic light flickers have emerged as useful tools to modulate cognition and rescue pathological oscillations related to neurological disorders by entrainment. However, a mechanistic understanding of the entrainment for different brain oscillatory states and light flicker parameters is lacking. To address this issue, we proposed a biophysical neural network model for thalamocortical oscillations (TCOs) and explored the stimulation effects depending on the thalamocortical oscillatory states and stimulation parameters (frequency, intensity, and duty cycle) using the proposed model and electrophysiology experiments. The proposed model generated alpha, beta, and gamma oscillatory states (with main oscillation frequences at 9, 25, and 35 Hz, respectively), which were successfully transmitted from the thalamus to the cortex. By applying light flicker stimulation, we found that the entrainment was state-dependent and it was more prone to induce entrainment if the flicker perturbation frequency was closer to the endogenous oscillatory frequency. In addition, endogenous oscillation would be accelerated, whereas low-frequency oscillatory power would be suppressed by gamma (30-50 Hz) flickers. Notably, the effects of intensity and duty cycle on entrainment were complex; a high intensity of light flicker did not mean high entrainment possibility, and duty cycles below 50% could induce entrainment easier than those above 50%. Further, we observed entrainment discontinuity during gamma flicker stimulations with different frequencies, attributable to the non-linear characteristics of the network oscillations. These results provide support for the experimental design and clinical applications of the modulation of TCOs by gamma (30-50 Hz) light flicker.
Collapse
Affiliation(s)
- Kun Wang
- Institute of Medical Support Technology, Academy of Military Science of Chinese PLA, Tianjin, China
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Aili Wei
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yu Fu
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Tianhui Wang
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiujie Gao
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Bo Fu
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yingwen Zhu
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Bo Cui
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Mengfu Zhu
- Institute of Medical Support Technology, Academy of Military Science of Chinese PLA, Tianjin, China
| |
Collapse
|
16
|
Keitel C, Ruzzoli M, Dugué L, Busch NA, Benwell CSY. Rhythms in cognition: The evidence revisited. Eur J Neurosci 2022; 55:2991-3009. [PMID: 35696729 PMCID: PMC9544967 DOI: 10.1111/ejn.15740] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/27/2022]
Affiliation(s)
| | - Manuela Ruzzoli
- Basque Center on Cognition, Brain and Language (BCBL), Donostia/San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Laura Dugué
- Université Paris Cité, INCC UMR 8002, CNRS, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| | - Niko A Busch
- Institute for Psychology, University of Münster, Münster, Germany
| | | |
Collapse
|
17
|
Fong CY, Law WHC, Fahrenfort JJ, Braithwaite JJ, Mazaheri A. Attenuated alpha oscillation and hyperresponsiveness reveals impaired perceptual learning in migraineurs. J Headache Pain 2022; 23:44. [PMID: 35382735 PMCID: PMC8981672 DOI: 10.1186/s10194-022-01410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
Background Anomalous phantom visual perceptions coupled to an aversion and discomfort to some visual patterns (especially grating in mid-range spatial frequency) have been associated with the hyperresponsiveness in migraine patients. Previous literature has found fluctuations of alpha oscillation (8-14 Hz) over the visual cortex to be associated with the gating of the visual stream. In the current study, we examined whether alpha activity was differentially modulated in migraineurs in anticipation of an upcoming stimulus as well as post-stimulus periods. Methods We used EEG to examine the brain activity in a group of 28 migraineurs (17 with aura /11 without) and 29 non-migraineurs and compared their alpha power in the pre/post-stimulus period relative to the onset of stripped gratings. Results Overall, we found that migraineurs had significantly less alpha power prior to the onset of the stimulus relative to controls. Moreover, migraineurs had significantly greater post-stimulus alpha suppression (i.e event-related desynchronization) induced by the grating in 3 cycles per degree at the 2nd half of the experiment. Conclusions These findings, taken together, provide strong support for the presence of the hyperresponsiveness of the visual cortex of migraine sufferers. We speculate that it could be the consequence of impaired perceptual learning driven by the dysfunction of GABAergic inhibitory mechanism. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01410-2.
Collapse
|
18
|
Pre-Stimulus Alpha-Band Phase Gates Early Visual Cortex Responses. Neuroimage 2022; 253:119060. [PMID: 35283286 DOI: 10.1016/j.neuroimage.2022.119060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
Alpha-band (8-13 Hz) oscillations have been shown to phasically inhibit perceptual reports in human observers, yet the underlying physiological mechanism of this effect is debated. According to contrasting models, based primarily on animal experiments, alpha activity is thought to either originate from specialized cells in the visual thalamus and periodically inhibit the relay of visual information to the primary visual cortex (V1) in a feedforward manner, or to propagate from higher visual areas back to V1 in a feedback manner. Human neurophysiological evidence in favor of either hypothesis, both, or neither, has been limited. To help address this issue, we explored the link between pre-stimulus alpha phase and visual electroencephalography (EEG) responses thought to arise from afferent input onto human V1. Specially-designed visual stimuli were used to elicit large amplitude C1 event-related potentials (ERP), with polarity, topography, and timing indicative of striate genesis. Single-trial circular-linear associations between pre-stimulus phase and post-stimulus global field power (GFP) during the C1 time window revealed significant effects peaking in the alpha frequency band. Control analyses ruling out the potential confound of post-stimulus data bleeding into the pre-stimulus window demonstrated that GFP amplitude decreases as pre-stimulus alpha phase deviates from an individual's preferred phase. These findings demonstrate an early locus - suggesting that the phase of pre-stimulus alpha oscillations could modulate visual processing by gating the feedforward flow of sensory input between the thalamus and V1, although other models are potentially compatible.
Collapse
|
19
|
Ibarra-Lecue I, Haegens S, Harris AZ. Breaking Down a Rhythm: Dissecting the Mechanisms Underlying Task-Related Neural Oscillations. Front Neural Circuits 2022; 16:846905. [PMID: 35310550 PMCID: PMC8931663 DOI: 10.3389/fncir.2022.846905] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
A century worth of research has linked multiple cognitive, perceptual and behavioral states to various brain oscillations. However, the mechanistic roles and circuit underpinnings of these oscillations remain an area of active study. In this review, we argue that the advent of optogenetic and related systems neuroscience techniques has shifted the field from correlational to causal observations regarding the role of oscillations in brain function. As a result, studying brain rhythms associated with behavior can provide insight at different levels, such as decoding task-relevant information, mapping relevant circuits or determining key proteins involved in rhythmicity. We summarize recent advances in this field, highlighting the methods that are being used for this purpose, and discussing their relative strengths and limitations. We conclude with promising future approaches that will help unravel the functional role of brain rhythms in orchestrating the repertoire of complex behavior.
Collapse
Affiliation(s)
- Inés Ibarra-Lecue
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
| | - Saskia Haegens
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Alexander Z. Harris
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
| |
Collapse
|
20
|
Barco A, Orlando S, Stroffolini G, Pirriatore V, Lazzaro A, Vai D, Guastamacchia G, Noce G, Atzori C, Trunfio M, Bonora S, Di Perri G, Calcagno A. Correlations between cerebrospinal fluid biomarkers, neurocognitive tests, and resting-state electroencephalography (rsEEG) in patients with HIV-associated neurocognitive disorders. J Neurovirol 2022; 28:226-235. [PMID: 35044644 DOI: 10.1007/s13365-021-01047-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 11/05/2021] [Accepted: 12/18/2021] [Indexed: 12/01/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) are highly prevalent in people living with HIV (PLWH) despite successful treatment with combination antiretroviral therapy (cART). HAND pathogenesis is complex and definitive surrogate biomarkers are not clearly defined. Brain function has been assessed through the evaluation of cortical source rhythms with delta waves associated with neurological impairment. The aim of this study was to assess the correlation between EEG cortical sources, cerebrospinal fluid (CSF) biomarkers, and neurocognitive tests in PLWH with HAND. PLWH with HAND without significant comorbidities were enrolled. Baseline rsEEG-LORETA waves, CSF biomarkers (t-tau, p-tau, β-amiloid42, neopterin, S100β), and neurocognitive tests were correlated and compared through non-parametric tests (Spearman's rho and Mann-Whitney); data are presented as medians (interquartile ranges). Fifty-four patients were enrolled. Median time of suppressed HIV-RNA and CD4+ T-lymphocyte were 10 years (5.5-15) and 691/uL (477-929). Thirty-nine participants (72%) underwent CSF collection: abnormal biomarkers were found in a small percentage. Only neopterin showed a statistically significant correlation with delta activity [parietal (rho 0.579; p < 0.001), occipital (rho 0.493; p = 0.007), and global sources (rho 0.464 p = 0.011)]. Seven patients (12.9%) showed an abnormal neopterin level (> 1.5 ng/mL) with significantly higher delta source activity compared to the ones with in-range concentrations. We observed a statistically significant correlation between working memory test Trail Making B with both CSF neopterin levels and delta waves (p values < 0.05). In a small sample of PLWH with HAND, we observed that higher CSF neopterin levels were associated with higher EEG delta waves and worse working memory tests.
Collapse
Affiliation(s)
- A Barco
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy.
| | - S Orlando
- Unit of Neurology, Maria Vittoria Hospital, ASL "Città Di Torino", Turin, Italy
| | - G Stroffolini
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - V Pirriatore
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - A Lazzaro
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - D Vai
- Unit of Neurology, Maria Vittoria Hospital, ASL "Città Di Torino", Turin, Italy
| | - G Guastamacchia
- Unit of Neurology, Maria Vittoria Hospital, ASL "Città Di Torino", Turin, Italy
| | | | - C Atzori
- Unit of Neurology, Maria Vittoria Hospital, ASL "Città Di Torino", Turin, Italy
| | - M Trunfio
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - S Bonora
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - G Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - A Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
21
|
Babiloni C, Noce G, Ferri R, Lizio R, Lopez S, Lorenzo I, Tucci F, Soricelli A, Zurrón M, Díaz F, Nobili F, Arnaldi D, Famà F, Buttinelli C, Giubilei F, Cipollini V, Marizzoni M, Güntekin B, Yıldırım E, Hanoğlu L, Yener G, Gündüz DH, Onorati P, Stocchi F, Vacca L, Maestú F, Frisoni GB, Del Percio C. Resting State Alpha Electroencephalographic Rhythms Are Affected by Sex in Cognitively Unimpaired Seniors and Patients with Alzheimer's Disease and Amnesic Mild Cognitive Impairment: A Retrospective and Exploratory Study. Cereb Cortex 2021; 32:2197-2215. [PMID: 34613369 DOI: 10.1093/cercor/bhab348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/07/2021] [Accepted: 08/21/2021] [Indexed: 11/14/2022] Open
Abstract
In the present retrospective and exploratory study, we tested the hypothesis that sex may affect cortical sources of resting state eyes-closed electroencephalographic (rsEEG) rhythms recorded in normal elderly (Nold) seniors and patients with Alzheimer's disease and mild cognitive impairment (ADMCI). Datasets in 69 ADMCI and 57 Nold individuals were taken from an international archive. The rsEEG rhythms were investigated at individual delta, theta, and alpha frequency bands and fixed beta (14-30 Hz) and gamma (30-40 Hz) bands. Each group was stratified into matched females and males. The sex factor affected the magnitude of rsEEG source activities in the Nold seniors. Compared with the males, the females were characterized by greater alpha source activities in all cortical regions. Similarly, the parietal, temporal, and occipital alpha source activities were greater in the ADMCI-females than the males. Notably, the present sex effects did not depend on core genetic (APOE4), neuropathological (Aβ42/phospho-tau ratio in the cerebrospinal fluid), structural neurodegenerative and cerebrovascular (MRI) variables characterizing sporadic AD-related processes in ADMCI seniors. These results suggest the sex factor may significantly affect neurophysiological brain neural oscillatory synchronization mechanisms underpinning the generation of dominant rsEEG alpha rhythms to regulate cortical arousal during quiet vigilance.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
- San Raffaele of Cassino, Cassino (FR), Italy
| | | | | | | | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Andrea Soricelli
- IRCCS SDN, Napoli, Italy
- Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Montserrat Zurrón
- Departamento de Psicología Experimental, Facultad de Psicología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fernando Díaz
- Departamento de Psicología Experimental, Facultad de Psicología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Flavio Nobili
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Dario Arnaldi
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Francesco Famà
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Virginia Cipollini
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Yıldırım
- Istanbul Medipol University, Vocational School, Program of Electroneurophysiology, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir School of Economics, Faculty of Medicine, Izmir, Turkey
| | - Duygu Hünerli Gündüz
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Paolo Onorati
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | | | - Fernando Maestú
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Eradath MK, Pinsk MA, Kastner S. A causal role for the pulvinar in coordinating task-independent cortico-cortical interactions. J Comp Neurol 2021; 529:3772-3784. [PMID: 34013540 DOI: 10.1002/cne.25193] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/01/2023]
Abstract
The pulvinar is the largest nucleus in the primate thalamus and has topographically organized connections with multiple cortical areas, thereby forming extensive cortico-pulvino-cortical input-output loops. Neurophysiological studies have suggested a role for these transthalamic pathways in regulating information transmission between cortical areas. However, evidence for a causal role of the pulvinar in regulating cortico-cortical interactions is sparse and it is not known whether pulvinar's influences on cortical networks are task-dependent or, alternatively, reflect more basic large-scale network properties that maintain functional connectivity across networks regardless of active task demands. In the current study, under passive viewing conditions, we conducted simultaneous electrophysiological recordings from ventral (area V4) and dorsal (lateral intraparietal area [LIP]) nodes of macaque visual system, while reversibly inactivating the dorsal part of the lateral pulvinar (dPL), which shares common anatomical connectivity with V4 and LIP, to probe a causal role of the pulvinar. Our results show a significant reduction in local field potential phase coherence between LIP and V4 in low frequencies (4-15 Hz) following muscimol injection into dPL. At the local level, no significant changes in firing rates or LFP power were observed in LIP or in V4 following dPL inactivation. Synchronization between pulvinar spikes and cortical LFP phase decreased in low frequencies (4-15 Hz) both in LIP and V4, while the low frequency synchronization between LIP spikes and pulvinar phase increased. These results indicate a causal role for pulvinar in synchronizing neural activity between interconnected cortical nodes of a large-scale network, even in the absence of an active task state.
Collapse
Affiliation(s)
- Manoj K Eradath
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
| | - Mark A Pinsk
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA.,Department of Psychology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
23
|
Harauzov AK, Klimuk MА, Ponomarev VA, Ivanova LE, Podvigina DN. An Electrophysiological Study of Brain
Rhythms in the Rhesus Monkey Macaca mulatta. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Molnár B, Sere P, Bordé S, Koós K, Zsigri N, Horváth P, Lőrincz ML. Cell Type-Specific Arousal-Dependent Modulation of Thalamic Activity in the Lateral Geniculate Nucleus. Cereb Cortex Commun 2021; 2:tgab020. [PMID: 34296165 PMCID: PMC8152899 DOI: 10.1093/texcom/tgab020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/04/2022] Open
Abstract
State-dependent thalamocortical activity is important for sensory coding, oscillations, and cognition. The lateral geniculate nucleus (LGN) relays visual information to the cortex, but the state-dependent spontaneous activity of LGN neurons in awake behaving animals remains controversial. Using a combination of pupillometry, extracellular, and intracellular recordings from identified LGN neurons in behaving mice, we show that thalamocortical (TC) neurons and interneurons are distinctly correlated to arousal forming two complementary coalitions. Intracellular recordings indicated that the membrane potential of LGN TC neurons was tightly correlated to fluctuations in pupil size. Inactivating the corticothalamic feedback to the LGN suppressed the arousal dependency of LGN neurons. Taken together, our results show that LGN neuronal membrane potential and action potential output are dynamically linked to arousal-dependent brain states in awake mice, and this might have important functional implications.
Collapse
Affiliation(s)
- Benedek Molnár
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences, University of Szeged, 6726 Szeged, Hungary
| | - Péter Sere
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences, University of Szeged, 6726 Szeged, Hungary
| | - Sándor Bordé
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences, University of Szeged, 6726 Szeged, Hungary
| | - Krisztián Koós
- Synthetic and Systems Biology Unit, Biological Research Centre, 6726 Szeged, Hungary
| | - Nikolett Zsigri
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Péter Horváth
- Synthetic and Systems Biology Unit, Biological Research Centre, 6726 Szeged, Hungary
| | - Magor L Lőrincz
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences, University of Szeged, 6726 Szeged, Hungary
| |
Collapse
|
25
|
Beppi C, Ribeiro Violante I, Scott G, Sandrone S. EEG, MEG and neuromodulatory approaches to explore cognition: Current status and future directions. Brain Cogn 2021; 148:105677. [PMID: 33486194 DOI: 10.1016/j.bandc.2020.105677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 01/04/2023]
Abstract
Neural oscillations and their association with brain states and cognitive functions have been object of extensive investigation over the last decades. Several electroencephalography (EEG) and magnetoencephalography (MEG) analysis approaches have been explored and oscillatory properties have been identified, in parallel with the technical and computational advancement. This review provides an up-to-date account of how EEG/MEG oscillations have contributed to the understanding of cognition. Methodological challenges, recent developments and translational potential, along with future research avenues, are discussed.
Collapse
Affiliation(s)
- Carolina Beppi
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| | - Inês Ribeiro Violante
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom; School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.
| | - Gregory Scott
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| | - Stefano Sandrone
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
26
|
Resting-state electroencephalographic delta rhythms may reflect global cortical arousal in healthy old seniors and patients with Alzheimer's disease dementia. Int J Psychophysiol 2020; 158:259-270. [DOI: 10.1016/j.ijpsycho.2020.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022]
|
27
|
Lejko N, Larabi DI, Herrmann CS, Aleman A, Ćurčić-Blake B. Alpha Power and Functional Connectivity in Cognitive Decline: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2020; 78:1047-1088. [PMID: 33185607 PMCID: PMC7739973 DOI: 10.3233/jad-200962] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Mild cognitive impairment (MCI) is a stage between expected age-related cognitive decline and dementia. Dementias have been associated with changes in neural oscillations across the frequency spectrum, including the alpha range. Alpha is the most prominent rhythm in human EEG and is best detected during awake resting state (RS). Though several studies measured alpha power and synchronization in MCI, findings have not yet been integrated. Objective: To consolidate findings on power and synchronization of alpha oscillations across stages of cognitive decline. Methods: We included studies published until January 2020 that compared power or functional connectivity between 1) people with MCI and cognitively healthy older adults (OA) or people with a neurodegenerative dementia, and 2) people with progressive and stable MCI. Random-effects meta-analyses were performed when enough data was available. Results: Sixty-eight studies were included in the review. Global RS alpha power was lower in AD than in MCI (ES = –0.30; 95% CI = –0.51, –0.10; k = 6), and in MCI than in OA (ES = –1.49; 95% CI = –2.69, –0.29; k = 5). However, the latter meta-analysis should be interpreted cautiously due to high heterogeneity. The review showed lower RS alpha power in progressive than in stable MCI, and lower task-related alpha reactivity in MCI than in OA. People with MCI had both lower and higher functional connectivity than OA. Publications lacked consistency in MCI diagnosis and EEG measures. Conclusion: Research indicates that RS alpha power decreases with increasing impairment, and could—combined with measures from other frequency bands—become a biomarker of early cognitive decline.
Collapse
Affiliation(s)
- Nena Lejko
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, Groningen, The Netherlands
| | - Daouia I Larabi
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, Groningen, The Netherlands.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - André Aleman
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, Groningen, The Netherlands
| | - Branislava Ćurčić-Blake
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, Groningen, The Netherlands
| |
Collapse
|
28
|
Pascarelli MT, Del Percio C, De Pandis MF, Ferri R, Lizio R, Noce G, Lopez S, Rizzo M, Soricelli A, Nobili F, Arnaldi D, Famà F, Orzi F, Buttinelli C, Giubilei F, Salvetti M, Cipollini V, Franciotti R, Onofri M, Fuhr P, Gschwandtner U, Ransmayr G, Aarsland D, Parnetti L, Farotti L, Marizzoni M, D'Antonio F, De Lena C, Güntekin B, Hanoğlu L, Yener G, Emek-Savaş DD, Triggiani AI, Paul Taylor J, McKeith I, Stocchi F, Vacca L, Hampel H, Frisoni GB, Bonanni L, Babiloni C. Abnormalities of resting-state EEG in patients with prodromal and overt dementia with Lewy bodies: Relation to clinical symptoms. Clin Neurophysiol 2020; 131:2716-2731. [PMID: 33039748 DOI: 10.1016/j.clinph.2020.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 06/29/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Here we tested if cortical sources of resting state electroencephalographic (rsEEG) rhythms may differ in sub-groups of patients with prodromal and overt dementia with Lewy bodies (DLB) as a function of relevant clinical symptoms. METHODS We extracted clinical, demographic and rsEEG datasets in matched DLB patients (N = 60) and control Alzheimer's disease (AD, N = 60) and healthy elderly (Nold, N = 60) seniors from our international database. The eLORETA freeware was used to estimate cortical rsEEG sources. RESULTS As compared to the Nold group, the DLB and AD groups generally exhibited greater spatially distributed delta source activities (DLB > AD) and lower alpha source activities posteriorly (AD > DLB). As compared to the DLB "controls", the DLB patients with (1) rapid eye movement (REM) sleep behavior disorders showed lower central alpha source activities (p < 0.005); (2) greater cognitive deficits exhibited higher parietal and central theta source activities as well as higher central, parietal, and occipital alpha source activities (p < 0.01); (3) visual hallucinations pointed to greater parietal delta source activities (p < 0.005). CONCLUSIONS Relevant clinical features were associated with abnormalities in spatial and frequency features of rsEEG source activities in DLB patients. SIGNIFICANCE Those features may be used as neurophysiological surrogate endpoints of clinical symptoms in DLB patients in future cross-validation prospective studies.
Collapse
Affiliation(s)
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | | | | | | | | | - Susanna Lopez
- Department of Emergency and Organ Transplantation - Nephrology, Dialysis and Transplantation Unit, Aldo Moro University of Bari, Bari, Italy
| | - Marco Rizzo
- Oasi Research Institute - IRCCS, Troina, Italy
| | - Andrea Soricelli
- IRCCS SDN, Napoli, Italy; Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Flavio Nobili
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Dario Arnaldi
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Francesco Orzi
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Marco Salvetti
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy; Neuromed: IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| | - Virginia Cipollini
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Raffaella Franciotti
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Marco Onofri
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Peter Fuhr
- Universitätsspital Basel, Abteilung Neurophysiologie, Petersgraben 4, 4031 Basel, Switzerland
| | - Ute Gschwandtner
- Universitätsspital Basel, Abteilung Neurophysiologie, Petersgraben 4, 4031 Basel, Switzerland
| | - Gerhard Ransmayr
- Department of Neurology 2, Med Campus III, Faculty of Medicine, Johannes Kepler University, Kepler University Hospital, Krankenhausstr. 9, A-4020 Linz, Austria
| | - Dag Aarsland
- Department of Old Age Psychiatry, King's College University, London, UK
| | - Lucilla Parnetti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Italy
| | - Lucia Farotti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Carlo De Lena
- Department of Human Neurosciences, Sapienza University of Rome, Italy
| | - Bahar Güntekin
- Department of Biophysics, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey; Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Derya Durusu Emek-Savaş
- Department of Psychology and Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | | | | | - Ian McKeith
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Fabrizio Stocchi
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Laura Vacca
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Harald Hampel
- Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Brain and Spine Institute (ICM), François Lhermitte Building, France
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Laura Bonanni
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; San Raffaele of Cassino, Cassino, FR, Italy.
| |
Collapse
|
29
|
Abstract
Neural oscillations play an important role in the integration and segregation of brain regions that are important for brain functions, including pain. Disturbances in oscillatory activity are associated with several disease states, including chronic pain. Studies of neural oscillations related to pain have identified several functional bands, especially alpha, beta, and gamma bands, implicated in nociceptive processing. In this review, we introduce several properties of neural oscillations that are important to understand the role of brain oscillations in nociceptive processing. We also discuss the role of neural oscillations in the maintenance of efficient communication in the brain. Finally, we discuss the role of neural oscillations in healthy and chronic pain nociceptive processing. These data and concepts illustrate the key role of regional and interregional neural oscillations in nociceptive processing underlying acute and chronic pains.
Collapse
Affiliation(s)
- Junseok A. Kim
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karen D. Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Babiloni C, Pascarelli MT, Lizio R, Noce G, Lopez S, Rizzo M, Ferri R, Soricelli A, Nobili F, Arnaldi D, Famà F, Orzi F, Buttinelli C, Giubilei F, Salvetti M, Cipollini V, Bonanni L, Franciotti R, Onofrj M, Stirpe P, Fuhr P, Gschwandtner U, Ransmayr G, Aarsland D, Parnetti L, Farotti L, Marizzoni M, D'Antonio F, De Lena C, Güntekin B, Hanoğlu L, Yener G, Emek-Savaş DD, Triggiani AI, Taylor JP, McKeith I, Stocchi F, Vacca L, Hampel H, Frisoni GB, De Pandis MF, Del Percio C. Abnormal cortical neural synchronization mechanisms in quiet wakefulness are related to motor deficits, cognitive symptoms, and visual hallucinations in Parkinson's disease patients: an electroencephalographic study. Neurobiol Aging 2020; 91:88-111. [DOI: 10.1016/j.neurobiolaging.2020.02.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/31/2020] [Accepted: 02/28/2020] [Indexed: 11/25/2022]
|
31
|
Spontaneous Brain Oscillations and Perceptual Decision-Making. Trends Cogn Sci 2020; 24:639-653. [PMID: 32513573 DOI: 10.1016/j.tics.2020.05.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
Making rapid decisions on the basis of sensory information is essential to everyday behaviors. Why, then, are perceptual decisions so variable despite unchanging inputs? Spontaneous neural oscillations have emerged as a key predictor of trial-to-trial perceptual variability. New work casting these effects in the framework of models of perceptual decision-making has driven novel insight into how the amplitude of spontaneous oscillations impact decision-making. This synthesis reveals that the amplitude of ongoing low-frequency oscillations (<30 Hz), particularly in the alpha-band (8-13 Hz), bias sensory responses and change conscious perception but not, surprisingly, the underlying sensitivity of perception. A key model-based insight is that various decision thresholds do not adapt to alpha-related changes in sensory activity, demonstrating a seeming suboptimality of decision mechanisms in tracking endogenous changes in sensory responses.
Collapse
|
32
|
Babiloni C, Lopez S, Del Percio C, Noce G, Pascarelli MT, Lizio R, Teipel SJ, González-Escamilla G, Bakardjian H, George N, Cavedo E, Lista S, Chiesa PA, Vergallo A, Lemercier P, Spinelli G, Grothe MJ, Potier MC, Stocchi F, Ferri R, Habert MO, Fraga FJ, Dubois B, Hampel H. Resting-state posterior alpha rhythms are abnormal in subjective memory complaint seniors with preclinical Alzheimer's neuropathology and high education level: the INSIGHT-preAD study. Neurobiol Aging 2020; 90:43-59. [DOI: 10.1016/j.neurobiolaging.2020.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 01/05/2023]
|
33
|
Nardi Cesarini E, Babiloni C, Salvadori N, Farotti L, Del Percio C, Pascarelli MT, Noce G, Lizio R, Da Re F, Isella V, Tremolizzo L, Romoli M, DiFrancesco JC, Parnetti L, Costa C. Late-Onset Epilepsy With Unknown Etiology: A Pilot Study on Neuropsychological Profile, Cerebrospinal Fluid Biomarkers, and Quantitative EEG Characteristics. Front Neurol 2020; 11:199. [PMID: 32351438 PMCID: PMC7174783 DOI: 10.3389/fneur.2020.00199] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/05/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Despite the fact that epilepsy has been associated with cognitive decline, neuropsychological, neurobiological, and neurophysiological features in patients with late-onset epilepsy of unknown etiology (LOEU) are still unknown. This cross-sectional study aims to investigate the neuropsychological profile, cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD), and resting-state quantitative electroencephalographic (qEEG) cortical rhythms in LOEU patients with mild cognitive impairment (LOEU-MCI) and with normal cognition (LOEU-CN), compared to non-epileptic MCI (NE-MCI) and cognitively normal (CN) controls. Methods: Consecutive patients in two clinical Units diagnosed with LOEU-CN (19), LOEU-MCI (27), and NE-MCI (21) were enrolled, and compared to age and sex-matched cognitively normal subjects CN (11). Patients underwent standardized comprehensive neuropsychological evaluation and CSF core AD biomarkers assessment (i.e., CSF Aβ42, phospho-tau and total tau, classified through A/T/(N) system). Recordings of resting-state eyes-closed electroencephalographic (EEG) rhythms were collected and cortical source estimation of delta (<4 Hz) to gamma (>30 Hz) bands with exact Low Resolution Electromagnetic Tomography (eLORETA) was performed. Results: Most LOEU patients had an MCI status at seizure onset (59%). Patients with LOEU-MCI performed significantly worse on measures of global cognition, visuo-spatial abilities, and executive functions compared to NE-MCI patients (p < 0.05). Regarding MCI subtypes, multiple-domain MCI was 3-fold more frequent in LOEU-MCI than in NE-MCI patients (OR 3.14, 95%CI 0.93-10.58, p = 0.06). CSF Aβ42 levels were lower in the LOEU-MCI compared with the LOEU-CN group. Finally, parietal and occipital sources of alpha (8-12 Hz) rhythms were less active in the LOEU-MCI than in the NE-MCI and CN groups, while the opposite was true for frontal and temporal cortical delta sources. Discussion: MCI status was relatively frequent in LOEU patients, involved multiple cognitive domains, and might have been driven by amyloidosis according to CSF biomarkers. LOEU-MCI status was associated with abnormalities in cortical sources of EEG rhythms related to quiet vigilance. Future longitudinal studies should cross-validate our findings and test the predictive value of CSF and EEG variables.
Collapse
Affiliation(s)
- Elena Nardi Cesarini
- Neurology Clinic, University of Perugia-S. Maria della Misericordia Hospital, Perugia, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer," Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy.,Hospital San Raffaele Cassino, Cassino, Italy
| | - Nicola Salvadori
- Neurology Clinic, University of Perugia-S. Maria della Misericordia Hospital, Perugia, Italy
| | - Lucia Farotti
- Neurology Clinic, University of Perugia-S. Maria della Misericordia Hospital, Perugia, Italy
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "V. Erspamer," Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | | - Fulvio Da Re
- Department of Neurology, Milan Center for Neuroscience, School of Medicine and Surgery, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Valeria Isella
- Department of Neurology, Milan Center for Neuroscience, School of Medicine and Surgery, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Lucio Tremolizzo
- Department of Neurology, Milan Center for Neuroscience, School of Medicine and Surgery, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Michele Romoli
- Neurology Clinic, University of Perugia-S. Maria della Misericordia Hospital, Perugia, Italy.,Neurology Unit, Rimini "Infermi" Hospital-AUSL Romagna, Rimini, Italy
| | - Jacopo C DiFrancesco
- Department of Neurology, Milan Center for Neuroscience, School of Medicine and Surgery, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Lucilla Parnetti
- Neurology Clinic, University of Perugia-S. Maria della Misericordia Hospital, Perugia, Italy
| | - Cinzia Costa
- Neurology Clinic, University of Perugia-S. Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
34
|
Probing dynamical cortical gating of attention with concurrent TMS-EEG. Sci Rep 2020; 10:4959. [PMID: 32188883 PMCID: PMC7080792 DOI: 10.1038/s41598-020-61590-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/25/2020] [Indexed: 11/08/2022] Open
Abstract
Attention facilitates the gating of information from the sending brain area to the receiving areas, with this being achieved by dynamical changes in effective connectivity, which refers to the directional influences between cortical areas. To probe the effective connectivity and cortical excitability modulated by covertly shifted attention, transcranial magnetic stimulation (TMS) was used to directly perturb the right retinotopic visual cortex with respect to attended and unattended locations, and the impact of this was tracked from the stimulated area to other areas by concurrent use of electroencephalography (EEG). TMS to the contralateral visual hemisphere led to a stronger evoked potential than stimulation to the ipsilateral hemisphere. Moreover, stronger beta- and gamma-band effective connectivities assessed as time-delayed phase synchronizations between stimulated areas and other areas were observed when TMS was delivered to the contralateral hemisphere. These effects were more enhanced when they preceded more prominent alpha lateralization, which is known to be associated with attentional gating. Our results indicate that attention-regulated cortical feedforward effective connectivity can be probed by TMS-EEG with direct cortical stimulation, thereby bypassing thalamic gating. These results suggest that cortical gating of the feedforward input is achieved by regulating the effective connectivity in the phase dynamics between cortical areas.
Collapse
|
35
|
Biophysical Basis of Alpha Rhythm Disruption in Alzheimer's Disease. eNeuro 2020; 7:ENEURO.0293-19.2020. [PMID: 32165411 PMCID: PMC7218006 DOI: 10.1523/eneuro.0293-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/22/2020] [Accepted: 02/02/2020] [Indexed: 11/21/2022] Open
Abstract
Occipital alpha is a prominent rhythm (∼10 Hz) detected in electroencephalography (EEG) during wakeful relaxation with closed eyes. The rhythm is generated by a subclass of thalamic pacemaker cells that burst at the alpha frequency, orchestrated by the interplay of hyperpolarization-activated cyclic nucleotide-gated channels (HCN) and calcium channels in response to elevated levels of ambient acetylcholine (ACh). These oscillations are known to have a lower peak frequency and coherence in the early stages of Alzheimer's disease (AD). Interestingly, calcium signaling, HCN channel expression and ACh signaling, crucial for orchestrating the alpha rhythm, are also known to be aberrational in AD. In a biophysically detailed network model of the thalamic circuit, we investigate the changes in molecular signaling and the causal relationships between them that lead to a disrupted thalamic alpha in AD. Our simulations show that lowered HCN expression leads to a slower thalamic alpha, which can be rescued by increasing ACh levels, a common therapeutic target of AD drugs. However, this rescue is possible only over a limited range of reduced HCN expression. The model predicts that lowered HCN expression can modify the network activity in the thalamic circuit leading to increased GABA release in the thalamus and disrupt the calcium homeostasis. The changes in calcium signaling make the network more susceptible to noise, causing a loss in rhythmic activity. Based on our results, we propose that reduced frequency and coherence of the occipital alpha rhythm seen in AD may result from downregulated HCN expression, rather than modified cholinergic signaling.
Collapse
|
36
|
Yıldırım E, Güntekin B, Hanoğlu L, Algun C. EEG alpha activity increased in response to transcutaneous electrical nervous stimulation in young healthy subjects but not in the healthy elderly. PeerJ 2020; 8:e8330. [PMID: 31938578 PMCID: PMC6953335 DOI: 10.7717/peerj.8330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022] Open
Abstract
Transcutaneous Electrical Nerve Stimulation (TENS) is used not only in the treatment of pain but also in the examination of sensory functions. With aging, there is decreased sensitivity to somatosensory stimuli. It is essential to examine the effect of TENS application on the sensory functions in the brain by recording the spontaneous electroencephalogram (EEG) activity and the effect of aging on the sensory functions of the brain during the application. The present study aimed to investigate the effect of the application of TENS on the brain’s electrical activity and the effect of aging on the sensory functions of the brain during application of TENS. A total of 15 young (24.2 ± 3.59) and 14 elderly (65.64 ± 4.92) subjects were included in the study. Spontaneous EEG was recorded from 32 channels during TENS application. Power spectrum analysis was performed by Fast Fourier Transform in the alpha frequency band (8–13 Hz) for all subjects. Repeated measures of analysis of variance was used for statistical analysis (p < 0.05). Young subjects had increased alpha power during the TENS application and had gradually increased alpha power by increasing the current intensity of TENS (p = 0.035). Young subjects had higher alpha power than elderly subjects in the occipital and parietal locations (p = 0.073). We can, therefore, conclude that TENS indicated increased alpha activity in young subjects. Young subjects had higher alpha activity than elderly subjects in the occipital and somatosensory areas. To our knowledge, the present study is one of the first studies examining the effect of TENS on spontaneous EEG in healthy subjects. Based on the results of the present study, TENS may be used as an objective method for the examination of sensory impairments, and in the evaluative efficiency of the treatment of pain conditions.
Collapse
Affiliation(s)
- Ebru Yıldırım
- Department of Physical Therapy and Rehabilitation/Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.,Department of Biophysics/School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,REMER, Clinical Electrophysiology, Neuroimaging, and Neuromodulation Lab., Istanbul Medipol University, Istanbul, Turkey
| | - Bahar Güntekin
- Department of Biophysics/School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,REMER, Clinical Electrophysiology, Neuroimaging, and Neuromodulation Lab., Istanbul Medipol University, Istanbul, Turkey
| | - Lütfü Hanoğlu
- REMER, Clinical Electrophysiology, Neuroimaging, and Neuromodulation Lab., Istanbul Medipol University, Istanbul, Turkey.,Department of Neurology/School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Candan Algun
- Department of Physical Therapy and Rehabilitation/School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.,Department of Orthesis-Prosthesis/School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
37
|
Muthuraman M, Moliadze V, Boecher L, Siemann J, Freitag CM, Groppa S, Siniatchkin M. Multimodal alterations of directed connectivity profiles in patients with attention-deficit/hyperactivity disorders. Sci Rep 2019; 9:20028. [PMID: 31882672 PMCID: PMC6934806 DOI: 10.1038/s41598-019-56398-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 11/22/2019] [Indexed: 12/23/2022] Open
Abstract
Functional and effective connectivity measures for tracking brain region interactions that have been investigated using both electroencephalography (EEG) and magnetoencephalography (MEG) bringing up new insights into clinical research. However, the differences between these connectivity methods, especially at the source level, have not yet been systematically studied. The dynamic characterization of coherent sources and temporal partial directed coherence, as measures of functional and effective connectivity, were applied to multimodal resting EEG and MEG data obtained from 11 young patients (mean age 13.2 ± 1.5 years) with attention-deficit/hyperactivity disorder (ADHD) and age-matched healthy subjects. Additionally, machine-learning algorithms were applied to the extracted connectivity features to identify biomarkers differentiating the two groups. An altered thalamo-cortical connectivity profile was attested in patients with ADHD who showed solely information outflow from cortical regions in comparison to healthy controls who exhibited bidirectional interregional connectivity in alpha, beta, and gamma frequency bands. We achieved an accuracy of 98% by combining features from all five studied frequency bands. Our findings suggest that both types of connectivity as extracted from EEG or MEG are sensitive methods to investigate neuronal network features in neuropsychiatric disorders. The connectivity features investigated here can be further tested as biomarkers of ADHD.
Collapse
Affiliation(s)
- Muthuraman Muthuraman
- Department of Neurology, Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt am Main, Goethe University, Frankfurt am Main, Germany
| | - Lena Boecher
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt am Main, Goethe University, Frankfurt am Main, Germany
| | - Julia Siemann
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy Bethel, Ev. Hospital Bielefeld, Bielefeld, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt am Main, Goethe University, Frankfurt am Main, Germany
| | - Sergiu Groppa
- Department of Neurology, Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael Siniatchkin
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt am Main, Goethe University, Frankfurt am Main, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy Bethel, Ev. Hospital Bielefeld, Bielefeld, Germany
| |
Collapse
|
38
|
Sritharan SY, Contreras-Hernández E, Richardson AG, Lucas TH. Primate somatosensory cortical neurons are entrained to both spontaneous and peripherally evoked spindle oscillations. J Neurophysiol 2019; 123:300-307. [PMID: 31800329 DOI: 10.1152/jn.00471.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recurrent thalamocortical circuits produce a number of rhythms critical to brain function. In slow-wave sleep, spindles (7-16 Hz) are a prominent spontaneous oscillation generated by thalamic circuits and triggered by cortical slow waves. In wakefulness and under anesthesia, brief peripheral sensory stimuli can evoke 10-Hz reverberations due potentially to similar thalamic mechanisms. Functionally, sleep spindles and peripherally evoked spindles may play a role in memory consolidation and perception, respectively. Yet, rarely have the circuits involved in these two rhythms been compared in the same animals and never in primates. Here, we investigated the entrainment of primary somatosensory cortex (S1) neurons to both rhythms in ketamine-sedated macaques. First, we compared spontaneous spindles in sedation and natural sleep to validate the model. Then, we quantified entrainment with spike-field coherence and phase-locking statistics. We found that S1 neurons entrained to spontaneous sleep spindles were also entrained to the evoked spindles, although entrainment strength and phase systematically differed. Our results indicate that the spindle oscillations triggered by top-down spontaneous cortical activity and bottom-up peripheral input share a common cortical substrate.NEW & NOTEWORTHY Brief sensory stimuli evoke 10-Hz oscillations in thalamocortical neuronal activity and in perceptual thresholds. The mechanisms underlying this evoked rhythm are not well understood but are thought to be similar to those generating sleep spindles. We directly compared the entrainment of cortical neurons to both spontaneous spindles and peripherally evoked oscillations in sedated monkeys. We found that the entrainment strengths to each rhythm were positively correlated, although with differing entrainment phases, implying involvement of similar networks.
Collapse
Affiliation(s)
- Srihari Y Sritharan
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Enrique Contreras-Hernández
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew G Richardson
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Timothy H Lucas
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Machine learning: assessing neurovascular signals in the prefrontal cortex with non-invasive bimodal electro-optical neuroimaging in opiate addiction. Sci Rep 2019; 9:18262. [PMID: 31797878 PMCID: PMC6892956 DOI: 10.1038/s41598-019-54316-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/09/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic and recurrent opiate use injuries brain tissue and cause serious pathophysiological changes in hemodynamic and subsequent inflammatory responses. Prefrontal cortex (PFC) has been implicated in drug addiction. However, the mechanism underlying systems-level neuroadaptations in PFC during abstinence has not been fully characterized. The objective of our study was to determine what neural oscillatory activity contributes to the chronic effect of opiate exposure and whether the activity could be coupled to neurovascular information in the PFC. We employed resting-state functional connectivity to explore alterations in 8 patients with heroin dependency who stayed abstinent (>3 months; HD) compared with 11 control subjects. A non-invasive neuroimaging strategy was applied to combine electrophysiological signals through electroencephalography (EEG) with hemodynamic signals through functional near-infrared spectroscopy (fNIRS). The electrophysiological signals indicate neural synchrony and the oscillatory activity, and the hemodynamic signals indicate blood oxygenation in small vessels in the PFC. A supervised machine learning method was used to obtain associations between EEG and fNIRS modalities to improve precision and localization. HD patients demonstrated desynchronized lower alpha rhythms and decreased connectivity in PFC networks. Asymmetric excitability and cerebrovascular injury were also observed. This pilot study suggests that cerebrovascular injury in PFC may result from chronic opiate intake.
Collapse
|
40
|
Furman AJ, Thapa T, Summers SJ, Cavaleri R, Fogarty JS, Steiner GZ, Schabrun SM, Seminowicz DA. Cerebral peak alpha frequency reflects average pain severity in a human model of sustained, musculoskeletal pain. J Neurophysiol 2019; 122:1784-1793. [PMID: 31389754 PMCID: PMC6843105 DOI: 10.1152/jn.00279.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 11/22/2022] Open
Abstract
Heightened pain sensitivity, the amount of pain experienced in response to a noxious event, is a known risk factor for development of chronic pain. We have previously reported that pain-free, sensorimotor peak alpha frequency (PAF) is a reliable biomarker of pain sensitivity for thermal, prolonged pains lasting tens of minutes. To test whether PAF can provide information about pain sensitivity occurring over clinically relevant timescales (i.e., weeks), EEG was recorded before and while participants experienced a long-lasting pain model, repeated intramuscular injection of nerve growth factor (NGF), that produces progressively developing muscle pain for up to 21 days. We demonstrate that pain-free, sensorimotor PAF is negatively correlated with NGF pain sensitivity; increasingly slower PAF is associated with increasingly greater pain sensitivity. Furthermore, PAF remained stable following NGF injection, indicating that the presence of NGF pain for multiple weeks is not sufficient to induce the PAF slowing reported in chronic pain. In total, our results demonstrate that slower pain-free, sensorimotor PAF is associated with heightened sensitivity to a long-lasting musculoskeletal pain and also suggest that the apparent slowing of PAF in chronic pain may reflect predisease pain sensitivity.NEW & NOTEWORTHY Pain sensitivity, the intensity of pain experienced after injury, has been identified as an important risk factor in the development of chronic pain. Biomarkers of pain sensitivity have the potential to ease chronic pain burdens by preventing disease emergence. In the current study, we demonstrate that the speed of pain-free, sensorimotor peak alpha frequency recorded during resting-state EEG predicts pain sensitivity to a clinically-relevant, human model of prolonged pain that persists for weeks.
Collapse
Affiliation(s)
- Andrew J Furman
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, Maryland
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tribikram Thapa
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Simon J Summers
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Rocco Cavaleri
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Jack S Fogarty
- NICM Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
| | - Genevieve Z Steiner
- NICM Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
- Translational Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
| | - Siobhan M Schabrun
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
| | - David A Seminowicz
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, Maryland
| |
Collapse
|
41
|
Del Percio C, Derambure P, Noce G, Lizio R, Bartrés-Faz D, Blin O, Payoux P, Deplanque D, Méligne D, Chauveau N, Bourriez JL, Casse-Perrot C, Lanteaume L, Thalamas C, Dukart J, Ferri R, Pascarelli MT, Richardson JC, Bordet R, Babiloni C. Sleep deprivation and Modafinil affect cortical sources of resting state electroencephalographic rhythms in healthy young adults. Clin Neurophysiol 2019; 130:1488-1498. [PMID: 31295717 DOI: 10.1016/j.clinph.2019.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/06/2019] [Accepted: 06/03/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE It has been reported that sleep deprivation affects the neurophysiological mechanisms underpinning the vigilance. Here, we tested the following hypotheses in the PharmaCog project (www.pharmacog.org): (i) sleep deprivation may alter posterior cortical delta and alpha sources of resting state eyes-closed electroencephalographic (rsEEG) rhythms in healthy young adults; (ii) after the sleep deprivation, a vigilance enhancer may recover those rsEEG source markers. METHODS rsEEG data were recorded in 36 healthy young adults before (Pre-sleep deprivation) and after (Post-sleep deprivation) one night of sleep deprivation. In the Post-sleep deprivation, these data were collected after a single dose of PLACEBO or MODAFINIL. rsEEG cortical sources were estimated by eLORETA freeware. RESULTS In the PLACEBO condition, the sleep deprivation induced an increase and a decrease in posterior delta (2-4 Hz) and alpha (8-13 Hz) source activities, respectively. In the MODAFINIL condition, the vigilance enhancer partially recovered those source activities. CONCLUSIONS The present results suggest that posterior delta and alpha source activities may be both related to the regulation of human brain arousal and vigilance in quiet wakefulness. SIGNIFICANCE Future research in healthy young adults may use this methodology to preselect new symptomatic drug candidates designed to normalize brain arousal and vigilance in seniors with dementia.
Collapse
Affiliation(s)
- Claudio Del Percio
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy
| | - Philippe Derambure
- Univ Lille, Inserm, CHU Lille, UMR_S 1171 - Degenerative and Vascular Cognitive Disorders, F59000 Lille, France
| | | | | | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Healthy Sciences, University of Barcelona; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Olivier Blin
- Aix Marseille University, UMR-CNRS 7289, Service de Pharmacologie Clinique, AP-HM, Marseille, France
| | - Pierre Payoux
- INSERM, Imagerie Cérébrale et Handicaps Neurologiques, Toulouse, France
| | - Dominique Deplanque
- Univ Lille, Inserm, CHU Lille, CIC1403 & UMR_S 1171 - Degenerative and Vascular Cognitive Disorders, F59000 Lille, France
| | - Déborah Méligne
- INSERM UMR 825 Brain Imaging and Neurological Dysfunctions, Toulouse, France
| | - Nicolas Chauveau
- INSERM UMR 825 Brain Imaging and Neurological Dysfunctions, Toulouse, France
| | - Jean Louis Bourriez
- Univ Lille, Inserm, CHU Lille, UMR_S 1171 - Degenerative and Vascular Cognitive Disorders, F59000 Lille, France
| | - Catherine Casse-Perrot
- Aix Marseille University, UMR-CNRS 7289, Service de Pharmacologie Clinique, AP-HM, Marseille, France
| | - Laura Lanteaume
- Service de Neurologie et Neuropsychologie, APHM Hôpital Timone Adultes, Marseille, France
| | - Claire Thalamas
- Department of Medical Pharmacology, INSERM CIC 1436, Toulouse University Medical Center, Toulouse, France
| | - Juergen Dukart
- F. Hoffmann-La Roche, Pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | | | | | | | - Regis Bordet
- Univ Lille, Inserm, CHU Lille, UMR_S 1171 - Degenerative and Vascular Cognitive Disorders, F59000 Lille, France
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, FR, Italy.
| | | |
Collapse
|
42
|
Del Percio C, Franzetti M, De Matti AJ, Noce G, Lizio R, Lopez S, Soricelli A, Ferri R, Pascarelli MT, Rizzo M, Triggiani AI, Stocchi F, Limatola C, Babiloni C. Football Players Do Not Show "Neural Efficiency" in Cortical Activity Related to Visuospatial Information Processing During Football Scenes: An EEG Mapping Study. Front Psychol 2019; 10:890. [PMID: 31080423 PMCID: PMC6497783 DOI: 10.3389/fpsyg.2019.00890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/03/2019] [Indexed: 01/28/2023] Open
Abstract
This study tested the hypothesis of cortical neural efficiency (i.e., reduced brain activation in experts) in the visuospatial information processing related to football (soccer) scenes in football players. Electroencephalographic data were recorded from 56 scalp electrodes in 13 football players and eight matched non-players during the observation of 70 videos with football actions lasting 2.5 s each. During these videos, the central fixation target changed color from red to blue or vice versa. The videos were watched two times. One time, the subjects were asked to estimate the distance between players during each action (FOOTBALL condition, visuospatial). Another time, they had to estimate if the fixation target was colored for a longer time in red or blue color (CONTROL condition, non-visuospatial). The order of the two conditions was pseudo-randomized across the subjects. Cortical activity was estimated as the percent reduction in power of scalp alpha rhythms (about 8-12 Hz) during the videos compared with a pre-video baseline (event-related desynchronization, ERD). In the FOOTBALL condition, a prominent and bilateral parietal alpha ERD (i.e., cortical activation) was greater in the football players than non-players (p < 0.05) in contrast with the neural efficiency hypothesis. In the CONTROL condition, no significant alpha ERD difference was observed. No difference in behavioral response time and accuracy was found between the two groups in any condition. In conclusion, a prominent parietal cortical activity related to visuospatial processes during football scenes was greater in the football players over controls in contrast with the neural efficiency hypothesis.
Collapse
Affiliation(s)
- Claudio Del Percio
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Mauro Franzetti
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Adelaide Josy De Matti
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | | | | | - Susanna Lopez
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Andrea Soricelli
- IRCCS SDN, Naples, Italy
- Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | | | - Marco Rizzo
- Oasi Research Institute – IRCCS, Troina, Italy
| | | | | | - Cristina Limatola
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele Cassino, Cassino, Italy
| |
Collapse
|
43
|
Babiloni C, Del Percio C, Lizio R, Noce G, Lopez S, Soricelli A, Ferri R, Pascarelli MT, Catania V, Nobili F, Arnaldi D, Famà F, Aarsland D, Orzi F, Buttinelli C, Giubilei F, Onofrj M, Stocchi F, Vacca L, Stirpe P, Fuhr P, Gschwandtner U, Ransmayr G, Garn H, Fraioli L, Pievani M, Frisoni GB, D'Antonio F, De Lena C, Güntekin B, Hanoğlu L, Başar E, Yener G, Emek-Savaş DD, Triggiani AI, Franciotti R, Taylor JP, De Pandis MF, Bonanni L. Abnormalities of Resting State Cortical EEG Rhythms in Subjects with Mild Cognitive Impairment Due to Alzheimer's and Lewy Body Diseases. J Alzheimers Dis 2019; 62:247-268. [PMID: 29439335 DOI: 10.3233/jad-170703] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present study tested the hypothesis that cortical sources of resting state eyes-closed electroencephalographic (rsEEG) rhythms reveal different abnormalities in cortical neural synchronization in groups of patients with mild cognitive impairment due to Alzheimer's disease (ADMCI) and dementia with Lewy bodies (DLBMCI) as compared to cognitively normal elderly (Nold) subjects. Clinical and rsEEG data in 30 ADMCI, 23 DLBMCI, and 30 Nold subjects were available in an international archive. Age, gender, and education were carefully matched in the three groups. The Mini-Mental State Evaluation (MMSE) score was matched between the ADMCI and DLBMCI groups. Individual alpha frequency peak (IAF) was used to determine the delta, theta, alpha1, alpha2, and alpha3 frequency band ranges. Fixed beta1, beta2, and gamma bands were also considered. eLORETA estimated the rsEEG cortical sources. Receiver operating characteristic curve (ROCC) classified these sources across individuals. Compared to Nold, IAF showed marked slowing in DLBMCI and moderate in ADMCI. Furthermore, the posterior alpha 2 and alpha 3 source activities were more abnormal in the ADMCI than the DLBMCI group, while widespread delta source activities were more abnormal in the DLBMCI than the ADMCI group. The posterior delta and alpha sources correlated with the MMSE score and correctly classified the Nold and MCI individuals (area under the ROCC >0.85). In conclusion, the ADMCI and DLBMCI patients showed different features of cortical neural synchronization at delta and alpha frequencies underpinning brain arousal and vigilance in the quiet wakefulness. Future prospective cross-validation studies will have to test the clinical validity of these rsEEG markers.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy.,Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | | | - Roberta Lizio
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy.,Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Giuseppe Noce
- Department of Integrated Imaging, IRCCS SDN, Naples, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy
| | - Andrea Soricelli
- Department of Integrated Imaging, IRCCS SDN, Naples, Italy.,Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Raffaele Ferri
- Department of Neurology, IRCCS Oasi Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy
| | - Maria Teresa Pascarelli
- Department of Neurology, IRCCS Oasi Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy
| | - Valentina Catania
- Department of Neurology, IRCCS Oasi Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy
| | - Flavio Nobili
- Department of Neuroscience (DiNOGMI), Clinical Neurology, University of Genoa and IRCCS AOU S Martino-IST, Genoa, Italy
| | - Dario Arnaldi
- Department of Neuroscience (DiNOGMI), Clinical Neurology, University of Genoa and IRCCS AOU S Martino-IST, Genoa, Italy
| | - Francesco Famà
- Department of Neuroscience (DiNOGMI), Clinical Neurology, University of Genoa and IRCCS AOU S Martino-IST, Genoa, Italy
| | - Dag Aarsland
- Department of Old Age Psychiatry, King's College University, London, UK
| | - Francesco Orzi
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Marco Onofrj
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Fabrizio Stocchi
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Laura Vacca
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Paola Stirpe
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Peter Fuhr
- Universitätsspital Basel, Abteilung Neurophysiologie, Basel, Switzerland
| | - Ute Gschwandtner
- Universitätsspital Basel, Abteilung Neurophysiologie, Basel, Switzerland
| | - Gerhard Ransmayr
- Department of Neurology 2, Med Campus III, Kepler University Hospital, Medical Faculty of the Johannes Kepler University, Linz, Austria
| | - Heinrich Garn
- AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | | | - Michela Pievani
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Fabrizia D'Antonio
- Department of Neurology and Psychiatry, Sapienza, University of Rome, Italy
| | - Carlo De Lena
- Department of Neurology and Psychiatry, Sapienza, University of Rome, Italy
| | - Bahar Güntekin
- Department of Biophysics, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, University of Istanbul-Medipol, Istanbul, Turkey
| | - Erol Başar
- IBG, Departments of Neurology and Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Görsev Yener
- IBG, Departments of Neurology and Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Derya Durusu Emek-Savaş
- Department of Psychology and Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | | | - Raffaella Franciotti
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | | | - Laura Bonanni
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
44
|
Gottshall JL, Adams ZM, Forgacs PB, Schiff ND. Daytime Central Thalamic Deep Brain Stimulation Modulates Sleep Dynamics in the Severely Injured Brain: Mechanistic Insights and a Novel Framework for Alpha-Delta Sleep Generation. Front Neurol 2019; 10:20. [PMID: 30778326 PMCID: PMC6369150 DOI: 10.3389/fneur.2019.00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022] Open
Abstract
Loss of organized sleep electrophysiology is a characteristic finding following severe brain injury. The return of structured elements of sleep architecture has been associated with positive prognosis across injury etiologies, suggesting a role for sleep dynamics as biomarkers of wakeful neuronal circuit function. In a continuing study of one minimally conscious state patient studied over the course of ~8½ years, we sought to investigate whether changes in daytime brain activation induced by central thalamic deep brain stimulation (CT-DBS) influenced sleep electrophysiology. In this patient subject, we previously reported significant improvements in sleep electrophysiology during 5½ years of CT-DBS treatment, including increased sleep spindle frequency and SWS delta power. We now present novel findings that many of these improvements in sleep electrophysiology regress following CT-DBS discontinuation; these regressions in sleep features correlate with a significant decrease in behavioral responsiveness. We also observe the re-emergence of alpha-delta sleep, which had been previously suppressed by daytime CT-DBS in this patient subject. Importantly, CT-DBS was only active during the daytime and has been proposed to mediate recovery of consciousness by driving synaptic activity across frontostriatal systems through the enhancement of thalamocortical output. Accordingly, the improvement of sleep dynamics during daytime CT-DBS and their subsequent regression following CT-DBS discontinuation implicates wakeful synaptic activity as a robust modulator of sleep electrophysiology. We interpret these findings in the context of the “synaptic homeostasis hypothesis,” whereby we propose that daytime upregulation of thalamocortical output in the severely injured brain may facilitate organized frontocortical circuit activation and yield net synaptic potentiation during wakefulness, providing a homeostatic drive that reconstitutes sleep dynamics over time. Furthermore, we consider common large-scale network dynamics across several neuropsychiatric disorders in which alpha-delta sleep has been documented, allowing us to formulate a novel mechanistic framework for alpha-delta sleep generation. We conclude that the bi-directional modulation of sleep electrophysiology by daytime thalamocortical activity in the severely injured brain: (1) emphasizes the cyclical carry-over effects of state-dependent circuit activation on large-scale brain dynamics, and (2) further implicates sleep electrophysiology as a sensitive indicator of wakeful brain activation and covert functional recovery in the severely injured brain.
Collapse
Affiliation(s)
- Jackie L Gottshall
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Zoe M Adams
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Peter B Forgacs
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States.,Department of Neurology, Weill Cornell Medicine, New York, NY, United States.,Rockefeller University Hospital, New York, NY, United States
| | - Nicholas D Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States.,Department of Neurology, Weill Cornell Medicine, New York, NY, United States.,Rockefeller University Hospital, New York, NY, United States
| |
Collapse
|
45
|
Sin D, Kim MK, Kim J, Kim SP. Differences in the synchronization of alpha oscillations between anterior and posterior brain regions. Neurosci Lett 2019; 690:171-177. [PMID: 30339918 DOI: 10.1016/j.neulet.2018.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 11/18/2022]
Abstract
Alpha oscillations generated in the human brain have long been investigated in neuroscience. Synchronized oscillatory activities of numerous neural oscillators are thought to underlie alpha oscillations. The amplitude of alpha oscillations reflects the degree of synchronization, which is often modulated through alpha activation and inactivation, for example, in event-related synchronization and desynchronization. The range of synchronization can be estimated using the similarity between neighboring alpha oscillations. Yet, little is known about how the synchronization range of alpha oscillations varies with alpha activation/inactivation over different brain regions. To examine this, we recorded human electroencephalography (EEG) during different tasks used to modulate alpha oscillations. We found that the synchronization range of posterior alpha oscillations was reduced in the activation phase compared to that in the inactivation phase. In contrast, the synchronization range of anterior alpha oscillations was enhanced in the activation phase compared to that in the inactivation phase. The results imply that the mechanisms generating anterior and posterior alpha oscillations may be different.
Collapse
Affiliation(s)
- Duho Sin
- Department of Human Factors Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Min-Ki Kim
- Department of Human Factors Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jinsoo Kim
- Department of Human Factors Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sung-Phil Kim
- Department of Human Factors Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
| |
Collapse
|
46
|
Walker CP, Pessoa ALS, Figueiredo T, Rafferty M, Melo US, Nóbrega PR, Murphy N, Kok F, Zatz M, Santos S, Cho RY. Loss-of-function mutation in inositol monophosphatase 1 (IMPA1) results in abnormal synchrony in resting-state EEG. Orphanet J Rare Dis 2019; 14:3. [PMID: 30616629 PMCID: PMC6322245 DOI: 10.1186/s13023-018-0977-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
Background Dysregulation of the inositol cycle is implicated in a wide variety of human diseases, including developmental defects and neurological diseases. A homozygous frameshift mutation in IMPA1, coding for the enzyme inositol monophosphatase 1 (IMPase), has recently been associated with severe intellectual disability (ID) in a geographically isolated consanguineous family in Northeastern Brazil (Figueredo et al., 2016). However, the neurophysiologic mechanisms that mediate the IMPA1 mutation and associated ID phenotype have not been characterized. To this end, resting EEG (eyes-open and eyes-closed) was collected from the Figueredo et al. pedigree. Quantitative EEG measures, including mean power, dominant frequency and dominant frequency variability, were investigated for allelic associations using multivariate family-based association test using generalized estimating equations. Results We found that the IMPA1 mutation was associated with relative decreases in frontal theta band power as well as altered alpha-band variability with no regional specificity during the eyes-open condition. For the eyes-closed condition, there was altered dominant theta frequency variability in the central and parietal regions. Conclusions These findings represent the first human in vivo phenotypic assessment of brain function disturbances associated with a loss-of-function IMPA1 mutation, and thus an important first step towards an understanding the pathophysiologic mechanisms of intellectual disability associated with the mutation that affects this critical metabolic pathway.
Collapse
Affiliation(s)
- Christopher P Walker
- Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Andre L S Pessoa
- Hospital Infantil Albert Sabin, Fortaleza, Brazil.,Universidade Estadual do Ceará-UECE, Fortaleza, Brazil
| | - Thalita Figueiredo
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo, SP, 05508-090, Brazil
| | - Megan Rafferty
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Uirá S Melo
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo, SP, 05508-090, Brazil
| | | | - Nicholas Murphy
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Fernando Kok
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo, SP, 05508-090, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo, SP, 05508-090, Brazil
| | - Silvana Santos
- Department of Biology, State University of Paraíba (UEPB), Campina Grande, PB, Brazil
| | - Raymond Y Cho
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
47
|
Li G, Henriquez CS, Fröhlich F. Rhythmic modulation of thalamic oscillations depends on intrinsic cellular dynamics. J Neural Eng 2018; 16:016013. [PMID: 30524080 DOI: 10.1088/1741-2552/aaeb03] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Rhythmic brain stimulation has emerged as a powerful tool to modulate cognition and to target pathological oscillations related to neurological and psychiatric disorders. However, we lack a systematic understanding of how periodic stimulation interacts with endogenous neural activity as a function of the brain state and target. APPROACH To address this critical issue, we applied periodic stimulation to a unified biophysical thalamic network model that generates multiple distinct oscillations, and examined thoroughly the impact of rhythmic stimulation on different oscillatory states. MAIN RESULTS We found that rhythmic perturbation induces four basic response mechanisms: entrainment, acceleration, resonance and suppression. Importantly, the appearance and expression of these mechanisms depend highly on the intrinsic cellular dynamics in each state. Specifically, the low-threshold bursting of thalamocortical cells (TCs) in delta (δ) oscillation renders the network relatively insensitive to entrainment; the high-threshold bursting of TCs in alpha (α) oscillation leads to widespread oscillation suppression while the tonic spiking of TC cells in gamma (γ) oscillation results in prominent entrainment and resonance. In addition, we observed entrainment discontinuity during α oscillation that is mediated by firing pattern switching of high-threshold bursting TC cells. Furthermore, we demonstrate that direct excitatory stimulation of the lateral geniculate nucleus (LGN) entrains thalamic oscillations via an asymmetric Arnold tongue that favors higher frequency entrainment and resonance, while stimulation of the inhibitory circuit, the reticular nucleus, induces much weaker and more symmetric entrainment and resonance. These results support the notion that rhythmic stimulation engages brain oscillations in a state- and target-dependent manner. SIGNIFICANCE Overall, our study provides, for the first time, insights into how the biophysics of thalamic oscillations guide the emergence of complex, state-dependent mechanisms of target engagement, which can be leveraged for the future rational design of novel therapeutic stimulation modalities.
Collapse
Affiliation(s)
- Guoshi Li
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | | | | |
Collapse
|
48
|
Lizio R, Babiloni C, Del Percio C, Losurdo A, Vernò L, De Tommaso M, Montemurno A, Dalfino G, Cirillo P, Soricelli A, Ferri R, Noce G, Pascarelli MT, Catania V, Nobili F, Famá F, Orzi F, Giubilei F, Buttinelli C, Triggiani AI, Frisoni GB, Scisci AM, Mastrofilippo N, Procaccini DA, Gesualdo L. Different Abnormalities of Cortical Neural Synchronization Mechanisms in Patients with Mild Cognitive Impairment due to Alzheimer’s and Chronic Kidney Diseases: An EEG Study. J Alzheimers Dis 2018; 65:897-915. [DOI: 10.3233/jad-180245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Roberta Lizio
- Department of Physiology and Pharmacology “Vittorio Erspamer”, University of Rome “La Sapienza”, Rome, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, University of Rome “La Sapienza”, Rome, Italy
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | | | - Antonia Losurdo
- Department of Emergency and Organ Transplantation - Nephrology, Dialysis and Transplantation Unit, Aldo Moro University of Bari, Bari, Italy
| | - Lucia Vernò
- Department of Emergency and Organ Transplantation - Nephrology, Dialysis and Transplantation Unit, Aldo Moro University of Bari, Bari, Italy
| | - Marina De Tommaso
- Department of Basic Medical Science, Neuroscience and the Sensory System (SMBNOS), Neurophysiopathology of Pain Unit, Aldo Moro University of Bari, Bari, Italy
| | - Anna Montemurno
- Department of Basic Medical Science, Neuroscience and the Sensory System (SMBNOS), Neurophysiopathology of Pain Unit, Aldo Moro University of Bari, Bari, Italy
| | - Giuseppe Dalfino
- Department of Emergency and Organ Transplantation - Nephrology, Dialysis and Transplantation Unit, Aldo Moro University of Bari, Bari, Italy
| | - Pietro Cirillo
- Department of Emergency and Organ Transplantation - Nephrology, Dialysis and Transplantation Unit, Aldo Moro University of Bari, Bari, Italy
| | - Andrea Soricelli
- IRCCS SDN, Napoli, Italy
- Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | | | | | | | - Flavio Nobili
- IRCCS Ospedale Policlinico San Martino, Genova, Italy - Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Francesco Famá
- IRCCS Ospedale Policlinico San Martino, Genova, Italy - Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Francesco Orzi
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome “La Sapienza”, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome “La Sapienza”, Rome, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome “La Sapienza”, Rome, Italy
| | - A. Ivano Triggiani
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giovanni B. Frisoni
- Laboratory of Alzheimer’s Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Anna Maria Scisci
- Department of Emergency and Organ Transplantation - Nephrology, Dialysis and Transplantation Unit, Aldo Moro University of Bari, Bari, Italy
| | - Nicola Mastrofilippo
- Department of Emergency and Organ Transplantation - Nephrology, Dialysis and Transplantation Unit, Aldo Moro University of Bari, Bari, Italy
| | - Deni Aldo Procaccini
- Department of Emergency and Organ Transplantation - Nephrology, Dialysis and Transplantation Unit, Aldo Moro University of Bari, Bari, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation - Nephrology, Dialysis and Transplantation Unit, Aldo Moro University of Bari, Bari, Italy
| |
Collapse
|
49
|
Affan RO, Huang S, Cruz SM, Holcomb LA, Nguyen E, Marinkovic K. High-intensity binge drinking is associated with alterations in spontaneous neural oscillations in young adults. Alcohol 2018; 70:51-60. [PMID: 29778070 DOI: 10.1016/j.alcohol.2018.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 01/07/2023]
Abstract
Heavy episodic alcohol consumption (also termed binge drinking) contributes to a wide range of health and cognitive deficits, but the associated brain-based indices are poorly understood. The current study used electroencephalography (EEG) to examine spontaneous neural oscillations in young adults as a function of quantity, frequency, and the pattern of their alcohol consumption. Sixty-one young adults (23.4 ± 3.4 years of age) were assigned to binge drinking (BD) and light drinking (LD) groups that were equated on gender, race/ethnic identity, age, educational background, and family history of alcoholism. EEG activity was recorded during eyes-open and eyes-closed resting conditions. Each participant's alpha peak frequency (APF) was used to calculate absolute power in individualized theta and alpha frequency bands, with a canonical frequency range used for beta. APF was slower by 0.7 Hz in BD, especially in individuals engaging in high-intensity drinking, but there were no changes in alpha power. BD also exhibited higher frontal theta and beta power than LD. Alpha slowing and increased theta power in BD remained after accounting for depression, anxiety, and personality characteristics, while elevated beta power covaried with sensation seeking. Furthermore, APF slowing and theta power correlated with various measures of alcohol consumption, including binge episodes and blackouts, but not with measures of working and episodic memory, cognitive flexibility, processing speed, or personality variables, suggesting that these physiological changes may be modulated by high-intensity alcohol intake. These results are consistent with studies of alcohol-use disorder (AUD) and support the hypothesis that binge drinking is a transitional stage toward alcohol dependence. The observed thalamocortical dysrhythmia may be indicative of an excitatory-inhibitory imbalance in BD and may potentially serve as an index of the progressive development of AUD, with a goal of informing possible interventions to minimize alcohol's deleterious effects on the brain.
Collapse
|
50
|
Stitt I, Zhou ZC, Radtke-Schuller S, Fröhlich F. Arousal dependent modulation of thalamo-cortical functional interaction. Nat Commun 2018; 9:2455. [PMID: 29941957 PMCID: PMC6018110 DOI: 10.1038/s41467-018-04785-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/27/2018] [Indexed: 01/20/2023] Open
Abstract
Ongoing changes in arousal influence sensory processing and behavioral performance. Yet the circuit-level correlates for this influence remain poorly understood. Here, we investigate how functional interaction between posterior parietal cortex (PPC) and lateral posterior (LP)/Pulvinar is influenced by ongoing fluctuations in pupil-linked arousal, which is a non-invasive measure of neuromodulatory tone in the brain. We find that fluctuations in pupil-linked arousal correlate with changes to PPC to LP/Pulvinar oscillatory interaction, with cortical alpha oscillations driving activity during low arousal states, and LP/Pulvinar driving PPC in the theta frequency band during higher arousal states. Active visual exploration by saccadic eye movements elicits similar transitions in thalamo-cortical interaction. Furthermore, the presentation of naturalistic video stimuli induces thalamo-cortical network states closely resembling epochs of high arousal in the absence of visual input. Thus, neuromodulators may play a role in dynamically sculpting the patterns of thalamo-cortical functional interaction that underlie visual processing.
Collapse
Affiliation(s)
- Iain Stitt
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhe Charles Zhou
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Susanne Radtke-Schuller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|