1
|
Sun J, Ren D, Gong M, Guo X, Zhang Y, Du B. Identification of novel CDH23 variants linked to hearing loss in a Chinese family: A case report. Medicine (Baltimore) 2024; 103:e39360. [PMID: 39287240 PMCID: PMC11404951 DOI: 10.1097/md.0000000000039360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024] Open
Abstract
RATIONALE Deafness is associated with both environmental and genetic factors, with hereditary deafness often caused by mutations in deafness-related genes. Identifying and analyzing deafness-related genes will aid in early diagnosis and pave the way for treating inherited deafness through gene therapy in the future. PATIENT CONCERNS A 15-month-old girl underwent audiological examination at the outpatient clinic of the hospital due to hearing loss and her brother was diagnosed with profound bilateral sensorineural hearing loss at the age of 3. DIAGNOSES The diagnosis was determined as extremely severe sensorineural hearing loss caused by genetic factors. INTERVENTIONS Clinical data of the patient were collected, and peripheral blood samples were obtained from both the patient and her family members for DNA extraction and sequencing. OUTCOMES By utilizing targeted capture next-generation sequencing to further screen for deafness-related genes, 2 novel variants in CDH23 were identified as the causative factors for the patient's deafness. LESSONS This study identified 2 novel heterozygous mutations in a Chinese family. Both the proband and her sibling have non-syndromic hearing loss (NSHL) and carry distinct heterozygous mutations of cadherin-like 23 (CDH23). One mutation, CDH23:c.2651 A>G, originated from their mother and paternal family, affecting the exon23 domain of CDH23. The other mutation, CDH23:c.2113 G>T, was inherited from their paternal grandmother, impacting the exon19 domain of CDH23. These 2 novel mutations likely cause NSHL by affecting protein function. This finding suggests that identifying 2 novel mutations in CDH23 contributes to the genetic basis of NSHL.
Collapse
Affiliation(s)
- Jing Sun
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dawei Ren
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Meiheng Gong
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyi Guo
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yan Zhang
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Du
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Ivanchenko MV, Hathaway DM, Klein AJ, Pan B, Strelkova O, De-la-Torre P, Wu X, Peters CW, Mulhall EM, Booth KT, Goldstein C, Brower J, Sotomayor M, Indzhykulian AA, Corey DP. Mini-PCDH15 gene therapy rescues hearing in a mouse model of Usher syndrome type 1F. Nat Commun 2023; 14:2400. [PMID: 37100771 PMCID: PMC10133396 DOI: 10.1038/s41467-023-38038-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Usher syndrome type 1 F (USH1F), caused by mutations in the protocadherin-15 gene (PCDH15), is characterized by congenital deafness, lack of balance, and progressive blindness. In hair cells, the receptor cells of the inner ear, PCDH15 is a component of tip links, fine filaments which pull open mechanosensory transduction channels. A simple gene addition therapy for USH1F is challenging because the PCDH15 coding sequence is too large for adeno-associated virus (AAV) vectors. We use rational, structure-based design to engineer mini-PCDH15s in which 3-5 of the 11 extracellular cadherin repeats are deleted, but which still bind a partner protein. Some mini-PCDH15s can fit in an AAV. An AAV encoding one of these, injected into the inner ears of mouse models of USH1F, produces a mini-PCDH15 which properly forms tip links, prevents the degeneration of hair cell bundles, and rescues hearing. Mini-PCDH15s may be a useful therapy for the deafness of USH1F.
Collapse
Affiliation(s)
| | - Daniel M Hathaway
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Alex J Klein
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Bifeng Pan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Olga Strelkova
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Pedro De-la-Torre
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Xudong Wu
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Cole W Peters
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Eric M Mulhall
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Kevin T Booth
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Corey Goldstein
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Joseph Brower
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Artur A Indzhykulian
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Liu L, Zou L, Li K, Hou H, Hu Q, Liu S, Li J, Song C, Chen J, Wang S, Wang Y, Li C, Du H, Li JL, Chen F, Xu Z, Sun W, Sun Q, Xiong W. Template-independent genome editing in the Pcdh15 av-3j mouse, a model of human DFNB23 nonsyndromic deafness. Cell Rep 2022; 40:111061. [PMID: 35830793 DOI: 10.1016/j.celrep.2022.111061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 04/15/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022] Open
Abstract
Although frameshift mutations lead to 22% of inherited Mendelian disorders in humans, there is no efficient in vivo gene therapy strategy available to date, particularly in nondividing cells. Here, we show that nonhomologous end-joining (NHEJ)-mediated nonrandom editing profiles compensate the frameshift mutation in the Pcdh15 gene and restore the lost mechanotransduction function in postmitotic hair cells of Pcdh15av-3J mice, an animal model of human nonsyndromic deafness DFNB23. Identified by an ex vivo evaluation system in cultured cochlear explants, the selected guide RNA restores reading frame in approximately 50% of indel products and recovers mechanotransduction in more than 70% of targeted hair cells. In vivo treatment shows that half of the animals gain improvements in auditory responses, and balance function is restored in the majority of injected mutant mice. These results demonstrate that NHEJ-mediated reading-frame restoration is a simple and efficient strategy in postmitotic systems.
Collapse
Affiliation(s)
- Lian Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Linzhi Zou
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Kuan Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hanqing Hou
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Qun Hu
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Shuang Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Jie Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Chenmeng Song
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Jiaofeng Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Shufeng Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Yangzhen Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Changri Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Haibo Du
- School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jun-Liszt Li
- Chinese Institute for Brain Research, Beijing 102206, China; Academy for Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhigang Xu
- School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Wenzhi Sun
- Chinese Institute for Brain Research, Beijing 102206, China; School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Qianwen Sun
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xiong
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Fuster-García C, García-Bohórquez B, Rodríguez-Muñoz A, Aller E, Jaijo T, Millán JM, García-García G. Usher Syndrome: Genetics of a Human Ciliopathy. Int J Mol Sci 2021; 22:6723. [PMID: 34201633 PMCID: PMC8268283 DOI: 10.3390/ijms22136723] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive syndromic ciliopathy characterized by sensorineural hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. There are three clinical types depending on the severity and age of onset of the symptoms; in addition, ten genes are reported to be causative of USH, and six more related to the disease. These genes encode proteins of a diverse nature, which interact and form a dynamic protein network called the "Usher interactome". In the organ of Corti, the USH proteins are essential for the correct development and maintenance of the structure and cohesion of the stereocilia. In the retina, the USH protein network is principally located in the periciliary region of the photoreceptors, and plays an important role in the maintenance of the periciliary structure and the trafficking of molecules between the inner and the outer segments of photoreceptors. Even though some genes are clearly involved in the syndrome, others are controversial. Moreover, expression of some USH genes has been detected in other tissues, which could explain their involvement in additional mild comorbidities. In this paper, we review the genetics of Usher syndrome and the spectrum of mutations in USH genes. The aim is to identify possible mutation associations with the disease and provide an updated genotype-phenotype correlation.
Collapse
Affiliation(s)
- Carla Fuster-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Belén García-Bohórquez
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
| | - Ana Rodríguez-Muñoz
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - José M. Millán
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Gema García-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
5
|
Gray ME, Sotomayor M. Crystal structure of the nonclassical cadherin-17 N-terminus and implications for its adhesive binding mechanism. Acta Crystallogr F Struct Biol Commun 2021; 77:85-94. [PMID: 33682793 PMCID: PMC7938635 DOI: 10.1107/s2053230x21002247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
The cadherin superfamily of calcium-dependent cell-adhesion proteins has over 100 members in the human genome. All members of the superfamily feature at least a pair of extracellular cadherin (EC) repeats with calcium-binding sites in the EC linker region. The EC repeats across family members form distinct complexes that mediate cellular adhesion. For instance, classical cadherins (five EC repeats) strand-swap their N-termini and exchange tryptophan residues in EC1, while the clustered protocadherins (six EC repeats) use an extended antiparallel `forearm handshake' involving repeats EC1-EC4. The 7D-cadherins, cadherin-16 (CDH16) and cadherin-17 (CDH17), are the most similar to classical cadherins and have seven EC repeats, two of which are likely to have arisen from gene duplication of EC1-2 from a classical ancestor. However, CDH16 and CDH17 lack the EC1 tryptophan residue used by classical cadherins to mediate adhesion. The structure of human CDH17 EC1-2 presented here reveals features that are not seen in classical cadherins and that are incompatible with the EC1 strand-swap mechanism for adhesion. Analyses of crystal contacts, predicted glycosylation and disease-related mutations are presented along with sequence alignments suggesting that the novel features in the CDH17 EC1-2 structure are well conserved. These results hint at distinct adhesive properties for 7D-cadherins.
Collapse
Affiliation(s)
- Michelle E. Gray
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Whatley M, Francis A, Ng ZY, Khoh XE, Atlas MD, Dilley RJ, Wong EYM. Usher Syndrome: Genetics and Molecular Links of Hearing Loss and Directions for Therapy. Front Genet 2020; 11:565216. [PMID: 33193648 PMCID: PMC7642844 DOI: 10.3389/fgene.2020.565216] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive (AR) disorder that permanently and severely affects the senses of hearing, vision, and balance. Three clinically distinct types of USH have been identified, decreasing in severity from Type 1 to 3, with symptoms of sensorineural hearing loss (SNHL), retinitis pigmentosa (RP), and vestibular dysfunction. There are currently nine confirmed and two suspected USH-causative genes, and a further three candidate loci have been mapped. The proteins encoded by these genes form complexes that play critical roles in the development and maintenance of cellular structures within the inner ear and retina, which have minimal capacity for repair or regeneration. In the cochlea, stereocilia are located on the apical surface of inner ear hair cells (HC) and are responsible for transducing mechanical stimuli from sound pressure waves into chemical signals. These signals are then detected by the auditory nerve fibers, transmitted to the brain and interpreted as sound. Disease-causing mutations in USH genes can destabilize the tip links that bind the stereocilia to each other, and cause defects in protein trafficking and stereocilia bundle morphology, thereby inhibiting mechanosensory transduction. This review summarizes the current knowledge on Usher syndrome with a particular emphasis on mutations in USH genes, USH protein structures, and functional analyses in animal models. Currently, there is no cure for USH. However, the genetic therapies that are rapidly developing will benefit from this compilation of detailed genetic information to identify the most effective strategies for restoring functional USH proteins.
Collapse
Affiliation(s)
- Meg Whatley
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Abbie Francis
- Ear Science Institute Australia, Nedlands, WA, Australia
- Emergency Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Zi Ying Ng
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Xin Ee Khoh
- Ear Science Institute Australia, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Marcus D. Atlas
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
| | - Rodney J. Dilley
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA, Australia
| | - Elaine Y. M. Wong
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
7
|
Structural determinants of protocadherin-15 mechanics and function in hearing and balance perception. Proc Natl Acad Sci U S A 2020; 117:24837-24848. [PMID: 32963095 PMCID: PMC7547225 DOI: 10.1073/pnas.1920444117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
When sound vibrations reach the inner ear, fine protein filaments called “tip links” stretch and open cochlear hair-cell mechanosensitive channels that trigger sensory perception. Similarly, vestibular hair cells use tip links to sense mechanical stimuli produced by head motions. Tip links are formed by cadherin-23 and protocadherin-15, two large proteins involved in hearing loss and balance disorders. Here we present multiple structures, models, and simulations that depict the lower end of the tip link, including the complete protocadherin-15 ectodomain. These models show an essential connection between cadherin-23 and protocadherin-15 with dual molecular “handshakes” and various protein sites that are mutated in inherited deafness. The simulations also reveal how the tip link responds to force to mediate hearing and balance sensing. The vertebrate inner ear, responsible for hearing and balance, is able to sense minute mechanical stimuli originating from an extraordinarily broad range of sound frequencies and intensities or from head movements. Integral to these processes is the tip-link protein complex, which conveys force to open the inner-ear transduction channels that mediate sensory perception. Protocadherin-15 and cadherin-23, two atypically large cadherins with 11 and 27 extracellular cadherin (EC) repeats, are involved in deafness and balance disorders and assemble as parallel homodimers that interact to form the tip link. Here we report the X-ray crystal structure of a protocadherin-15 + cadherin-23 heterotetrameric complex at 2.9-Å resolution, depicting a parallel homodimer of protocadherin-15 EC1-3 molecules forming an antiparallel complex with two cadherin-23 EC1-2 molecules. In addition, we report structures for 10 protocadherin-15 fragments used to build complete high-resolution models of the monomeric protocadherin-15 ectodomain. Molecular dynamics simulations and validated crystal contacts are used to propose models for the complete extracellular protocadherin-15 parallel homodimer and the tip-link bond. Steered molecular dynamics simulations of these models suggest conditions in which a structurally diverse and multimodal protocadherin-15 ectodomain can act as a stiff or soft gating spring. These results reveal the structural determinants of tip-link–mediated inner-ear sensory perception and elucidate protocadherin-15’s structural and adhesive properties relevant in disease.
Collapse
|
8
|
Ohlemiller KK. Mouse methods and models for studies in hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3668. [PMID: 31795658 DOI: 10.1121/1.5132550] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Laboratory mice have become the dominant animal model for hearing research. The mouse cochlea operates according to standard "mammalian" principles, uses the same cochlear cell types, and exhibits the same types of injury as found in other mammals. The typical mouse lifespan is less than 3 years, yet the age-associated pathologies that may be found are quite similar to longer-lived mammals. All Schuknecht's types of presbycusis have been identified in existing mouse lines, some favoring hair cell loss while others favor strial degeneration. Although noise exposure generally affects the mouse cochlea in a manner similar to other mammals, mice appear more prone to permanent alterations to hair cells or the organ of Corti than to hair cell loss. Therapeutic compounds may be applied systemically or locally through the tympanic membrane or onto (or through) the round window membrane. The thinness of the mouse cochlear capsule and annular ligament may promote drug entry from the middle ear, although an extremely active middle ear lining may quickly remove most drugs. Preclinical testing of any therapeutic will always require tests in multiple animal models. Mice constitute one model providing supporting evidence for any therapeutic, while genetically engineered mice can test hypotheses about mechanisms.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, Saint Louis, Missouri 63110, USA
| |
Collapse
|
9
|
De-la-Torre P, Choudhary D, Araya-Secchi R, Narui Y, Sotomayor M. A Mechanically Weak Extracellular Membrane-Adjacent Domain Induces Dimerization of Protocadherin-15. Biophys J 2018; 115:2368-2385. [PMID: 30527337 PMCID: PMC6302040 DOI: 10.1016/j.bpj.2018.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022] Open
Abstract
The cadherin superfamily of proteins is defined by the presence of extracellular cadherin (EC) "repeats" that engage in protein-protein interactions to mediate cell-cell adhesion, cell signaling, and mechanotransduction. The extracellular domains of nonclassical cadherins often have a large number of EC repeats along with other subdomains of various folds. Protocadherin-15 (PCDH15), a protein component of the inner-ear tip link filament essential for mechanotransduction, has 11 EC repeats and a membrane adjacent domain (MAD12) of atypical fold. Here we report the crystal structure of a pig PCDH15 fragment including EC10, EC11, and MAD12 in a parallel dimeric arrangement. MAD12 has a unique molecular architecture and folds as a ferredoxin-like domain similar to that found in the nucleoporin protein Nup54. Analytical ultracentrifugation experiments along with size-exclusion chromatography coupled to multiangle laser light scattering and small-angle x-ray scattering corroborate the crystallographic dimer and show that MAD12 induces parallel dimerization of PCDH15 near its membrane insertion point. In addition, steered molecular dynamics simulations suggest that MAD12 is mechanically weak and may unfold before tip-link rupture. Sequence analyses and structural modeling predict the existence of similar domains in cadherin-23, protocadherin-24, and the "giant" FAT and CELSR cadherins, indicating that some of them may also exhibit MAD-induced parallel dimerization.
Collapse
Affiliation(s)
- Pedro De-la-Torre
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Deepanshu Choudhary
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Raul Araya-Secchi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Structural Biophysics, Section for Neutron and X-ray Science, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Yoshie Narui
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
10
|
Jaiganesh A, Narui Y, Araya-Secchi R, Sotomayor M. Beyond Cell-Cell Adhesion: Sensational Cadherins for Hearing and Balance. Cold Spring Harb Perspect Biol 2018; 10:a029280. [PMID: 28847902 PMCID: PMC6008173 DOI: 10.1101/cshperspect.a029280] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cadherins form a large family of proteins often involved in calcium-dependent cellular adhesion. Although classical members of the family can provide a physical bond between cells, a subset of special cadherins use their extracellular domains to interlink apical specializations of single epithelial sensory cells. Two of these cadherins, cadherin-23 (CDH23) and protocadherin-15 (PCDH15), form extracellular "tip link" filaments that connect apical bundles of stereocilia on hair cells essential for inner-ear mechanotransduction. As these bundles deflect in response to mechanical stimuli from sound or head movements, tip links gate hair-cell mechanosensitive channels to initiate sensory perception. Here, we review the unusual and diverse structural properties of these tip-link cadherins and the functional significance of their deafness-related missense mutations. Based on the structural features of CDH23 and PCDH15, we discuss the elasticity of tip links and models that bridge the gap between the nanomechanics of cadherins and the micromechanics of hair-cell bundles during inner-ear mechanotransduction.
Collapse
Affiliation(s)
- Avinash Jaiganesh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Yoshie Narui
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Raul Araya-Secchi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
11
|
Jaiganesh A, De-la-Torre P, Patel AA, Termine DJ, Velez-Cortes F, Chen C, Sotomayor M. Zooming in on Cadherin-23: Structural Diversity and Potential Mechanisms of Inherited Deafness. Structure 2018; 26:1210-1225.e4. [PMID: 30033219 DOI: 10.1016/j.str.2018.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/22/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022]
Abstract
Cadherin-23 (CDH23) is an essential component of hair-cell tip links, fine filaments that mediate inner-ear mechanotransduction. The extracellular domain of CDH23 forms about three-fourths of the tip link with 27 extracellular cadherin (EC) repeats that are structurally similar but not identical to each other. Calcium (Ca2+) coordination at the EC linker regions is key for tip-link elasticity and function. There are ∼116 sites in CDH23 affected by deafness-causing mutations, many of which alter conserved Ca2+-binding residues. Here we present crystal structures showing 18 CDH23 EC repeats, including the most and least conserved, a fragment carrying disease mutations, and EC repeats with non-canonical Ca2+-binding motif sequences and unusual secondary structure. Complementary experiments show deafness mutations' effects on stability and affinity for Ca2+. Additionally, a model of nine contiguous CDH23 EC repeats reveals helicity and potential parallel dimerization faces. Overall, our studies provide detailed structural insight into CDH23 function in mechanotransduction.
Collapse
Affiliation(s)
- Avinash Jaiganesh
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Pedro De-la-Torre
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Aniket A Patel
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Domenic J Termine
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Florencia Velez-Cortes
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Conghui Chen
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
12
|
Narui Y, Sotomayor M. Tuning Inner-Ear Tip-Link Affinity Through Alternatively Spliced Variants of Protocadherin-15. Biochemistry 2018; 57:1702-1710. [PMID: 29443515 DOI: 10.1021/acs.biochem.7b01075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Human hearing relies upon the tip-to-tip interaction of two nonclassical cadherins, protocadherin-15 (PCDH15) and cadherin-23 (CDH23). Together, these proteins form a filament called the tip link that connects neighboring stereocilia of mechanosensitive hair cells. As sound waves enter the cochlea, the stereocilia deflect and tension is applied to the tip link, opening nearby transduction channels. Disruption of the tip link by loud sound or calcium chelators eliminates transduction currents and illustrates that tip-link integrity is critical for mechanosensing. Tip-link remodeling after disruption is a dynamic process, which can lead to the formation of atypical complexes that incorporate alternatively spliced variants of PCDH15. These variants are categorized into six groups (N1-N6) based upon differences in the first two extracellular cadherin (EC) repeats. Here, we characterized the two N-terminal EC repeats of all PCDH15 variants (pcdh15(N1) to pcdh15(N6)) and combined these variants to test complex formation. We solved the crystal structure of a new complex composed of CDH23 EC1-2 (cdh23) and pcdh15(N2) at 2.3 Å resolution and compared it to the canonical cdh23-pcdh15(N1) complex. While there were subtle structural differences, the binding affinity between cdh23 and pcdh15(N2) is ∼6 times weaker than cdh23 and pcdh15(N1) as determined by surface plasmon resonance analysis. Steered molecular dynamics simulations predict that the unbinding force of the cdh23-pcdh15(N2) complex can be lower than the canonical tip link. Our results demonstrate that alternative heterophilic tip-link structures form stable protein-protein interactions in vitro and suggest that homophilic PCDH15-PCDH15 tip links form through the interaction of additional EC repeats.
Collapse
Affiliation(s)
- Yoshie Narui
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
13
|
Choudhary D, Kumar A, Magliery TJ, Sotomayor M. Using thermal scanning assays to test protein-protein interactions of inner-ear cadherins. PLoS One 2017; 12:e0189546. [PMID: 29261728 PMCID: PMC5736220 DOI: 10.1371/journal.pone.0189546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/27/2017] [Indexed: 12/15/2022] Open
Abstract
Protein-protein interactions play a crucial role in biological processes such as cell-cell adhesion, immune system-pathogen interactions, and sensory perception. Understanding the structural determinants of protein-protein complex formation and obtaining quantitative estimates of their dissociation constant (KD) are essential for the study of these interactions and for the discovery of new therapeutics. At the same time, it is equally important to characterize protein-protein interactions in a high-throughput fashion. Here, we use a modified thermal scanning assay to test interactions of wild type (WT) and mutant variants of N-terminal fragments (EC1+2) of cadherin-23 and protocadherin-15, two proteins essential for inner-ear mechanotransduction. An environmentally sensitive fluorescent dye (SYPRO orange) is used to monitor melting temperature (Tm) shifts of protocadherin-15 EC1+2 (pcdh15) in the presence of increasing concentrations of cadherin-23 EC1+2 (cdh23). These Tm shifts are absent when we use proteins containing deafness-related missense mutations known to disrupt cdh23 binding to pcdh15, and are increased for some rationally designed mutants expected to enhance binding. In addition, surface plasmon resonance binding experiments were used to test if the Tm shifts correlated with changes in binding affinity. We used this approach to find a double mutation (cdh23(T15E)- pcdh15(G16D)) that enhances binding affinity of the cadherin complex by 1.98 kJ/mol, roughly two-fold that of the WT complex. We suggest that the thermal scanning methodology can be used in high-throughput format to quickly compare binding affinities (KD from nM up to 100 μM) for some heterodimeric protein complexes and to screen small molecule libraries to find protein-protein interaction inhibitors and enhancers.
Collapse
Affiliation(s)
- Deepanshu Choudhary
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Anusha Kumar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas J. Magliery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
14
|
Powers RE, Gaudet R, Sotomayor M. A Partial Calcium-Free Linker Confers Flexibility to Inner-Ear Protocadherin-15. Structure 2017; 25:482-495. [PMID: 28238533 DOI: 10.1016/j.str.2017.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/16/2017] [Accepted: 01/30/2017] [Indexed: 12/30/2022]
Abstract
Tip links of the inner ear are protein filaments essential for hearing and balance. Two atypical cadherins, cadherin-23 and protocadherin-15, interact in a Ca2+-dependent manner to form tip links. The largely unknown structure and mechanics of these proteins are integral to understanding how tip links pull on ion channels to initiate sensory perception. Protocadherin-15 has 11 extracellular cadherin (EC) repeats. Its EC3-4 linker lacks several of the canonical Ca2+-binding residues, and contains an aspartate-to-alanine polymorphism (D414A) under positive selection in East Asian populations. We present structures of protocadherin-15 EC3-5 featuring two Ca2+-binding linker regions: canonical EC4-5 linker binding three Ca2+ ions, and non-canonical EC3-4 linker binding only two Ca2+ ions. Our structures and biochemical assays reveal little difference between the D414 and D414A variants. Simulations predict that the partial Ca2+-free EC3-4 linker exhibits increased flexural flexibility without compromised mechanical strength, providing insight into the dynamics of tip links and other atypical cadherins.
Collapse
Affiliation(s)
- Robert E Powers
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Biophysics Graduate Program, Harvard University, Boston, MA 02115, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Functional Analysis of the Transmembrane and Cytoplasmic Domains of Pcdh15a in Zebrafish Hair Cells. J Neurosci 2017; 37:3231-3245. [PMID: 28219986 DOI: 10.1523/jneurosci.2216-16.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 11/21/2022] Open
Abstract
Protocadherin 15 (PCDH15) is required for mechanotransduction in sensory hair cells as a component of the tip link. Isoforms of PCDH15 differ in their cytoplasmic domains (CD1, CD2, and CD3), but share the extracellular and transmembrane (TMD) domains, as well as an intracellular domain known as the common region (CR). In heterologous expression systems, both the TMD and CR of PCDH15 have been shown to interact with members of the mechanotransduction complex. The in vivo significance of these protein-protein interaction domains of PCDH15 in hair cells has not been determined. Here, we examined the localization and function of the two isoforms of zebrafish Pcdh15a (CD1 and CD3) in pcdh15a-null mutants by assessing Pcdh15a transgene-mediated rescue of auditory/vestibular behavior and hair cell morphology and activity. We found that either isoform alone was able to rescue the Pcdh15a-null phenotype and that the CD1- or CD3-specific regions were dispensable for hair bundle integrity and labeling of hair cells with FM4-64, which was used as a proxy for mechanotransduction. When either the CR or TMD domain was deleted, the mutated proteins localized to the stereocilial tips, but were unable to rescue FM4-64 labeling. Disrupting both domains led to a complete failure of Pcdh15a to localize to the hair bundle. Our findings demonstrate that the TMD and cytoplasmic CR domains are required for the in vivo function of Pcdh15a in zebrafish hair cells.SIGNIFICANCE STATEMENT Tip links transmit force to mechanotransduction channels at the tip of hair bundles in sensory hair cells. One component of tip links is Protocadherin 15 (PCDH15). Here, we demonstrate that, when transgenically expressed, either zebrafish Pcdh15a-cytodomain 1 (CD1) or Pcdh15a-CD3 can rescue the phenotype of a pcdh15a-null mutant. Even when lacking the specific regions for CD1 or CD3, truncated Pcdh15a that contains the so-called common region (CR) at the cytoplasmic/membrane interface still has the ability to rescue similar to full-length Pcdh15a. In contrast, Pcdh15a lacking the entire cytoplasmic domain is not functional. These results demonstrate that the CR plays a key role in the mechanotransduction complex in hair cells.
Collapse
|
16
|
Ohlemiller KK, Jones SM, Johnson KR. Application of Mouse Models to Research in Hearing and Balance. J Assoc Res Otolaryngol 2016; 17:493-523. [PMID: 27752925 PMCID: PMC5112220 DOI: 10.1007/s10162-016-0589-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/15/2016] [Indexed: 01/10/2023] Open
Abstract
Laboratory mice (Mus musculus) have become the major model species for inner ear research. The major uses of mice include gene discovery, characterization, and confirmation. Every application of mice is founded on assumptions about what mice represent and how the information gained may be generalized. A host of successes support the continued use of mice to understand hearing and balance. Depending on the research question, however, some mouse models and research designs will be more appropriate than others. Here, we recount some of the history and successes of the use of mice in hearing and vestibular studies and offer guidelines to those considering how to apply mouse models.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Department of Otolaryngology, Central Institute for the Deaf, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, 660 S. Euclid, Saint Louis, MO, 63110, USA.
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | | |
Collapse
|
17
|
Cooper SR, Jontes JD, Sotomayor M. Structural determinants of adhesion by Protocadherin-19 and implications for its role in epilepsy. eLife 2016; 5. [PMID: 27787195 PMCID: PMC5115871 DOI: 10.7554/elife.18529] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/25/2016] [Indexed: 01/27/2023] Open
Abstract
Non-clustered δ-protocadherins are homophilic cell adhesion molecules essential for the development of the vertebrate nervous system, as several are closely linked to neurodevelopmental disorders. Mutations in protocadherin-19 (PCDH19) result in a female-limited, infant-onset form of epilepsy (PCDH19-FE). Over 100 mutations in PCDH19 have been identified in patients with PCDH19-FE, about half of which are missense mutations in the adhesive extracellular domain. Neither the mechanism of homophilic adhesion by PCDH19, nor the biochemical effects of missense mutations are understood. Here we present a crystallographic structure of the minimal adhesive fragment of the zebrafish Pcdh19 extracellular domain. This structure reveals the adhesive interface for Pcdh19, which is broadly relevant to both non-clustered δ and clustered protocadherin subfamilies. In addition, we show that several PCDH19-FE missense mutations localize to the adhesive interface and abolish Pcdh19 adhesion in in vitro assays, thus revealing the biochemical basis of their pathogenic effects during brain development. DOI:http://dx.doi.org/10.7554/eLife.18529.001 As the brain develops, its basic building blocks – cells called neurons – need to form the correct connections with one another in order to give rise to neural circuits. A mistake that leads to the formation of incorrect connections can result in a number of disorders or brain abnormalities. Proteins called cadherins that are present on the surface of neurons enable them to stick to their correct partners like Velcro. One of these proteins is called Protocadherin-19. However, it was not fully understood how this protein forms an adhesive bond with other Protocadherin-19 molecules, or how some of the proteins within the cadherin family are able to distinguish between one another. Cooper et al. used X-ray crystallography to visualize the molecular structure of Protocadherin-19 taken from zebrafish in order to better understand the adhesive bond that these proteins form with each other. In addition, the new structure showed the sites of the mutations that cause a form of epilepsy in infant females. From this, Cooper et al. could predict how the mutations would disrupt Protocadherin-19’s shape and function. The structures revealed that Protocadherin-19 molecules from adjacent cells engage in a “forearm handshake” to form the bond that connects neurons. Some of the mutations that cause epilepsy occur in the region responsible for this Protocadherin-19 forearm handshake. Laboratory experiments confirmed that these mutations impair the formation of the adhesive bond, revealing the molecular basis for some of the mutations that underlie Protocadherin-19-female-limited epilepsy. Other cadherin molecules may interact via a similar forearm handshake; this could be investigated in future experiments. It also remains to be discovered how brain wiring depends on Protocadherin-19 adhesion in animal development, and how altering these proteins can rewire developing brain circuits. DOI:http://dx.doi.org/10.7554/eLife.18529.002
Collapse
Affiliation(s)
- Sharon R Cooper
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, United States.,Department of Neuroscience, The Ohio State University, Columbus, United States
| | - James D Jontes
- Department of Neuroscience, The Ohio State University, Columbus, United States
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, United States
| |
Collapse
|
18
|
Khanal I, Elbediwy A, Diaz de la Loza MDC, Fletcher GC, Thompson BJ. Shot and Patronin polarise microtubules to direct membrane traffic and biogenesis of microvilli in epithelia. J Cell Sci 2016; 129:2651-9. [PMID: 27231092 PMCID: PMC4958304 DOI: 10.1242/jcs.189076] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/19/2016] [Indexed: 01/08/2023] Open
Abstract
In epithelial tissues, polarisation of microtubules and actin microvilli occurs along the apical-basal axis of each cell, yet how these cytoskeletal polarisation events are coordinated remains unclear. Here, we examine the hierarchy of events during cytoskeletal polarisation in Drosophila melanogaster epithelia. Core apical-basal polarity determinants polarise the spectrin cytoskeleton to recruit the microtubule-binding proteins Patronin (CAMSAP1, CAMSAP2 and CAMSAP3 in humans) and Shortstop [Shot; MACF1 and BPAG1 (also known as DST) in humans] to the apical membrane domain. Patronin and Shot then act to polarise microtubules along the apical-basal axis to enable apical transport of Rab11 endosomes by the Nuf-Dynein microtubule motor complex. Finally, Rab11 endosomes are transferred to the MyoV (also known as Didum in Drosophila) actin motor to deliver the key microvillar determinant Cadherin 99C to the apical membrane to organise the biogenesis of actin microvilli.
Collapse
Affiliation(s)
- Ichha Khanal
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ahmed Elbediwy
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | - Barry J Thompson
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
19
|
Pan B, Holt JR. The molecules that mediate sensory transduction in the mammalian inner ear. Curr Opin Neurobiol 2015. [PMID: 26218316 DOI: 10.1016/j.conb.2015.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Years of searching and researching have finally yielded a few leads in the quest to identify molecules required for mechanosensory transduction in the mammalian inner ear. Studies of human and mouse genetics have raised the profile of several molecules that are crucial for the function sensory hair cells. Follow up studies have begun to define the molecular function and biochemical interactions of several key proteins. These studies have exposed a sensory transduction apparatus that is more complex than originally envisioned and have reinvigorated the search for additional molecular components required for normal inner ear function.
Collapse
Affiliation(s)
- Bifeng Pan
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Jeffrey R Holt
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
20
|
Zhan Y, Liu M, Chen D, Chen K, Jiang H. Novel mutation located in EC7 domain of protocadherin-15 uncovered by targeted massively parallel sequencing in a family segregating non-syndromic deafness DFNB23. Int J Pediatr Otorhinolaryngol 2015; 79:983-6. [PMID: 25930172 DOI: 10.1016/j.ijporl.2015.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Hereditary hearing loss is a clinically and genetically heterogeneous disorder associated with mutations of a large number of diverse genes. In this study we applied targeted capture and massively parallel sequencing to identify the disease-causing gene of a Chinese family segregating recessive inherited deafness. METHODS After excluding mutations in common deafness genes GJB2, SLC26A4, mitochondrial m.1555A>G, genomic DNA of the proband of family GDSW24 was subjected to targeted next-generation sequencing. Subsequently, a candidate homozygous mutation was confirmed by Sanger sequencing. RESULTS A novel PCDH15 c.2367_2369delTGT/p.V788-homozygous mutation was detected. In this family, no obvious vestibular disorder was found. The in-frame mutation c.2367_2369delTGT is located in the evolutionarily conserved EC7 domain of Protocadherin-15 and was predicted to be pathogenic. CONCLUSION The novel homozygous mutation in a family segregating non-syndromic hearing loss family supports previous reported observations that PCDH15 does not only causes Usher syndrome type 1F, but also DFNB23.
Collapse
Affiliation(s)
- Yuan Zhan
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Min Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, PR China
| | - DeHua Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, PR China
| | - KaiTian Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, PR China
| | - HongYan Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, PR China.
| |
Collapse
|
21
|
Perreault-Micale C, Frieden A, Kennedy CJ, Neitzel D, Sullivan J, Faulkner N, Hallam S, Greger V. Truncating variants in the majority of the cytoplasmic domain of PCDH15 are unlikely to cause Usher syndrome 1F. J Mol Diagn 2015; 16:673-8. [PMID: 25307757 DOI: 10.1016/j.jmoldx.2014.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/02/2014] [Accepted: 07/21/2014] [Indexed: 11/19/2022] Open
Abstract
Loss of function variants in the PCDH15 gene can cause Usher syndrome type 1F, an autosomal recessive disease associated with profound congenital hearing loss, vestibular dysfunction, and retinitis pigmentosa. The Ashkenazi Jewish population has an increased incidence of Usher syndrome type 1F (founder variant p.Arg245X accounts for 75% of alleles), yet the variant spectrum in a panethnic population remains undetermined. We sequenced the coding region and intron-exon borders of PCDH15 using next-generation DNA sequencing technology in approximately 14,000 patients from fertility clinics. More than 600 unique PCDH15 variants (single nucleotide changes and small indels) were identified, including previously described pathogenic variants p.Arg3X, p.Arg245X (five patients), p.Arg643X, p.Arg929X, and p.Arg1106X. Novel truncating variants were also found, including one in the N-terminal extracellular domain (p.Leu877X), but all other novel truncating variants clustered in the exon 33 encoded C-terminal cytoplasmic domain (52 patients, 14 variants). One variant was observed predominantly in African Americans (carrier frequency of 2.3%). The high incidence of truncating exon 33 variants indicates that they are unlikely to cause Usher syndrome type 1F even though many remove a large portion of the gene. They may be tolerated because PCDH15 has several alternate cytoplasmic domain exons and differentially spliced isoforms may function redundantly. Effects of some PCDH15 truncating variants were addressed by deep sequencing of a panethnic population.
Collapse
Affiliation(s)
| | | | | | - Dana Neitzel
- Good Start Genetics, Inc., Cambridge, Massachusetts
| | | | | | | | | |
Collapse
|
22
|
Sotomayor M, Gaudet R, Corey DP. Sorting out a promiscuous superfamily: towards cadherin connectomics. Trends Cell Biol 2014; 24:524-36. [PMID: 24794279 DOI: 10.1016/j.tcb.2014.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 12/21/2022]
Abstract
Members of the cadherin superfamily of proteins are involved in diverse biological processes such as morphogenesis, sound transduction, and neuronal connectivity. Key to cadherin function is their extracellular domain containing cadherin repeats, which can mediate interactions involved in adhesion and cell signaling. Recent cellular, biochemical, and structural studies have revealed that physical interaction among cadherins is more complex than originally thought. Here we review work on new cadherin complexes and discuss how the classification of the mammalian family can be used to search for additional cadherin-interacting partners. We also highlight some of the challenges in cadherin research; namely, the characterization of a cadherin connectome in biochemical and structural terms, as well as the elucidation of molecular mechanisms underlying the functional diversity of nonclassical cadherins in vivo.
Collapse
Affiliation(s)
- Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH 43210, USA.
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - David P Corey
- Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Abstract
The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome.
Collapse
|
24
|
Indzhykulian AA, Stepanyan R, Nelina A, Spinelli KJ, Ahmed ZM, Belyantseva IA, Friedman TB, Barr-Gillespie PG, Frolenkov GI. Molecular remodeling of tip links underlies mechanosensory regeneration in auditory hair cells. PLoS Biol 2013; 11:e1001583. [PMID: 23776407 PMCID: PMC3679001 DOI: 10.1371/journal.pbio.1001583] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/02/2013] [Indexed: 11/18/2022] Open
Abstract
Sound detection by inner ear hair cells requires tip links that interconnect mechanosensory stereocilia and convey force to yet unidentified transduction channels. Current models postulate a static composition of the tip link, with protocadherin 15 (PCDH15) at the lower and cadherin 23 (CDH23) at the upper end of the link. In terminally differentiated mammalian auditory hair cells, tip links are subjected to sound-induced forces throughout an organism's life. Although hair cells can regenerate disrupted tip links and restore hearing, the molecular details of this process are unknown. We developed a novel implementation of backscatter electron scanning microscopy to visualize simultaneously immuno-gold particles and stereocilia links, both of only a few nanometers in diameter. We show that functional, mechanotransduction-mediating tip links have at least two molecular compositions, containing either PCDH15/CDH23 or PCDH15/PCDH15. During regeneration, shorter tip links containing nearly equal amounts of PCDH15 at both ends appear first. Whole-cell patch-clamp recordings demonstrate that these transient PCDH15/PCDH15 links mediate mechanotransduction currents of normal amplitude but abnormal Ca(2+)-dependent decay (adaptation). The mature PCDH15/CDH23 tip link composition is re-established later, concomitant with complete recovery of adaptation. Thus, our findings provide a molecular mechanism for regeneration and maintenance of mechanosensory function in postmitotic auditory hair cells and could help identify elusive components of the mechanotransduction machinery.
Collapse
Affiliation(s)
- Artur A. Indzhykulian
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ruben Stepanyan
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Anastasiia Nelina
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kateri J. Spinelli
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Zubair M. Ahmed
- Division of Pediatric Ophthalmology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Peter G. Barr-Gillespie
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Gregory I. Frolenkov
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|