1
|
Peyton L, Haroon H, Umpierre A, Essa H, Bruce R, Wu LJ, Choi DS. In vivo calcium extrusion from accumbal astrocytes reduces anxiety-like behaviors but increases compulsive-like responses and compulsive ethanol drinking in mice. Neuropharmacology 2025; 268:110320. [PMID: 39842625 PMCID: PMC11830519 DOI: 10.1016/j.neuropharm.2025.110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
The ventral striatum is crucially involved in reward processing. The present study investigates the behavioral effects of astrocyte-specific calcium extrusion virus "CalEx" on perseverative responses in the operant five-choice serial reaction time task and ethanol-conditioned place preference. Mice were injected with CalEx via the GfaABC1D promoter to extrude cytosolic calcium from astrocytes within the ventral striatum. We found that CalEx transfection in the ventral striatum reduced evoked response duration, the maximum amplitude, and the response frequency to 500 μM ATP as measured by ΔF/F fluorescence intensity of the genetically encoded calcium indicator targeting astrocytes GCaMP6f. During the five-choice serial reaction time task, CalEx mice persisted in perseverative responses compared to their counterparts. Additionally, during ethanol-conditioned place preference, CalEx mice showed increased place preference for a low ethanol concentration compared to control group. Furthermore, we found that accumbal astrocytic calcium extrusion increased quinine adulterated ethanol drinking. Our findings suggest that diminishing ventral striatum astrocyte calcium activity contributes to compulsive behaviors, ethanol drinking, and enhanced ethanol drug reward.
Collapse
Affiliation(s)
- Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Humza Haroon
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | | | - Hesham Essa
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Robert Bruce
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA; Neuroscience Program, Mayo Clinic College of Medicine and Science, MN, 55905, USA; Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA; Neuroscience Program, Mayo Clinic College of Medicine and Science, MN, 55905, USA; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, 59905, USA.
| |
Collapse
|
2
|
Doyle MA, Taylor A, Winder DG. Neural Circuitries and Alcohol Use Disorder: Cutting Corners in the Cycle. Curr Top Behav Neurosci 2023. [PMID: 38082108 DOI: 10.1007/7854_2023_454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
An implicit tenet of the alcohol use disorder (AUD) research field is that knowledge of how alcohol interacts with the brain is critical to the development of an understanding of vulnerability to AUD and treatment approaches. Gaining this understanding requires the mapping of brain function critical to specific components of this heterogeneous disorder. Early approaches in humans and animal models focused on the determination of specific brain regions sensitive to alcohol action and their participation in AUD-relevant behaviors. Broadly speaking, this research has focused on three domains, Binge/Intoxication, Negative Affect/Withdrawal, and Preoccupation/Anticipation, with a number of regions identified as participating in each. With the generational advances in technologies that the field of neuroscience has undergone over the last two decades, this focus has shifted to a circuit-based analysis. A wealth of new data has sharpened the field's focus on the specific roles of the interconnectivity of multiple brain regions in AUD and AUD-relevant behaviors, as well as demonstrating that the three major domains described above have much fuzzier edges than originally thought.In this chapter, we very briefly review brain regions previously implicated in aspects of AUD-relevant behavior from animal model research. Next, we move to a more in-depth overview of circuit-based approaches, and the utilization of these approaches in current AUD research.
Collapse
Affiliation(s)
- Marie A Doyle
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Anne Taylor
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
3
|
Harmata GIS, Chan AC, Merfeld MJ, Taugher-Hebl RJ, Harijan AK, Hardie JB, Fan R, Long JD, Wang GZ, Dlouhy BJ, Bera AK, Narayanan NS, Wemmie JA. Intoxicating effects of alcohol depend on acid-sensing ion channels. Neuropsychopharmacology 2023; 48:806-815. [PMID: 36243771 PMCID: PMC10066229 DOI: 10.1038/s41386-022-01473-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
Persons at risk for developing alcohol use disorder (AUD) differ in their sensitivity to acute alcohol intoxication. Alcohol effects are complex and thought to depend on multiple mechanisms. Here, we explored whether acid-sensing ion channels (ASICs) might play a role. We tested ASIC function in transfected CHO cells and amygdala principal neurons, and found alcohol potentiated currents mediated by ASIC1A homomeric channels, but not ASIC1A/2 A heteromeric channels. Supporting a role for ASIC1A in the intoxicating effects of alcohol in vivo, we observed marked alcohol-induced changes on local field potentials in basolateral amygdala, which differed significantly in Asic1a-/- mice, particularly in the gamma, delta, and theta frequency ranges. Altered electrophysiological responses to alcohol in mice lacking ASIC1A, were accompanied by changes in multiple behavioral measures. Alcohol administration during amygdala-dependent fear conditioning dramatically diminished context and cue-evoked memory on subsequent days after the alcohol had cleared. There was a significant alcohol by genotype interaction. Context- and cue-evoked memory were notably worse in Asic1a-/- mice. We further examined acute stimulating and sedating effects of alcohol on locomotor activity, loss of righting reflex, and in an acute intoxication severity scale. We found loss of ASIC1A increased the stimulating effects of alcohol and reduced the sedating effects compared to wild-type mice, despite similar blood alcohol levels. Together these observations suggest a novel role for ASIC1A in the acute intoxicating effects of alcohol in mice. They further suggest that ASICs might contribute to intoxicating effects of alcohol and AUD in humans.
Collapse
Affiliation(s)
- Gail I S Harmata
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Pharmacological Sciences Predoctoral Research Training Program, Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Aubrey C Chan
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Madison J Merfeld
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Rebecca J Taugher-Hebl
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Anjit K Harijan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Jason B Hardie
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Rong Fan
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Jeffrey D Long
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Grace Z Wang
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Brian J Dlouhy
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Amal K Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Nandakumar S Narayanan
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - John A Wemmie
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA.
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA.
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA.
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.
- Roy J. Carver Chair of Psychiatry and Neuroscience, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
4
|
Kawashima S, Lou F, Kusumoto-Yoshida I, Hao L, Kuwaki T. Activation of the rostral nucleus accumbens shell by optogenetics induces cataplexy-like behavior in orexin neuron-ablated mice. Sci Rep 2023; 13:2546. [PMID: 36781929 PMCID: PMC9925750 DOI: 10.1038/s41598-023-29488-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Cataplexy is one of the symptoms of type 1 narcolepsy, characterized by a sudden loss of muscle tone. It can be seen as a behavioral index of salience, predominantly positive emotion, since it is triggered by laughter in humans and palatable foods in mice. In our previous study using chemogenetic techniques in narcoleptic mice (orexin neuron-ablated mice), we found that the rostral nucleus accumbens (NAc) shell is needed for chocolate-induced cataplexy. In this study, we investigated whether a short-lasting stimulation/inhibition of the NAc by optogenetics led to a similar result. Photo-illumination to the NAc in the channel rhodopsin-expressing mice showed a higher incidence (34.9 ± 5.1%) of cataplexy-like behavior than the control mice (17.8 ± 3.1%, P = 0.0056). Meanwhile, inactivation with archaerhodopsin did not affect incidence. The episode duration of cataplexy-like behavior was not affected by activation or inactivation. Immunohistochemical analysis revealed that photo-illumination activated channel rhodopsin-expressing NAc shell neurons. Thus, activation of the NAc, whether transient (light stimulation) or longer-lasting (chemical stimulation in our previous study), facilitates cataplexy-like behaviors and contributes to the induction but not maintenance in them. On the other hand, our study's result from optogenetic inhibition of the NAc (no effect) was different from chemogenetic inhibition (reduction of cataplexy-like behavior) in our previous study. We propose that the initiation of cataplexy-like behavior is facilitated by activation of the NAc, while NAc-independent mechanisms determine the termination of the behavior.
Collapse
Affiliation(s)
- Shigetaka Kawashima
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Fan Lou
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
- The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ikue Kusumoto-Yoshida
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
5
|
Ledesma JC, Manzanedo C, Aguilar MA. Cannabidiol prevents several of the behavioral alterations related to cocaine addiction in mice. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110390. [PMID: 34157334 DOI: 10.1016/j.pnpbp.2021.110390] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022]
Abstract
Cocaine dependence is a highly prevalent disease in modern society and lacks an effective treatment. Cannabidiol (CBD), a major non-psychoactive constituent of Cannabis sativa, has been shown to be a promising tool in the management of some neuropsychiatric disorders, including cocaine abuse. However, its therapeutic effects on the behavioral outcomes related to cocaine addiction remain unclear. The present research evaluates the effects of CBD (30, 60 and 120 mg/kg; injected intraperitoneally) on the acquisition, expression, extinction and reinstatement of cocaine (10 mg/kg)-induced conditioned place preference (CPP; Study 1); cocaine (25 mg/kg)-induced locomotor stimulation (Study 2); and cocaine withdrawal symptoms (Study 3) in male C57BL/6 J mice. The results show that CBD does not possess motivational properties in itself and does not modify the acquisition, expression or extinction of cocaine-induced CPP. Interestingly, when administered during the extinction phase of the cocaine-induced CPP, CBD (30 and 60 mg/kg) prevented priming-induced reinstatement of CPP. Moreover, CBD abolished cocaine-induced hyperactivity without altering the spontaneous locomotion of the animals. Furthermore, CBD (120 mg/kg) reduced the memory deficits induced by cocaine withdrawal in the object recognition test, though it did not reverse depressive-like symptoms measured in the tail suspension test. Overall, our data suggest that CBD can prevent the development of cocaine addiction, and, when administered during cocaine abstinence, may be of help in avoiding relapse to drug-seeking and in ameliorating the memory disturbances provoked by chronic consumption of cocaine.
Collapse
Affiliation(s)
- Juan Carlos Ledesma
- Unit of Research 'Neurobehavioural mechanisms and endophenotypes of addictive behaviour', Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - Carmen Manzanedo
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - María A Aguilar
- Unit of Research 'Neurobehavioural mechanisms and endophenotypes of addictive behaviour', Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.
| |
Collapse
|
6
|
Marszalek-Grabska M, Smaga I, Surowka P, Grochecki P, Slowik T, Filip M, Kotlinska JH. Memantine Prevents the WIN 55,212-2 Evoked Cross-Priming of Ethanol-Induced Conditioned Place Preference (CPP). Int J Mol Sci 2021; 22:ijms22157940. [PMID: 34360704 PMCID: PMC8348856 DOI: 10.3390/ijms22157940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
The activation of the endocannabinoid system controls the release of many neurotransmitters involved in the brain reward pathways, including glutamate. Both endocannabinoid and glutamate systems are crucial for alcohol relapse. In the present study, we hypothesize that N-methyl-D-aspartate (NMDA) glutamate receptors regulate the ability of a priming dose of WIN 55,212-2 to cross-reinstate ethanol-induced conditioned place preference (CPP). To test this hypothesis, ethanol-induced (1.0 g/kg, 10% w/v, i.p.) CPP (unbiased method) was established using male adult Wistar rats. After CPP extinction, one group of animals received WIN 55,212-2 (1.0 and 2.0 mg/kg, i.p.), the cannabinoid receptor 1 (CB1) agonist, or ethanol, and the other group received memantine (3.0 or 10 mg/kg, i.p.), the NMDA antagonist and WIN 55,212-2 on the reinstatement day. Our results showed that a priming injection of WIN 55,212-2 (2.0 mg/kg, i.p.) reinstated (cross-reinstated) ethanol-induced CPP with similar efficacy to ethanol. Memantine (3.0 or 10 mg/kg, i.p.) pretreatment blocked this WIN 55,212-2 effect. Furthermore, our experiments indicated that ethanol withdrawal (7 days withdrawal after 10 days ethanol administration) down-regulated the CNR1 (encoding CB1), GRIN1/2A (encoding GluN1 and GluN2A subunit of the NMDA receptor) genes expression in the prefrontal cortex and dorsal striatum, but up-regulated these in the hippocampus, confirming the involvement of these receptors in ethanol rewarding effects. Thus, our results show that the endocannabinoid system is involved in the motivational properties of ethanol, and glutamate may control cannabinoid induced relapse into ethanol seeking behavior.
Collapse
Affiliation(s)
- Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland; (I.S.); (M.F.)
| | - Paulina Surowka
- Affective Cognitive Neuroscience Laboratory, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland;
| | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Tymoteusz Slowik
- Experimental Medicine Center, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland; (I.S.); (M.F.)
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence:
| |
Collapse
|
7
|
Contó MB, Dos Santos NB, Munhoz CD, Marcourakis T, D'Almeida V, Camarini R. Exposure to Running Wheels Prevents Ethanol Rewarding Effects: The Role of CREB and Deacetylases SIRT-1 and SIRT-2 in the Nucleus Accumbens and Prefrontal Cortex. Neuroscience 2021; 469:125-137. [PMID: 34175423 DOI: 10.1016/j.neuroscience.2021.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
Alcohol use disorder is one of the most prevalent addictions, strongly influenced by environmental factors. Voluntary physical activity (VPA) has proven to be intrinsically reinforcing and we hypothesized that, as a non-drug reinforcer, VPA could mitigate ethanol-induced rewarding effects. The transcriptional factor cAMP response element binding protein (CREB), and deacetylases isozymes sirtuins 1 and 2 (SIRT-1 and SIRT-2) have a complex interplay and both play a role in the rewarding effects of ethanol. To test whether the exposure of mice to running wheels inhibits the development of ethanol-induced conditioned place preference (CPP), mice were assigned into four groups: housed in home cages with locked ("Sedentary") or unlocked running wheels (VPA), and treated with saline or 1.8 g/kg ethanol during the conditioning phase. The groups were referred as Saline-Sedentary, Saline-VPA, Ethanol-Sedentary and Ethanol-VPA. The expression of CREB, SIRT-1 and SIRT-2 were evaluated in the prefrontal cortex (PFC) and nucleus accumbens (NAc). VPA prevented the development of ethanol-induced CPP. VPA, ethanol and the combination of both inhibited pCREB and pCREB/CREB ratio in the NAc, suggesting that both reward stimuli can share similar patterns of CREB activation. However, we have found that ethanol-induced increased CREB levels were prevented by VPA. Both VPA groups presented lower SIRT-1 levels in the NAc compared to the Sedentary groups. Thus, exposure to running wheels prevented ethanol-rewarding effects and ethanol-induced increases in CREB in the NAc. The molecular alterations underlying CPP prevention may be related to a lower expression of CREB in the NAc of Ethanol-VPA compared to the respective Sedentary group, given the positive correlation between CPP and CREB levels in the Ethanol-Sedentary group.
Collapse
Affiliation(s)
- Marcos Brandão Contó
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil.
| | - Nilton Barreto Dos Santos
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Carolina Demarchi Munhoz
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Vânia D'Almeida
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Escola Paulista de Medicina (UNIFESP/EPM), Sao Paulo, Brazil
| | - Rosana Camarini
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
8
|
Abstract
Abstract
Purpose of Review
Current theories of alcohol use disorders (AUD) highlight the importance of Pavlovian and instrumental learning processes mainly based on preclinical animal studies. Here, we summarize available evidence for alterations of those processes in human participants with AUD with a focus on habitual versus goal-directed instrumental learning, Pavlovian conditioning, and Pavlovian-to-instrumental transfer (PIT) paradigms.
Recent Findings
The balance between habitual and goal-directed control in AUD participants has been studied using outcome devaluation or sequential decision-making procedures, which have found some evidence of reduced goal-directed/model-based control, but little evidence for stronger habitual responding. The employed Pavlovian learning and PIT paradigms have shown considerable differences regarding experimental procedures, e.g., alcohol-related or conventional reinforcers or stimuli.
Summary
While studies of basic learning processes in human participants with AUD support a role of Pavlovian and instrumental learning mechanisms in the development and maintenance of drug addiction, current studies are characterized by large variability regarding methodology, sample characteristics, and results, and translation from animal paradigms to human research remains challenging. Longitudinal approaches with reliable and ecologically valid paradigms of Pavlovian and instrumental processes, including alcohol-related cues and outcomes, are warranted and should be combined with state-of-the-art imaging techniques, computational approaches, and ecological momentary assessment methods.
Collapse
|
9
|
Kong Q, Li Y, Yue J, Wu X, Xu M. Reducing alcohol and/or cocaine-induced reward and toxicity via an epidermal stem cell-based gene delivery platform. Mol Psychiatry 2021; 26:5266-5276. [PMID: 33619338 PMCID: PMC8380265 DOI: 10.1038/s41380-021-01043-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Alcohol use disorder (AUD) is one of the foremost public health problems. Alcohol is also frequently co-abused with cocaine. There is a huge unmet need for the treatment of AUD and/or cocaine co-abuse. We recently demonstrated that skin grafts generated from mouse epidermal stem cells that had been engineered by CRISPR-mediated genome editing could be transplanted onto mice as a gene delivery platform. Here, we show that expression of the glucagon-like peptide-1 (GLP1) gene delivered by epidermal stem cells attenuated development and reinstatement of alcohol-induced drug-taking and seeking as well as voluntary oral alcohol consumption. GLP1 derived from the skin grafts decreased alcohol-induced increase in dopamine levels in the nucleus accumbens. In exploring the potential of this platform in reducing concurrent use of drugs, we developed a novel co-grafting procedure for both modified human butyrylcholinesterase (hBChE)- and GLP1-expressing cells. Epidermal stem cell-derived hBChE and GLP1 reduced acquisition of drug-taking and toxicity induced by alcohol and cocaine co-administration. These results imply that cutaneous gene delivery through skin transplants may add a new option to treat drug abuse and co-abuse.
Collapse
Affiliation(s)
- Qingyao Kong
- grid.170205.10000 0004 1936 7822Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL USA
| | - Yuanyuan Li
- grid.170205.10000 0004 1936 7822Ben May Department for Cancer Research, The University of Chicago, Chicago, IL USA
| | - Jiping Yue
- grid.170205.10000 0004 1936 7822Ben May Department for Cancer Research, The University of Chicago, Chicago, IL USA
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA.
| | - Ming Xu
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
10
|
Amaral VCS, Morais-Silva G, Laverde CF, Marin MT. Susceptibility to extinction and reinstatement of ethanol-induced conditioned place preference is related to differences in astrocyte cystine-glutamate antiporter content. Neurosci Res 2020; 170:245-254. [PMID: 32653617 DOI: 10.1016/j.neures.2020.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 12/25/2022]
Abstract
Individual susceptibility to alcohol effects plays an important role in the development of alcohol addiction and studies have shown that glutamate release is altered after chronic ethanol consumption. The cystine-glutamate antiporter (xCT) is a protein that regulates glutamate release. However, little is known about the relationship between xCT levels and this individual susceptibility. Thus, this study aimed to evaluate the relationship between the extinction and stress-induced reinstatement of ethanol conditioned place preference (CPP) and xCT levels in the medial prefrontal cortex (mPFC), nucleus accumbens (NAcc) and amygdala (Amy). Male Swiss mice were submitted to a CPP procedure followed by an extinction protocol and then identified as those which extinguished the CPP and those that did not. In another cohort, mice that extinguished the CPP were submitted to a protocol of stress-induced reinstatement. Immediately after the tests, brains were removed for xCT quantification. The xCT levels were significantly lower in the mPFC and NAcc of mice that did not extinguish CPP. Moreover, mice that were susceptible to stress-induced reinstatement of CPP had lower levels of xCT in the NAcc. Our results suggest that individual susceptibility to the extinction and reinstatement of ethanol CPP is related to alterations in xCT levels.
Collapse
Affiliation(s)
- Vanessa Cristiane Santana Amaral
- Laboratory of Pharmacology and Toxicology of Natural and Synthetic Products, State University of Goias, Exact and Technological Sciences Campus, Anapolis, GO, Brazil; São Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, SP, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, São Carlos/Araraquara, SP, Brazil
| | - Gessynger Morais-Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, SP, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, São Carlos/Araraquara, SP, Brazil
| | - Celina F Laverde
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, SP, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, São Carlos/Araraquara, SP, Brazil
| | - Marcelo T Marin
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, SP, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, São Carlos/Araraquara, SP, Brazil.
| |
Collapse
|
11
|
Cofresí RU, Bartholow BD, Piasecki TM. Evidence for incentive salience sensitization as a pathway to alcohol use disorder. Neurosci Biobehav Rev 2019; 107:897-926. [PMID: 31672617 PMCID: PMC6878895 DOI: 10.1016/j.neubiorev.2019.10.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
The incentive salience sensitization (ISS) theory of addiction holds that addictive behavior stems from the ability of drugs to progressively sensitize the brain circuitry that mediates attribution of incentive salience (IS) to reward-predictive cues and its behavioral manifestations. In this article, we establish the plausibility of ISS as an etiological pathway to alcohol use disorder (AUD). We provide a comprehensive and critical review of evidence for: (1) the ability of alcohol to sensitize the brain circuitry of IS attribution and expression; and (2) attribution of IS to alcohol-predictive cues and its sensitization in humans and non-human animals. We point out gaps in the literature and how these might be addressed. We also highlight how individuals with different alcohol subjective response phenotypes may differ in susceptibility to ISS as a pathway to AUD. Finally, we discuss important implications of this neuropsychological mechanism in AUD for psychological and pharmacological interventions attempting to attenuate alcohol craving and cue reactivity.
Collapse
Affiliation(s)
- Roberto U Cofresí
- University of Missouri, Department of Psychological Sciences, Columbia, MO 65211, United States.
| | - Bruce D Bartholow
- University of Missouri, Department of Psychological Sciences, Columbia, MO 65211, United States
| | - Thomas M Piasecki
- University of Missouri, Department of Psychological Sciences, Columbia, MO 65211, United States
| |
Collapse
|
12
|
Sampedro-Piquero P, Ávila-Gámiz F, Moreno Fernández RD, Castilla-Ortega E, Santín LJ. The presence of a social stimulus reduces cocaine-seeking in a place preference conditioning paradigm. J Psychopharmacol 2019; 33:1501-1511. [PMID: 31542987 DOI: 10.1177/0269881119874414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND One challenge in the treatment of substance use disorders is to re-engage the interest toward non-drug-related activities. Among these activities, social interaction has had a prominent role due to its positive influence on treatment outcome. AIMS AND METHODS Our aim was to study whether the presence of a social stimulus during the cocaine-induced conditioned place preference test was able to reduce the time spent in the drug-paired compartment. For that purpose, mice were trained for four days on a conditioned place preference task with one compartment paired with cocaine and the opposite with saline. On the test day, we introduced an unfamiliar juvenile male mouse into the saline-conditioned compartment (inside a pencil cup) to analyse the animal preference towards the two rewarding stimuli (cocaine vs mouse). Additionally, to discard the possible effect of novelty, as well as the housing condition (social isolation) on social preference, we decided to include a novel object during the test session, as well as perform the same conditioned place preference protocol with a group of animals in social housing conditions. RESULTS The social stimulus was able to reduce the preference for cocaine and enhance the active interaction with the juvenile mouse (sniffing) compared to the empty pencil cup paired with the drug. The introduction of a novel object during the test session did not reduce the preference for the cocaine-paired compartment, and interestingly, the preference for the social stimulus was independent of the housing condition. c-Fos immunohistochemistry revealed a different pattern of activation based on cocaine-paired conditioning or the presence of social stimulus. CONCLUSIONS These results suggest that social interaction could constitute a valuable component in the treatment of substance use disorders by reducing the salience of the drug.
Collapse
Affiliation(s)
- Patricia Sampedro-Piquero
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Malaga, Spain
| | - Fabiola Ávila-Gámiz
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Malaga, Spain
| | - Román D Moreno Fernández
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Malaga, Spain
| | - Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.,Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Malaga, Spain
| | - Luis J Santín
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Malaga, Spain
| |
Collapse
|
13
|
Sampedro-Piquero P, Ladrón de Guevara-Miranda D, Pavón FJ, Serrano A, Suárez J, Rodríguez de Fonseca F, Santín LJ, Castilla-Ortega E. Neuroplastic and cognitive impairment in substance use disorders: a therapeutic potential of cognitive stimulation. Neurosci Biobehav Rev 2019; 106:23-48. [DOI: 10.1016/j.neubiorev.2018.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/15/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023]
|
14
|
Miguel E, Vekovischeva O, Kuokkanen K, Vesajoki M, Paasikoski N, Kaskinoro J, Myllymäki M, Lainiola M, Janhunen SK, Hyytiä P, Linden A, Korpi ER. GABA B receptor positive allosteric modulators with different efficacies affect neuroadaptation to and self-administration of alcohol and cocaine. Addict Biol 2019; 24:1191-1203. [PMID: 30421860 DOI: 10.1111/adb.12688] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 01/14/2023]
Abstract
Drugs of abuse induce widespread synaptic adaptations in the mesolimbic dopamine (DA) neurons. Such drug-induced neuroadaptations may constitute an initial cellular mechanism eventually leading to compulsive drug-seeking behavior. To evaluate the impact of GABAB receptors on addiction-related persistent neuroplasticity, we tested the ability of orthosteric agonist baclofen and two positive allosteric modulators (PAMs) of GABAB receptors to suppress neuroadaptations in the ventral tegmental area (VTA) and reward-related behaviors induced by ethanol and cocaine. A novel compound (S)-1-(5-fluoro-2,3-dihydro-1H-inden-2-yl)-4-methyl-6,7,8,9-tetrahydro-[1,2,4]triazolo[4,3-a]quinazolin-5(4H)-one (ORM-27669) was found to be a GABAB PAM of low efficacy as agonist, whereas the reference compound (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one (rac-BHFF) had a different allosteric profile being a more potent PAM in the calcium-based assay and an agonist, coupled with potent PAM activity, in the [35 S] GTPγS binding assay in rat and human recombinant receptors. Using autoradiography, the high-efficacy rac-BHFF and the low-efficacy ORM-27669 potentiated the effects of baclofen on [35 S] GTPγS binding with identical brain regional distribution. Treatment of mice with baclofen, rac-BHFF, or ORM-27669 failed to induce glutamate receptor neuroplasticity in the VTA DA neurons. Pretreatment with rac-BHFF at non-sedative doses effectively reversed both ethanol- and cocaine-induced plasticity and attenuated cocaine i.v. self-administration and ethanol drinking. Pretreatment with ORM-27669 only reversed ethanol-induced neuroplasticity and attenuated ethanol drinking but had no effects on cocaine-induced neuroplasticity or self-administration. These findings encourage further investigation of GABAB receptor PAMs with different efficacies in addiction models to develop novel treatment strategies for drug addiction.
Collapse
Affiliation(s)
- Elena Miguel
- Department of Pharmacology, Faculty of MedicineUniversity of Helsinki Finland
| | - Olga Vekovischeva
- Department of Pharmacology, Faculty of MedicineUniversity of Helsinki Finland
| | - Katja Kuokkanen
- Research and Development, Orion Pharma, Orion Corporation Finland
| | - Marja Vesajoki
- Research and Development, Orion Pharma, Orion Corporation Finland
| | - Nelli Paasikoski
- Department of Pharmacology, Faculty of MedicineUniversity of Helsinki Finland
| | - Janne Kaskinoro
- Research and Development, Orion Pharma, Orion Corporation Finland
| | - Mikko Myllymäki
- Research and Development, Orion Pharma, Orion Corporation Finland
| | - Mira Lainiola
- Department of Pharmacology, Faculty of MedicineUniversity of Helsinki Finland
| | | | - Petri Hyytiä
- Department of Pharmacology, Faculty of MedicineUniversity of Helsinki Finland
| | - Anni‐Maija Linden
- Department of Pharmacology, Faculty of MedicineUniversity of Helsinki Finland
| | - Esa R. Korpi
- Department of Pharmacology, Faculty of MedicineUniversity of Helsinki Finland
| |
Collapse
|
15
|
Renteria R, Buske TR, Morrisett RA. Long-term subregion-specific encoding of enhanced ethanol intake by D1DR medium spiny neurons of the nucleus accumbens. Addict Biol 2018; 23:689-698. [PMID: 28656742 DOI: 10.1111/adb.12526] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/10/2017] [Accepted: 05/03/2017] [Indexed: 12/22/2022]
Abstract
The nucleus accumbens (NAc) is a critical component of the mesocorticolimbic system and is involved in mediating the motivational and reinforcing aspects of ethanol consumption. Chronic intermittent ethanol (CIE) exposure is a reliable model to induce ethanol dependence and increase volitional ethanol consumption in mice. Following a CIE-induced escalation of ethanol consumption, NMDAR (N-methyl-D-aspartate receptor)-dependent long-term depression in D1 dopamine receptor expressing medium spiny neurons of the NAc shell was markedly altered with no changes in plasticity in D1 dopamine receptor medium spiny neurons from the NAc core. This disruption of plasticity persisted for up to 2 weeks after cessation of ethanol access. To determine if changes in AMPA receptor (AMPAR) composition contribute to this ethanol-induced neuroadaptation, we monitored the rectification of AMPAR excitatory postsynaptic currents (EPSCs). We observed a marked decrease in the rectification index in the NAc shell, suggesting the presence of GluA2-lacking AMPARs. There was no change in the amplitude of spontaneous EPSCs (sEPSCs), but there was a transient increase in sEPSC frequency in the NAc shell. Using the paired pulse ratio, we detected a similar transient increase in the probability of neurotransmitter release. With no change in sEPSC amplitude, the change in the rectification index suggests that GluA2-containing AMPARs are removed and replaced with GluA2-lacking AMPARs in the NAc shell. This CIE-induced alteration in AMPAR subunit composition may contribute to the loss of NMDAR-dependent long-term depression in the NAc shell and therefore may constitute a critical neuroadaptive response underlying the escalation of ethanol intake in the CIE model.
Collapse
Affiliation(s)
- Rafael Renteria
- Institute for Neuroscience; The University of Texas at Austin; Austin Texas USA
| | - Tavanna R. Buske
- The College of Pharmacy; The University of Texas at Austin; Austin Texas USA
| | - Richard A. Morrisett
- Institute for Neuroscience; The University of Texas at Austin; Austin Texas USA
- The College of Pharmacy; The University of Texas at Austin; Austin Texas USA
- Waggoner Center for Alcohol and Addiction Research; The University of Texas at Austin; Austin Texas USA
| |
Collapse
|
16
|
Klenowski PM, Tapper AR. Molecular, Neuronal, and Behavioral Effects of Ethanol and Nicotine Interactions. Handb Exp Pharmacol 2018; 248:187-212. [PMID: 29423839 DOI: 10.1007/164_2017_89] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Silva AAF, Barbosa-Souza E, Confessor-Carvalho C, Silva RRR, De Brito ACL, Cata-Preta EG, Silva Oliveira T, Berro LF, Oliveira-Lima AJ, Marinho EAV. Context-dependent effects of rimonabant on ethanol-induced conditioned place preference in female mice. Drug Alcohol Depend 2017; 179:317-324. [PMID: 28837947 DOI: 10.1016/j.drugalcdep.2017.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/12/2017] [Accepted: 07/20/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND The CB1 receptor antagonist rimonabant has been previously found to prevent behavioral effects of drugs of abuse in a context-dependent manner, suggesting an important role of endocannabinoid signaling in drug-induced environmental conditioning. The aim of the present study was to evaluate the effects of rimonabant on ethanol-induced conditioned place preference (CPP) in female mice. METHODS Animals were conditioned with saline or ethanol (1.8g/kg) during 8 sessions, and subsequently treated with either saline or rimonabant (1 or 10mg/kg) in the CPP environment previously associated with saline (unpaired) or ethanol (paired) for 6 consecutive days. Animals were then challenged with ethanol (1.8g/kg) in the ethanol-paired environment and ethanol-induced CPP was quantified on the following day. RESULTS While treatment with 1mg/kg rimonabant in the saline-associated environment had no effects on the subsequent expression of ethanol-induced CPP, it blocked the expression of CPP to ethanol when paired to the ethanol-associated environment. When given in the ethanol-paired environment, 10mg/kg rimonabant induced aversion to the ethanol-associated environment. The same aversion effect was observed for 10mg/kg rimonabant when given in the saline-associated environment, thereby potentiating the expression of ethanol-induced CPP. Importantly, rimonabant did not induce CPP or conditioned place aversion on its own. Controlling for the estrous cycle phase showed no influences of hormonal cycle on the development and expression of ethanol-induced CPP. CONCLUSIONS Our data suggest that rimonabant reduces the rewarding properties of ethanol by abolishing drug-environment conditioning in the CPP paradigm in a context-dependent manner.
Collapse
Affiliation(s)
- Aline A F Silva
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Evelyn Barbosa-Souza
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Cassio Confessor-Carvalho
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Raiany R R Silva
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Ana Carolina L De Brito
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Elisangela G Cata-Preta
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Thaynara Silva Oliveira
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Lais F Berro
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA.
| | - Alexandre J Oliveira-Lima
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Eduardo A V Marinho
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil.
| |
Collapse
|
18
|
Millan EZ, Kim HA, Janak PH. Optogenetic activation of amygdala projections to nucleus accumbens can arrest conditioned and unconditioned alcohol consummatory behavior. Neuroscience 2017; 360:106-117. [PMID: 28757250 PMCID: PMC5752133 DOI: 10.1016/j.neuroscience.2017.07.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 11/25/2022]
Abstract
Following a Pavlovian pairing procedure, alcohol-paired cues come to elicit behavioral responses that lead to alcohol consumption. Here we used an optogenetic approach to activate basolateral amygdala (BLA) axonal terminals targeting the shell of nucleus accumbens (AcbSh) and investigated a possible influence over cue-conditioned alcohol seeking and alcohol drinking, based on the demonstrated roles of these areas in behavioral responding to Pavlovian cues and in feeding behavior. Rats were trained to anticipate alcohol or sucrose following the onset of a discrete conditioned stimulus (CS). Channelrhodopsin-mediated activation of the BLA-to-AcbSh pathway concurrent with each CS disrupted cued alcohol seeking. Activation of the same pathway caused rapid cessation of alcohol drinking from a sipper tube. Neither effect was accompanied by an overall change in locomotion. Finally, the suppressive effect of photoactivation on cued-triggered seeking was also evidenced in animals trained with sucrose. Together these findings suggest that photoactivation of BLA terminals in the AcbSh can override the conditioned motivational properties of reward-predictive cues as well as unconditioned consummatory responses necessary for alcohol drinking. The findings provide evidence for a limbic-striatal influence over motivated behavior for orally consumed rewards, including alcohol.
Collapse
Affiliation(s)
- E Zayra Millan
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore MD 21218, United States.
| | - H Amy Kim
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore MD 21218, United States
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore MD 21218, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore MD 21205, United States.
| |
Collapse
|
19
|
Jordan CJ, Andersen SL. Sensitive periods of substance abuse: Early risk for the transition to dependence. Dev Cogn Neurosci 2016; 25:29-44. [PMID: 27840157 PMCID: PMC5410194 DOI: 10.1016/j.dcn.2016.10.004] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 12/20/2022] Open
Abstract
Early substance use dramatically increases the risk of substance use disorder (SUD). Although many try drugs, only a small percentage transition to SUD. High reactivity of reward, habit, and stress systems increase risk. Identification of early risk enables targeted, preventative interventions for SUD. Prevention must start before the sensitive adolescent period to maximize resilience.
Early adolescent substance use dramatically increases the risk of lifelong substance use disorder (SUD). An adolescent sensitive period evolved to allow the development of risk-taking traits that aid in survival; today these may manifest as a vulnerability to drugs of abuse. Early substance use interferes with ongoing neurodevelopment to induce neurobiological changes that further augment SUD risk. Although many individuals use drugs recreationally, only a small percentage transition to SUD. Current theories on the etiology of addiction can lend insights into the risk factors that increase vulnerability from early recreational use to addiction. Building on the work of others, we suggest individual risk for SUD emerges from an immature PFC combined with hyper-reactivity of reward salience, habit, and stress systems. Early identification of risk factors is critical to reducing the occurrence of SUD. We suggest preventative interventions for SUD that can be either tailored to individual risk profiles and/or implemented broadly, prior to the sensitive adolescent period, to maximize resilience to developing substance dependence. Recommendations for future research include a focus on the juvenile and adolescent periods as well as on sex differences to better understand early risk and identify the most efficacious preventions for SUD.
Collapse
Affiliation(s)
- Chloe J Jordan
- Department of Psychiatry, Mclean Hospital/Harvard Medical School, Belmont, MA 02478, United States.
| | - Susan L Andersen
- Department of Psychiatry, Mclean Hospital/Harvard Medical School, Belmont, MA 02478, United States
| |
Collapse
|
20
|
Spoelder M, Hesseling P, Styles M, Baars AM, Lozeman-van 't Klooster JG, Lesscher HMB, Vanderschuren LJMJ. Dopaminergic neurotransmission in ventral and dorsal striatum differentially modulates alcohol reinforcement. Eur J Neurosci 2016; 45:147-158. [PMID: 27521051 DOI: 10.1111/ejn.13358] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 01/18/2023]
Abstract
Dopaminergic neurotransmission in the striatum has been widely implicated in the reinforcing properties of substances of abuse. However, the striatum is functionally heterogeneous, and previous work has mostly focused on psychostimulant drugs. Therefore, we investigated how dopamine within striatal subregions modulates alcohol-directed behaviour in rats. We assessed the effects of infusion of the dopamine receptor antagonist alpha-flupenthixol into the shell and core of the nucleus accumbens (NAcc) and the dorsolateral striatum (DLS) on responding for alcohol under fixed ratio 1 (FR1) and progressive ratio (PR) schedules of reinforcement. Bilateral infusion of alpha-flupenthixol into the NAcc shell reduced responding for alcohol under both the FR1 (15 μg/side) and the PR schedule (3.75-15 μg/side) of reinforcement. Infusion of alpha-flupenthixol into the NAcc core (7.5-15 μg/side) also decreased responding for alcohol under both schedules. By contrast, alpha-flupenthixol infusion into the DLS did not affect FR1 responding, but reduced responding under the PR schedule (15 μg/side). The decreases in responding were related to earlier termination of responding during the session, whereas the onset and rate of responding remained largely unaffected. Together, these data suggest that dopamine in the NAcc shell is involved in the incentive motivation for alcohol, whereas DLS dopamine comes into play when obtaining alcohol requires high levels of effort. In contrast, NAcc core dopamine appears to play a more general role in alcohol reinforcement. In conclusion, dopaminergic neurotransmission acts in concert in subregions of the striatum to modulate different aspects of alcohol-directed behaviour.
Collapse
Affiliation(s)
- Marcia Spoelder
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Peter Hesseling
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Matthew Styles
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Annemarie M Baars
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - José G Lozeman-van 't Klooster
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Heidi M B Lesscher
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| |
Collapse
|
21
|
Lee JY, Choe ES, Yang CH, Choi KH, Cheong JH, Jang CG, Seo JW, Yoon SS. The mGluR5 antagonist MPEP suppresses the expression and reinstatement, but not the acquisition, of the ethanol-conditioned place preference in mice. Pharmacol Biochem Behav 2016; 140:33-8. [DOI: 10.1016/j.pbb.2015.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/05/2015] [Accepted: 10/23/2015] [Indexed: 01/29/2023]
|
22
|
Barker JM, Corbit LH, Robinson DL, Gremel CM, Gonzales RA, Chandler LJ. Corticostriatal circuitry and habitual ethanol seeking. Alcohol 2015; 49:817-24. [PMID: 26059221 PMCID: PMC4644517 DOI: 10.1016/j.alcohol.2015.03.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/22/2015] [Accepted: 03/26/2015] [Indexed: 01/01/2023]
Abstract
The development of alcohol-use disorders is thought to involve a transition from casual alcohol use to uncontrolled alcohol-seeking behavior. This review will highlight evidence suggesting that the shift toward inflexible alcohol seeking that occurs across the development of addiction consists, in part, of a progression from goal-directed to habitual behaviors. This shift in "response strategy" is thought to be largely regulated by corticostriatal network activity. Indeed, specific neuroanatomical substrates within the prefrontal cortex and the striatum have been identified as playing opposing roles in the expression of actions and habits. A majority of the research on the neurobiology of habitual behavior has focused on non-drug reward seeking. Here, we will highlight recent research identifying corticostriatal structures that regulate the expression of habitual alcohol seeking and a comparison will be made when possible to findings for non-drug rewards.
Collapse
Affiliation(s)
- Jacqueline M Barker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Laura H Corbit
- School of Psychology, University of Sydney, Sydney, Australia
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Christina M Gremel
- Department of Psychology, Neuroscience Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Rueben A Gonzales
- Department of Pharmacology, The University of Texas at Austin, Austin, TX, USA
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
23
|
Sciascia JM, Reese RM, Janak PH, Chaudhri N. Alcohol-Seeking Triggered by Discrete Pavlovian Cues is Invigorated by Alcohol Contexts and Mediated by Glutamate Signaling in the Basolateral Amygdala. Neuropsychopharmacology 2015; 40:2801-12. [PMID: 25953360 PMCID: PMC4864656 DOI: 10.1038/npp.2015.130] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 01/12/2023]
Abstract
The environmental context in which a discrete Pavlovian conditioned stimulus (CS) is experienced can profoundly impact conditioned responding elicited by the CS. We hypothesized that alcohol-seeking behavior elicited by a discrete CS that predicted alcohol would be influenced by context and require glutamate signaling in the basolateral amygdala (BLA). Male, Long-Evans rats were allowed to drink 15% ethanol (v/v) until consumption stabilized. Next, rats received Pavlovian conditioning sessions in which a 10 s CS (15 trials/session) was paired with ethanol (0.2 ml/CS). Entries into a port where ethanol was delivered were measured. Pavlovian conditioning occurred in a specific context (alcohol context) and was alternated with sessions in a different context (non-alcohol context) where neither the CS nor ethanol was presented. At test, the CS was presented without ethanol in the alcohol context or the non-alcohol context, following a bilateral microinfusion (0.3 μl/hemisphere) of saline or the AMPA glutamate receptor antagonist NBQX (2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium salt) in the BLA (0, 0.3, or 1.0 μg/0.3 μl). The effect of NBQX (0, 0.3 μg/0.3 μl) in the caudate putamen (CPu) on CS responding in the non-alcohol context was also tested. The discrete alcohol CS triggered more alcohol-seeking behavior in the alcohol context than the non-alcohol context. NBQX in the BLA reduced CS responding in both contexts but had no effect in the CPu. These data indicate that AMPA glutamate receptors in the BLA are critical for alcohol-seeking elicited by a discrete CS and that behavior triggered by the CS is strongly invigorated by an alcohol context.
Collapse
Affiliation(s)
- Joanna M Sciascia
- Center for Studies in Behavioral Neurobiology/FRQS Groupe de Recherche en Neurobiologie Comportementale, Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Rebecca M Reese
- Departments of Psychological and Brain Sciences and Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Patricia H Janak
- Departments of Psychological and Brain Sciences and Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Nadia Chaudhri
- Center for Studies in Behavioral Neurobiology/FRQS Groupe de Recherche en Neurobiologie Comportementale, Department of Psychology, Concordia University, Montreal, QC, Canada,Center for Studies in Behavioral Neurobiology/FRQS Groupe de Recherche en Neurobiologie Comportementale (CSBN/GRNC), Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Room SP 244, Montreal, QC H4B-1R6, Canada, Tel: +1 514 848 2424 x 2216, Fax: +1 514 848 4545, E-mail:
| |
Collapse
|
24
|
Effects of high-frequency stimulation of the nucleus accumbens on the development and expression of ethanol sensitization in mice. Behav Pharmacol 2015; 26:184-92. [DOI: 10.1097/fbp.0000000000000033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Stimulant and motivational effects of alcohol: Lessons from rodent and primate models. Pharmacol Biochem Behav 2014; 122:37-52. [DOI: 10.1016/j.pbb.2014.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 11/22/2022]
|
26
|
Zhou Y, Kreek MJ. Alcohol: a stimulant activating brain stress responsive systems with persistent neuroadaptation. Neuropharmacology 2014; 87:51-8. [PMID: 24929109 DOI: 10.1016/j.neuropharm.2014.05.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/08/2014] [Accepted: 05/19/2014] [Indexed: 01/08/2023]
Abstract
Addictive diseases, including addiction to alcohol, opiates or cocaine, pose massive public health costs. Addictions are chronic relapsing brain diseases, caused by drug-induced direct effects and persistent neuroadaptations at the molecular, cellular and behavioral levels. These drug-type specific neuroadapations are mainly contributed by three factors: environment, including stress, the direct reinforcing effects of the drug on the CNS, and genetics. Results from animal models and basic clinical research (including human genetic study) have shown important interactions between the stress responsive systems and alcohol abuse. In this review we will discuss the involvement of the dysregulation of the stress responsive hypothalamic-pituitary-adrenal (HPA) axis in alcohol addiction (Section I). Addictions to specific drugs such as alcohol, psychostimulants and opiates (e.g., heroin) have some common direct or downstream effects on several brain stress-responsive systems, including vasopressin and its receptor system (Section II), POMC and mu opioid receptor system (Section III) and dynorphin and kappa opioid receptor systems (Section IV). Further understanding of these systems, through laboratory-based and translational studies, have the potential to optimize early interventions and to discover new treatment targets for the therapy of alcoholism. This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
27
|
Moreira-Silva D, Morais-Silva G, Fernandes-Santos J, Planeta CS, Marin MT. Stress Abolishes the Effect of Previous Chronic Ethanol Consumption on Drug Place Preference and on the Mesocorticolimbic Brain Pathway. Alcohol Clin Exp Res 2014; 38:1227-36. [DOI: 10.1111/acer.12388] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 01/10/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Daniel Moreira-Silva
- Institute of Biomedical Sciences ; Federal University of Uberlândia (UFU); Uberlândia Brazil
| | - Gessynger Morais-Silva
- Institute of Biomedical Sciences ; Federal University of Uberlândia (UFU); Uberlândia Brazil
| | | | - Cleopatra S. Planeta
- Laboratory of Pharmacology ; School of Pharmaceutical Sciences; Univ. Estadual Paulista (UNESP); Araraquara Brazil
| | - Marcelo T. Marin
- Institute of Biomedical Sciences ; Federal University of Uberlândia (UFU); Uberlândia Brazil
- Laboratory of Pharmacology ; School of Pharmaceutical Sciences; Univ. Estadual Paulista (UNESP); Araraquara Brazil
| |
Collapse
|
28
|
Cassataro D, Bergfeldt D, Malekian C, Van Snellenberg JX, Thanos PK, Fishell G, Sjulson L. Reverse pharmacogenetic modulation of the nucleus accumbens reduces ethanol consumption in a limited access paradigm. Neuropsychopharmacology 2014; 39:283-90. [PMID: 23903031 PMCID: PMC3870771 DOI: 10.1038/npp.2013.184] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 01/15/2023]
Abstract
Bilateral stereotactic lesioning of the nucleus accumbens (NAc) core reduces relapse rates in alcohol-dependent patients but may cause irreversible cognitive deficits. Deep brain stimulation has similar effects but requires costly implanted hardware and regular surgical maintenance. Therefore, there is considerable interest in refining these approaches to develop reversible, minimally invasive treatments for alcohol dependence. Toward this end, we evaluated the feasibility of a reverse pharmacogenetic approach in a preclinical mouse model. We first assessed the predictive validity of a limited access ethanol consumption paradigm by confirming that electrolytic lesions of the NAc core decreased ethanol consumption, recapitulating the effects of similar lesions in humans. We then used this paradigm to test the effect of modulating activity in the NAc using the Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) hM3Dq and hM4Di. We found that increasing activity with hM3Dq had no effect, but suppressing activity with hM4Di reduced alcohol consumption to a similar extent as lesioning without affecting consumption of water or sucrose. These results may represent early steps toward a novel neurosurgical treatment modality for alcohol dependence that is reversible and externally titratable, yet highly targetable and less invasive than current approaches such as lesioning or deep brain stimulation.
Collapse
Affiliation(s)
- Daniela Cassataro
- Department of Psychiatry, NYU School of Medicine, New York, NY, USA,Department of Neuroscience and Physiology, Smilow Neuroscience Program, NYU Neuroscience Institute, New York, NY, USA
| | - Daniella Bergfeldt
- Department of Neuroscience and Physiology, Smilow Neuroscience Program, NYU Neuroscience Institute, New York, NY, USA,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Cariz Malekian
- Department of Neuroscience and Physiology, Smilow Neuroscience Program, NYU Neuroscience Institute, New York, NY, USA,Department of Medicine, Uppsala Biomedicinska Centrum, Uppsala University, Polacksbacken, Sweden
| | - Jared X Van Snellenberg
- Department of Psychiatry, Division of Translational Imaging, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, NY, USA
| | - Panayotis K Thanos
- Neuroimaging Laboratory, NIAAA Intramural Program, NIH, Bethesda, MD, USA,Department of Medicine, Behavioral Pharmacology and Neuroimaging Laboratory, Brookhaven National Laboratory, Upton, NY, USA
| | - Gord Fishell
- Department of Neuroscience and Physiology, Smilow Neuroscience Program, NYU Neuroscience Institute, New York, NY, USA
| | - Lucas Sjulson
- Department of Psychiatry, NYU School of Medicine, New York, NY, USA,Department of Neuroscience and Physiology, Smilow Neuroscience Program, NYU Neuroscience Institute, New York, NY, USA,Department of Psychiatry, NYU School of Medicine, Smilow 507, 522 1st Avenue, New York, NY 10016, USA, Tel: +1 646 528 9672, Fax: +1 212 263 9170, E-mail:
| |
Collapse
|
29
|
Central effects of ethanol interact with endogenous mu-opioid activity to control isolation-induced analgesia in maternally separated infant rats. Behav Brain Res 2013; 260:119-30. [PMID: 24315831 DOI: 10.1016/j.bbr.2013.11.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 12/23/2022]
Abstract
Endogenous opioid activity plays an important role in ethanol consumption and reinforcement in infant rats. Opioid systems are also involved in mediation and regulation of stress responses. Social isolation is a stressful experience for preweanling rats and changes the effects of ethanol through opioid-dependent mechanisms. The present study assessed effects of intracisternal (i.c.) administration of a selective mu-opioid antagonist (CTOP) and i.p. administration of a nonspecific opioid antagonist (naloxone) on voluntary intake and behavior in socially isolated 12-day-old (P12) pups treated with 0.5 g/kg ethanol. Voluntary intake of 0.1% saccharin or water, locomotion, rearing activity, paw licking and grooming were assessed during short-term isolation from littermates (STSI; 8-min duration). Thermal nociceptive reactivity was measured before and after this intake test, with normalized differences between pre- and post-test latencies of paw withdrawal from a hot plate (49°C) used as an index of isolation-induced analgesia (IIA). Results indicated several effects of social isolation and ethanol mediated through the mu-opioid system. Effects of low dose ethanol (0.5 g/kg) and voluntary consumption of saccharin interacted with endogenous mu-opioid activity associated with STSI. Blockade of mu-opioid receptors on saccharin consumption and paw licking-grooming affected intoxicated animals. Low dose ethanol and ingestion of saccharin blunted effects of CTOP on rearing behavior and nociceptive reactivity. Central injections of CTOP stimulated paw licking and grooming dependent on ethanol dose and type of fluid ingested. Ethanol selectively increased saccharin intake during STSI in females, naloxone and CTOP blocked ethanol-mediated enhancement of saccharin intake. We suggest that enhancement of saccharin intake by ethanol during STSI is the product of synergism between isolation-induced mu-opioid activity that increases the pup's sensitivity to appetitive taste stimulation and the anxiolytic effects of 0.5 g/kg ethanol that decreases behaviors otherwise competing with independent ingestive activity.
Collapse
|
30
|
Chaudhri N, Woods CA, Sahuque LL, Gill TM, Janak PH. Unilateral inactivation of the basolateral amygdala attenuates context-induced renewal of Pavlovian-conditioned alcohol-seeking. Eur J Neurosci 2013; 38:2751-61. [PMID: 23758059 PMCID: PMC4079556 DOI: 10.1111/ejn.12278] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 12/01/2022]
Abstract
Environmental contexts associated with drug use promote craving in humans and drug-seeking in animals. We hypothesized that the basolateral amygdala (BLA) itself as well as serial connectivity between the BLA and nucleus accumbens core (NAC core) were required for context-induced renewal of Pavlovian-conditioned alcohol-seeking. Male Long-Evans rats were trained to discriminate between two conditioned stimuli (CS): a CS+ that was paired with ethanol (EtOH, 20%, v/v) delivery into a fluid port (0.2 mL/CS+, 3.2 mL per session) and a CS- that was not. Entries into the port during each CS were measured. Next, rats received extinction in a different context where both cues were presented without EtOH. At test, responding to the CS+ and CS- without EtOH was evaluated in the prior training context. Control subjects showed a selective increase in CS+ responding relative to extinction, indicative of renewal. This effect was blocked by pre-test, bilateral inactivation of the BLA using a solution of GABA receptor agonists (0.1 mm muscimol and 1.0 mm baclofen; M/B; 0.3 μL per side). Renewal was also attenuated following unilateral injections of M/B into the BLA, combined with either M/B, the dopamine D1 receptor antagonist SCH 23390 (0.6 μg per side) or saline infusion in the contralateral NAC core. Hence, unilateral BLA inactivation was sufficient to disrupt renewal, highlighting a critical role for functional activity in the BLA in enabling the reinstatement of alcohol-seeking driven by an alcohol context.
Collapse
Affiliation(s)
- N Chaudhri
- Department of Psychology, Concordia University, Montreal, Canada.
| | | | | | | | | |
Collapse
|
31
|
Withania somnifera prevents acquisition and expression of morphine-elicited conditioned place preference. Behav Pharmacol 2013; 24:133-43. [PMID: 23455447 DOI: 10.1097/fbp.0b013e32835f3d15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previous studies have reported that some of the central effects of morphine are counteracted by the administration of the methanolic extract of the root of Indian ginseng, Withania somnifera Dunal (WSE). The present study sought to determine whether WSE affects acquisition and expression of morphine-elicited conditioned place preference (CPP) in CD-1 mice. In CPP acquisition experiments, WSE (0, 25, 50, and 100 mg/kg) was administered, during conditioning, 30 min before morphine (10 mg/kg), whereas in expression experiments, WSE (0, 25, 50, and 100 mg/kg) was administered 30 min before the postconditioning test. The results demonstrate (i) that WSE was devoid of motivational properties; (ii) that WSE (100 mg/kg) was devoid of effects on spontaneous and morphine-stimulated motor activity and on spatial memory; and (iii) that WSE (50 and 100 mg/kg) significantly prevented the acquisition and expression of CPP. Further, to characterize the receptor(s) involved in these effects, we studied, by receptor-binding assay, the affinity of WSE for µ-opioid and γ-aminobutyric acid B receptors. These experiments revealed a higher affinity of WSE for γ-aminobutyric acid B than for µ-opioid receptors. Overall, these results point to WSE as an interesting alternative tool, worthy of further investigation, to study opiate addiction.
Collapse
|
32
|
Luo YX, Xue YX, Shen HW, Lu L. Role of amygdala in drug memory. Neurobiol Learn Mem 2013; 105:159-73. [PMID: 23831499 DOI: 10.1016/j.nlm.2013.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/16/2013] [Accepted: 06/25/2013] [Indexed: 12/11/2022]
Abstract
Drug addiction is a chronic brain disorder with the hallmark of a high rate of relapse to compulsive drug seeking and drug taking even after long-term abstinence. Addiction has been considered as an aberrant memory that has been termed "addiction memory." Drug-related memory plays a critical role in the maintenance of learned addictive behaviors and emergence of relapse. Disrupting these long-lasting memories by administering amnestic agents or other manipulations during specific phases of drug memory is a promising strategy for relapse prevention. Recent studies on the processes of drug addiction and relapse have demonstrated that the amygdala is involved in associative drug addiction learning processes. In this review, we focus on preclinical studies that used conditioned place preference and self-administration models to investigate the differential roles of the amygdala in each phase of drug-related memory, including acquisition, consolidation, retrieval, reconsolidation, and extinction. These studies indicate that the amygdala plays a critical role in both cue-associative learning and the expression of cue-induced relapse to drug-seeking behavior.
Collapse
Affiliation(s)
- Yi-Xiao Luo
- National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | | | | | | |
Collapse
|
33
|
Holstein SE, Li N, Eshleman AJ, Phillips TJ. GABAB receptor activation attenuates the stimulant but not mesolimbic dopamine response to ethanol in FAST mice. Behav Brain Res 2013; 237:49-58. [PMID: 22982185 PMCID: PMC3500454 DOI: 10.1016/j.bbr.2012.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/14/2012] [Accepted: 09/05/2012] [Indexed: 12/20/2022]
Abstract
Neural processes influenced by γ-aminobutyric acid B (GABA(B)) receptors appear to contribute to acute ethanol sensitivity, including the difference between lines of mice bred for extreme sensitivity (FAST) or insensitivity (SLOW) to the locomotor stimulant effect of ethanol. One goal of the current study was to determine whether selection of the FAST and SLOW lines resulted in changes in GABA(B) receptor function, since the lines differ in sensitivity to the GABA(B) receptor agonist baclofen and baclofen attenuates the stimulant response to ethanol in FAST mice. A second goal was to determine whether the baclofen-induced reduction in ethanol stimulation in FAST mice is associated with an attenuation of the mesolimbic dopamine response to ethanol. In Experiment 1, the FAST and SLOW lines were found to not differ in GABA(B) receptor function (measured by baclofen-stimulated [(35)S]GTPγS binding) in whole brain or in several regional preparations, except in the striatum in one of the two replicate sets of selected lines. In Experiment 2, baclofen-induced attenuation of the locomotor stimulant response to ethanol in FAST mice was not accompanied by a reduction in dopamine levels in the nucleus accumbens, as measured by microdialysis. These data suggest that, overall, GABA(B) receptor function does not play an integral role in the genetic difference in ethanol sensitivity between the FAST and SLOW lines. Further, although GABA(B) receptors do modulate the locomotor stimulant response to ethanol in FAST mice, this effect does not appear to be due to a reduction in tonic dopamine signaling in the nucleus accumbens.
Collapse
Affiliation(s)
- Sarah E. Holstein
- Dept of Behavioral Neuroscience and the Portland Alcohol Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Na Li
- Dept of Behavioral Neuroscience and the Portland Alcohol Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Amy J. Eshleman
- Dept of Behavioral Neuroscience and the Portland Alcohol Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Dept of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Research Service, Dept of Veterans Affairs Medical Center, 3710 SW Veterans Hospital Road, Portland, OR 97239, USA
| | - Tamara J. Phillips
- Dept of Behavioral Neuroscience and the Portland Alcohol Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Research Service, Dept of Veterans Affairs Medical Center, 3710 SW Veterans Hospital Road, Portland, OR 97239, USA
| |
Collapse
|
34
|
Abstract
Alcohol addiction is a chronically relapsing disorder characterized by compulsive alcohol seeking and use. Alcohol craving and long-lasting vulnerability to relapse present a great challenge for the successful treatment of alcohol addiction. Therefore, relapse prevention has emerged as a critically important area of research, with the need for effective and valid animal models of relapse. This chapter provides an overview of the repertoire of animal models of craving and relapse presently available and employed in alcoholism research. These models include conditioned reinstatement, stress-induced reinstatement, ethanol priming-induced reinstatement, conditioned place preference, Pavlovian spontaneous recovery, the alcohol deprivation effect, and seeking-taking chained schedules. Thus, a wide array of animal models is available that permit investigation of behaviors directed at obtaining access to alcohol, as well as neurobehavioral mechanisms and genetic factors that regulate these behaviors. These models also are instrumental for identifying pharmacological treatment targets and as tools for evaluating the efficacy of potential medications for the prevention of alcohol craving and relapse.
Collapse
|
35
|
Meyer PJ, Ma ST, Robinson TE. A cocaine cue is more preferred and evokes more frequency-modulated 50-kHz ultrasonic vocalizations in rats prone to attribute incentive salience to a food cue. Psychopharmacology (Berl) 2012; 219:999-1009. [PMID: 21833503 PMCID: PMC3578944 DOI: 10.1007/s00213-011-2429-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/26/2011] [Indexed: 11/25/2022]
Abstract
RATIONALE Individuals vary considerably in the extent to which they attribute incentive salience to food-associated cues. OBJECTIVES We asked whether individuals prone to attribute incentive salience to a food cue are also prone to attribute incentive properties to a stimulus associated with a drug of abuse-cocaine. METHODS We first identified those rats that attributed incentive salience to a food cue by quantifying the extent to which they came to approach and engage a food cue. We then used a conditioned place preference procedure to pair an injection of 10 mg/kg cocaine (i.p.) with one distinct floor texture (grid or holes) and saline with another. Following 8 days of conditioning, each rat was given a saline injection and placed into a chamber that had both floors present. We measured the time spent on each floor, and also 50-kHz ultrasonic vocalizations, which have been associated with positive affective states. RESULTS Rats that vigorously engaged the food cue ("sign trackers") expressed a preference for the cocaine-paired floor compared to those that did not ("goal trackers"). In addition, sign trackers made substantially more frequency-modulated 50-kHz vocalizations when injected with cocaine and when later exposed to the cocaine cue. CONCLUSIONS Rats prone to attribute incentive salience to a food cue are also prone to attribute incentive motivational properties to a tactile cue associated with cocaine. We suggest that individuals prone to attribute incentive salience to reward cues will have difficulty resisting them and, therefore, may be especially vulnerable to develop impulse control disorders, including addiction.
Collapse
Affiliation(s)
- Paul J Meyer
- Department of Psychology, The University of Michigan, East Hall, 530 Church Street, Ann Arbor, MI 48109-1109, USA.
| | | | | |
Collapse
|
36
|
Drug withdrawal-induced depression: Serotonergic and plasticity changes in animal models. Neurosci Biobehav Rev 2012; 36:696-726. [DOI: 10.1016/j.neubiorev.2011.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 10/06/2011] [Accepted: 10/15/2011] [Indexed: 12/17/2022]
|
37
|
Effects of a stressor and corticotrophin releasing factor on ethanol deprivation-induced ethanol intake and anxiety-like behavior in alcohol-preferring P rats. Psychopharmacology (Berl) 2011; 218:179-89. [PMID: 21643675 DOI: 10.1007/s00213-011-2366-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/20/2011] [Indexed: 02/06/2023]
Abstract
RATIONALE Stress may elevate ethanol drinking and anxiety associated with ethanol drinking. Studies to identify relevant neurobiological substrates are needed. OBJECTIVE To assess roles of brain regions in corticotrophin releasing factor (CRF) effects on stressor-enhanced, ethanol deprivation-induced drinking and anxiety-like behavior. METHODS Ethanol-preferring rats (P rats) were exposed to three cycles of a two-bottle choice paradigm with two 2-day deprivation periods that included 1 h exposure to a restraint stressor. To assess the role of CRF and to identify relevant brain regions, a CRF-1 receptor antagonist (SSR125543; 10 ug) was injected into the nucleus accumbens (NAC), amygdala (Amyg), or dorsal raphe nucleus (DRN) prior to exposure to the restraint stressor. In a second study, CRF (0.5 ug) was injected into one of these regions, or the ventral tegmental area (VTA), or paraventricular nucleus of the hypothalamus (PVN). RESULTS Applying the restraint stressor during deprivation increased voluntary intake and sensitized anxiety-like behavior. Antagonist injection into the NAC prevented increased drinking without affecting anxiety-like behavior, whereas injection into the Amyg or DRN prevented the anxiety-like behavior without affecting drinking. To confirm CRF actions in the stressor effect, CRF was injected into selected brain regions. NAC injections (but not the VTA, Amyg, DRN, or PVN) facilitated drinking but did not change anxiety-like behavior. Injections into the DRN or Amyg (but not PVN or VTA) enhanced anxiety-like behavior. CONCLUSIONS Results emphasize that a restraint stressor elevates ethanol intake and sensitizes ethanol deprivation-induced anxiety-like behavior through CRF1 receptors in the NAC and Amyg/DRN, respectively.
Collapse
|
38
|
Pastor R, Font L, Miquel M, Phillips TJ, Aragon CMG. Involvement of the beta-endorphin neurons of the hypothalamic arcuate nucleus in ethanol-induced place preference conditioning in mice. Alcohol Clin Exp Res 2011; 35:2019-29. [PMID: 22014186 PMCID: PMC4151392 DOI: 10.1111/j.1530-0277.2011.01553.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Increasing evidence indicates that mu- and delta-opioid receptors are decisively involved in the retrieval of memories underlying conditioned effects of ethanol. The precise mechanism by which these receptors participate in such effects remains unclear. Given the important role of the proopiomelanocortin (POMc)-derived opioid peptide beta-endorphin, an endogenous mu- and delta-opioid receptor agonist, in some of the behavioral effects of ethanol, we hypothesized that beta-endorphin would also be involved in ethanol conditioning. METHODS In this study, we treated female Swiss mice with estradiol valerate (EV), which induces a neurotoxic lesion of the beta-endorphin neurons of the hypothalamic arcuate nucleus (ArcN). These mice were compared to saline-treated controls to investigate the role of beta-endorphin in the acquisition, extinction, and reinstatement of ethanol (0 or 2 g/kg; intraperitoneally)-induced conditioned place preference (CPP). RESULTS Immunohistochemical analyses confirmed a decreased number of POMc-containing neurons of the ArcN with EV treatment. EV did not affect the acquisition or reinstatement of ethanol-induced CPP, but facilitated its extinction. Behavioral sensitization to ethanol, seen during the conditioning days, was not present in EV-treated animals. CONCLUSIONS The present data suggest that ArcN beta-endorphins are involved in the retrieval of conditioned memories of ethanol and are implicated in the processes that underlie extinction of ethanol-cue associations. Results also reveal a dissociated neurobiology supporting behavioral sensitization to ethanol and its conditioning properties, as a beta-endorphin deficit affected sensitization to ethanol, while leaving acquisition and reinstatement of ethanol-induced CPP unaffected.
Collapse
Affiliation(s)
- Raúl Pastor
- Area de Psicobiología, Universitat Jaume I, Castellón, Spain.
| | | | | | | | | |
Collapse
|
39
|
Groblewski PA, Ryabinin AE, Cunningham CL. Activation and role of the medial prefrontal cortex (mPFC) in extinction of ethanol-induced associative learning in mice. Neurobiol Learn Mem 2011; 97:37-46. [PMID: 21951632 DOI: 10.1016/j.nlm.2011.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/27/2011] [Accepted: 09/07/2011] [Indexed: 12/19/2022]
Abstract
Although the medial prefrontal cortex (mPFC) has been shown to be integrally involved in extinction of a number of associative behaviors, its role in extinction of alcohol (ethanol)-induced associative learning has received little attention. Previous reports have provided evidence supporting a role for the mPFC in acquisition and extinction of amphetamine-induced conditioned place preference (CPP) in rats, however, it remains unknown if this region is necessary for extinction of ethanol (EtOH)-induced associative learning in mice. Using immunohistochemical analysis of phosphorylated and unphosphorylated cAMP response element-binding protein (CREB), the current set of experiments first showed that the prelimbic (PL) and infralimbic (IL) subregions of the mPFC exhibited dynamic responses in phosphorylation of CREB to a Pavlovian-conditioned, EtOH-paired cue. Interestingly, CREB phosphorylation within these regions was sensitive to manipulations of the EtOH-cue contingency-that is, the cue-induced increase of pCREB in both the PL and IL was absent following extinction. In order to confirm a functional role of the mPFC in regulating the extinction process, we then showed that electrolytic lesions of the mPFC following acquisition blocked subsequent extinction of EtOH-CPP. Together, these experiments indicate a role for the PL and IL subregions of the mPFC in processing changes of the EtOH-cue contingency, as well as in regulating extinction of EtOH-induced associative learning in mice.
Collapse
Affiliation(s)
- Peter A Groblewski
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
40
|
Roger-Sánchez C, Aguilar MA, Rodríguez-Arias M, Aragon CM, Miñarro J. Age- and sex-related differences in the acquisition and reinstatement of ethanol CPP in mice. Neurotoxicol Teratol 2011; 34:108-15. [PMID: 21843635 DOI: 10.1016/j.ntt.2011.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 11/30/2022]
Abstract
Many people begin to experiment with alcohol during adolescence, an important developmental period during which sex differences in the effects of ethanol appear. In the present study we evaluated the effect of ethanol (0, 0.625, 1.25 or 2.5 g/kg) on the acquisition of a conditioned place preference (CPP) in early and late adolescent male and female mice. In addition, we assessed the capacity of ethanol to induce reinstatement of the CPP after its extinction. CPP was induced in early and late adolescent females with 2.5 g/kg, and in early adolescent males with 1.25 or 2.5 g/kg of ethanol. No CPP was observed in late adolescent males. Priming with ethanol reinstated the CPP induced by the highest dose in early adolescent male and early and late adolescent female mice. Our data suggest that early adolescents of both sex and late adolescent females are particularly vulnerable to the effects of ethanol.
Collapse
Affiliation(s)
- C Roger-Sánchez
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | | | | | | | | |
Collapse
|
41
|
Barak S, Carnicella S, Yowell QV, Ron D. Glial cell line-derived neurotrophic factor reverses alcohol-induced allostasis of the mesolimbic dopaminergic system: implications for alcohol reward and seeking. J Neurosci 2011; 31:9885-94. [PMID: 21734280 PMCID: PMC3144766 DOI: 10.1523/jneurosci.1750-11.2011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/16/2011] [Accepted: 05/19/2011] [Indexed: 11/21/2022] Open
Abstract
We previously showed that infusion of glial cell line-derived neurotrophic factor (GDNF) into the ventral tegmental area (VTA) rapidly reduces alcohol intake and relapse (Carnicella et al., 2008, 2009a), and increases dopamine (DA) levels in the nucleus accumbens (NAc) of alcohol-naive rats (Wang et al., 2010). Withdrawal from excessive alcohol intake is associated with a reduction in NAc DA levels, whereas drug-induced increases in NAc DA levels are associated with reward. We therefore tested whether GDNF in the VTA reverses alcohol withdrawal-associated DA deficiency and/or possesses rewarding properties. Rats were trained for 7 weeks to consume high levels of alcohol (5.47 ± 0.37 g/kg/24 h) in intermittent access to 20% alcohol in a two-bottle choice procedure. Using in vivo microdialysis, we show that 24 h withdrawal from alcohol causes a substantial reduction in NAc DA overflow, which was reversed by intra-VTA GDNF infusion. Using conditioned place preference (CPP) paradigm, we observed that GDNF on its own does not induce CPP, suggesting that the growth factor is not rewarding. However, GDNF blocked acquisition and expression of alcohol-CPP. In addition, GDNF induced a downward shift in the dose-response curve for operant self-administration of alcohol, further suggesting that GDNF suppresses, rather than substitutes for, the reinforcing effects of alcohol. Our findings suggest that GDNF reduces alcohol-drinking behaviors by reversing an alcohol-induced allostatic DA deficiency in the mesolimbic system. In addition, as it lacks abuse liability, the study further highlights GDNF as a promising target for treatment of alcohol use/abuse disorders.
Collapse
Affiliation(s)
- Segev Barak
- The Ernest Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Sebastien Carnicella
- The Ernest Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Quinn V. Yowell
- The Ernest Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Dorit Ron
- The Ernest Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| |
Collapse
|
42
|
Voorhees CM, Cunningham CL. Involvement of the orexin/hypocretin system in ethanol conditioned place preference. Psychopharmacology (Berl) 2011; 214:805-18. [PMID: 21107540 PMCID: PMC3063857 DOI: 10.1007/s00213-010-2082-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 10/30/2010] [Indexed: 12/20/2022]
Abstract
RATIONALE Recent studies suggest that orexin/hypocretin is involved in drug reward and drug-seeking behaviors, including ethanol self-administration. However, orexin's role in ethanol-induced seeking behaviors remains unclear. OBJECTIVE These studies examined the role of orexin in the acquisition and expression of ethanol conditioned place preference (CPP) using the orexin 1 receptor (OX1R) antagonist SB-334867. METHODS Effects of SB-334867 (0-30 mg/kg) on locomotor activity were determined in DBA/2J mice (Experiment 1). SB-334867 (0-30 mg/kg) was administered during acquisition of ethanol (2 g/kg) CPP to determine whether orexin signaling is required (Experiment 2). Blood ethanol concentrations (BECs) were measured after ethanol (2 g/kg) injection to determine whether SB-334867 (30 mg/kg) pretreatment altered ethanol pharmacokinetics (Experiment 3). Finally, SB-334867 (0-40 mg/kg) was given before ethanol-free preference testing (Experiments 4 and 5). RESULTS SB-334867 did not alter basal locomotor activity (Experiment 1). SB-334867 (30 mg/kg) reduced ethanol-induced locomotor stimulation, but did not affect the acquisition of ethanol CPP (Experiment 2) or BEC, suggesting no alteration in ethanol pharmacokinetics (Experiment 3). Although OX1R antagonism blocked expression of a weak ethanol CPP (Experiment 4), it did not affect expression of a moderate to strong CPP (Experiment 5). CONCLUSIONS Blockade of OX1R by systemic administration of SB-334867 reduced ethanol-stimulated activity, but did not affect acquisition or expression of ethanol-induced CPP, suggesting that orexin does not influence ethanol's primary or conditioned rewarding effects. Other neurotransmitter systems may be sufficient to support acquisition and expression of CPP despite alterations in orexin signaling.
Collapse
Affiliation(s)
- Charlene M. Voorhees
- Department of Behavioral Neuroscience, L470 Portland Alcohol Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Christopher L. Cunningham
- Department of Behavioral Neuroscience, L470 Portland Alcohol Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| |
Collapse
|
43
|
Kuo CS, Chai SC, Chen HH. Mediodorsal nucleus of the thalamus is critical for the expression of memory of methamphetamine-produced conditioned place preference in rats. Neuroscience 2011; 178:138-46. [PMID: 21256933 DOI: 10.1016/j.neuroscience.2010.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/07/2010] [Accepted: 12/16/2010] [Indexed: 11/20/2022]
Abstract
Methamphetamine (MA) is a powerful and highly addictive psychostimulant. However, the neural substrate mediating MA-induced conditioned effects, an essential part of addiction, remain unclear. The present study investigated the involvement of the anterior cingulate cortex (ACC), the lateral nucleus of amygdala (LNA), and the mediodorsal nucleus of the thalamus (MD) in MA-conditioned place preference (CPP). Rats underwent bilateral radio-frequency lesions of the ACC, LNA, or MD followed by MA CPP training. Lesions of the MD, but not the ACC or LNA, disrupted MA CPP learning. To clarify the role of the MD on the different stages of the MA CPP memory process, bilateral microinfusions of lidocaine into the MD were performed 5 min prior to each conditioning trial, immediately after the conditioning trial, or 5 min before the testing phase. Pretesting, but not pre- or post-conditioning, infusions of lidocaine into the MD impaired MA CPP. Furthermore, a clear preference for the previously conditioned MA paired cues was expressed when the rats were tested again 24 h after infusions of lidocaine. These results are interpreted as indicating that the MD is specifically involved in the memory retrieval process of MA associated memory which suggests the MD could have an important role in relapse in individuals suffering from MA addiction.
Collapse
Affiliation(s)
- C-S Kuo
- Institute of Pharmacology and Toxicology, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, 970 Taiwan, ROC
| | | | | |
Collapse
|
44
|
|
45
|
Powers MS, Barrenha GD, Mlinac NS, Barker EL, Chester JA. Effects of the novel endocannabinoid uptake inhibitor, LY2183240, on fear-potentiated startle and alcohol-seeking behaviors in mice selectively bred for high alcohol preference. Psychopharmacology (Berl) 2010; 212:571-83. [PMID: 20838777 PMCID: PMC2982902 DOI: 10.1007/s00213-010-1997-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 07/27/2010] [Indexed: 12/18/2022]
Abstract
RATIONALE Alcohol-use disorders often occur together with anxiety disorders in humans which may be partly due to common inherited genetic factors. Evidence suggests that the endocannabinoid system (ECS) is a promising therapeutic target for the treatment of individuals with anxiety and/or alcohol-use disorders. OBJECTIVES The present study assessed the effects of a novel endocannabinoid uptake inhibitor, LY2183240, on anxiety- and alcohol-seeking behaviors in a unique animal model that may represent increased genetic risk to develop co-morbid anxiety and alcohol-use disorders in humans. Mice selectively bred for high alcohol preference (HAP) show greater fear-potentiated startle (FPS) than mice selectively bred for low alcohol preference (LAP). We examined the effects of LY2183240 on the expression of FPS in HAP and LAP mice and on alcohol-induced conditioned place preference (CPP) and limited-access alcohol drinking behavior in HAP mice. RESULTS Repeated administration of LY2183240 (30 mg/kg) reduced the expression of FPS in HAP but not LAP mice when given prior to a second FPS test 48 h after fear conditioning. Both the 10 and 30 mg/kg doses of LY2183240 enhanced the expression of alcohol-induced CPP and this effect persisted in the absence of the drug. LY2183240 did not alter limited-access alcohol drinking behavior, unconditioned startle responding, or locomotor activity. CONCLUSIONS These findings suggest that ECS modulation influences both conditioned fear and conditioned alcohol reward behavior. LY2183240 may be an effective pharmacotherapy for individuals with anxiety disorders, such as post-traumatic stress disorder, but may not be appropriate for individuals with co-morbid anxiety and alcohol-use disorders.
Collapse
Affiliation(s)
- Matthew S. Powers
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907-2081, USA
| | - Gustavo D. Barrenha
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907-2081, USA
| | - Nate S. Mlinac
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907-2081, USA
| | - Eric L. Barker
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Julia A. Chester
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907-2081, USA
| |
Collapse
|
46
|
Inhibition of extracellular signal-regulated kinase (ERK) activity with SL327 does not prevent acquisition, expression, and extinction of ethanol-seeking behavior in mice. Behav Brain Res 2010; 217:399-407. [PMID: 21074569 DOI: 10.1016/j.bbr.2010.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/03/2010] [Accepted: 11/04/2010] [Indexed: 11/24/2022]
Abstract
Although extracellular signal-regulated kinase (ERK) activity is essential for the acquisition of a variety of associative learning tasks, its involvement in the acquisition and extinction of ethanol (EtOH)-induced conditioned place preference (CPP) remains unknown. Therefore, in these experiments we examined the effects of the ERK-kinase (MEK)-inhibitor SL327 on acquisition and expression of EtOH-CPP as well as the dose- and time-dependent effects of SL327 on CPP extinction. The parametric findings of Experiment 1 showed that three 30-min (but not 15- or 5-min) non-reinforced trials were required to completely extinguish EtOH-CPP in male, DBA/2J mice. In Experiments 2 and 3, SL327 (30 and 50mg/kg), administered 30 or 90min prior to extinction trials, was unable to impair EtOH-CPP extinction. Experiment 4 showed that SL327 (50mg/kg) had no effect on acquisition of EtOH-CPP or the development of EtOH-induced sensitization during conditioning. When administered prior to testing in Experiments 5 and 6, SL327 did not alter expression of EtOH-CPP but did reduce test activity. Importantly, SL327 significantly reduced pERK protein levels when assessed in the dorsal striatum and motor cortex (Experiment 7). Together, these data suggest that EtOH-related learning and EtOH reward in mice, as assessed with CPP, are not impaired by the systemically administered MEK-inhibitor SL327.
Collapse
|
47
|
Nuutinen S, Vanhanen J, Pigni MC, Panula P. Effects of histamine H3 receptor ligands on the rewarding, stimulant and motor-impairing effects of ethanol in DBA/2J mice. Neuropharmacology 2010; 60:1193-9. [PMID: 21044640 DOI: 10.1016/j.neuropharm.2010.10.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/29/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
Abstract
Histamine H3 receptor (H3R) antagonists are currently being investigated for the possible therapeutic use in various cognitive deficits such as those in schizophrenia, attention deficit hyperactivity disorder and Alzheimer's disease. Our previous studies suggest a role for H3Rs in ethanol-related behaviors in rat and mice. Here we have examined the role of different H3R ligands on the effects of ethanol in conditioned place preference (CPP) paradigm, stimulation of locomotor activity and motor impairment in rotarod and balance beam in male DBA/2J mice. We found that H3R antagonists ciproxifan and JNJ-10181457 inhibited the ethanol-evoked CPP whereas H3R agonist immepip did not alter ethanol-induced place preference. Acute stimulatory response by ethanol was also modulated by H3R ligands. Ciproxifan increased ethanol activation when ethanol was given 1g/kg but not at 1.5g/kg dose. Immepip pretreatment diminished ethanol stimulation and increased motor-impairing effects of ethanol on the balance beam. In conclusion, these findings give further evidence of the involvement of H3R in the regulation of the effects of ethanol. The inhibition of ethanol reward by H3R antagonism implies that H3R might be a possible target to suppress compulsory ethanol seeking. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- Saara Nuutinen
- Neuroscience Center, Biomedicum Helsinki, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, FIN-00014 Helsinki, Finland
| | | | | | | |
Collapse
|
48
|
Tsurugizawa T, Uematsu A, Uneyama H, Torii K. The role of the GABAergic and dopaminergic systems in the brain response to an intragastric load of alcohol in conscious rats. Neuroscience 2010; 171:451-60. [PMID: 20849934 DOI: 10.1016/j.neuroscience.2010.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 09/07/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
Abstract
The brain's response to ethanol intake has been extensively investigated using electrophysiological recordings, brain lesion techniques, and c-Fos immunoreactivity. However, few studies have investigated this phenomenon using functional magnetic resonance imaging (fMRI). In the present study, we used fMRI to investigate the blood oxygenation level-dependent (BOLD) signal response to an intragastric (IG) load of ethanol in conscious, ethanol-naive rats. An intragastrically infused 10% ethanol solution induced a significant decrease in the intensity of the BOLD signal in several regions of the brain, including the bilateral amygdala (AMG), nucleus accumbens (NAc), hippocampus, ventral pallidum, insular cortex, and cingulate cortex, and an increase in the BOLD signal in the ventral tegmental area (VTA) and hypothalamic regions. Treatment with bicuculline, which is an antagonist of the gamma-aminobutyric acid A (GABA(A)) receptor, increased the BOLD signal intensity in the regions that had shown decreases in the BOLD signal after the IG infusion of 10% ethanol solution, but it did not affect the BOLD signal increase in the hypothalamus. Treatment with SCH39166, which is an antagonist of D1-like receptors, eliminated the increase in the BOLD signal intensity in the hypothalamic areas but did not affect the BOLD signal decrease following the 10% ethanol infusion. These results indicate that an IG load of ethanol caused both a GABA(A) receptor-mediated BOLD decrease in the limbic system and the cortex and a D1-like receptor-mediated BOLD increase in the hypothalamic regions in ethanol-naive rats.
Collapse
Affiliation(s)
- T Tsurugizawa
- Institute of Life Sciences, Ajinomoto Co., Inc., Suzuki-cho 1-1 Kawasaki-ku, Kawasaki 210-8601, Japan
| | | | | | | |
Collapse
|
49
|
Murray JE, Bevins RA. Cannabinoid conditioned reward and aversion: behavioral and neural processes. ACS Chem Neurosci 2010; 1:265-278. [PMID: 20495676 PMCID: PMC2873219 DOI: 10.1021/cn100005p] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 02/16/2010] [Indexed: 11/28/2022] Open
Abstract
The discovery that delta-9-tetrahydrocannabinol (Δ(9)-THC) is the primary psychoactive ingredient in marijuana prompted research that helped elucidate the endogenous cannabinoid system of the brain. Δ(9)-THC and other cannabinoid ligands with agonist action (CP 55,940, HU210, and WIN 55,212-2) increase firing of dopamine neurons and increase synaptic dopamine in brain regions associated with reward and drug addiction. Such changes in cellular processes have prompted investigators to examine the conditioned rewarding effects of the cannabinoid ligands using the place conditioning task with rats and mice. As reviewed here, these cannabinoid ligands can condition place preferences (evidence for rewarding effects) and place aversions (evidence for aversive qualities). Notably, the procedural details used in these place conditioning studies have varied across laboratories. Such variation includes differences in apparatus type, existence of procedural biases, dose, number of conditioning trials, injection-to-placement intervals, and pre-training drug exposure. Some differences in outcome across studies can be explained by these procedural variables. For example, low doses of Δ(9)-THC appear to have conditioned rewarding effects, whereas higher doses have aversive effects that either mask these rewarding effects or condition a place aversion. Throughout this review we highlight key areas that need further research.
Collapse
Affiliation(s)
- Jennifer E. Murray
- Department of Psychology, University of Nebraska—Lincoln, Lincoln, Nebraska
- Department of Experimental Psychology, University of Cambridge, Cambridge, U.K
| | - Rick A. Bevins
- Department of Psychology, University of Nebraska—Lincoln, Lincoln, Nebraska
| |
Collapse
|
50
|
Myers KM, Carlezon WA. Extinction of drug- and withdrawal-paired cues in animal models: relevance to the treatment of addiction. Neurosci Biobehav Rev 2010; 35:285-302. [PMID: 20109490 DOI: 10.1016/j.neubiorev.2010.01.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 12/22/2022]
Abstract
Conditioned drug craving and withdrawal elicited by cues paired with drug use or acute withdrawal are among the many factors contributing to compulsive drug taking. Understanding how to stop these cues from having these effects is a major goal of addiction research. Extinction is a form of learning in which associations between cues and the events they predict are weakened by exposure to the cues in the absence of those events. Evidence from animal models suggests that conditioned responses to drug cues can be extinguished, although the degree to which this occurs in humans is controversial. Investigations into the neurobiological substrates of extinction of conditioned drug craving and withdrawal may facilitate the successful use of drug cue extinction within clinical contexts. While this work is still in the early stages, there are indications that extinction of drug- and withdrawal-paired cues shares neural mechanisms with extinction of conditioned fear. Using the fear extinction literature as a template, it is possible to organize the observations on drug cue extinction into a cohesive framework.
Collapse
Affiliation(s)
- Karyn M Myers
- Behavioral Genetics Laboratory, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| | | |
Collapse
|