1
|
Winden KD, Ruiz JF, Sahin M. Construction destruction: Contribution of dyregulated proteostasis to neurodevelopmental disorders. Curr Opin Neurobiol 2025; 90:102934. [PMID: 39612590 PMCID: PMC11839335 DOI: 10.1016/j.conb.2024.102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
Genetic causes of neurodevelopmental disorders (NDDs) such as epilepsy and autism spectrum disorder are rapidly being uncovered. The genetic risk factors that are responsible for various NDDs fall into many categories, and while some genes such as those involved in synaptic transmission are expected, there are several other classes of genes whose involvement in these disorders is not intuitive. One such group of genes is involved in protein synthesis and degradation, and the balance between these opposing pathways is termed proteostasis. Here, we review these pathways, the genetics of the related neurological disorders, and some potential disease mechanisms. Improved understanding of this collection of genetic disorders will be informative for the pathogenesis of these disorders and imply novel therapeutic strategies.
Collapse
Affiliation(s)
- Kellen D Winden
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Juan F Ruiz
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Honda T, Kurita K, Arai Y, Pandey H, Sawa A, Furukubo-Tokunaga K. FMR1 genetically interacts with DISC1 to regulate glutamatergic synaptogenesis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:112. [PMID: 39604386 PMCID: PMC11603133 DOI: 10.1038/s41537-024-00532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Synaptic development and functions have been hypothesized as crucial mechanisms of diverse neuropsychiatric disorders. Studies in past years suggest that mutations in the fragile X mental retardation 1 (FMR1) are associated with diverse mental disorders including intellectual disability, autistic spectrum disorder, and schizophrenia. In this study, we have examined genetical interactions between a select set of risk factor genes using fruit flies to find that dfmr1, the Drosophila homolog of the human FMR1 gene, exhibits functional interactions with DISC1 in synaptic development. We show that DISC1 overexpression in the dfmr1null heterozygous background causes synaptic alterations at the larval neuromuscular junctions that are distinct from those in the wild-type background. Loss of dfmr1 modifies the DISC1 overexpression phenotype in synaptic formation, suppressing the formation of synapse boutons. Interaction between the two genes was further supported molecularly by the results that dfmr1 mutations suppress the DISC1-mediated upregulations of the postsynaptic expression of a glutamate receptor and the expression of ELKS/CAST protein, Bruchpilot, in presynaptic motoneurons. Moreover, DISC1 overexpression in the dfmr1null heterozygous background causes downregulation of a MAP1 family protein, Futsch. These results thus suggest an intriguing converging mechanism controlled by FMR1 and DISC1 in the developing glutamatergic synapses.
Collapse
Affiliation(s)
- Takato Honda
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusettes Institute of Technology (MIT), Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusettes General Hospital, Harvard Medical School, Boston, MA, USA.
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| | - Kazuki Kurita
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuko Arai
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Himani Pandey
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, Mental Health, Pharmacology, Biomedical Engineering and Genetic Medicine, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Johns Hopkins Medicine, Baltimore, MD, USA
| | | |
Collapse
|
3
|
Gora C, Dudas A, Vaugrente O, Drobecq L, Pecnard E, Lefort G, Pellissier LP. Deciphering autism heterogeneity: a molecular stratification approach in four mouse models. Transl Psychiatry 2024; 14:416. [PMID: 39366951 PMCID: PMC11452541 DOI: 10.1038/s41398-024-03113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by impairments in social interaction and communication, as well as restrained or stereotyped behaviors. The inherent heterogeneity within the autism spectrum poses challenges for developing effective pharmacological treatments targeting core features. Successful clinical trials require the identification of robust markers to enable patient stratification. In this study, we identified molecular markers within the oxytocin and immediate early gene families across five interconnected brain structures of the social circuit. We used wild-type and four heterogeneous mouse models, each exhibiting unique autism-like behaviors modeling the autism spectrum. While dysregulations in the oxytocin family were model-specific, immediate early genes displayed widespread alterations, reflecting global changes across the four models. Through integrative analysis, we identified Egr1, Foxp1, Homer1a, Oxt, and Oxtr as five robust and discriminant molecular markers that allowed the successful stratification of the four models. Importantly, our stratification demonstrated predictive values when challenged with a fifth mouse model or identifying subgroups of mice potentially responsive to oxytocin treatment. Beyond providing insights into oxytocin and immediate early gene mRNA dynamics, this proof-of-concept study represents a significant step toward the potential stratification of individuals with ASD. This work has implications for the success of clinical trials and the development of personalized medicine in autism.
Collapse
Affiliation(s)
- Caroline Gora
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | - Ana Dudas
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Lucile Drobecq
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Gaëlle Lefort
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | |
Collapse
|
4
|
Kumar V, Lee KY, Acharya A, Babik MS, Christian-Hinman CA, Rhodes JS, Tsai NP. mGluR7 allosteric modulator AMN082 corrects protein synthesis and pathological phenotypes in FXS. EMBO Mol Med 2024; 16:506-522. [PMID: 38374465 PMCID: PMC10940663 DOI: 10.1038/s44321-024-00038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
Fragile X syndrome (FXS) is the leading cause of inherited autism and intellectual disabilities. Aberrant protein synthesis due to the loss of fragile X messenger ribonucleoprotein (FMRP) is the major defect in FXS, leading to a plethora of cellular and behavioral abnormalities. However, no treatments are available to date. In this study, we found that activation of metabotropic glutamate receptor 7 (mGluR7) using a positive allosteric modulator named AMN082 represses protein synthesis through ERK1/2 and eIF4E signaling in an FMRP-independent manner. We further demonstrated that treatment of AMN082 leads to a reduction in neuronal excitability, which in turn ameliorates audiogenic seizure susceptibility in Fmr1 KO mice, the FXS mouse model. When evaluating the animals' behavior, we showed that treatment of AMN082 reduces repetitive behavior and improves learning and memory in Fmr1 KO mice. This study uncovers novel functions of mGluR7 and AMN082 and suggests the activation of mGluR7 as a potential therapeutic approach for treating FXS.
Collapse
Affiliation(s)
- Vipendra Kumar
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Anirudh Acharya
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Matthew S Babik
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Catherine A Christian-Hinman
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Justin S Rhodes
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Park EH, Kao HY, Jourdi H, van Dijk MT, Carrillo-Segura S, Tunnell KW, Gutierrez J, Wallace EJ, Troy-Regier M, Radwan B, Lesburguères E, Alarcon JM, Fenton AA. Phencyclidine Disrupts Neural Coordination and Cognitive Control by Dysregulating Translation. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:252-263. [PMID: 38298788 PMCID: PMC10829677 DOI: 10.1016/j.bpsgos.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 02/02/2024] Open
Abstract
Background Phencyclidine (PCP) causes psychosis, is abused with increasing frequency, and was extensively used in antipsychotic drug discovery. PCP discoordinates hippocampal ensemble action potential discharge and impairs cognitive control in rats, but how this uncompetitive NMDA receptor (NMDAR) antagonist impairs cognition remains unknown. Methods The effects of PCP were investigated on hippocampal CA1 ensemble action potential discharge in vivo in urethane-anesthetized rats and during awake behavior in mice, on synaptic responses in ex vivo mouse hippocampus slices, in mice on a hippocampus-dependent active place avoidance task that requires cognitive control, and on activating the molecular machinery of translation in acute hippocampus slices. Mechanistic causality was assessed by comparing the PCP effects with the effects of inhibitors of protein synthesis, group I metabotropic glutamate receptors (mGluR1/5), and subunit-selective NMDARs. Results Consistent with ionotropic actions, PCP discoordinated CA1 ensemble action potential discharge. PCP caused hyperactivity and impaired active place avoidance, despite the rodents having learned the task before PCP administration. Consistent with metabotropic actions, PCP exaggerated protein synthesis-dependent DHPG-induced mGluR1/5-stimulated long-term synaptic depression. Pretreatment with anisomycin or the mGluR1/5 antagonist MPEP, both of which repress translation, prevented PCP-induced discoordination and the cognitive and sensorimotor impairments. PCP as well as the NR2A-containing NMDAR antagonist NVP-AAM077 unbalanced translation that engages the Akt, mTOR (mechanistic target of rapamycin), and 4EBP1 translation machinery and increased protein synthesis, whereas the NR2B-containing antagonist Ro25-6981 did not. Conclusions PCP dysregulates translation, acting through NR2A-containing NMDAR subtypes, recruiting mGluR1/5 signaling pathways, and leading to neural discoordination that is central to the cognitive and sensorimotor impairments.
Collapse
Affiliation(s)
- Eun Hye Park
- Center for Neural Science, New York University, New York, New York
| | - Hsin-Yi Kao
- Center for Neural Science, New York University, New York, New York
| | - Hussam Jourdi
- Center for Neural Science, New York University, New York, New York
| | - Milenna T. van Dijk
- Center for Neural Science, New York University, New York, New York
- Graduate Program in Neuroscience and Physiology, New York University Langone Medical Center, New York, New York
| | - Simón Carrillo-Segura
- Center for Neural Science, New York University, New York, New York
- Graduate Program in Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, New York, New York
| | - Kayla W. Tunnell
- Center for Neural Science, New York University, New York, New York
| | | | - Emma J. Wallace
- Graduate Program in Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, New York
- Department of Physiology and Pharmacology, State University of New York, Downstate Health Sciences University, Brooklyn, New York
| | - Matthew Troy-Regier
- Graduate Program in Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, New York
- Department of Physiology and Pharmacology, State University of New York, Downstate Health Sciences University, Brooklyn, New York
| | - Basma Radwan
- Graduate Program in Neural Science, Center for Neural Science, New York University, New York, New York
| | | | - Juan Marcos Alarcon
- Department of Pathology, State University of New York, Downstate Health Sciences University, Brooklyn, New York
- Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, New York
| | - André A. Fenton
- Center for Neural Science, New York University, New York, New York
- Department of Physiology and Pharmacology, State University of New York, Downstate Health Sciences University, Brooklyn, New York
- Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, New York
- Neuroscience Institute, NYU Langone Health, New York, New York
| |
Collapse
|
6
|
Kharod SC, Hwang DW, Choi H, Yoon KJ, Castillo PE, Singer RH, Yoon YJ. Phosphorylation alters FMRP granules and determines their transport or protein synthesis abilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532613. [PMID: 37781583 PMCID: PMC10541110 DOI: 10.1101/2023.03.15.532613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Fragile X messenger ribonucleoprotein (FMRP) is an RNA-binding protein implicated in autism that suppresses translation and forms granules. While FMRP function has been well-studied, how phosphorylation regulates granule binding and function remains limited. Here, we found that Fragile X patient-derived I304N mutant FMRP could not stably bind granules, underscoring the essential nature of FMRP granule association for function. Next, phosphorylation on serine 499 (S499) led to differences in puncta size, intensity, contrast, and transport as shown by phospho-deficient (S499A) and phospho-mimic (S499D) mutant FMRP granules. Additionally, S499D exchanged slowly on granules relative to S499A, suggesting that phosphorylated FMRP can attenuate translation. Furthermore, the S499A mutant enhanced translation in presynaptic boutons of the mouse hippocampus. Thus, the phospho-state of FMRP altered the structure of individual granules with changes in transport and translation to achieve spatiotemporal regulation of local protein synthesis. Teaser The phosphorylation-state of S499 on FMRP can change FMRP granule structure and function to facilitate processive transport or local protein synthesis.
Collapse
|
7
|
Ringsevjen H, Egbenya DL, Bieler M, Davanger S, Hussain S. Activity-regulated cytoskeletal-associated protein (Arc) in presynaptic terminals and extracellular vesicles in hippocampal synapses. Front Mol Neurosci 2023; 16:1225533. [PMID: 38025262 PMCID: PMC10658193 DOI: 10.3389/fnmol.2023.1225533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
The activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) is a neuron-specific immediate early gene (IEG) product. The protein regulates synaptic strength through modulation of spine density and morphology, AMPA receptor endocytosis, and as being part of a retrovirus-like inter-cellular communication mechanism. However, little is known about the detailed subsynaptic localization of the protein, and especially its possible presynaptic localization. In the present study, we provide novel electron microscopical data of Arc localization at hippocampal Schaffer collateral synapses in the CA1 region. The protein was found in both pre-and postsynaptic cytoplasm in a majority of synapses, associated with small vesicles. We also observed multivesicular body-like structures positive for Arc. Furthermore, the protein was located over the presynaptic active zone and the postsynaptic density. The relative concentration of Arc was 25% higher in the postsynaptic spine than in the presynaptic terminal. Notably, small extracellular vesicles labeled for Arc were detected in the synaptic cleft or close to the synapse, supporting a possible transsynaptic transmission of the protein in the brain.
Collapse
Affiliation(s)
- Håvard Ringsevjen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Daniel Lawer Egbenya
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Physiology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Malte Bieler
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Svend Davanger
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Suleman Hussain
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Haley M, Bertrand J, Anderson VT, Fuad M, Frenguelli BG, Corrêa SAL, Wall MJ. Arc expression regulates long-term potentiation magnitude and metaplasticity in area CA1 of the hippocampus in ArcKR mice. Eur J Neurosci 2023; 58:4166-4180. [PMID: 37821126 DOI: 10.1111/ejn.16172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Expression of the immediate early gene Arc/Arg3.1 (Arc), a key mediator of synaptic plasticity, is enhanced by neural activity and then reduced by proteasome-dependent degradation. We have previously shown that the disruption of Arc degradation, in an Arc knock-in mouse (ArcKR), where the predominant Arc ubiquitination sites were mutated, reduced the threshold to induce, and also enhanced, the strength of Group I metabotropic glutamate receptor-mediated long-term depression (DHPG-LTD). Here, we have investigated if ArcKR expression changes long-term potentiation (LTP) in CA1 area of the hippocampus. As previously reported, there was no change in basal synaptic transmission at Schaffer collateral/commissural-CA1 (SC-CA1) synapses in ArcKR versus wild-type (WT) mice. There was, however, a significant increase in the amplitude of synaptically induced (with low frequency paired-pulse stimulation) LTD in ArcKR mice. Theta burst stimulation (TBS)-evoked LTP at SC-CA1 synapses was significantly reduced in ArcKR versus WT mice (after 2 h). Group 1 mGluR priming of LTP was abolished in ArcKR mice, which could also potentially contribute to a depression of LTP. Although high frequency stimulation (HFS)-induced LTP was not significantly different in ArcKR compared with WT mice (after 1 h), there was a phenotype in environmentally enriched mice, with the ratio of LTP to short-term potentiation (STP) significantly reduced in ArcKR mice. These findings support the hypothesis that Arc ubiquitination supports the induction and expression of LTP, likely via limiting Arc-dependent removal of AMPA receptors at synapses.
Collapse
Affiliation(s)
- Maisy Haley
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Jeanri Bertrand
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | - Mukattar Fuad
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | - Sonia A L Corrêa
- Faculty of Science and Engineering, Department of Life Sciences, John Dalton Building, Room E210, Manchester Metropolitan University, Manchester, UK
| | - Mark J Wall
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
9
|
Jong YJI, Izumi Y, Harmon SK, Zorumski CF, ÓMalley KL. Striatal mGlu 5-mediated synaptic plasticity is independently regulated by location-specific receptor pools and divergent signaling pathways. J Biol Chem 2023; 299:104949. [PMID: 37354970 PMCID: PMC10388212 DOI: 10.1016/j.jbc.2023.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023] Open
Abstract
Metabotropic glutamate receptor 5 (mGlu5) is widely expressed throughout the central nervous system and is involved in neuronal function, synaptic transmission, and a number of neuropsychiatric disorders such as depression, anxiety, and autism. Recent work from this lab showed that mGlu5 is one of a growing number of G protein-coupled receptors that can signal from intracellular membranes where it drives unique signaling pathways, including upregulation of extracellular signal-regulated kinase (ERK1/2), ETS transcription factor Elk-1, and activity-regulated cytoskeleton-associated protein (Arc). To determine the roles of cell surface mGlu5 as well as the intracellular receptor in a well-known mGlu5 synaptic plasticity model such as long-term depression, we used pharmacological isolation and genetic and physiological approaches to analyze spatially restricted pools of mGlu5 in striatal cultures and slice preparations. Here we show that both intracellular and cell surface receptors activate the phosphatidylinositol-3-kinase-protein kinase B-mammalian target of rapamycin (PI3K/AKT/mTOR) pathway, whereas only intracellular mGlu5 activates protein phosphatase 2 and leads to fragile X mental retardation protein degradation and de novo protein synthesis followed by a protein synthesis-dependent increase in Arc and post-synaptic density protein 95. However, both cell surface and intracellular mGlu5 activation lead to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA2 internalization and chemically induced long-term depression albeit via different signaling mechanisms. These data underscore the importance of intracellular mGlu5 in the cascade of events associated with sustained synaptic transmission in the striatum.
Collapse
Affiliation(s)
- Yuh-Jiin I Jong
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Steven K Harmon
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA
| | - Charles F Zorumski
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA; Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Karen L ÓMalley
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
10
|
Wilkerson JR, Ifrim MF, Valdez-Sinon AN, Hahn P, Bowles JE, Molinaro G, Janusz-Kaminska A, Bassell GJ, Huber KM. FMRP phosphorylation and interactions with Cdh1 regulate association with dendritic RNA granules and MEF2-triggered synapse elimination. Neurobiol Dis 2023; 182:106136. [PMID: 37120096 PMCID: PMC10370323 DOI: 10.1016/j.nbd.2023.106136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023] Open
Abstract
Fragile X Messenger Ribonucleoprotein (FMRP) is necessary for experience-dependent, developmental synapse elimination and the loss of this process may underlie the excess dendritic spines and hyperconnectivity of cortical neurons in Fragile X Syndrome, a common inherited form of intellectual disability and autism. Little is known of the signaling pathways that regulate synapse elimination and if or how FMRP is regulated during this process. We have characterized a model of synapse elimination in CA1 neurons of organotypic hippocampal slice cultures that is induced by expression of the active transcription factor Myocyte Enhancer Factor 2 (MEF2) and relies on postsynaptic FMRP. MEF2-induced synapse elimination is deficient in Fmr1 KO CA1 neurons, and is rescued by acute (24 h), postsynaptic and cell autonomous reexpression of FMRP in CA1 neurons. FMRP is an RNA binding protein that suppresses mRNA translation. Derepression is induced by posttranslational mechanisms downstream of metabotropic glutamate receptor signaling. Dephosphorylation of FMRP at S499 triggers ubiquitination and degradation of FMRP which then relieves translation suppression and promotes synthesis of proteins encoded by target mRNAs. Whether this mechanism functions in synapse elimination is not known. Here we demonstrate that phosphorylation and dephosphorylation of FMRP at S499 are both necessary for synapse elimination as well as interaction of FMRP with its E3 ligase for FMRP, APC/Cdh1. Using a bimolecular ubiquitin-mediated fluorescence complementation (UbFC) assay, we demonstrate that MEF2 promotes ubiquitination of FMRP in CA1 neurons that relies on activity and interaction with APC/Cdh1. Our results suggest a model where MEF2 regulates posttranslational modifications of FMRP via APC/Cdh1 to regulate translation of proteins necessary for synapse elimination.
Collapse
Affiliation(s)
- Julia R Wilkerson
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Marius F Ifrim
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Patricia Hahn
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jacob E Bowles
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gemma Molinaro
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Martella N, Pensabene D, Varone M, Colardo M, Petraroia M, Sergio W, La Rosa P, Moreno S, Segatto M. Bromodomain and Extra-Terminal Proteins in Brain Physiology and Pathology: BET-ing on Epigenetic Regulation. Biomedicines 2023; 11:biomedicines11030750. [PMID: 36979729 PMCID: PMC10045827 DOI: 10.3390/biomedicines11030750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
BET proteins function as histone code readers of acetylated lysins that determine the positive regulation in transcription of genes involved in cell cycle progression, differentiation, inflammation, and many other pathways. In recent years, thanks to the development of BET inhibitors, interest in this protein family has risen for its relevance in brain development and function. For example, experimental evidence has shown that BET modulation affects neuronal activity and the expression of genes involved in learning and memory. In addition, BET inhibition strongly suppresses molecular pathways related to neuroinflammation. These observations suggest that BET modulation may play a critical role in the onset and during the development of diverse neurodegenerative and neuropsychiatric disorders, such as Alzheimer’s disease, fragile X syndrome, and Rett syndrome. In this review article, we summarize the most recent evidence regarding the involvement of BET proteins in brain physiology and pathology, as well as their pharmacological potential as targets for therapeutic purposes.
Collapse
Affiliation(s)
- Noemi Martella
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Daniele Pensabene
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Michela Varone
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Mayra Colardo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Michele Petraroia
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - William Sergio
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy
| | - Sandra Moreno
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Correspondence:
| |
Collapse
|
12
|
Wu J, Xu J, Naguib M, Bie B. Blockade of Type 2A Protein Phosphatase Signaling Attenuates Complement C1q-Mediated Microglial Phagocytosis of Glutamatergic Synapses Induced by Amyloid Fibrils. Mol Neurobiol 2023; 60:1527-1536. [PMID: 36515857 PMCID: PMC9910161 DOI: 10.1007/s12035-022-03161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
We previously reported the critical involvement of metabotropic GluR1 (mGluR1) signaling in complement C1q-dependent microglial phagocytosis of glutamatergic synapses in a rat model of Alzheimer's disease (AD) injected with amyloid fibrils. Here, we explored the role of type 2A protein phosphatase (type 2A PPase), a key enzyme downstream of mGluR1 signaling, in the pathogenesis of AD in rats. Significant local upregulation of PP2A expression was observed in the hippocampal CA1 after bilateral microinjection of amyloid-beta (Aβ1-40) fibrils. Amyloid fibrils induced remarkable dephosphorylation of pFMRP (fragile X mental retardation protein) and C1q upregulation in hippocampal glutamatergic synapses, which was ameliorated by microinjection of type 2A PPase inhibitor okadaic acid (OA). Microinjection of OA further attenuated the microglial phagocytosis of glutamatergic synapses, recovered the hippocampal glutamatergic transmission, and improved the performance in Morris water maze test. These findings demonstrated that dysfunction of type 2A PPase signaling contributed to complement C1q-dependent microglial phagocytosis of glutamatergic synapses and the cognitive impairments in the rat model of AD.
Collapse
Affiliation(s)
- Jiang Wu
- Anesthesiology Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Jijun Xu
- Department of Pain Management, Anesthesiology Institute, 9500 Euclid Ave, Cleveland, OH, 44195, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Mohamed Naguib
- Anesthesiology Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Bihua Bie
- Anesthesiology Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA.
- Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA.
| |
Collapse
|
13
|
Louros SR, Seo SS, Maio B, Martinez-Gonzalez C, Gonzalez-Lozano MA, Muscas M, Verity NC, Wills JC, Li KW, Nolan MF, Osterweil EK. Excessive proteostasis contributes to pathology in fragile X syndrome. Neuron 2023; 111:508-525.e7. [PMID: 36495869 DOI: 10.1016/j.neuron.2022.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/06/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
In fragile X syndrome (FX), the leading monogenic cause of autism, excessive neuronal protein synthesis is a core pathophysiology; however, an overall increase in protein expression is not observed. Here, we tested whether excessive protein synthesis drives a compensatory rise in protein degradation that is protective for FX mouse model (Fmr1-/y) neurons. Surprisingly, although we find a significant increase in protein degradation through ubiquitin proteasome system (UPS), this contributes to pathological changes. Normalizing proteasome activity with bortezomib corrects excessive hippocampal protein synthesis and hyperactivation of neurons in the inferior colliculus (IC) in response to auditory stimulation. Moreover, systemic administration of bortezomib significantly reduces the incidence and severity of audiogenic seizures (AGS) in the Fmr1-/y mouse, as does genetic reduction of proteasome, specifically in the IC. Together, these results identify excessive activation of the UPS pathway in Fmr1-/y neurons as a contributor to multiple phenotypes that can be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Susana R Louros
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Sang S Seo
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Beatriz Maio
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Cristina Martinez-Gonzalez
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Miguel A Gonzalez-Lozano
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Melania Muscas
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Nick C Verity
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Jimi C Wills
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Emily K Osterweil
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| |
Collapse
|
14
|
Egbenya DL, Hussain S, Lai YC, Anderson AE, Davanger S. Synapse-specific changes in Arc and BDNF in rat hippocampus following chronic temporal lobe epilepsy. Neurosci Res 2022; 191:1-12. [PMID: 36535366 DOI: 10.1016/j.neures.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Expression of immediate early genes (IEGs) in the brain is important for synaptic plasticity, and probably also in neurodegenerative conditions. To understand the cellular mechanisms of the underlying neuropathophysiological processes in epilepsy, we need to pinpoint changes in concentration of synaptic plasticity-related proteins at subsynaptic levels. In this study, we examined changes in synaptic expression of Activity-regulated cytoskeleton-associated (Arc) and Brai Derived Neurotrophic Factor (BDNF) in a rat model of kainate-induced temporal lobe epilepsy (TLE). Western blotting showed reduced concentrations of Arc and increased concentrations of BDNF in hippocampal synaptosomes in chronic TLE rats. Then, using quantitative electron microscopy, we found corresponding changes in subsynaptic regions in the hippocampus. Specifically, we detected significant reductions in the concentrations of Arc in the presynaptic terminal of Schaffer collateral glutamatergic synapses in the stratum radiatum of the CA1 area in TLE, as well as in their adjacent postsynaptic spines. In CA3, there was a significant reduction of Arc only in the presynaptic terminal cytoplasm. Conversely, in CA3, there was a significant increase in the expression of BDNF in the presynaptic terminal, but not in the postsynaptic spine. Significant increase in BDNF concentration in the CA1 postsynaptic density was also obtained. We hypothesize that the observed changes in Arc and BDNF may contribute to both cognitive impairment and increased excitotoxic vulnerability in chronic epilepsy.
Collapse
Affiliation(s)
- Daniel L Egbenya
- Laboratory for Synaptic Plasticity, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Physiology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Suleman Hussain
- Laboratory for Synaptic Plasticity, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | - Yi-Chen Lai
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Anne E Anderson
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Svend Davanger
- Laboratory for Synaptic Plasticity, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Chakraborty A, Grageda A, Kuznetsov VA, Feng W. A Double Jeopardy: Loss of FMRP Results in DSB and Down-regulated DNA Repair. 21ST CENTURY PATHOLOGY 2022; 2:125. [PMID: 36688938 PMCID: PMC9850805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Our understanding of the molecular functions of the nucleocytoplasmic FMRP protein, which, if absent or dysfunctional, causes the fragile X syndrome (FXS), largely revolves around its involvement in protein translation regulation in the cytoplasm. Recent studies have begun honing in on the nuclear and genomic functions of FMRP. We have shown that during DNA replication stress, cells derived from FXS patients sustain increased level of R-loop formation and DNA double strand breaks. Here, we describe a transcriptomic analysis of these cells in order to identify those genes most impacted by the loss of FMRP with and without replication stress. We show that FMRP loss causes transcriptomic changes previously reported in untreated conditions. Importantly, we also show that replication stress, in addition to causing excess of DSB, results in down-regulation of transcription in virtually all DNA repair pathways. This finding suggests that despite normal DNA damage response, FXS patient-derived cells experience R-loop-induced DNA breakage as well as impaired DNA repair functions, effectively a double jeopardy. We suggest that it is imperative to deepen the understanding of the nuclear functions, particularly a genome protective function, of FMRP, which will lead to discoveries of novel therapeutic interventions for the FXS.
Collapse
Affiliation(s)
- Arijita Chakraborty
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
- Tessera Therapeutics, Somerville, Massachusetts, USA
| | - Andre Grageda
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Vladimir A. Kuznetsov
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
16
|
Thudium S, Palozola K, L'Her É, Korb E. Identification of a transcriptional signature found in multiple models of ASD and related disorders. Genome Res 2022; 32:1642-1654. [PMID: 36104286 PMCID: PMC9528985 DOI: 10.1101/gr.276591.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
Abstract
Epigenetic regulation plays a critical role in many neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD). In particular, many such disorders are the result of mutations in genes that encode chromatin-modifying proteins. However, although these disorders share many features, it is unclear whether they also share gene expression disruptions resulting from the aberrant regulation of chromatin. We examined five chromatin modifiers that are all linked to ASD despite their different roles in regulating chromatin. Specifically, we depleted ASH1L, CHD8, CREBBP, EHMT1, and NSD1 in parallel in a highly controlled neuronal culture system. We then identified sets of shared genes, or transcriptional signatures, that are differentially expressed following loss of multiple ASD-linked chromatin modifiers. We examined the functions of genes within the transcriptional signatures and found an enrichment in many neurotransmitter transport genes and activity-dependent genes. In addition, these genes are enriched for specific chromatin features such as bivalent domains that allow for highly dynamic regulation of gene expression. The down-regulated transcriptional signature is also observed within multiple mouse models of NDDs that result in ASD, but not those only associated with intellectual disability. Finally, the down-regulated transcriptional signature can distinguish between control and idiopathic ASD patient iPSC-derived neurons as well as postmortem tissue, demonstrating that this gene set is relevant to the human disorder. This work identifies a transcriptional signature that is found within many neurodevelopmental syndromes, helping to elucidate the link between epigenetic regulation and the underlying cellular mechanisms that result in ASD.
Collapse
Affiliation(s)
- Samuel Thudium
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Katherine Palozola
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Éloïse L'Her
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Erica Korb
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
17
|
Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, Han F. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther 2022; 7:229. [PMID: 35817793 PMCID: PMC9273593 DOI: 10.1038/s41392-022-01081-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder which has strong genetic basis. Despite the rapidly rising incidence of autism, little is known about its aetiology, risk factors, and disease progression. There are currently neither validated biomarkers for diagnostic screening nor specific medication for autism. Over the last two decades, there have been remarkable advances in genetics, with hundreds of genes identified and validated as being associated with a high risk for autism. The convergence of neuroscience methods is becoming more widely recognized for its significance in elucidating the pathological mechanisms of autism. Efforts have been devoted to exploring the behavioural functions, key pathological mechanisms and potential treatments of autism. Here, as we highlight in this review, emerging evidence shows that signal transduction molecular events are involved in pathological processes such as transcription, translation, synaptic transmission, epigenetics and immunoinflammatory responses. This involvement has important implications for the discovery of precise molecular targets for autism. Moreover, we review recent insights into the mechanisms and clinical implications of signal transduction in autism from molecular, cellular, neural circuit, and neurobehavioural aspects. Finally, the challenges and future perspectives are discussed with regard to novel strategies predicated on the biological features of autism.
Collapse
Affiliation(s)
- Chen-Chen Jiang
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Li-Shan Lin
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Sen Long
- Department of Pharmacy, Hangzhou Seventh People's Hospital, Mental Health Center Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Xiao-Yan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
18
|
Malone TJ, Kaczmarek LK. The role of altered translation in intellectual disability and epilepsy. Prog Neurobiol 2022; 213:102267. [PMID: 35364140 PMCID: PMC10583652 DOI: 10.1016/j.pneurobio.2022.102267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Abstract
A very high proportion of cases of intellectual disability are genetic in origin and are associated with the occurrence of epileptic seizures during childhood. These two disorders together effect more than 5% of the world's population. One feature linking the two diseases is that learning and memory require the synthesis of new synaptic components and ion channels, while maintenance of overall excitability also requires synthesis of similar proteins in response to altered neuronal stimulation. Many of these disorders result from mutations in proteins that regulate mRNA processing, translation initiation, translation elongation, mRNA stability or upstream translation modulators. One theme that emerges on reviewing this field is that mutations in proteins that regulate changes in translation following neuronal stimulation are more likely to result in epilepsy with intellectual disability than general translation regulators with no known role in activity-dependent changes. This is consistent with the notion that activity-dependent translation in neurons differs from that in other cells types in that the changes in local cellular composition, morphology and connectivity that occur generally in response to stimuli are directly coupled to local synaptic activity and persist for months or years after the original stimulus.
Collapse
Affiliation(s)
- Taylor J Malone
- Departments of Pharmacology, and of Cellular & Molecular Physiology, Yale University, 333 Cedar Street B-309, New Haven, CT 06520, USA
| | - Leonard K Kaczmarek
- Departments of Pharmacology, and of Cellular & Molecular Physiology, Yale University, 333 Cedar Street B-309, New Haven, CT 06520, USA.
| |
Collapse
|
19
|
Yildirim Z, Baboo S, Hamid SM, Dogan AE, Tufanli O, Robichaud S, Emerton C, Diedrich JK, Vatandaslar H, Nikolos F, Gu Y, Iwawaki T, Tarling E, Ouimet M, Nelson DL, Yates JR, Walter P, Erbay E. Intercepting IRE1 kinase-FMRP signaling prevents atherosclerosis progression. EMBO Mol Med 2022; 14:e15344. [PMID: 35191199 PMCID: PMC8988208 DOI: 10.15252/emmm.202115344] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
Fragile X Mental Retardation protein (FMRP), widely known for its role in hereditary intellectual disability, is an RNA‐binding protein (RBP) that controls translation of select mRNAs. We discovered that endoplasmic reticulum (ER) stress induces phosphorylation of FMRP on a site that is known to enhance translation inhibition of FMRP‐bound mRNAs. We show ER stress‐induced activation of Inositol requiring enzyme‐1 (IRE1), an ER‐resident stress‐sensing kinase/endoribonuclease, leads to FMRP phosphorylation and to suppression of macrophage cholesterol efflux and apoptotic cell clearance (efferocytosis). Conversely, FMRP deficiency and pharmacological inhibition of IRE1 kinase activity enhances cholesterol efflux and efferocytosis, reducing atherosclerosis in mice. Our results provide mechanistic insights into how ER stress‐induced IRE1 kinase activity contributes to macrophage cholesterol homeostasis and suggests IRE1 inhibition as a promising new way to counteract atherosclerosis.
Collapse
Affiliation(s)
- Zehra Yildirim
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Molecular Biology and Genetics, National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Syed M Hamid
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Asli E Dogan
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Molecular Biology and Genetics, National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Ozlem Tufanli
- Lagone Medical Center, New York University, New York, NY, USA
| | - Sabrina Robichaud
- Department of Biochemistry, Microbiology and Immunology, Heart Institute, University of Ottawa, Ottawa, ON, Canada
| | - Christina Emerton
- Department of Biochemistry, Microbiology and Immunology, Heart Institute, University of Ottawa, Ottawa, ON, Canada
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Hasan Vatandaslar
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Fotis Nikolos
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yanghong Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Takao Iwawaki
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Elizabeth Tarling
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Mireille Ouimet
- Department of Biochemistry, Microbiology and Immunology, Heart Institute, University of Ottawa, Ottawa, ON, Canada
| | - David L Nelson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Peter Walter
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Ebru Erbay
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
20
|
Liu X, Kumar V, Tsai NP, Auerbach BD. Hyperexcitability and Homeostasis in Fragile X Syndrome. Front Mol Neurosci 2022; 14:805929. [PMID: 35069112 PMCID: PMC8770333 DOI: 10.3389/fnmol.2021.805929] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Fragile X Syndrome (FXS) is a leading inherited cause of autism and intellectual disability, resulting from a mutation in the FMR1 gene and subsequent loss of its protein product FMRP. Despite this simple genetic origin, FXS is a phenotypically complex disorder with a range of physical and neurocognitive disruptions. While numerous molecular and cellular pathways are affected by FMRP loss, there is growing evidence that circuit hyperexcitability may be a common convergence point that can account for many of the wide-ranging phenotypes seen in FXS. The mechanisms for hyperexcitability in FXS include alterations to excitatory synaptic function and connectivity, reduced inhibitory neuron activity, as well as changes to ion channel expression and conductance. However, understanding the impact of FMR1 mutation on circuit function is complicated by the inherent plasticity in neural circuits, which display an array of homeostatic mechanisms to maintain activity near set levels. FMRP is also an important regulator of activity-dependent plasticity in the brain, meaning that dysregulated plasticity can be both a cause and consequence of hyperexcitable networks in FXS. This makes it difficult to separate the direct effects of FMR1 mutation from the myriad and pleiotropic compensatory changes associated with it, both of which are likely to contribute to FXS pathophysiology. Here we will: (1) review evidence for hyperexcitability and homeostatic plasticity phenotypes in FXS models, focusing on similarities/differences across brain regions, cell-types, and developmental time points; (2) examine how excitability and plasticity disruptions interact with each other to ultimately contribute to circuit dysfunction in FXS; and (3) discuss how these synaptic and circuit deficits contribute to disease-relevant behavioral phenotypes like epilepsy and sensory hypersensitivity. Through this discussion of where the current field stands, we aim to introduce perspectives moving forward in FXS research.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Vipendra Kumar
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nien-Pei Tsai
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Benjamin D. Auerbach
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Benjamin D. Auerbach
| |
Collapse
|
21
|
Kurosaki T, Sakano H, Pröschel C, Wheeler J, Hewko A, Maquat LE. NMD abnormalities during brain development in the Fmr1-knockout mouse model of fragile X syndrome. Genome Biol 2021; 22:317. [PMID: 34784943 PMCID: PMC8597091 DOI: 10.1186/s13059-021-02530-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/28/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is an intellectual disability attributable to loss of fragile X protein (FMRP). We previously demonstrated that FMRP binds mRNAs targeted for nonsense-mediated mRNA decay (NMD) and that FMRP loss results in hyperactivated NMD and inhibition of neuronal differentiation in human stem cells. RESULTS We show here that NMD is hyperactivated during the development of the cerebral cortex, hippocampus, and cerebellum in the Fmr1-knockout (KO) mouse during embryonic and early postnatal periods. Our findings demonstrate that NMD regulates many neuronal mRNAs that are important for mouse brain development. CONCLUSIONS We reveal the abnormal regulation of these mRNAs in the Fmr1-KO mouse, a model of FXS, and highlight the importance of early intervention.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642 USA
- Center for RNA Biology, University of Rochester, Rochester, NY 14642 USA
| | - Hitomi Sakano
- Center for RNA Biology, University of Rochester, Rochester, NY 14642 USA
- Department of Otolaryngology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642 USA
| | - Christoph Pröschel
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642 USA
- Stem Cell and Regenerative Medicine Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642 USA
| | - Jason Wheeler
- Center for RNA Biology, University of Rochester, Rochester, NY 14642 USA
- Department of Otolaryngology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642 USA
| | - Alexander Hewko
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642 USA
- Center for RNA Biology, University of Rochester, Rochester, NY 14642 USA
| | - Lynne E. Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642 USA
- Center for RNA Biology, University of Rochester, Rochester, NY 14642 USA
| |
Collapse
|
22
|
Lee KY, Zhu J, Cutia CA, Christian‐Hinman CA, Rhodes JS, Tsai N. Infantile spasms-linked Nedd4-2 mediates hippocampal plasticity and learning via cofilin signaling. EMBO Rep 2021; 22:e52645. [PMID: 34342389 PMCID: PMC8490988 DOI: 10.15252/embr.202152645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 11/09/2022] Open
Abstract
Individuals affected by infantile spasms (IS), such as those carrying mutations in an IS-linked gene, neural precursor cell expressed developmentally downregulated gene 4-like (Nedd4-2), exhibit developmental delays and learning disabilities, but the underlying mechanism is unknown. Using conditional Nedd4-2 knockout mice, we uncover that Nedd4-2 functions to maintain the excitatory synapses in hippocampal neurons and allows for late-phase long-term synaptic potentiation (L-LTP) at Schaffer collateral synapses in the hippocampus. We also find that Nedd4-2 is required for multiple forms of hippocampus-dependent learning and memory. Mechanistically, we show that loss of Nedd4-2 leads to a decrease in actin polymerization caused by reduced phosphorylation of the actin depolymerizing protein cofilin. A cell-permeable peptide promoting phosphorylation of endogenous cofilin in Nedd4-2 knockout neurons restores the number of hippocampal excitatory synapses and hippocampal L-LTP and partially restores hippocampus-dependent learning in mice. Taken together, our results reveal a novel mechanism underlying IS-associated learning disabilities and may provide information for future therapeutic strategies for IS.
Collapse
Affiliation(s)
- Kwan Young Lee
- Department of Molecular and Integrative PhysiologySchool of Molecular and Cellular BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Jiuhe Zhu
- Department of Molecular and Integrative PhysiologySchool of Molecular and Cellular BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Cathryn A Cutia
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Catherine A Christian‐Hinman
- Department of Molecular and Integrative PhysiologySchool of Molecular and Cellular BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Justin S Rhodes
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Department of PsychologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
| | - Nien‐Pei Tsai
- Department of Molecular and Integrative PhysiologySchool of Molecular and Cellular BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| |
Collapse
|
23
|
Bülow P, Wenner PA, Faundez V, Bassell GJ. Mitochondrial Structure and Polarity in Dendrites and the Axon Initial Segment Are Regulated by Homeostatic Plasticity and Dysregulated in Fragile X Syndrome. Front Cell Dev Biol 2021; 9:702020. [PMID: 34350185 PMCID: PMC8327182 DOI: 10.3389/fcell.2021.702020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction has long been overlooked in neurodevelopmental disorders, but recent studies have provided new links to genetic forms of autism, including Rett syndrome and fragile X syndrome (FXS). Mitochondria show plasticity in morphology and function in response to neuronal activity, and previous research has reported impairments in mitochondrial morphology and function in disease. We and others have previously reported abnormalities in distinct types of homeostatic plasticity in FXS. It remains unknown if or how activity deprivation triggering homeostatic plasticity affects mitochondria in axons and/or dendrites and whether impairments occur in neurodevelopmental disorders. Here, we test the hypothesis that mitochondria are structurally and functionally modified in a compartment-specific manner during homeostatic plasticity using a model of activity deprivation in cortical neurons from wild-type mice and that this plasticity-induced regulation is altered in Fmr1-knockout (KO) neurons. We uncovered dendrite-specific regulation of the mitochondrial surface area, whereas axon initial segment (AIS) mitochondria show changes in polarity; both responses are lost in the Fmr1 KO. Taken together, our results demonstrate impairments in mitochondrial plasticity in FXS, which has not previously been reported. These results suggest that mitochondrial dysregulation in FXS could contribute to abnormal neuronal plasticity, with broader implications to other neurodevelopmental disorders and therapeutic strategies.
Collapse
Affiliation(s)
- Pernille Bülow
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Peter A Wenner
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Victor Faundez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
24
|
Huebschman JL, Davis MC, Tovar Pensa C, Guo Y, Smith LN. The fragile X mental retardation protein promotes adjustments in cocaine self-administration that preserve reinforcement level. Eur J Neurosci 2021; 54:4920-4933. [PMID: 34133054 DOI: 10.1111/ejn.15356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/08/2021] [Accepted: 06/08/2021] [Indexed: 01/29/2023]
Abstract
The fragile X mental retardation protein (FMRP), an RNA-binding protein, regulates cocaine-induced neuronal plasticity and is critical for the normal development of drug-induced locomotor sensitization, as well as reward-related learning in the conditioned place preference assay. However, it is unknown whether FMRP impacts behaviors that are used to more closely model substance use disorders. Utilizing a cocaine intravenous self-administration (IVSA) assay in Fmr1 knockout (KO) and wild-type (WT) littermate mice, we find that, despite normal acquisition and extinction learning, Fmr1 KO mice fail to make a normal upward shift in responding during dose-response testing. Later, when given access to the original acquisition dose under increasing fixed ratio (FR) schedules of reinforcement (FR1, FR3, and FR5), Fmr1 KO mice earn significantly fewer cocaine infusions than WT mice. Importantly, similar deficits are not present in operant conditioning using a palatable food reinforcer, indicating that our results do not represent broad learning or reward-related deficits in Fmr1 KO mice. Additionally, we find an FMRP target, the activity-regulated cytoskeleton-associated protein (Arc), to be significantly reduced in synaptic cellular fractions prepared from the nucleus accumbens of Fmr1 KO, compared with WT, mice following operant tasks reinforced with cocaine but not food. Overall, our findings suggest that FMRP facilitates adjustments in drug self-administration behavior that generally serve to preserve reinforcement level, and combined with our similar IVSA findings in Arc KO mice may implicate Arc, along with FMRP, in behavioral shifts that occur in drug taking when drug availability is altered.
Collapse
Affiliation(s)
- Jessica L Huebschman
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| | - Megan C Davis
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Catherina Tovar Pensa
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Yuhong Guo
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Laura N Smith
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
25
|
Urbano-Gámez JD, Casañas JJ, Benito I, Montesinos ML. Prenatal treatment with rapamycin restores enhanced hippocampal mGluR-LTD and mushroom spine size in a Down's syndrome mouse model. Mol Brain 2021; 14:84. [PMID: 34034796 PMCID: PMC8152312 DOI: 10.1186/s13041-021-00795-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/18/2021] [Indexed: 11/10/2022] Open
Abstract
Down syndrome (DS) is the most frequent genetic cause of intellectual disability including hippocampal-dependent memory deficits. We have previously reported hippocampal mTOR (mammalian target of rapamycin) hyperactivation, and related plasticity as well as memory deficits in Ts1Cje mice, a DS experimental model. Here we characterize the proteome of hippocampal synaptoneurosomes (SNs) from these mice, and found a predicted alteration of synaptic plasticity pathways, including long term depression (LTD). Accordingly, mGluR-LTD (metabotropic Glutamate Receptor-LTD) is enhanced in the hippocampus of Ts1Cje mice and this is correlated with an increased proportion of a particular category of mushroom spines in hippocampal pyramidal neurons. Remarkably, prenatal treatment of these mice with rapamycin has a positive pharmacological effect on both phenotypes, supporting the therapeutic potential of rapamycin/rapalogs for DS intellectual disability.
Collapse
Affiliation(s)
- Jesús David Urbano-Gámez
- Departamento de Fisiología Médica Y Biofísica, Universidad de Sevilla, Av. Sánchez-Pizjuán 4, 41009, Sevilla, Spain.,Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Juan José Casañas
- Departamento de Fisiología Médica Y Biofísica, Universidad de Sevilla, Av. Sánchez-Pizjuán 4, 41009, Sevilla, Spain.,Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Itziar Benito
- Departamento de Fisiología Médica Y Biofísica, Universidad de Sevilla, Av. Sánchez-Pizjuán 4, 41009, Sevilla, Spain.,Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Servicio de Animalario, Hospital Universitario Virgen Macarena (HUVM), 41009, Sevilla, Spain
| | - María Luz Montesinos
- Departamento de Fisiología Médica Y Biofísica, Universidad de Sevilla, Av. Sánchez-Pizjuán 4, 41009, Sevilla, Spain. .,Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
26
|
Replication Stress Induces Global Chromosome Breakage in the Fragile X Genome. Cell Rep 2021; 32:108179. [PMID: 32966779 DOI: 10.1016/j.celrep.2020.108179] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/17/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by mutations in the FMR1 gene and deficiency of a functional FMRP protein. FMRP is known as a translation repressor whose nuclear function is not understood. We investigated the global impact on genome stability due to FMRP loss. Using Break-seq, we map spontaneous and replication stress-induced DNA double-strand breaks (DSBs) in an FXS patient-derived cell line. We report that the genomes of FXS cells are inherently unstable and accumulate twice as many DSBs as those from an unaffected control. We demonstrate that replication stress-induced DSBs in FXS cells colocalize with R-loop forming sequences. Exogenously expressed FMRP in FXS fibroblasts ameliorates DSB formation. FMRP, not the I304N mutant, abates R-loop-induced DSBs during programmed replication-transcription conflict. These results suggest that FMRP is a genome maintenance protein that prevents R-loop accumulation. Our study provides insights into the etiological basis for FXS.
Collapse
|
27
|
Bieler M, Hussain S, Daaland ESB, Mirrione MM, Henn FA, Davanger S. Changes in concentrations of NMDA receptor subunit GluN2B, Arc and syntaxin-1 in dorsal hippocampus Schaffer collateral synapses in a rat learned helplessness model of depression. J Comp Neurol 2021; 529:3194-3205. [PMID: 33843051 DOI: 10.1002/cne.25155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 02/19/2021] [Accepted: 03/04/2021] [Indexed: 12/28/2022]
Abstract
Major depressive disorder involves changes in synaptic structure and function, but the molecular underpinnings of these changes are still not established. In an initial pilot experiment, whole-brain synaptosome screening with quantitative western blotting was performed to identify synaptic proteins that may show concentration changes in a congenital rat learned helplessness model of depression. We found that the N-methyl-d-aspartate receptor (NMDAR) subunits GluN2A/GluN2B, activity-regulated cytoskeleton-associated protein (Arc) and syntaxin-1 showed significant concentration differences between congenitally learned helpless (LH) and nonlearned helpless (NLH) rats. Having identified these three proteins, we then performed more elaborate quantitative immunogold electron microscopic analyses of the proteins in a specific synapse type in the dorsal hippocampus: the Schaffer collateral synapse in the CA1 region. We expanded the setup to include also unstressed wild-type (WT) rats. The concentrations of the proteins in the LH and NLH groups were compared to WT animals. In this specific synapse, we found that the concentration of NMDARs was increased in postsynaptic spines in both LH and NLH rats. The concentration of Arc was significantly increased in postsynaptic densities in LH animals as well as in presynaptic cytoplasm of NLH rats. The concentration of syntaxin-1 was significantly increased in both presynaptic terminals and postsynaptic spines in LH animals, while pre- and postsynaptic syntaxin-1 concentrations were significantly decreased in NLH animals. These protein changes suggest pathways by which synaptic plasticity may be increased in dorsal hippocampal Schaffer collateral synapses during depression, corresponding to decreased synaptic stability.
Collapse
Affiliation(s)
- Malte Bieler
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Institute of Technology, School of Economics, Innovation and Technology, Kristiania University College, Oslo, Norway
| | - Suleman Hussain
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Elise S B Daaland
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Martine M Mirrione
- Quinnipiac University, Hamden, Connecticut, USA.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Medical Department, Brookhaven National Laboratory, New York, USA
| | - Fritz A Henn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Medical Department, Brookhaven National Laboratory, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Svend Davanger
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
28
|
Hedde PN, Malacrida L, Barylko B, Binns DD, Albanesi JP, Jameson DM. Membrane Remodeling by Arc/Arg3.1. Front Mol Biosci 2021; 8:630625. [PMID: 33763452 PMCID: PMC7982473 DOI: 10.3389/fmolb.2021.630625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
The activity-regulated cytoskeletal-associated protein (Arc, also known as Arg3.1) is an immediate early gene product induced by activity/experience and required for multiple modes of synaptic plasticity. Both long-term potentiation (LTP) and long-term depression (LTD) are impaired upon Arc deletion, as well as the ability to form long-term spatial, taste and fear memories. The best-characterized cellular function of Arc is enhancement of the endocytic internalization of AMPA receptors (AMPARs) in dendritic spines. Solution of the crystal structure of a C-terminal segment of Arc revealed a striking similarity to the capsid domain of HIV Gag. It was subsequently shown that Arc assembles into viral capsid-like structures that enclose Arc mRNA, are released into the extracellular space, and are internalized by neighboring cells. Thus, Arc is unique in participating in plasma membrane budding both into and out of the cell. In this report we study the interaction of Arc with membranes using giant unilamellar vesicles (GUVs). Using the fluorescent lipid probe LAURDAN, we find that Arc promotes the formation of smaller vesicles that penetrate into the GUV interior. Our results suggest that Arc induces negative membrane curvature and may therefore facilitate the formation of mRNA-containing extracellular vesicles from the plasma membrane.
Collapse
Affiliation(s)
- Per Niklas Hedde
- Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, HI, United States.,Laboratory for Fluorescence Dynamics, University of California, Irvine , CA, United States
| | - Leonel Malacrida
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo , Uruguay.,Advanced Bioimaging Unit, Institute Pasteur of Montevideo-Universidad de la República, Montevideo, Uruguay
| | - Barbara Barylko
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Derk D Binns
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Joseph P Albanesi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David M Jameson
- Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
29
|
Hedde PN, Malacrida L, Barylko B, Binns DD, Albanesi JP, Jameson DM. Membrane Remodeling by Arc/Arg3.1. Front Mol Biosci 2021; 8:630625. [PMID: 33763452 DOI: 10.3389/fmolb.2021.630625/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/11/2021] [Indexed: 05/23/2023] Open
Abstract
The activity-regulated cytoskeletal-associated protein (Arc, also known as Arg3.1) is an immediate early gene product induced by activity/experience and required for multiple modes of synaptic plasticity. Both long-term potentiation (LTP) and long-term depression (LTD) are impaired upon Arc deletion, as well as the ability to form long-term spatial, taste and fear memories. The best-characterized cellular function of Arc is enhancement of the endocytic internalization of AMPA receptors (AMPARs) in dendritic spines. Solution of the crystal structure of a C-terminal segment of Arc revealed a striking similarity to the capsid domain of HIV Gag. It was subsequently shown that Arc assembles into viral capsid-like structures that enclose Arc mRNA, are released into the extracellular space, and are internalized by neighboring cells. Thus, Arc is unique in participating in plasma membrane budding both into and out of the cell. In this report we study the interaction of Arc with membranes using giant unilamellar vesicles (GUVs). Using the fluorescent lipid probe LAURDAN, we find that Arc promotes the formation of smaller vesicles that penetrate into the GUV interior. Our results suggest that Arc induces negative membrane curvature and may therefore facilitate the formation of mRNA-containing extracellular vesicles from the plasma membrane.
Collapse
Affiliation(s)
- Per Niklas Hedde
- Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, HI, United States
- Laboratory for Fluorescence Dynamics, University of California, Irvine , CA, United States
| | - Leonel Malacrida
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo , Uruguay
- Advanced Bioimaging Unit, Institute Pasteur of Montevideo-Universidad de la República, Montevideo, Uruguay
| | - Barbara Barylko
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Derk D Binns
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Joseph P Albanesi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David M Jameson
- Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
30
|
Okada M, Kono R, Sato Y, Kobayashi C, Koyama R, Ikegaya Y. Highly active neurons emerging in vitro. J Neurophysiol 2021; 125:1322-1329. [PMID: 33656933 DOI: 10.1152/jn.00663.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mean firing rates vary across neurons in a neuronal network. Although most neurons infrequently emit spikes, a small fraction of neurons exhibit extremely high frequencies of spikes; this fraction of neurons plays a pivotal role in information processing, however, little is known about how these outliers emerge and whether they are maintained over time. In primary cultures of mouse hippocampal neurons, we traced highly active neurons every 24 h for 7 wk by optically observing the fluorescent protein dVenus; the expression of dVenus was controlled by the promoter of Arc, an immediate early gene that is induced by neuronal activity. Under default-mode conditions, 0.3%-0.4% of neurons were spontaneously Arc-dVenus positive, exhibiting high firing rates. These neurons were spatially clustered, exhibited intermittently repeated dVenus expression, and often continued to express Arc-dVenus for approximately 2 wk. Thus, highly active neurons constitute a few select functional subpopulations in the neuronal network.NEW & NOTEWORTHY The overdispersion of neuronal activity levels can often be attributed to very few neurons exhibiting extremely high firing rates, but due to technical difficulty, no studies have examined how these outliers are selected during development and whether they are maintained over time. We optically monitored highly active neurons for as long as 7 wk in vitro and found that they constituted a unique population that was different from other "mediocre" neurons with normal firing rates.
Collapse
Affiliation(s)
- Mami Okada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Rena Kono
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yu Sato
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Chiaki Kobayashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuta Koyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan.,Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Hien A, Molinaro G, Liu B, Huber KM, Richter JD. Ribosome profiling in mouse hippocampus: plasticity-induced regulation and bidirectional control by TSC2 and FMRP. Mol Autism 2020; 11:78. [PMID: 33054857 PMCID: PMC7556950 DOI: 10.1186/s13229-020-00384-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/23/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Mutations in TSC2 are the most common cause of tuberous sclerosis (TSC), a disorder with a high incidence of autism and intellectual disability. TSC2 regulates mRNA translation required for group 1 metabotropic glutamate receptor-dependent synaptic long-term depression (mGluR-LTD) and behavior, but the identity of mRNAs responsive to mGluR-LTD signaling is largely unknown. METHODS We utilized Tsc2+/- mice as a mouse model of TSC and prepared hippocampal slices from these animals. We induced mGluR-LTD synaptic plasticity in slices and processed the samples for RNA-seq and ribosome profiling to identify differentially expressed genes in Tsc2+/- and following mGluR-LTD synaptic plasticity. RESULTS Ribosome profiling reveals that in Tsc2+/- mouse hippocampal slices, the expression of several mRNAs was dysregulated: terminal oligopyrimidine (TOP)-containing mRNAs decreased, while FMRP-binding targets increased. Remarkably, we observed the opposite changes of FMRP binding targets in Fmr1-/y hippocampi. In wild-type hippocampus, induction of mGluR-LTD caused rapid changes in the steady-state levels of hundreds of mRNAs, many of which are FMRP targets. Moreover, mGluR-LTD failed to promote phosphorylation of eukaryotic elongation factor 2 (eEF2) in TSC mice, and chemically mimicking phospho-eEF2 with low cycloheximide enhances mGluR-LTD in TSC mice. CONCLUSION These results suggest a molecular basis for bidirectional regulation of synaptic plasticity and behavior by TSC2 and FMRP. Our study also suggests that altered mGluR-regulated translation elongation contributes to impaired synaptic plasticity in Tsc2+/- mice.
Collapse
Affiliation(s)
- Annie Hien
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Medical Scientist Training Program, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Gemma Molinaro
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Botao Liu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
32
|
Clifton NE, Thomas KL, Wilkinson LS, Hall J, Trent S. FMRP and CYFIP1 at the Synapse and Their Role in Psychiatric Vulnerability. Complex Psychiatry 2020; 6:5-19. [PMID: 34883502 PMCID: PMC7673588 DOI: 10.1159/000506858] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022] Open
Abstract
There is increasing awareness of the role genetic risk variants have in mediating vulnerability to psychiatric disorders such as schizophrenia and autism. Many of these risk variants encode synaptic proteins, influencing biological pathways of the postsynaptic density and, ultimately, synaptic plasticity. Fragile-X mental retardation 1 (FMR1) and cytoplasmic fragile-X mental retardation protein (FMRP)-interacting protein 1 (CYFIP1) contain 2 such examples of highly penetrant risk variants and encode synaptic proteins with shared functional significance. In this review, we discuss the biological actions of FMRP and CYFIP1, including their regulation of (i) protein synthesis and specifically FMRP targets, (ii) dendritic and spine morphology, and (iii) forms of synaptic plasticity such as long-term depression. We draw upon a range of preclinical studies that have used genetic dosage models of FMR1 and CYFIP1 to determine their biological function. In parallel, we discuss how clinical studies of fragile X syndrome or 15q11.2 deletion patients have informed our understanding of FMRP and CYFIP1, and highlight the latest psychiatric genomic findings that continue to implicate FMRP and CYFIP1. Lastly, we assess the current limitations in our understanding of FMRP and CYFIP1 biology and how they must be addressed before mechanism-led therapeutic strategies can be developed for psychiatric disorders.
Collapse
Affiliation(s)
- Nicholas E. Clifton
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kerrie L. Thomas
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Simon Trent
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Keele, United Kingdom
| |
Collapse
|
33
|
Klein ME, Younts TJ, Cobo CF, Buxbaum AR, Aow J, Erdjument-Bromage H, Richard S, Malinow R, Neubert TA, Singer RH, Castillo PE, Jordan BA. Sam68 Enables Metabotropic Glutamate Receptor-Dependent LTD in Distal Dendritic Regions of CA1 Hippocampal Neurons. Cell Rep 2020; 29:1789-1799.e6. [PMID: 31722197 PMCID: PMC6871770 DOI: 10.1016/j.celrep.2019.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/15/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
The transport and translation of dendritic mRNAs by RNA-binding proteins (RBPs) allows for spatially restricted gene expression in neuronal processes. Although local translation in neuronal dendrites is now well documented, there is little evidence for corresponding effects on local synaptic function. Here, we report that the RBP Sam68 promotes the localization and translation of Arc mRNA preferentially in distal dendrites of rodent hippocampal CA1 pyramidal neurons. Consistent with Arc function in translation-dependent synaptic plasticity, we find that Sam68 knockout (KO) mice display impaired metabotropic glutamate-receptor-dependent long-term depression (mGluR-LTD) and impaired structural plasticity exclusively at distal Schaffer-collateral synapses. Moreover, by using quantitative proteomics, we find that the Sam68 interactome contains numerous regulators of mRNA translation and synaptic function. This work identifies an important player in Arc expression, provides a general framework for Sam68 regulation of protein synthesis, and uncovers a mechanism that enables the precise spatiotemporal expression of long-term plasticity throughout neurons.
Collapse
Affiliation(s)
- Matthew E Klein
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Thomas J Younts
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Carmen Freire Cobo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Adina R Buxbaum
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego, San Diego, CA 92093, USA
| | - Jonathan Aow
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego, San Diego, CA 92093, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology and Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research and Departments of Oncology and Medicine, McGill University, Montréal, QC H3T 1E2, Canada
| | - Roberto Malinow
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego, San Diego, CA 92093, USA
| | - Thomas A Neubert
- Department of Cell Biology and Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Robert H Singer
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| |
Collapse
|
34
|
Zhang H, Bramham CR. Arc/Arg3.1 function in long-term synaptic plasticity: Emerging mechanisms and unresolved issues. Eur J Neurosci 2020; 54:6696-6712. [PMID: 32888346 DOI: 10.1111/ejn.14958] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/18/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
Arc (activity-regulated cytoskeleton-associated protein) is posited as a critical regulator of long-term synaptic plasticity at excitatory synapses, including long-term potentiation, long-term depression, inverse synaptic tagging and homoeostatic scaling, with pivotal roles in memory and postnatal cortical development. However, the mechanisms underlying the bidirectional regulation of synaptic strength are poorly understood. Here we review evidence from different plasticity paradigms, highlight outstanding issues and discuss stimulus-specific mechanisms that dictate Arc function. We propose a model in which Arc bidirectionally controls synaptic strength by coordinate regulation of AMPA-type glutamate receptor (AMPAR) trafficking and actin cytoskeletal dynamics in dendritic spines. Key to this model, Arc is proposed to function as an activity-dependent regulator of AMPAR lateral membrane diffusion and trapping at synapses.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Clive R Bramham
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
35
|
Prieto M, Folci A, Martin S. Post-translational modifications of the Fragile X Mental Retardation Protein in neuronal function and dysfunction. Mol Psychiatry 2020; 25:1688-1703. [PMID: 31822816 DOI: 10.1038/s41380-019-0629-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022]
Abstract
The Fragile X Mental Retardation Protein (FMRP) is an RNA-binding protein essential to the regulation of local translation at synapses. In the mammalian brain, synapses are constantly formed and eliminated throughout development to achieve functional neuronal networks. At the molecular level, thousands of proteins cooperate to accomplish efficient neuronal communication. Therefore, synaptic protein levels and their functional interactions need to be tightly regulated. FMRP generally acts as a translational repressor of its mRNA targets. FMRP is the target of several post-translational modifications (PTMs) that dynamically regulate its function. Here we provide an overview of the PTMs controlling the FMRP function and discuss how their spatiotemporal interplay contributes to the physiological regulation of FMRP. Importantly, FMRP loss-of-function leads to Fragile X syndrome (FXS), a rare genetic developmental condition causing a range of neurological alterations including intellectual disability (ID), learning and memory impairments, autistic-like features and seizures. Here, we also explore the possibility that recently reported missense mutations in the FMR1 gene disrupt the PTM homoeostasis of FMRP, thus participating in the aetiology of FXS. This suggests that the pharmacological targeting of PTMs may be a promising strategy to develop innovative therapies for patients carrying such missense mutations.
Collapse
Affiliation(s)
- Marta Prieto
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| | | | - Stéphane Martin
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France.
| |
Collapse
|
36
|
BRAG2a Mediates mGluR-Dependent AMPA Receptor Internalization at Excitatory Postsynapses through the Interaction with PSD-95 and Endophilin 3. J Neurosci 2020; 40:4277-4296. [PMID: 32341099 DOI: 10.1523/jneurosci.1645-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/06/2019] [Accepted: 04/17/2020] [Indexed: 11/21/2022] Open
Abstract
Brefeldin A-resistant ArfGEF 2 (BRAG2) [or Iqsec1 (IQ motif and Sec7 domain-containing protein 1)] is a guanine nucleotide exchange factor for ADP ribosylation factor 6 (Arf6), a small GTPase implicated in the membrane trafficking between the plasma membrane and endosomes. BRAG2 regulates Arf6-dependent endocytosis of AMPA receptors (AMPARs) through the direct interaction during the hippocampal long-term depression. However, the molecular mechanism by which the BRAG2-Arf6 pathway links AMPARs to the endocytic machinery remains elusive. Herein, using mouse brains of both sexes, we demonstrated that BRAG2a, an alternative isoform with a long C-terminal insert containing a proline-rich domain and type I PDZ-binding motif, was selectively localized to the excitatory postsynaptic density (PSD). Using yeast two-hybrid screening, we identified PSD-95 and endophilin 1/3 as BRAG2a-binding partners in the brain. The interaction with PSD-95 was required for synaptic targeting of BRAG2a. In cultured hippocampal neurons, stimulation of group I metabotropic glutamate receptors (mGluRs) increased the interaction of BRAG2a with endophilin 3 and concomitant Arf6 activation in a time-dependent manner. Knockdown of BRAG2 in cultured hippocampal neurons blocked the mGluR-dependent decrease in surface AMPAR levels, which was rescued by introducing wild-type BRAG2a, but not wild-type BRAG2b or BRAG2a mutants lacking the ability to activate Arf6 or to interact with endophilin 3 or PSD-95. Further postembedding immunoelectron microscopic analysis revealed the preorganized lateral distribution of BRAG2a, Arf6, and endophilin 3 for efficient endocytosis at the postsynaptic membrane. Together, the present findings unveiled a novel molecular mechanism by which BRAG2a links AMPARs to the clathrin-dependent endocytic pathway through its interaction with PSD-95 and endophilin 3.SIGNIFICANCE STATEMENT BRAG2/Iqsec1 is a GDP/GTP exchange factor for ADP ribosylation factor 6 (Arf6), a small GTPase implicated in the membrane trafficking between the plasma membrane and endosomes, and regulates Arf6-dependent endocytosis of AMPARs through direct interaction during hippocampal long-term depression, one of the mechanisms of synaptic plasticity related to learning and memory. However, the molecular mechanism by which the BRAG2-Arf6 pathway links AMPARs to the endocytic machinery remains elusive. Here, we identified isoform-specific mechanisms of BRAG2-mediated AMPAR internalization. We demonstrated that the interaction of BRAG2a isoform with PSD-95 and endophilin 3 was required for the mGluR-dependent decrease in surface AMPARs in hippocampal neurons. These results unveiled a novel molecular mechanism by which BRAG2 links AMPARs to the clathrin-mediated endocytic machinery at postsynaptic sites.
Collapse
|
37
|
Kissinger ST, Wu Q, Quinn CJ, Anderson AK, Pak A, Chubykin AA. Visual Experience-Dependent Oscillations and Underlying Circuit Connectivity Changes Are Impaired in Fmr1 KO Mice. Cell Rep 2020; 31:107486. [PMID: 32268079 PMCID: PMC7201849 DOI: 10.1016/j.celrep.2020.03.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/30/2020] [Accepted: 03/16/2020] [Indexed: 11/19/2022] Open
Abstract
Fragile X syndrome (FX), the most common inherited form of autism and intellectual disability, is a condition associated with visual perceptual learning deficits. We recently discovered that perceptual experience can encode visual familiarity via persistent low-frequency oscillations in the mouse primary visual cortex (V1). Here, we combine this paradigm with a multifaceted experimental approach to identify neurophysiological impairments of these oscillations in FX mice. Extracellular recordings reveal shorter durations, lower power, and lower frequencies of peak oscillatory activity in FX mice. Directed information analysis of extracellularly recorded spikes reveals differences in functional connectivity from multiple layers in FX mice after the perceptual experience. Channelrhodopsin-2 assisted circuit mapping (CRACM) reveals increased synaptic strength from L5 pyramidal onto L4 fast-spiking cells after experience in wild-type (WT), but not FX, mice. These results suggest differential encoding of visual stimulus familiarity in FX via persistent oscillations and identify circuit connections that may underlie these changes.
Collapse
Affiliation(s)
- Samuel T Kissinger
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Qiuyu Wu
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Christopher J Quinn
- Department of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Adam K Anderson
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Alexandr Pak
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Alexander A Chubykin
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
38
|
Chronic Activation of Gp1 mGluRs Leads to Distinct Refinement of Neural Network Activity through Non-Canonical p53 and Akt Signaling. eNeuro 2020; 7:ENEURO.0438-19.2020. [PMID: 32161037 PMCID: PMC7218008 DOI: 10.1523/eneuro.0438-19.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/17/2020] [Accepted: 03/02/2020] [Indexed: 11/30/2022] Open
Abstract
Group 1 metabotropic glutamate receptors (Gp1 mGluRs), including mGluR1 and mGluR5, are critical regulators for neuronal and synaptic plasticity. Dysregulated Gp1 mGluR signaling is observed with various neurologic disorders, including Alzheimer’s disease, Parkinson’s disease, epilepsy, and autism spectrum disorders (ASDs). It is well established that acute activation of Gp1 mGluRs leads to elevation of neuronal intrinsic excitability and long-term synaptic depression. However, it remains unknown how chronic activation of Gp1 mGluRs can affect neural activity and what molecular mechanisms might be involved. In the current study, we employed a multielectrode array (MEA) recording system to evaluate neural network activity of primary mouse cortical neuron cultures. We demonstrated that chronic activation of Gp1 mGluRs leads to elevation of spontaneous spike frequency while burst activity and cross-electrode synchronization are maintained at the baseline. We further showed that these neural network properties are achieved through proteasomal degradation of Akt that is dependent on the tumor suppressor p53. Genetically knocking down p53 disrupts the elevation of spontaneous spike frequency and alters the burst activity and cross-electrode synchronization following chronic activation of Gp1 mGluRs. Importantly, these deficits can be restored by pharmacologically inhibiting Akt to mimic inactivation of Akt mediated by p53. Together, our findings reveal the effects of chronic activation of Gp1 mGluRs on neural network activity and identify a unique signaling pathway involving p53 and Akt for these effects. Our data can provide insights into constitutively active Gp1 mGluR signaling observed in many neurologic and psychiatric disorders.
Collapse
|
39
|
Penrod RD, Thomsen M, Taniguchi M, Guo Y, Cowan CW, Smith LN. The activity-regulated cytoskeleton-associated protein, Arc/Arg3.1, influences mouse cocaine self-administration. Pharmacol Biochem Behav 2020; 188:172818. [PMID: 31682894 PMCID: PMC7202920 DOI: 10.1016/j.pbb.2019.172818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 10/01/2019] [Accepted: 10/30/2019] [Indexed: 01/04/2023]
Abstract
The activity-regulated cytoskeleton-associated protein (Arc, also known as Arg3.1), an immediate early gene and synaptic regulator, is upregulated following a single cocaine exposure. However, there is not much known regarding Arc/Arg3.1's potential contribution to addiction-relevant behaviors. Despite known learning and memory deficits in contextual fear and water-maze reversal learning tasks, we find that mice lacking Arc/Arg3.1 perform conditioned place preference and operant conditioning involving positive reinforcers (food and cocaine) with little-to-no impairment. However, following normal saline-extinction, wild type (WT) mice show a classic inverted-U dose-response function, while Arc/Arg3.1 knockout (KO) mice fail to adjust their intake across multiple doses. Importantly, Arc/Arg3.1 KO and WT mice behave comparably on an increasing cost task (FR1-FR3; acquisition dose), providing evidence that both groups find cocaine reinforcing. Differences in individuals that drive variations in use patterns and particularly, drug intake levels, are critical as they influence the likelihood of developing dependence. Our data suggest that Arc/Arg3.1 may contribute to addiction as a regulator of drug-taking vulnerability under different drug availability conditions.
Collapse
Affiliation(s)
- Rachel D Penrod
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, United States of America
| | - Morgane Thomsen
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, United States of America
| | - Makoto Taniguchi
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, United States of America
| | - Yuhong Guo
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, United States of America; Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, United States of America
| | - Christopher W Cowan
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, United States of America
| | - Laura N Smith
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, United States of America; Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, United States of America.
| |
Collapse
|
40
|
Disturbed Prefrontal Cortex Activity in the Absence of Schizophrenia-Like Behavioral Dysfunction in Arc/Arg3.1 Deficient Mice. J Neurosci 2019; 39:8149-8163. [PMID: 31488612 DOI: 10.1523/jneurosci.0623-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/06/2019] [Accepted: 08/29/2019] [Indexed: 12/11/2022] Open
Abstract
Arc/Arg3.1, an activity regulated immediate early gene, is essential for learning and memory, synaptic plasticity, and maturation of neural networks. It has also been implicated in several neurodevelopmental disorders, including schizophrenia. Here, we used male and female constitutive and conditional Arc/Arg3.1 knock-out (KO) mice to investigate the causal relationship between Arc/Arg3.1 deletion and schizophrenia-linked neurophysiological and behavioral phenotypes. Using in vivo local field potential recordings, we observed dampened oscillatory activity in the prefrontal cortex (PFC) of the KO and early conditional KO (early-cKO) mice, in which Arc/Arg3.1 was deleted perinatally. Whole-cell patch-clamp recordings from neurons in PFC slices revealed altered synaptic properties and reduced network gain in the KO mice as possible mechanisms underlying the oscillation deficits. In contrast, we measured normal oscillatory activity in the PFC of late conditional KO (late-cKO) mice, in which Arc/Arg3.1 was deleted during late postnatal development. Our data show that constitutive Arc/Arg3.1 KO mice exhibit no deficit in social engagement, working memory, sensorimotor gating, native locomotor activity, and dopaminergic innervation. Moreover, adolescent social isolation, an environmental stressor, failed to induce deficits in sociability or sensorimotor gating in adult KO mice. Thus, genetic removal of Arc/Arg3.1 per se does not cause schizophrenia-like behavior. Prenatal or perinatal deletion of Arc/Arg3.1 alters cortical network activity, however, without overtly disrupting the balance of excitation and inhibition in the brain and not promoting schizophrenia. Misregulation of Arc/Arg3.1 rather than deletion could potentially tip this balance and thereby promote emergence of schizophrenia and other neuropsychiatric disorders.SIGNIFICANCE STATEMENT The activity-regulated and memory-linked gene Arc/Arg3.1 has been implicated in the pathogenesis of schizophrenia, but direct evidence and a mechanistic link are still missing. The current study asks whether loss of Arc/Arg3.1 can affect brain circuitry and cause schizophrenia-like symptoms in mice. The findings demonstrate that genetic deletion of Arc/Arg3.1 before puberty alters synaptic function and prefrontal cortex activity. Although brain networks are disturbed, genetic deletion of Arc/Arg3.1 does not cause schizophrenia-like behavior, even when combined with an environmental insult. It remains to be seen whether misregulation of Arc/Arg3.1 might critically imbalance brain networks and lead to emergence of schizophrenia.
Collapse
|
41
|
Disruption of GpI mGluR-Dependent Cav2.3 Translation in a Mouse Model of Fragile X Syndrome. J Neurosci 2019; 39:7453-7464. [PMID: 31350260 DOI: 10.1523/jneurosci.1443-17.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 11/21/2022] Open
Abstract
Fragile X syndrome (FXS) is an inherited intellectual impairment that results from the loss of fragile X mental retardation protein (FMRP), an mRNA binding protein that regulates mRNA translation at synapses. The absence of FMRP leads to neuronal and circuit-level hyperexcitability that is thought to arise from the aberrant expression and activity of voltage-gated ion channels, although the identification and characterization of these ion channels have been limited. Here, we show that FMRP binds the mRNA of the R-type voltage-gated calcium channel Cav2.3 in mouse brain synaptoneurosomes and represses Cav2.3 translation under basal conditions. Consequently, in hippocampal neurons from male and female FMRP KO mice, we find enhanced Cav2.3 protein expression by western blotting and abnormally large R currents in whole-cell voltage-clamp recordings. In agreement with previous studies showing that FMRP couples Group I metabotropic glutamate receptor (GpI mGluR) signaling to protein translation, we find that GpI mGluR stimulation results in increased Cav2.3 translation and R current in hippocampal neurons which is disrupted in FMRP KO mice. Thus, FMRP serves as a key translational regulator of Cav2.3 expression under basal conditions and in response to GpI mGluR stimulation. Loss of regulated Cav2.3 expression could underlie the neuronal hyperactivity and aberrant calcium spiking in FMRP KO mice and contribute to FXS, potentially serving as a novel target for future therapeutic strategies.SIGNIFICANCE STATEMENT Patients with fragile X syndrome (FXS) exhibit signs of neuronal and circuit hyperexcitability, including anxiety and hyperactive behavior, attention deficit disorder, and seizures. FXS is caused by the loss of fragile X mental retardation protein (FMRP), an mRNA binding protein, and the neuronal hyperexcitability observed in the absence of FMRP likely results from its ability to regulate the expression and activity of voltage-gated ion channels. Here we find that FMRP serves as a key translational regulator of the voltage-gated calcium channel Cav2.3 under basal conditions and following activity. Cav2.3 impacts cellular excitability and calcium signaling, and the alterations in channel translation and expression observed in the absence of FMRP could contribute to the neuronal hyperactivity that underlies FXS.
Collapse
|
42
|
Zhang W, Chuang YA, Na Y, Ye Z, Yang L, Lin R, Zhou J, Wu J, Qiu J, Savonenko A, Leahy DJ, Huganir R, Linden DJ, Worley PF. Arc Oligomerization Is Regulated by CaMKII Phosphorylation of the GAG Domain: An Essential Mechanism for Plasticity and Memory Formation. Mol Cell 2019; 75:13-25.e5. [PMID: 31151856 DOI: 10.1016/j.molcel.2019.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/27/2019] [Accepted: 05/01/2019] [Indexed: 12/17/2022]
Abstract
Arc is a synaptic protein essential for memory consolidation. Recent studies indicate that Arc originates in evolution from a Ty3-Gypsy retrotransposon GAG domain. The N-lobe of Arc GAG domain acquired a hydrophobic binding pocket in higher vertebrates that is essential for Arc's canonical function to weaken excitatory synapses. Here, we report that Arc GAG also acquired phosphorylation sites that can acutely regulate its synaptic function. CaMKII phosphorylates the N-lobe of the Arc GAG domain and disrupts an interaction surface essential for high-order oligomerization. In Purkinje neurons, CaMKII phosphorylation acutely reverses Arc's synaptic action. Mutant Arc that cannot be phosphorylated by CaMKII enhances metabotropic receptor-dependent depression in the hippocampus but does not alter baseline synaptic transmission or long-term potentiation. Behavioral studies indicate that hippocampus- and amygdala-dependent learning requires Arc GAG domain phosphorylation. These studies provide an atomic model for dynamic and local control of Arc function underlying synaptic plasticity and memory.
Collapse
Affiliation(s)
- Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yang-An Chuang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Youn Na
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zengyou Ye
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Liuqing Yang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Raozhou Lin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiechao Zhou
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jing Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jessica Qiu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel J Leahy
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Richard Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David J Linden
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul F Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
43
|
Emerging roles for MEF2 in brain development and mental disorders. Curr Opin Neurobiol 2019; 59:49-58. [PMID: 31129473 DOI: 10.1016/j.conb.2019.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/18/2019] [Indexed: 12/26/2022]
Abstract
The MEF2 family of transcription factors regulate large programs of gene expression important for the development and maintenance of many tissues, including the brain. MEF2 proteins are regulated by neuronal synaptic activity, and they recruit several epigenetic enzymes to influence chromatin structure and gene expression during development and throughout adulthood. Here, we provide a brief review of the recent literature reporting important roles for MEF2 during early brain development and function, and we highlight emerging roles for MEF2 as a risk factor for multiple neurodevelopmental disorders and mental illnesses, such as autism, intellectual disability, and schizophrenia.
Collapse
|
44
|
Biever A, Donlin-Asp PG, Schuman EM. Local translation in neuronal processes. Curr Opin Neurobiol 2019; 57:141-148. [PMID: 30861464 DOI: 10.1016/j.conb.2019.02.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022]
Abstract
Neurons exhibit a unique degree of spatial compartmentalization and are able to maintain and remodel their proteomes independently from the cell body. While much effort has been devoted to understanding the capacity and role for local protein synthesis in dendrites and spines, local mRNA translation in mature axons, projecting over distances up to a meter, has received much less attention. Also, little is known about the spatio-temporal dynamics of axonal and dendritic gene expression as function of mRNA abundance, protein synthesis and degradation. Here, we summarize key recent findings that have shaped our knowledge of the precise location of local protein production and discuss unique strategies used by neurons to shape presynaptic and postsynaptic proteomes.
Collapse
Affiliation(s)
- Anne Biever
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | | | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
45
|
The Arc gene: Retroviral heritage in cognitive functions. Neurosci Biobehav Rev 2019; 99:275-281. [PMID: 30772431 DOI: 10.1016/j.neubiorev.2019.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/29/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
Stabilization of neuronal plastic changes is mediated by transient gene expression, including transcription of the activity-regulated cytoskeleton-associated gene (Arc), also known as Arg 3.1. Arc is implicated in several types of synaptic plasticity, including synaptic scaling, long-term potentiation, and long-term depression. However, the precise mechanisms by which Arc mediates these forms of long-term plasticity are unclear. It was recently found that Arc protein is capable of forming capsid-like structures and of transferring its own mRNA to neighboring cells. Moreover, Arc mRNA undergoes activity-dependent translation in these "transfected" cells. These new data raise unexpected possibilities for the mechanisms of the Arc action, and many intriguing questions concerning the role of Arc transcellular traffic in neuronal plasticity. In this mini-review, we discuss a possible link between the role of Arc in learning and memory and the virus-like properties of this protein. Additionally, we highlight some of the emerging questions for future neurobiological studies and translational applications of Arc transsynaptic effects.
Collapse
|
46
|
Phosphoregulated FMRP phase separation models activity-dependent translation through bidirectional control of mRNA granule formation. Proc Natl Acad Sci U S A 2019; 116:4218-4227. [PMID: 30765518 DOI: 10.1073/pnas.1814385116] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activity-dependent translation requires the transport of mRNAs within membraneless protein assemblies known as neuronal granules from the cell body toward synaptic regions. Translation of mRNA is inhibited in these granules during transport but quickly activated in response to neuronal stimuli at the synapse. This raises an important question: how does synaptic activity trigger translation of once-silenced mRNAs? Here, we demonstrate a strong connection between phase separation, the process underlying the formation of many different types of cellular granules, and in vitro inhibition of translation. By using the Fragile X Mental Retardation Protein (FMRP), an abundant neuronal granule component and translational repressor, we show that FMRP phase separates in vitro with RNA into liquid droplets mediated by its C-terminal low-complexity disordered region (i.e., FMRPLCR). FMRPLCR posttranslational modifications by phosphorylation and methylation have opposing effects on in vitro translational regulation, which corroborates well with their critical concentrations for phase separation. Our results, combined with bioinformatics evidence, are supportive of phase separation as a general mechanism controlling activity-dependent translation.
Collapse
|
47
|
Arc/Arg3.1 mediates a critical period for spatial learning and hippocampal networks. Proc Natl Acad Sci U S A 2018; 115:12531-12536. [PMID: 30442670 DOI: 10.1073/pnas.1810125115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During early postnatal development, sensory regions of the brain undergo periods of heightened plasticity which sculpt neural networks and lay the foundation for adult sensory perception. Such critical periods were also postulated for learning and memory but remain elusive and poorly understood. Here, we present evidence that the activity-regulated and memory-linked gene Arc/Arg3.1 is transiently up-regulated in the hippocampus during the first postnatal month. Conditional removal of Arc/Arg3.1 during this period permanently alters hippocampal oscillations and diminishes spatial learning capacity throughout adulthood. In contrast, post developmental removal of Arc/Arg3.1 leaves learning and network activity patterns intact. Long-term memory storage continues to rely on Arc/Arg3.1 expression throughout life. These results demonstrate that Arc/Arg3.1 mediates a critical period for spatial learning, during which Arc/Arg3.1 fosters maturation of hippocampal network activity necessary for future learning and memory storage.
Collapse
|
48
|
Impaired GABA Neural Circuits Are Critical for Fragile X Syndrome. Neural Plast 2018; 2018:8423420. [PMID: 30402088 PMCID: PMC6192167 DOI: 10.1155/2018/8423420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/17/2018] [Indexed: 12/24/2022] Open
Abstract
Fragile X syndrome (FXS) is an inheritable neuropsychological disease caused by silence of the fmr1 gene and the deficiency of Fragile X mental retardation protein (FMRP). Patients present neuronal alterations that lead to severe intellectual disability and altered sleep rhythms. However, the neural circuit mechanisms underlying FXS remain unclear. Previous studies have suggested that metabolic glutamate and gamma-aminobutyric acid (GABA) receptors/circuits are two counter-balanced factors involved in FXS pathophysiology. More and more studies demonstrated that attenuated GABAergic circuits in the absence of FMRP are critical for abnormal progression of FXS. Here, we reviewed the changes of GABA neural circuits that were attributed to intellectual-deficient FXS, from several aspects including deregulated GABA metabolism, decreased expressions of GABA receptor subunits, and impaired GABAergic neural circuits. Furthermore, the activities of GABA neural circuits are modulated by circadian rhythm of FMRP metabolism and reviewed the abnormal condition of FXS mice or patients.
Collapse
|
49
|
Jewett KA, Lee KY, Eagleman DE, Soriano S, Tsai NP. Dysregulation and restoration of homeostatic network plasticity in fragile X syndrome mice. Neuropharmacology 2018; 138:182-192. [PMID: 29890190 DOI: 10.1016/j.neuropharm.2018.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/01/2018] [Accepted: 06/06/2018] [Indexed: 01/06/2023]
Abstract
Chronic activity perturbations in neurons induce homeostatic plasticity through modulation of synaptic strength or other intrinsic properties to maintain the correct physiological range of excitability. Although similar plasticity can also occur at the population level, what molecular mechanisms are involved remain unclear. In the current study, we utilized a multielectrode array (MEA) recording system to evaluate homeostatic neural network activity of primary mouse cortical neuron cultures. We demonstrated that chronic elevation of neuronal activity through the inhibition of GABA(A) receptors elicits synchronization of neural network activity and homeostatic reduction of the amplitude of spontaneous neural network spikes. We subsequently showed that this phenomenon is mediated by the ubiquitination of tumor suppressor p53, which is triggered by murine double minute-2 (Mdm2). Using a mouse model of fragile X syndrome, in which fragile X mental retardation protein (FMRP) is absent (Fmr1 knockout), we found that Mdm2-p53 signaling, network synchronization, and the reduction of network spike amplitude upon chronic activity stimulation were all impaired. Pharmacologically inhibiting p53 with Pifithrin-α or genetically employing p53 heterozygous mice to enforce the inactivation of p53 in Fmr1 knockout cultures restored the synchronization of neural network activity after chronic activity stimulation and partially corrects the homeostatic reduction of neural network spike amplitude. Together, our findings reveal the roles of both Fmr1 and Mdm2-p53 signaling in the homeostatic regulation of neural network activity and provide insight into the deficits of excitability homeostasis seen when Fmr1 is compromised, such as occurs with fragile X syndrome.
Collapse
Affiliation(s)
- Kathryn A Jewett
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Daphne E Eagleman
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephanie Soriano
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
50
|
Newpher TM, Harris S, Pringle J, Hamilton C, Soderling S. Regulation of spine structural plasticity by Arc/Arg3.1. Semin Cell Dev Biol 2018; 77:25-32. [DOI: 10.1016/j.semcdb.2017.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
|