1
|
Zhang K, Wang Y, Fan T, Zeng C, Sun ZS. The p21-activated kinases in neural cytoskeletal remodeling and related neurological disorders. Protein Cell 2020; 13:6-25. [PMID: 33306168 PMCID: PMC8776968 DOI: 10.1007/s13238-020-00812-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022] Open
Abstract
The serine/threonine p21-activated kinases (PAKs), as main effectors of the Rho GTPases Cdc42 and Rac, represent a group of important molecular switches linking the complex cytoskeletal networks to broad neural activity. PAKs show wide expression in the brain, but they differ in specific cell types, brain regions, and developmental stages. PAKs play an essential and differential role in controlling neural cytoskeletal remodeling and are related to the development and fate of neurons as well as the structural and functional plasticity of dendritic spines. PAK-mediated actin signaling and interacting functional networks represent a common pathway frequently affected in multiple neurodevelopmental and neurodegenerative disorders. Considering specific small-molecule agonists and inhibitors for PAKs have been developed in cancer treatment, comprehensive knowledge about the role of PAKs in neural cytoskeletal remodeling will promote our understanding of the complex mechanisms underlying neurological diseases, which may also represent potential therapeutic targets of these diseases.
Collapse
Affiliation(s)
- Kaifan Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tianda Fan
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Cheng Zeng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China. .,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Younus A, Kelly A, Lekgwara P. Entrapment neuropathy caused by a schwannoma of the posterior tibial nerve – A case report and literature review. INTERDISCIPLINARY NEUROSURGERY 2020. [DOI: 10.1016/j.inat.2020.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
3
|
SOX10-regulated promoter use defines isoform-specific gene expression in Schwann cells. BMC Genomics 2020; 21:549. [PMID: 32770939 PMCID: PMC7430845 DOI: 10.1186/s12864-020-06963-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/29/2020] [Indexed: 01/12/2023] Open
Abstract
Background Multicellular organisms adopt various strategies to tailor gene expression to cellular contexts including the employment of multiple promoters (and the associated transcription start sites (TSSs)) at a single locus that encodes distinct gene isoforms. Schwann cells—the myelinating cells of the peripheral nervous system (PNS)—exhibit a specialized gene expression profile directed by the transcription factor SOX10, which is essential for PNS myelination. SOX10 regulates promoter elements associated with unique TSSs and gene isoforms at several target loci, implicating SOX10-mediated, isoform-specific gene expression in Schwann cell function. Here, we report on genome-wide efforts to identify SOX10-regulated promoters and TSSs in Schwann cells to prioritize genes and isoforms for further study. Results We performed global TSS analyses and mined previously reported ChIP-seq datasets to assess the activity of SOX10-bound promoters in three models: (i) an adult mammalian nerve; (ii) differentiating primary Schwann cells, and (iii) cultured Schwann cells with ablated SOX10 function. We explored specific characteristics of SOX10-dependent TSSs, which provides confidence in defining them as SOX10 targets. Finally, we performed functional studies to validate our findings at four previously unreported SOX10 target loci: ARPC1A, CHN2, DDR1, and GAS7. These findings suggest roles for the associated SOX10-regulated gene products in PNS myelination. Conclusions In sum, we provide comprehensive computational and functional assessments of SOX10-regulated TSS use in Schwann cells. The data presented in this study will stimulate functional studies on the specific mRNA and protein isoforms that SOX10 regulates, which will improve our understanding of myelination in the peripheral nerve.
Collapse
|
4
|
White SM, Avantaggiati ML, Nemazanyy I, Di Poto C, Yang Y, Pende M, Gibney GT, Ressom HW, Field J, Atkins MB, Yi C. YAP/TAZ Inhibition Induces Metabolic and Signaling Rewiring Resulting in Targetable Vulnerabilities in NF2-Deficient Tumor Cells. Dev Cell 2020; 49:425-443.e9. [PMID: 31063758 DOI: 10.1016/j.devcel.2019.04.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 02/04/2019] [Accepted: 04/08/2019] [Indexed: 02/09/2023]
Abstract
Merlin/NF2 is a bona fide tumor suppressor whose mutations underlie inherited tumor syndrome neurofibromatosis type 2 (NF2), as well as various sporadic cancers including kidney cancer. Multiple Merlin/NF2 effector pathways including the Hippo-YAP/TAZ pathway have been identified. However, the molecular mechanisms underpinning the growth and survival of NF2-mutant tumors remain poorly understood. Using an inducible orthotopic kidney tumor model, we demonstrate that YAP/TAZ silencing is sufficient to induce regression of pre-established NF2-deficient tumors. Mechanistically, YAP/TAZ depletion diminishes glycolysis-dependent growth and increases mitochondrial respiration and reactive oxygen species (ROS) buildup, resulting in oxidative-stress-induced cell death when challenged by nutrient stress. Furthermore, we identify lysosome-mediated cAMP-PKA/EPAC-dependent activation of RAF-MEK-ERK signaling as a resistance mechanism to YAP/TAZ inhibition. Finally, unbiased analysis of TCGA primary kidney tumor transcriptomes confirms a positive correlation of a YAP/TAZ signature with glycolysis and inverse correlations with oxidative phosphorylation and lysosomal gene expression, supporting the clinical relevance of our findings.
Collapse
Affiliation(s)
- Shannon M White
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | | | - Ivan Nemazanyy
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, Institut Necker Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Cristina Di Poto
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Yang Yang
- Department of Systems Pharmacology and Translational Therapeutics, Perelmen School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mario Pende
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, Institut Necker Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Geoffrey T Gibney
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Habtom W Ressom
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Jeffery Field
- Department of Systems Pharmacology and Translational Therapeutics, Perelmen School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael B Atkins
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA.
| |
Collapse
|
5
|
Murtaza M, Chacko A, Delbaz A, Reshamwala R, Rayfield A, McMonagle B, St John JA, Ekberg JAK. Why are olfactory ensheathing cell tumors so rare? Cancer Cell Int 2019; 19:260. [PMID: 31632194 PMCID: PMC6788004 DOI: 10.1186/s12935-019-0989-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/01/2019] [Indexed: 01/08/2023] Open
Abstract
The glial cells of the primary olfactory nervous system, olfactory ensheathing cells (OECs), are unusual in that they rarely form tumors. Only 11 cases, all of which were benign, have been reported to date. In fact, the existence of OEC tumors has been debated as the tumors closely resemble schwannomas (Schwann cell tumors), and there is no definite method for distinguishing the two tumor types. OEC transplantation is a promising therapeutic approach for nervous system injuries, and the fact that OECs are not prone to tumorigenesis is therefore vital. However, why OECs are so resistant to neoplastic transformation remains unknown. The primary olfactory nervous system is a highly dynamic region which continuously undergoes regeneration and neurogenesis throughout life. OECs have key roles in this process, providing structural and neurotrophic support as well as phagocytosing the axonal debris resulting from turnover of neurons. The olfactory mucosa and underlying tissue is also frequently exposed to infectious agents, and OECs have key innate immune roles preventing microbes from invading the central nervous system. It is possible that the unique biological functions of OECs, as well as the dynamic nature of the primary olfactory nervous system, relate to the low incidence of OEC tumors. Here, we summarize the known case reports of OEC tumors, discuss the difficulties of correctly diagnosing them, and examine the possible reasons for their rare incidence. Understanding why OECs rarely form tumors may open avenues for new strategies to combat tumorigenesis in other regions of the nervous system.
Collapse
Affiliation(s)
- Mariyam Murtaza
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Anu Chacko
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Ali Delbaz
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Ronak Reshamwala
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Andrew Rayfield
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Brent McMonagle
- 4Department of Otolaryngology-Head and Neck Surgery, Gold Coast University Hospital, 1 Hospital Boulevard, Southport, QLD 4215 Australia
| | - James A St John
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Jenny A K Ekberg
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| |
Collapse
|
6
|
Daniel M, Waters D, Chen C, Brouyette N. Posterior tibial nerve schwannoma in a multiple myeloma patient: A case report. SAGE Open Med Case Rep 2019; 7:2050313X19838441. [PMID: 31007915 PMCID: PMC6458660 DOI: 10.1177/2050313x19838441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/26/2019] [Indexed: 12/04/2022] Open
Abstract
We report the case of a 61-year-old man with sharp pain, tender mass at the left lower one-third posterior tibial region. The patient has a 10-year history of multiple myeloma and related chemotherapy. A positron emission tomography computed tomography and magnetic resonance imaging indicated the suspect of a posterior tibial nerve tumor. En bloc resection of the tumor was performed under guidance of nerve stimulator without resecting nerve trunk. Active nerve was reserved without any neuropathic pain. Histology revealed the presence of a peripheral schwannoma. In conclusion, the tibial nerve schwannoma appeared to be a whole nerve mass, but meticulous dissection showed that this tibial nerve schwannoma was a well-encapsulated tumor and can be separated from the nerve trunk with active nerve fibers reserved. Removal of the tumor made patient free of pain and asymptomatic after surgery. The level of clinical evidence is 4.
Collapse
Affiliation(s)
- Michael Daniel
- Podiatric Surgery, Ascension St. John Hospital, Detroit, MI, USA
| | - David Waters
- Division of Foot and Ankle, Henry Ford Health System, Detroit, MI, USA
| | - Chaoyang Chen
- Department of Orthopedic Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - Nicole Brouyette
- Division of Foot and Ankle, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
7
|
Schulz A, Büttner R, Hagel C, Baader SL, Kluwe L, Salamon J, Mautner VF, Mindos T, Parkinson DB, Gehlhausen JR, Clapp DW, Morrison H. The importance of nerve microenvironment for schwannoma development. Acta Neuropathol 2016; 132:289-307. [PMID: 27236462 PMCID: PMC4947119 DOI: 10.1007/s00401-016-1583-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/18/2016] [Accepted: 05/21/2016] [Indexed: 11/22/2022]
Abstract
Schwannomas are predominantly benign nerve sheath neoplasms caused by Nf2 gene inactivation. Presently, treatment options are mainly limited to surgical tumor resection due to the lack of effective pharmacological drugs. Although the mechanistic understanding of Nf2 gene function has advanced, it has so far been primarily restricted to Schwann cell-intrinsic events. Extracellular cues determining Schwann cell behavior with regard to schwannoma development remain unknown. Here we show pro-tumourigenic microenvironmental effects on Schwann cells where an altered axonal microenvironment in cooperation with injury signals contribute to a persistent regenerative Schwann cell response promoting schwannoma development. Specifically in genetically engineered mice following crush injuries on sciatic nerves, we found macroscopic nerve swellings in mice with homozygous nf2 gene deletion in Schwann cells and in animals with heterozygous nf2 knockout in both Schwann cells and axons. However, patient-mimicking schwannomas could only be provoked in animals with combined heterozygous nf2 knockout in Schwann cells and axons. We identified a severe re-myelination defect and sustained macrophage presence in the tumor tissue as major abnormalities. Strikingly, treatment of tumor-developing mice after nerve crush injury with medium-dose aspirin significantly decreased schwannoma progression in this disease model. Our results suggest a multifactorial concept for schwannoma formation—emphasizing axonal factors and mechanical nerve irritation as predilection site for schwannoma development. Furthermore, we provide evidence supporting the potential efficacy of anti-inflammatory drugs in the treatment of schwannomas.
Collapse
|
8
|
Petrilli AM, Fernández-Valle C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene 2016; 35:537-48. [PMID: 25893302 PMCID: PMC4615258 DOI: 10.1038/onc.2015.125] [Citation(s) in RCA: 305] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/20/2015] [Accepted: 03/16/2015] [Indexed: 01/13/2023]
Abstract
Merlin (Moesin-ezrin-radixin-like protein, also known as schwannomin) is a tumor suppressor protein encoded by the neurofibromatosis type 2 gene NF2. Loss of function mutations or deletions in NF2 cause neurofibromatosis type 2 (NF2), a multiple tumor forming disease of the nervous system. NF2 is characterized by the development of bilateral vestibular schwannomas. Patients with NF2 can also develop schwannomas on other cranial and peripheral nerves, as well as meningiomas and ependymomas. The only potential treatment is surgery/radiosurgery, which often results in loss of function of the involved nerve. There is an urgent need for chemotherapies that slow or eliminate tumors and prevent their formation in NF2 patients. Interestingly NF2 mutations and merlin inactivation also occur in spontaneous schwannomas and meningiomas, as well as other types of cancer including mesothelioma, glioma multiforme, breast, colorectal, skin, clear cell renal cell carcinoma, hepatic and prostate cancer. Except for malignant mesotheliomas, the role of NF2 mutation or inactivation has not received much attention in cancer, and NF2 might be relevant for prognosis and future chemotherapeutic approaches. This review discusses the influence of merlin loss of function in NF2-related tumors and common human cancers. We also discuss the NF2 gene status and merlin signaling pathways affected in the different tumor types and the molecular mechanisms that lead to tumorigenesis, progression and pharmacological resistance.
Collapse
Affiliation(s)
- Alejandra M. Petrilli
- Department of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Cristina Fernández-Valle
- Department of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
9
|
Pasten C, Cerda J, Jausoro I, Court FA, Cáceres A, Marzolo MP. ApoER2 and Reelin are expressed in regenerating peripheral nerve and regulate Schwann cell migration by activating the Rac1 GEF protein, Tiam1. Mol Cell Neurosci 2015; 69:1-11. [PMID: 26386179 DOI: 10.1016/j.mcn.2015.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/07/2015] [Indexed: 11/17/2022] Open
Abstract
ApoER2 and its ligand Reelin participate in neuronal migration during development. Upon receptor binding, Reelin induces the proteolytic processing of ApoER2 as well as the activation of signaling pathway, including small Rho GTPases. Besides its presence in the central nervous system (CNS), Reelin is also secreted by Schwann cells (SCs), the glial cells of the peripheral nervous system (PNS). Reelin deficient mice (reeler) show decreased axonal regeneration in the PNS; however neither the presence of ApoER2 nor the role of the Reelin signaling pathway in the PNS have been evaluated. Interestingly SC migration occurs during PNS development and during injury-induced regeneration and involves activation of small Rho GTPases. Thus, Reelin-ApoER2 might regulate SC migration during axon regeneration in the PNS. Here we demonstrate the presence of ApoER2 in PNS. After sciatic nerve injury Reelin was induced and its receptor ApoER2 was proteolytically processed. In vitro, SCs express both Reelin and ApoER2 and Reelin induces SC migration. To elucidate the molecular mechanism underlying Reelin-dependent SC migration, we examined the involvement of Rac1, a conspicuous small GTPase family member. FRET experiments revealed that Reelin activates Rac1 at the leading edge of SCs. In addition, Tiam1, a major Rac1-specific GEF was required for Reelin-induced SC migration. Moreover, Reelin-induced SC migration was decreased after suppression of the polarity protein PAR3, consistent with its association to Tiam1. Even more interesting, we demonstrated that PAR3 binds preferentially to the full-length cytoplasmic tail of ApoER2 corresponding to the splice-variant containing the exon 19 that encodes a proline-rich insert and that ApoER2 was required for SC migration. Our study reveals a novel function for Reelin/ApoER2 in PNS, inducing cell migration of SCs, a process relevant for PNS development and regeneration.
Collapse
Affiliation(s)
- Consuelo Pasten
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for Regenerative Biology, Santiago, Chile
| | - Joaquín Cerda
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for Regenerative Biology, Santiago, Chile
| | - Ignacio Jausoro
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for Regenerative Biology, Santiago, Chile
| | - Felipe A Court
- Millennium Nucleus for Regenerative Biology, Santiago, Chile; Departmento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alfredo Cáceres
- Laboratory of Neurobiology, Instituto Mercedes y Martin Ferreyra (INIMEC) CONICET, Córdoba, Argentina
| | - Maria-Paz Marzolo
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for Regenerative Biology, Santiago, Chile.
| |
Collapse
|
10
|
Petrilli A, Copik A, Posadas M, Chang LS, Welling DB, Giovannini M, Fernández-Valle C. LIM domain kinases as potential therapeutic targets for neurofibromatosis type 2. Oncogene 2014; 33:3571-82. [PMID: 23934191 PMCID: PMC4016185 DOI: 10.1038/onc.2013.320] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 12/16/2022]
Abstract
Neurofibromatosis type 2 (NF2) is caused by mutations in the NF2 gene that encodes a tumor-suppressor protein called merlin. NF2 is characterized by formation of multiple schwannomas, meningiomas and ependymomas. Merlin loss-of-function is associated with increased activity of Rac and p21-activated kinases (PAKs) and deregulation of cytoskeletal organization. LIM domain kinases (LIMK1 and 2) are substrate for Cdc42/Rac-PAK and modulate actin dynamics by phosphorylating cofilin at serine-3. This modification inactivates the actin severing and depolymerizing activity of cofilin. LIMKs also translocate into the nucleus and regulate cell cycle progression. Significantly, LIMKs are overexpressed in several tumor types, including skin, breast, lung, liver and prostate. Here we report that mouse Schwann cells (MSCs) in which merlin function is lost as a result of Nf2 exon2 deletion (Nf2(ΔEx2)) exhibited increased levels of LIMK1, LIMK2 and active phospho-Thr508/505-LIMK1/2, as well as phospho-Ser3-cofilin, compared with wild-type normal MSCs. Similarly, levels of LIMK1 and 2 total protein and active phosphorylated forms were elevated in human vestibular schwannomas compared with normal human Schwann cells (SCs). Reintroduction of wild-type NF2 into Nf2(ΔEx2) MSC reduced LIMK1 and LIMK2 levels. We show that pharmacological inhibition of LIMK with BMS-5 decreased the viability of Nf2(ΔEx2) MSCs in a dose-dependent manner, but did not affect viability of control MSCs. Similarly, LIMK knockdown decreased viability of Nf2(ΔEx2) MSCs. The decreased viability of Nf2(ΔEx2) MSCs was not due to caspase-dependent or -independent apoptosis, but rather due to inhibition of cell cycle progression as evidenced by accumulation of cells in G2/M phase. Inhibition of LIMKs arrests cells in early mitosis by decreasing aurora A activation. Our results suggest that LIMKs are potential drug targets for NF2 and tumors associated with merlin deficiency.
Collapse
Affiliation(s)
- Alejandra Petrilli
- Department of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Alicja Copik
- Department of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Michelle Posadas
- Department of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Long-Sheng Chang
- Center for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - D. Bradley Welling
- Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Marco Giovannini
- House Research Institute, Division of Clinical and Translational Research, Los Angeles, CA 90057, USA
| | - Cristina Fernández-Valle
- Department of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
11
|
Hilton DA, Hanemann CO. Schwannomas and their pathogenesis. Brain Pathol 2014; 24:205-20. [PMID: 24450866 DOI: 10.1111/bpa.12125] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/16/2014] [Indexed: 12/18/2022] Open
Abstract
Schwannomas may occur spontaneously, or in the context of a familial tumor syndrome such as neurofibromatosis type 2 (NF2), schwannomatosis and Carney's complex. Schwannomas have a variety of morphological appearances, but they behave as World Health Organization (WHO) grade I tumors, and only very rarely undergo malignant transformation. Central to the pathogenesis of these tumors is loss of function of merlin, either by direct genetic change involving the NF2 gene on chromosome 22 or secondarily to merlin inactivation. The genetic pathways and morphological features of schwannomas associated with different genetic syndromes will be discussed. Merlin has multiple functions, including within the nucleus and at the cell membrane, and this review summarizes our current understanding of the mechanisms by which merlin loss is involved in schwannoma pathogenesis, highlighting potential areas for therapeutic intervention.
Collapse
Affiliation(s)
- David A Hilton
- Department of Cellular and Anatomical Pathology, Derriford Hospital, Plymouth, UK
| | | |
Collapse
|
12
|
Licciulli S, Maksimoska J, Zhou C, Troutman S, Kota S, Liu Q, Duron S, Campbell D, Chernoff J, Field J, Marmorstein R, Kissil JL. FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of neurofibromatosis type 2 (NF2)-associated Schwannomas. J Biol Chem 2013; 288:29105-14. [PMID: 23960073 DOI: 10.1074/jbc.m113.510933] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The p21-activated kinases (PAKs) are immediate downstream effectors of the Rac/Cdc42 small G-proteins and implicated in promoting tumorigenesis in various types of cancer including breast and lung carcinomas. Recent studies have established a requirement for the PAKs in the pathogenesis of Neurofibromatosis type 2 (NF2), a dominantly inherited cancer disorder caused by mutations at the NF2 gene locus. Merlin, the protein product of the NF2 gene, has been shown to negatively regulate signaling through the PAKs and the tumor suppressive functions of Merlin are mediated, at least in part, through inhibition of the PAKs. Knockdown of PAK1 and PAK2 expression, through RNAi-based approaches, impairs the proliferation of NF2-null schwannoma cells in culture and inhibits their ability to form tumors in vivo. These data implicate the PAKs as potential therapeutic targets. High-throughput screening of a library of small molecules combined with a structure-activity relationship approach resulted in the identification of FRAX597, a small-molecule pyridopyrimidinone, as a potent inhibitor of the group I PAKs. Crystallographic characterization of the FRAX597/PAK1 complex identifies a phenyl ring that traverses the gatekeeper residue and positions the thiazole in the back cavity of the ATP binding site, a site rarely targeted by kinase inhibitors. FRAX597 inhibits the proliferation of NF2-deficient schwannoma cells in culture and displayed potent anti-tumor activity in vivo, impairing schwannoma development in an orthotopic model of NF2. These studies identify a novel class of orally available ATP-competitive Group I PAK inhibitors with significant potential for the treatment of NF2 and other cancers.
Collapse
Affiliation(s)
- Silvia Licciulli
- From the Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida 33458
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Doddrell RDS, Dun XP, Shivane A, Feltri ML, Wrabetz L, Wegner M, Sock E, Hanemann CO, Parkinson DB. Loss of SOX10 function contributes to the phenotype of human Merlin-null schwannoma cells. ACTA ACUST UNITED AC 2013; 136:549-63. [PMID: 23413263 PMCID: PMC3572932 DOI: 10.1093/brain/aws353] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Loss of the Merlin tumour suppressor causes abnormal de-differentiation and proliferation of Schwann cells and formation of schwannoma tumours in patients with neurofibromatosis type 2. Within the mature peripheral nerve the normal development, differentiation and maintenance of myelinating and non-myelinating Schwann cells is regulated by a network of transcription factors that include SOX10, OCT6 (now known as POU3F1), NFATC4 and KROX20 (also known as Egr2). We have examined for the first time how their regulation of Schwann cell development is disrupted in primary human schwannoma cells. We find that induction of both KROX20 and OCT6 is impaired, whereas enforced expression of KROX20 drives both myelin gene expression and cell cycle arrest in Merlin-null cells. Importantly, we show that human schwannoma cells have reduced expression of SOX10 protein and messenger RNA. Analysis of mouse SOX10-null Schwann cells shows they display many of the characteristics of human schwannoma cells, including increased expression of platelet derived growth factor receptor beta (PDGFRB) messenger RNA and protein, enhanced proliferation, increased focal adhesions and schwannoma-like morphology. Correspondingly, reintroduction of SOX10 into human Merlin-null cells restores the ability of these cells to induce KROX20 and myelin protein zero (MPZ), localizes NFATC4 to the nucleus, reduces cell proliferation and suppresses PDGFRB expression. Thus, we propose that loss of the SOX10 protein, which is vital for normal Schwann cell development, is also key to the pathology of Merlin-null schwannoma tumours.
Collapse
Affiliation(s)
- Robin D S Doddrell
- Peninsula School of Medicine and Dentistry, University of Plymouth, Devon, PL6 8BU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
During peripheral nervous system development, Schwann cells (SCs) surrounding single large axons differentiate into myelinating SCs. Previous studies implicate RhoGTPases in SC myelination, but the mechanisms involved in RhoGTPase regulation of SC myelination are unknown. Here, we show that SC myelination is arrested in Rac1 conditional knock-out (Rac1-CKO) mice. Rac1 knock-out abrogated phosphorylation of the effector p21-activated kinase and decreased NF2/merlin phosphorylation. Mutation of NF2/merlin rescued the myelin deficit in Rac1-CKO mice in vivo and the shortened processes in cultured Rac1-CKO SCs in vitro. Mechanistically, cAMP levels and E-cadherin expression were decreased in the absence of Rac1, and both were restored by mutation of NF2/merlin. Reduced cAMP is a cause of the myelin deficiency in Rac1-CKO mice, because elevation of cAMP by rolipram in Rac1-CKO mice in vivo allowed myelin formation. Thus, NF2/merlin and cAMP function downstream of Rac1 signaling in SC myelination, and cAMP levels control Rac1-regulated SC myelination.
Collapse
|
15
|
Ness JK, Snyder KM, Tapinos N. Lck tyrosine kinase mediates β1-integrin signalling to regulate Schwann cell migration and myelination. Nat Commun 2013; 4:1912. [PMID: 23715271 PMCID: PMC3674276 DOI: 10.1038/ncomms2928] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 04/24/2013] [Indexed: 12/12/2022] Open
Abstract
The interaction between laminin and β1-integrin on the surface of Schwann cells regulates Schwann cell proliferation, maturation and differentiation. However, the signalling mediators that fine-tune these outcomes are not fully elucidated. Here we show that lymphoid cell kinase is the crucial effector of β1-integrin signalling in Schwann cells. Lymphoid cell kinase is activated after laminin treatment of Schwann cells, while downregulation of β1-integrin with short interfering RNAs inhibits lymphoid cell kinase phosphorylation. Treatment of Schwann cells with a selective lymphoid cell kinase inhibitor reveals a pathway that involves paxillin and CrkII, which ultimately elevates Rac-GTP levels to induce radial lamellipodia formation. Inhibition of lymphoid cell kinase in Schwann cell-dorsal root ganglion cocultures and dorsal root ganglions from Lck(-/-) mice show a reduction of Schwann cell longitudinal migration, reduced myelin formation and internode length. Finally, Lck(-/-) mice exhibit delays in myelination, thinner myelin with abnormal g-ratios and aberrant myelin outfoldings. Our data implicate lymphoid cell kinase as a major regulator of cytoskeletal dynamics, migration and myelination in the peripheral nervous system.
Collapse
Affiliation(s)
- Jennifer K. Ness
- Molecular Neuroscience Laboratory, Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, Pennsylvania 17822, USA
| | - Kristin M. Snyder
- Molecular Neuroscience Laboratory, Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, Pennsylvania 17822, USA
| | - Nikos Tapinos
- Molecular Neuroscience Laboratory, Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, Pennsylvania 17822, USA
| |
Collapse
|
16
|
Hennigan RF, Moon CA, Parysek LM, Monk KR, Morfini G, Berth S, Brady S, Ratner N. The NF2 tumor suppressor regulates microtubule-based vesicle trafficking via a novel Rac, MLK and p38(SAPK) pathway. Oncogene 2012; 32:1135-43. [PMID: 22525268 PMCID: PMC4260777 DOI: 10.1038/onc.2012.135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neurofibromatosis Type 2 patients develop schwannomas, meningiomas and ependymomas resulting from mutations in the tumor suppressor gene, NF2, encoding a membrane-cytoskeleton adaptor protein called merlin. Merlin regulates contact inhibition of growth and controls the availability of growth factor receptors at the cell surface. We tested if microtubule-based vesicular trafficking might be a mechanism by which merlin acts. We found that schwannoma cells, containing merlin mutations and constitutive activation of the Rho/Rac family of GTPases, had decreased intracellular vesicular trafficking relative to normal human Schwann cells. In Nf2−/− mouse Schwann (SC4) cells, re-expression of merlin as well as inhibition of Rac or its effector kinases, MLK and p38SAPK, each increased the velocity of Rab6 positive exocytic vesicles. Conversely, an activated Rac mutant decreased Rab6 vesicle velocity. Vesicle motility assays in isolated squid axoplasm further demonstrated that both mutant merlin and active Rac specifically reduce anterograde microtubule-based transport of vesicles dependent upon the activity of p38SAPK kinase. Taken together, our data suggest loss of merlin results in the Rac dependent decrease of anterograde trafficking of exocytic vesicles, representing a possible mechanism controlling the concentration of growth factor receptors at the cell surface.
Collapse
Affiliation(s)
- R F Hennigan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Thaxton C, Bott M, Walker B, Sparrow NA, Lambert S, Fernandez-Valle C. Schwannomin/merlin promotes Schwann cell elongation and influences myelin segment length. Mol Cell Neurosci 2011; 47:1-9. [PMID: 21182951 PMCID: PMC3129596 DOI: 10.1016/j.mcn.2010.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/19/2010] [Accepted: 12/09/2010] [Indexed: 11/30/2022] Open
Abstract
The Neurofibromatosis type 2 tumor suppressor, schwannomin (Sch) is a plasma membrane-cytoskeleton linking protein that regulates receptor signaling and actin dynamics. We examined Sch's role in specifying morphological changes needed for Schwann cell (SC) function in vitro. Isolated Sch-GFP-expressing SCs extended bipolar processes 82% longer than those formed by GFP-expressing cells. In contrast, SCs expressing dominant negative Sch-BBA-GFP extended bipolar processes 16% shorter than controls and 64% shorter than Sch-GFP-expressing SCs. nf2 gene inactivation caused isolated mouse SCs to transition from bipolar to multipolar cells. Live imaging revealed that SCs co-expressing Sch-GFP and dominant negative RacN17 behaved similarly in dorsal root ganglion explant cultures; they quickly aligned on axons and slowly elongated bipolar processes. In contrast, SCs expressing constitutively active RacV12 underwent continuous transitions in morphology that interfered with axon alignment. When co-cultured with neurons under myelin-promoting conditions, Sch-GFP-expressing SCs elaborated longer myelin segments than GFP-expressing SCs. In contrast, Sch-BBA-GFP-expressing SCs failed to align on or myelinate axons. Together, these results demonstrate that Sch plays an essential role in inducing and/or maintaining the SC's spindle shape and suggest that the mechanism involves Sch-dependent inhibition of Rac activity. By stabilizing the bipolar morphology, Sch promotes the alignment of SCs with axons and ultimately influences myelin segment length.
Collapse
Affiliation(s)
- Courtney Thaxton
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Health Science Campus, 6900 Lake Nona Boulevard, Orlando, FL 32827
| | - Marga Bott
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Health Science Campus, 6900 Lake Nona Boulevard, Orlando, FL 32827
| | - Barbara Walker
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Ave. North Worcester, MA 01655-0106
| | - Nicklaus A. Sparrow
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Health Science Campus, 6900 Lake Nona Boulevard, Orlando, FL 32827
| | - Stephen Lambert
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Ave. North Worcester, MA 01655-0106
| | - Cristina Fernandez-Valle
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Health Science Campus, 6900 Lake Nona Boulevard, Orlando, FL 32827
| |
Collapse
|
18
|
Yi C, Maksimoska J, Marmorstein R, Kissil JL. Development of small-molecule inhibitors of the group I p21-activated kinases, emerging therapeutic targets in cancer. Biochem Pharmacol 2010; 80:683-9. [PMID: 20302846 PMCID: PMC2897962 DOI: 10.1016/j.bcp.2010.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/08/2010] [Accepted: 03/09/2010] [Indexed: 01/02/2023]
Abstract
The p21-activated kinases (PAKs), immediate downstream effectors of the small G-proteins of the Rac/cdc42 family, are critical mediators of signaling pathways regulating cellular behaviors and as such, have been implicated in pathological conditions including cancer. Recent studies have validated the requirement for PAKs in promoting tumorigenesis in breast carcinoma and neurofibromatosis. Thus, there has been considerable interest in the development of inhibitors to the PAKs, as biological markers and leads for the development of therapeutics. While initial approaches were based on screening for competitive organic inhibitors, more recent efforts have focused on the identification of allosteric inhibitors, organometallic ATP-competitive inhibitors and the use of PAK1/inhibitor crystal structures for inhibitor optimization. This has led to the identification of highly selective and potent inhibitors, which will serve as a basis for further development of inhibitors for therapeutic applications.
Collapse
Affiliation(s)
- Chunling Yi
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Jasna Maksimoska
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Ronen Marmorstein
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Joseph L Kissil
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
19
|
Bosco EE, Nakai Y, Hennigan RF, Ratner N, Zheng Y. NF2-deficient cells depend on the Rac1-canonical Wnt signaling pathway to promote the loss of contact inhibition of proliferation. Oncogene 2010; 29:2540-9. [PMID: 20154721 PMCID: PMC2861729 DOI: 10.1038/onc.2010.20] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/20/2009] [Accepted: 01/15/2010] [Indexed: 12/22/2022]
Abstract
The neurofibromatosis type 2 (NF2) tumor suppressor gene encodes merlin, a membrane/cytoskeleton protein necessary for the maintenance of contact inhibition of growth in cells. Bi-allelic inactivation of NF2 is known to cause multiple cancers in both humans and mice. However, the mechanism through which merlin exerts its tumor-suppressive function remains obscure. In this report, we show that NF2 knockout mouse embryonic fibroblasts lost contact inhibition of cell proliferation and contained significantly increased canonical Wnt signaling. Inhibition of Rac1, the activity of which is inversely regulated by NF2, through the use of a dominant-negative mutant, small hairpin RNA or a small molecule inhibitor in NF2-deficient cells, was able to suppress elevated Wnt signals as shown by reduced activity of the T-cell factor 4 (TCF4) transcription factor. Dominant-negative TCF4 or Rac1 mutant, as well as a small molecule inhibition of Wnt, were able to curb NF2 deficiency-elicited cell proliferation at the confluent state. Thus, Rac1-mediated canonical Wnt signaling is essential for the loss of contact inhibition in NF2-deficient cells.
Collapse
Affiliation(s)
- Emily E. Bosco
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave. Cincinnati, OH 45229
| | - Yoko Nakai
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave. Cincinnati, OH 45229
| | - Robert F. Hennigan
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, 3125 Eden Ave. Cincinnati, Ohio 45229
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave. Cincinnati, OH 45229
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave. Cincinnati, OH 45229
| |
Collapse
|
20
|
Abstract
Mutation of the p53 tumor suppressor is associated with disease progression, therapeutic resistance, and poor prognosis in patients with lymphoid malignancies and can occur in approximately 50% of Burkitt lymphomas. Thus, new therapies are needed to specifically target p53-deficient lymphomas with increased efficacy. In the current study, the specific impact of inhibition of the small GTPase Rac1 on p53-deficient B- and T-lymphoma cells was investigated. p53 deficiency resulted in increased Rac1 activity in both B-cell and T-cell lines, and its suppression was able to abrogate p53 deficiency-mediated lymphoma cell proliferation. Further, Rac targeting resulted in increased apoptosis via a p53-independent mechanism. By probing multiple signaling axes and performing rescue studies, we show that the antiproliferative effect of Rac1 targeting in lymphoma cells may involve the PAK and Akt signaling pathway, but not the mitogen-activated protein (MAP) kinase pathway. The effects of inhibition of Rac1 were extended in vivo where Rac1 targeting was able to specifically impair p53-deficient lymphoma cell growth in mouse xenografts and postpone lymphomagenesis onset in murine transplantation models. Because the Rac1 signaling axis is a critical determinant of apoptosis and tumorigenesis, it may represent an important basis for therapy in the treatment of p53-deficient lymphomas.
Collapse
|
21
|
Flaiz C, Chernoff J, Ammoun S, Peterson JR, Hanemann CO. PAK kinase regulates Rac GTPase and is a potential target in human schwannomas. Exp Neurol 2009; 218:137-44. [PMID: 19409384 PMCID: PMC2760977 DOI: 10.1016/j.expneurol.2009.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/20/2009] [Accepted: 04/22/2009] [Indexed: 11/19/2022]
Abstract
Merlin loss causes benign tumours of the nervous system, mainly schwannomas and meningiomas. Schwannomas show enhanced Rac1 and Cdc42 activity, the p21-activated kinase 2 (PAK2) activation and increased ruffling and cell adhesion. PAK regulates activation of merlin. PAK has been proposed as a potential therapeutic target in schwannomas. However where PAK stands in the Rac pathway is insufficiently characterised. We used a novel small-molecule PAK inhibitor, IPA-3, to investigate the role of PAK activation on Rac1/Cdc42 activity, cell spreading and adhesion in human primary schwannoma and Schwann cells. We show that IPA-3 blocks activation of PAK2 at Ser192/197 that antagonises PAK's interaction with Pix. Accordingly, Pix-mediated Rac1 activation is decreased in IPA-3 treated schwannoma cells, indicating that PAK acts upstream of Rac. We show that this Rac activation at the level of focal adhesions in schwannoma cells is essential for cell spreading and adhesion in Schwann and schwannoma cells.
Collapse
Affiliation(s)
- Christine Flaiz
- Clinical Neurobiology, Peninsula College for Medicine and Dentistry, The John Bull Building, Tamar Science Park, Research Way, Plymouth PL6 8BU, UK
| | | | | | | | | |
Collapse
|
22
|
Yu WM, Chen ZL, North AJ, Strickland S. Laminin is required for Schwann cell morphogenesis. J Cell Sci 2009; 122:929-36. [PMID: 19295124 DOI: 10.1242/jcs.033928] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Development of the peripheral nervous system requires radial axonal sorting by Schwann cells (SCs). To accomplish sorting, SCs must both proliferate and undergo morphogenetic changes such as process extension. Signaling studies reveal pathways that control either proliferation or morphogenesis, and laminin is essential for SC proliferation. However, it is not clear whether laminin is also required for SC morphogenesis. By using a novel time-lapse live-cell-imaging technique, we demonstrated that laminins are required for SCs to form a bipolar shape as well as for process extension. These morphological deficits are accompanied by alterations in signaling pathways. Phosphorylation of Schwannomin at serine 518 and activation of Rho GTPase Cdc42 and Rac1 were all significantly decreased in SCs lacking laminins. Inhibiting Rac1 and/or Cdc42 activities in cultured SCs attenuated laminin-induced myelination, whereas forced activation of Rac1 and/or Cdc42 in vivo improved sorting and hypomyelinating phenotypes in SCs lacking laminins. These findings indicate that laminins play a pivotal role in regulating SC cytoskeletal signaling. Coupled with previous results demonstrating that laminin is critical for SC proliferation, this work identifies laminin signaling as a central regulator coordinating the processes of proliferation and morphogenesis in radial axonal sorting.
Collapse
Affiliation(s)
- Wei-Ming Yu
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | | | | | | |
Collapse
|
23
|
Minobe S, Sakakibara A, Ohdachi T, Kanda R, Kimura M, Nakatani S, Tadokoro R, Ochiai W, Nishizawa Y, Mizoguchi A, Kawauchi T, Miyata T. Rac is involved in the interkinetic nuclear migration of cortical progenitor cells. Neurosci Res 2009; 63:294-301. [PMID: 19367791 DOI: 10.1016/j.neures.2009.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The small GTPase Rac regulates neuronal behavior, but whether it also functions in neural progenitor cells has not yet been explored. Here we report that Rac contributes to the regulation of nuclear migration in neocortical progenitor cells. Rac1 is expressed by progenitor cells in a unique spatiotemporal pattern. Cross-sectional immunohistochemical examination revealed intense Rac1 immunoreactivity at the ventricular surface. Similar staining patterns were obtained by immunofluorescence for a Rac-activator, Tiam1, and by reactions to detect the GTP-bound (active) form of Rac. En face inspection of the ventricular surface revealed that apical Rac1 localization was most frequent in M-phase cells, and the endfeet of cells in other cell cycle phases also showed apical Rac1 distribution at lower frequencies. To ask whether progenitor cell behavior prior to and during M phase is Rac-dependent, we monitored individual DiI-labeled progenitor cells live in the presence of a Rac inhibitor, NSC23766. We observed significantly retarded adventricular nuclear migration, as well as cytokinesis failures. Similar inhibitory effects were obtained by forced expression of a dominant-negative Rac1. These results suggest that Rac may play a role in interkinetic nuclear migration in the developing mouse brain.
Collapse
Affiliation(s)
- Sayaka Minobe
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Krause S, Stendel C, Senderek J, Relvas JB, Suter U. Small Rho GTPases are key regulators of peripheral nerve biology in health and disease. J Peripher Nerv Syst 2009; 13:188-99. [PMID: 18844785 DOI: 10.1111/j.1529-8027.2008.00177.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A thorough knowledge of the cellular and molecular basis of the structure and function of peripheral nerves is of paramount importance not only for a better understanding of the fascinating biology of the peripheral nervous system but also for providing critical insights into the various diseases affecting peripheral nerves as the firm foundation of potential treatments. Genetic approaches in model organisms, in combination with research on hereditary forms of neuropathies, have contributed significantly to our progress in this field. In this review, we will focus on recent advances using these synergistic approaches that led to the identification of small Rho GTPases and their regulators as crucial functional players in proper development and function of myelinated peripheral nerves, with a particular emphasis on the cell biology of Schwann cells in health and disease.
Collapse
Affiliation(s)
- Sven Krause
- Institute of Cell Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Veluthakal R, Madathilparambil SV, McDonald P, Olson LK, Kowluru A. Regulatory roles for Tiam1, a guanine nucleotide exchange factor for Rac1, in glucose-stimulated insulin secretion in pancreatic beta-cells. Biochem Pharmacol 2009; 77:101-13. [PMID: 18930714 PMCID: PMC2605786 DOI: 10.1016/j.bcp.2008.09.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/16/2008] [Accepted: 09/18/2008] [Indexed: 12/19/2022]
Abstract
Using various biochemical, pharmacological and molecular biological approaches, we have recently reported regulatory roles for Rac1, a small G-protein, in glucose-stimulated insulin secretion (GSIS). However, little is understood with respect to localization of, and regulation by, specific regulatory factors of Rac1 in GSIS. Herein, we investigated regulatory roles for Tiam1, a specific nucleotide exchange factor (GEF) for Rac1, in GSIS in pancreatic beta-cells. Western blot analysis indicated that Tiam1 is predominantly cytosolic in distribution. NSC23766, a specific inhibitor of Tiam1-mediated activation of Rac1, markedly attenuated glucose-induced, but not KCl-induced insulin secretion in INS 832/13 cells and normal rat islets. Further, NSC23766 significantly reduced glucose-induced activation (i.e. GTP-bound form) and membrane association of Rac1 in INS 832/13 cells and rat islets. Moreover, siRNA-mediated knock-down of Tiam1 markedly inhibited glucose-induced membrane trafficking and activation of Rac1 in INS 832/13 cells. Interestingly, however, in contrast to the inhibitory effects of NSC23766, Tiam1 gene depletion potentiated GSIS in these cells; such a potentiation of GSIS was sensitive to extracellular calcium. Together, our studies present the first evidence for a regulatory role for Tiam1/Rac1-sensitive signaling step in GSIS. They also provide evidence for the existence of a potential Rac1/Tiam1-independent, but calcium-sensitive component for GSIS in these cells.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| | | | | | | | | |
Collapse
|
26
|
Tissue-specific ablation of Prkar1a causes schwannomas by suppressing neurofibromatosis protein production. Neoplasia 2008; 10:1213-21. [PMID: 18953430 DOI: 10.1593/neo.08652] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/23/2008] [Accepted: 07/29/2008] [Indexed: 11/18/2022] Open
Abstract
Signaling events leading to Schwann cell tumor initiation have been extensively characterized in the context of neurofibromatosis (NF). Similar tumors are also observed in patients with the endocrine neoplasia syndrome Carney complex, which results from inactivating mutations in PRKAR1A. Loss of PRKAR1A causes enhanced protein kinase A activity, although the pathways leading to tumorigenesis are not well characterized. Tissue-specific ablation of Prkar1a in neural crest precursor cells (TEC3KO mice) causes schwannomas with nearly 80% penetrance by 10 months. These heterogeneous neoplasms were clinically characterized as genetically engineered mouse schwannomas, grades II and III. At the molecular level, analysis of the tumors revealed almost complete loss of both NF proteins, despite the fact that transcript levels were increased, implying posttranscriptional regulation. Although Erk and Akt signaling are typically enhanced in NF-associated tumors, we observed no activation of either of these pathways in TEC3KO tumors. Furthermore, the small G proteins Ras, Rac1, and RhoA are all known to be involved with NF signaling. In TEC3KO tumors, all three molecules showed modest increases in total protein, but only Rac1 showed significant activation. These data suggest that dysregulated protein kinase A activation causes tumorigenesis through pathways that overlap but are distinct from those described in NF tumorigenesis.
Collapse
|
27
|
Abstract
RhoGTPases are molecular switches that integrate extracellular signals to perform diverse cellular responses. This ability relies on the network of proteins regulating RhoGTPases activity and localization, and on the interaction of RhoGTPases with many different cellular effectors. Myelination is an ideal place for RhoGTPases regulation, as it is the result of fine orchestration of many stimuli from at least two cell types. Recent work has revealed that RhoGTPases are required for Schwann cells to sort, ensheath, and myelinate axons. Here, we will review these recent advances showing the critical roles for RhoGTPases in various aspects of Schwann development and myelination, including the recent discovery of their involvement in Charcot-Marie-Tooth disease. Comparison with potential roles of RhoGTPases in central nervous system myelination will be drawn.
Collapse
Affiliation(s)
| | - Ueli Suter
- Institute of Cell Biology, Department of Biology, Eidgenössische Technische Hochschule Zurich, CH-8093 Zurich, Switzerland
| | - João B Relvas
- Institute of Cell Biology, Department of Biology, Eidgenössische Technische Hochschule Zurich, CH-8093 Zurich, Switzerland
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| |
Collapse
|
28
|
Yi C, Wilker EW, Yaffe MB, Stemmer-Rachamimov A, Kissil JL. Validation of the p21-activated kinases as targets for inhibition in neurofibromatosis type 2. Cancer Res 2008; 68:7932-7. [PMID: 18829550 PMCID: PMC2707059 DOI: 10.1158/0008-5472.can-08-0866] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurofibromatosis type 2 (NF2) is a dominantly inherited cancer disorder caused by mutations at the NF2 gene locus. Merlin, the protein product of the NF2 gene, has been shown to negatively regulate Rac1 signaling by inhibiting its downstream effector kinases, the p21-activated kinases (Pak). Given the implication of Paks in tumorigenesis, it is plausible that merlin's tumor suppressive function might be mediated, at least in part, via inhibition of the Paks. We present data indicating this is indeed the case. First, analysis of primary schwannoma samples derived from NF2 patients showed that in a significant fraction of the tumors, the activity of Pak1 was highly elevated. Second, we used shRNAs to knockdown Pak1, 2, and 3 in NIH3T3 cells expressing a dominant-negative form of merlin, NF2(BBA) (NIH3T3/NF2(BBA)), and find that simultaneous knockdown of Pak1-3 in these cells significantly reduced their growth rates in vitro and inhibited their ability to form tumors in vivo. Finally, while attempting to silence Pak1 in rat schwannoma cells, we found that these cells were unable to tolerate long-term Pak1 inhibition and rapidly moved to restore Pak1 levels by shutting down Pak1 shRNA expression through a methylation-dependent mechanism. These data suggest that inhibiting Pak could be a beneficial approach for the development of therapeutics toward NF2. In addition, the finding that the shRNA-mediated Pak1 suppression was silenced rapidly by methylation raises questions about the future application of such technologies for the treatment of diseases such as cancer.
Collapse
Affiliation(s)
- Chunling Yi
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Erik W. Wilker
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Michael B. Yaffe
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Joseph L. Kissil
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
29
|
Wang H, Tewari A, Einheber S, Salzer JL, Melendez-Vasquez CV. Myosin II has distinct functions in PNS and CNS myelin sheath formation. ACTA ACUST UNITED AC 2008; 182:1171-84. [PMID: 18794332 PMCID: PMC2542477 DOI: 10.1083/jcb.200802091] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The myelin sheath forms by the spiral wrapping of a glial membrane around the axon. The mechanisms responsible for this process are unknown but are likely to involve coordinated changes in the glial cell cytoskeleton. We have found that inhibition of myosin II, a key regulator of actin cytoskeleton dynamics, has remarkably opposite effects on myelin formation by Schwann cells (SC) and oligodendrocytes (OL). Myosin II is necessary for initial interactions between SC and axons, and its inhibition or down-regulation impairs their ability to segregate axons and elongate along them, preventing the formation of a 1:1 relationship, which is critical for peripheral nervous system myelination. In contrast, OL branching, differentiation, and myelin formation are potentiated by inhibition of myosin II. Thus, by controlling the spatial and localized activation of actin polymerization, myosin II regulates SC polarization and OL branching, and by extension their ability to form myelin. Our data indicate that the mechanisms regulating myelination in the peripheral and central nervous systems are distinct.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
30
|
Binker MG, Binker-Cosen AA, Gaisano HY, Cosen-Binker LI. Inhibition of Rac1 decreases the severity of pancreatitis and pancreatitis-associated lung injury in mice. Exp Physiol 2008; 93:1091-103. [PMID: 18567599 DOI: 10.1113/expphysiol.2008.043141] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pancreatitis is a disease with high morbidity and mortality. In vitro experiments on pancreatic acini showed that supramaximal but not submaximal cholecystokinin (CCK) stimulation induces effects in the acinar cell that can be correlated with acinar morphological changes observed in the in vivo experimental model of cerulein-induced pancreatitis. The GTPase Rac1 was previously reported to be involved in CCK-evoked amylase release from pancreatic acinar cells. Here, we demonstrate that pretreatment with the Rac1 inhibitor NSC23766 (100 microM, 2 h) effectively blocked Rac1 translocation and activation in CCK-stimulated pancreatic acini, without affecting activation of its closely related GTPase, RhoA. This specific Rac1 inhibition decreased supramaximal (10 nM) CCK-stimulated acinar amylase release (27.% reduction), which seems to be connected to the reduction observed in serum amylase (46.6% reduction) and lipase levels (46.1% reduction) from cerulein-treated mice receiving NSC23766 (100 nmol h(-1)). The lack of Rac1 activation also reduced formation of reactive oxygen species (ROS; 20.8% reduction) and lactate dehydrogenase release (LDH; 24.3% reduction), but did not alter calcium signaling or trypsinogen activation in 10 nM CCK-stimulated acini. In the in vivo model, the cerulein-treated mice receiving NSC23766 also presented a decrease in both pancreatic and lung histopathological scores (reduction in oedema, 32.4 and 66.4%; haemorrhage, 48.3 and 60.2%; and leukocyte infiltrate, 53.5 and 43.6%, respectively; reduction in pancreatic necrosis, 65.6%) and inflammatory parameters [reduction in myeloperoxidase, 52.2 and 38.9%; nuclear factor kappaB (p65), 61.3 and 48.6%; and nuclear factor kappaB (p50), 46.9 and 44.9%, respectively], together with lower serum levels for inflammatory (TNF-alpha, 40.4% reduction) and cellular damage metabolites (LDH, 52.7% reduction). Collectively, these results suggest that pharmacological Rac1 inhibition ameliorates the severity of pancreatitis and pancreatitis-associated lung injury through the reduction of pancreatic acinar damage induced by pathological digestive enzyme secretion and overproduction of ROS.
Collapse
Affiliation(s)
- Marcelo G Binker
- CBRHC Research Center, Arribenos 1697, P.1, Buenos Aires, 1426, Argentina
| | | | | | | |
Collapse
|
31
|
Horiguchi A, Zheng R, Shen R, Nanus DM. Inactivation of the NF2 tumor suppressor protein merlin in DU145 prostate cancer cells. Prostate 2008; 68:975-84. [PMID: 18361411 DOI: 10.1002/pros.20760] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The neurofibromatosis 2 (NF2) tumor suppressor gene product merlin is an important regulator of contact-dependent cell proliferation. Phosphorylation of merlin at serine 518 (Ser518) by the Rac effector p21-activated kinase (PAK) inactivates merlin's growth suppressing function, and is regulated by cell-culture conditions, including cell density, cell/substrate attachment, and growth factor availability. We examined the regulation of merlin expression and merlin phosphorylation in prostate cancer cells. METHODS Phosphorylation of merlin in five prostate cancer cell lines (LNCaP, DU145, PC3, 22RV1, and LAPC-4) was examined by Western blotting using anti-phospho-merlin (Ser518) antibody. The activity of PAK, an upstream regulator of merlin phosphorylation, was measured by Western blotting using phospho-PAK (Ser141) antibody. The effects of various cell-culture conditions on the phosphorylation levels of merlin and PAK were analyzed. RESULTS Both merlin expression and phosphorylation were low in LNCaP, PC3, 22RV1, and LAPC-4 prostate cancer cells. In DU145 cells, total and phosphorylated merlin were abundant, but phosphorylation was not inhibited by high cell density, serum withdrawal, the addition of hyaluronic acid or inhibition of CD44 expression, all of which are reported to inhibit merlin phosphorylation in non-neoplastic cells. PAK activation was elevated in DU145 cells and the addition of a PAK-specific inhibitor peptide but not the Rac1-specific inhibitor NSC23766 inhibited both PAK and merlin phosphorylation. CONCLUSIONS Merlin is inactivated in DU145 prostate cancer cells by PAK-mediated constitutive phosphorylation, identifying a novel mechanism of merlin inactivation in neoplastic cells.
Collapse
Affiliation(s)
- Akio Horiguchi
- Urologic Oncology Research Laboratory, Department of Urology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | | | | | | |
Collapse
|
32
|
Flaiz C, Utermark T, Parkinson DB, Poetsch A, Hanemann CO. Impaired intercellular adhesion and immature adherens junctions in merlin-deficient human primary schwannoma cells. Glia 2008; 56:506-15. [PMID: 18240308 DOI: 10.1002/glia.20629] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Schwannomas that occur spontaneously or in patients with neurofibromatosis Type 2, lack both alleles for the tumor suppressor and plasma membrane-cytoskeleton linker merlin. We have shown that human primary schwannoma cells display activation of the RhoGTPases Rac1 and Cdc42 which results in highly dynamic and ongoing protrusive activity like ruffling. Ruffling is an initial and temporally limited step in the formation of intercellular contacts like adherens junctions that are based on the cadherin-catenin system. We tested if there is a connection between Rac1-induced ongoing ruffling and the maintenance, stabilization and functionality of adherens junctions and if this is of relevance in human, merlin-deficient schwannoma cells. We show intense ongoing ruffling is not limited to membranes of single human primary schwannoma cells, but occurs also in membranes of contacting cells, even when confluent. Live cell imaging shows that newly formed contacts are released after a short time, suggesting disturbed formation or stabilization of adherens junctions. Morphology, high phospho-tyrosine levels and cortactin staining indicate that adherens junctions are immature in human primary schwannoma cells, whereas they display characteristics of mature adherens junctions in human primary Schwann cells. When merlin is reintroduced, human primary schwannoma cells show only initial ruffling in contacting cells and adherens junctions appear more mature. We therefore propose that ongoing Rac-induced ruffling causes immature adherens junctions and leads to impaired, nonfunctional intercellular adhesion in aggregation assays in merlin-deficient schwannoma cells that could be an explanation for increased proliferation rates due to loss of contact inhibition or tumor development in general.
Collapse
Affiliation(s)
- C Flaiz
- Department of Clinical Neurobiology, Institute of Biomedical and Clinical Science, Peninsula College for Medicine and Dentistry, Plymouth, UK
| | | | | | | | | |
Collapse
|
33
|
Flaiz C, Ammoun S, Biebl A, Hanemann CO. Altered adhesive structures and their relation to RhoGTPase activation in merlin-deficient Schwannoma. Brain Pathol 2008; 19:27-38. [PMID: 18445079 DOI: 10.1111/j.1750-3639.2008.00165.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Schwannomas are Schwann cell tumors of the nervous system that occur spontaneously and in patients with neurofibromatosis 2 (NF2) and lack the tumor suppressor merlin. Merlin is known to bind paxillin, beta1 integrin and focal adhesion kinase, members of focal contacts, multi-protein complexes that mediate cell adhesion to the extracellular matrix. Moreover, merlin-deficient Schwannomas show pathological adhesion to the extracellular matrix making the characterization of focal contacts indispensable. Using our Schwannoma in vitro model of human primary Schwann and Schwannoma cells, we here show that Schwannoma cells display an increased number of mature and stable focal contacts. In addition to an involvement of RhoA signaling via the Rho kinase ROCK, Rac1 plays a significant role in the pathological adhesion of Schwannoma cells. The Rac1 guanine exchange factor- beta-Pix, localizes to focal contacts in human primary Schwannoma cells, and we show that part of the Rac1 activation, an effect of merlin-deficiency, occurs at the level of focal contacts in human primary Schwannoma cells. Our results help explaining the pathological adhesion of Schwannoma cells, further strengthen the importance of RhoGTPase signaling in Schwannoma development, and suggest that merlin's role in tumor suppression is linked to focal contacts.
Collapse
Affiliation(s)
- Christine Flaiz
- Department of Clinical Neurobiology, Institute of Biomedical and Clinical Science, Peninsula College for Medicine and Dentistry, Plymouth, UK
| | | | | | | |
Collapse
|
34
|
James MF, Lelke JM, Maccollin M, Plotkin SR, Stemmer-Rachamimov AO, Ramesh V, Gusella JF. Modeling NF2 with human arachnoidal and meningioma cell culture systems: NF2 silencing reflects the benign character of tumor growth. Neurobiol Dis 2008; 29:278-92. [PMID: 17962031 PMCID: PMC2266821 DOI: 10.1016/j.nbd.2007.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 08/28/2007] [Accepted: 09/03/2007] [Indexed: 11/28/2022] Open
Abstract
Meningiomas, common tumors arising from arachnoidal cells of the meninges, may occur sporadically, or in association with the inherited disorder, neurofibromatosis 2 (NF2). Most sporadic meningiomas result from NF2 inactivation, resulting in loss of tumor suppressor merlin, implicated in regulating membrane-cytoskeletal organization. To investigate merlin function in an authentic target cell type for NF2 tumor formation, we established primary cultures from genetically-matched meningioma and normal arachnoidal tissues. Our studies revealed novel and distinct cell biological and biochemical properties unique to merlin-deficient meningioma cells compared to merlin-expressing arachnoidal and meningioma cells, and other NF2-deficient cell types. Merlin-deficient meningioma cells displayed cytoskeletal and cell contact defects, altered cell morphology and growth properties, most notably cell senescence, implicating the activation of senescence pathways in limiting benign meningioma growth. Merlin suppression by RNAi in arachnoidal cells replicated merlin-deficient meningioma features, thus establishing these cell systems as disease-relevant models for studying NF2 tumorigenesis.
Collapse
Affiliation(s)
- Marianne F James
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Richard B. Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Welling DB, Packer MD, Chang LS. Molecular studies of vestibular schwannomas: a review. Curr Opin Otolaryngol Head Neck Surg 2007; 15:341-6. [PMID: 17823551 DOI: 10.1097/moo.0b013e3282b97310] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To summarize advances in understanding the molecular biology of vestibular schwannomas over the past year. RECENT FINDINGS The role of the neurofibromatosis type 2 protein, denoted as merlin or schwannomin, in embryonic development, cellular adherence, and in cell proliferation has become better elucidated in the past year. Likewise, the role of merlin in Schwann cell-axon interaction has been studied. Additionally, two comprehensive analyses of the spectrum of human neurofibromatosis type 2 mutations have been compiled which make up a valuable resource in understanding critical regions of the neurofibromatosis type 2 gene. Neurofibromatosis type 2 screening guidelines for young patients with solitary vestibular schwannomas have been published. The role of electromagnetic radiation via cellular and portable telephones as a predisposing factor to vestibular schwannoma formation has also been the topic of several studies. Based on increased knowledge of the pathways in which merlin functions and the available transgenic and xenograft mouse models, preliminary data regarding directed pharmacotherapy are also summarized. SUMMARY With increased knowledge of the pathologic mechanisms and interacting proteins associated with merlin, the research community is poised to begin trials of targeted interventions in vitro and in the current mouse models.
Collapse
Affiliation(s)
- D Bradley Welling
- Department of Otolaryngology, The Ohio State University College of Medicine and Children's Hospital, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
36
|
Benninger Y, Thurnherr T, Pereira JA, Krause S, Wu X, Chrostek-Grashoff A, Herzog D, Nave KA, Franklin RJM, Meijer D, Brakebusch C, Suter U, Relvas JB. Essential and distinct roles for cdc42 and rac1 in the regulation of Schwann cell biology during peripheral nervous system development. ACTA ACUST UNITED AC 2007; 177:1051-61. [PMID: 17576798 PMCID: PMC2064365 DOI: 10.1083/jcb.200610108] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
During peripheral nervous system (PNS) myelination, Schwann cells must interpret extracellular cues to sense their environment and regulate their intrinsic developmental program accordingly. The pathways and mechanisms involved in this process are only partially understood. We use tissue-specific conditional gene targeting to show that members of the Rho GTPases, cdc42 and rac1, have different and essential roles in axon sorting by Schwann cells. Our results indicate that although cdc42 is required for normal Schwann cell proliferation, rac1 regulates Schwann cell process extension and stabilization, allowing efficient radial sorting of axon bundles.
Collapse
Affiliation(s)
- Yves Benninger
- Institute of Cell Biology, Department of Biology, Eidgenössische Technische Hochschule Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Flaiz C, Kaempchen K, Matthies C, Hanemann CO. Actin-Rich Protrusions and Nonlocalized GTPase Activation in Merlin-Deficient Schwannomas. J Neuropathol Exp Neurol 2007; 66:608-16. [PMID: 17620986 DOI: 10.1097/nen.0b013e318093e555] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Schwannomas lack both alleles for the tumor suppressor Merlin, a cytoskeleton-membrane linker. Previous results showed increased cell spreading of schwannoma cells, but little is known about the underlying mechanisms. Electron microscopy reveals that schwannoma cells not only show more lamellipodia/ruffles but also multiple filopodia. We show that Cdc42, important in filopodia formation, is activated. Both Rac1 and Cdc42 are found all around the cell periphery and in colocalization with their effector phospho-p21 activated kinase in human schwannoma cells. We therefore claim that Rac1 and Cdc42 are activated in a nonlocalized manner, which explains the disperse distribution of lamellipodia/ruffles and filopodia. Using live cell imaging, we further demonstrate continuous remodeling of the many actin-rich protrusions in schwannoma cells. The underlying cytoskeleton of these structures is thin and extensively branched. The actin-related protein 2/3 complex, a major regulator of actin branching, is enriched in the many lamellipodia and ruffles of human primary schwannoma cells. We suggest that the Merlin deficiency in human primary schwannoma cells leads to a random, nonlocalized activation of Rac1 and Cdc42, inducing many actin-rich protrusion zones, not only at the leading edge but also all around the cell periphery. Their nondirectional occurrence together with the continuous and highly dynamic actin remodeling results in the dedifferentiation of these tumor cells.
Collapse
Affiliation(s)
- Christine Flaiz
- Department of Clinical Neurobiology, Institute of Biomedical and Clinical Science, Peninsula Medical School, Tamar Science Park, Research Way, Plymouth, United Kingdom
| | | | | | | |
Collapse
|
38
|
Nodari A, Zambroni D, Quattrini A, Court FA, D'Urso A, Recchia A, Tybulewicz VLJ, Wrabetz L, Feltri ML. Beta1 integrin activates Rac1 in Schwann cells to generate radial lamellae during axonal sorting and myelination. J Cell Biol 2007; 177:1063-75. [PMID: 17576799 PMCID: PMC2064366 DOI: 10.1083/jcb.200610014] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 05/16/2007] [Indexed: 11/25/2022] Open
Abstract
Myelin is a multispiraled extension of glial membrane that surrounds axons. How glia extend a surface many-fold larger than their body is poorly understood. Schwann cells are peripheral glia and insert radial cytoplasmic extensions into bundles of axons to sort, ensheath, and myelinate them. Laminins and beta1 integrins are required for axonal sorting, but the downstream signals are largely unknown. We show that Schwann cells devoid of beta1 integrin migrate to and elongate on axons but cannot extend radial lamellae of cytoplasm, similar to cells with low Rac1 activation. Accordingly, active Rac1 is decreased in beta1 integrin-null nerves, inhibiting Rac1 activity decreases radial lamellae in Schwann cells, and ablating Rac1 in Schwann cells of transgenic mice delays axonal sorting and impairs myelination. Finally, expressing active Rac1 in beta1 integrin-null nerves improves sorting. Thus, increased activation of Rac1 by beta1 integrins allows Schwann cells to switch from migration/elongation to the extension of radial membranes required for axonal sorting and myelination.
Collapse
Affiliation(s)
- Alessandro Nodari
- Department of Biological and Technological Research, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Okada T, You L, Giancotti FG. Shedding light on Merlin's wizardry. Trends Cell Biol 2007; 17:222-9. [PMID: 17442573 DOI: 10.1016/j.tcb.2007.03.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 02/14/2007] [Accepted: 03/23/2007] [Indexed: 12/21/2022]
Abstract
Inactivation of the tumor suppressor Merlin, encoded by the NF2 (Neurofibromatosis type 2) gene, contributes to malignant conversion in many cell types. Merlin is an Ezrin-Radixin-Moesin protein and localizes underneath the plasma membrane at cell-cell junctions and other actin-rich sites. Recent studies indicate that Merlin mediates contact inhibition of proliferation by blocking recruitment of Rac to the plasma membrane. In mitogen-stimulated cells, p21-activated kinase phosphorylates Ser518 in the C-terminus of Merlin, inactivating the growth suppressive function of the protein. Furthermore, the myosin phosphatase MYPT1-PP1delta, has been identified as a direct activator of Merlin and its inhibition has been linked to malignant transformation. Finally, studies in the fruit fly Drosophila melanogaster have revealed that Merlin functions together with the band 4.1 protein Expanded to promote [corrected] the endocytosis of many signaling receptors, limiting [corrected] their accumulation at the plasma membrane, and to activate [corrected] the Hippo signaling pathway. Here, we review these recent findings and their relevance to the tumor suppressor function of Merlin.
Collapse
Affiliation(s)
- Tomoyo Okada
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
40
|
Affiliation(s)
- Andrea I. McClatchey
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129 and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
41
|
Thaxton C, Lopera J, Bott M, Baldwin ME, Kalidas P, Fernandez-Valle C. Phosphorylation of the NF2 tumor suppressor in Schwann cells is mediated by Cdc42-Pak and requires paxillin binding. Mol Cell Neurosci 2006; 34:231-42. [PMID: 17175165 DOI: 10.1016/j.mcn.2006.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 10/28/2006] [Accepted: 11/07/2006] [Indexed: 11/22/2022] Open
Abstract
Mutations in the Neurofibromatosis type 2 tumor suppressor gene that encodes Schwannomin causes formation of benign schwannomas. Schwannoma cells lose their characteristic bipolar shape and become rounded with excessive ruffling membranes. Schwannomin is phosphorylated at serine 518 (S518) by p21 activated kinase (Pak). Unphosphorylated schwannomin is associated with growth inhibition but little is known about the function of the phosphorylated form, or the molecular events leading to its phosphorylation. Here, we report in SCs that schwannomin S518 phosphorylation requires binding to paxillin and targeting to the plasma membrane. Phospho-S518-schwannomin is enriched in the peripheral-most aspects of membrane specializations where paxillin, activated Pak, Cdc42 but not Rac are highly expressed. Schwannomin and Pak phosphorylation levels are not reduced in response to lowering Rac-GTP levels with NSC23766. Expression of schwannomin S518A/D-GFP variants each distinctively altered Schwann cell shape and polarity. These results are consistent with tight spatial regulation of S518 phosphorylation at the plasma membrane in a paxillin and Cdc42-Pak dependent manner that leads to local reorganization of the SC cytoskeleton.
Collapse
Affiliation(s)
- Courtney Thaxton
- Biomolecular Research Annex, Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL 32826, USA
| | | | | | | | | | | |
Collapse
|
42
|
Jin S, Ray RM, Johnson LR. Rac1 mediates intestinal epithelial cell apoptosis via JNK. Am J Physiol Gastrointest Liver Physiol 2006; 291:G1137-47. [PMID: 16798728 DOI: 10.1152/ajpgi.00031.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Apoptosis plays a key role in the maintenance of a constant cell number and a low incidence of cancer in the mucosa of the intestine. Although the small GTPase Rac1 has been established as an important regulator of migration of intestinal epithelial cells, whether Rac1 is also involved in apoptosis is unclear. The present study tested the hypothesis that Rac1 mediates TNF-alpha-induced apoptosis in IEC-6 cells. Rac1 is activated during TNF-alpha-induced apoptosis as judged by the level of GTP-Rac1, the level of microsomal membrane-associated Rac1, and lamellipodia formation. Although expression of constitutively active Rac1 does not increase apoptosis in the basal condition, inhibition of Rac1 either by NSC-23766 (Rac1 inhibitor) or expression of dominant negative Rac1 protects cells from TNF-alpha-induced apoptosis by inhibiting caspase-3, -8, and -9 activities. Inhibition of Rac1 before the administration of apoptotic stimuli significantly prevents TNF-alpha-induced activation of JNK1/2, the key proapoptotic regulator in IEC-6 cells. Inhibition of Rac1 does not modulate TNF-alpha-induced ERK1/2 and Akt activation. Inhibition of ERK1/2 and Akt activity by U-0126 and LY-294002, respectively, increased TNF-alpha-induced apoptosis. However, inhibition of Rac1 significantly decreased apoptosis in the presence of ERK1/2 and Akt inhibitors, similar to the effect observed with NSC-23766 alone in response to TNF-alpha. Thus, Rac1 inhibition protects cells independently of ERK1/2 and Akt activation during TNF-alpha-induced apoptosis. Although p38 MAPK is activated in response to TNF-alpha, inhibition of p38 MAPK did not decrease apoptosis. Rac1 inhibition did not alter p38 MAPK activity. Thus, these results indicate that Rac1 mediates apoptosis via JNK and plays a key role in proapoptotic pathways in intestinal epithelial cells.
Collapse
Affiliation(s)
- Shi Jin
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|