1
|
Chi H, Wan J, Melin AD, DeCasien AR, Wang S, Zhang Y, Cui Y, Guo X, Zhao L, Williamson J, Zhang T, Li Q, Zhan Y, Li N, Guo J, Xu Z, Hou W, Cao Y, Yuan J, Zheng J, Shao Y, Wang J, Chen W, Song S, Lu X, Qi X, Zhang G, Rossiter SJ, Wu DD, Liu Y, Lu H, Li G. Genomic and phenotypic evidence support visual and olfactory shifts in primate evolution. Nat Ecol Evol 2025; 9:721-733. [PMID: 40021902 DOI: 10.1038/s41559-025-02651-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/31/2025] [Indexed: 03/03/2025]
Abstract
Sensory trade-offs between vision and olfaction in the evolution and radiation of primates have long been debated. However, insights have been limited by a lack of sensory gene sequences and accompanying functional predictions. Here we conduct large-scale functional analyses of visual and olfactory receptors and related brain regions across extant primates. Our results reveal a visual shift from ultraviolet to violet colour sensitivity in early haplorrhine primates, followed by acceleration in the rhodopsin retinal release rates at the origin of anthropoids, both of which are expected to greatly enhance visual acuity under brighter light conditions. Additionally, we find that the sensitivity of olfactory receptors shifted from narrowly to broadly tuned early in anthropoid evolution. In contrast, strepsirrhines appear to have retained sensitive dim-light vision and underwent functional enhancement of narrowly tuned olfactory receptors. Our models indicate that this would have enhanced odorant discrimination and facilitated olfaction-mediated physiology and behaviour. These differences in tuning patterns of olfactory receptors between major primate lineages mirror well-established morphological differences in external anatomy and brain structures, revealing new mechanisms of olfactory adaptation and evolutionary plasticity. Our multisystem analyses reveal patterns of co-evolution in genomic, molecular and neuroanatomical traits that are consistent with a sensory 'reallocation' rather than strict trade-offs.
Collapse
Affiliation(s)
- Hai Chi
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiahui Wan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Alex R DeCasien
- Computational and Evolutionary Neurogenomics Unit, National Institute on Aging, Bethesda, MD, USA
| | - Sufang Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yudan Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yimeng Cui
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xin Guo
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Le Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Joseph Williamson
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, UK
| | - Tianmin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Qian Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yue Zhan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Na Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jinqu Guo
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhe Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wenhui Hou
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yumin Cao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiaqing Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiangmin Zheng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yong Shao
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jinhong Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Shengjing Song
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaoli Lu
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaoguang Qi
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Guojie Zhang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- BGI-Shenzhen, Shenzhen, China
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, UK
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Yang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Huimeng Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, China.
| |
Collapse
|
2
|
Hamacher C, Degen R, Franke M, Switacz VK, Fleck D, Katreddi RR, Hernandez-Clavijo A, Strauch M, Horio N, Hachgenei E, Spehr J, Liberles SD, Merhof D, Forni PE, Zimmer-Bensch G, Ben-Shaul Y, Spehr M. A revised conceptual framework for mouse vomeronasal pumping and stimulus sampling. Curr Biol 2024; 34:1206-1221.e6. [PMID: 38320553 PMCID: PMC10965388 DOI: 10.1016/j.cub.2024.01.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
The physiological performance of any sensory organ is determined by its anatomy and physical properties. Consequently, complex sensory structures with elaborate features have evolved to optimize stimulus detection. Understanding these structures and their physical nature forms the basis for mechanistic insights into sensory function. Despite its crucial role as a sensor for pheromones and other behaviorally instructive chemical cues, the vomeronasal organ (VNO) remains a poorly characterized mammalian sensory structure. Fundamental principles of its physico-mechanical function, including basic aspects of stimulus sampling, remain poorly explored. Here, we revisit the classical vasomotor pump hypothesis of vomeronasal stimulus uptake. Using advanced anatomical, histological, and physiological methods, we demonstrate that large parts of the lateral mouse VNO are composed of smooth muscle. Vomeronasal smooth muscle tissue comprises two subsets of fibers with distinct topography, structure, excitation-contraction coupling, and, ultimately, contractile properties. Specifically, contractions of a large population of noradrenaline-sensitive cells mediate both transverse and longitudinal lumen expansion, whereas cholinergic stimulation targets an adluminal group of smooth muscle fibers. The latter run parallel to the VNO's rostro-caudal axis and are ideally situated to mediate antagonistic longitudinal constriction of the lumen. This newly discovered arrangement implies a novel mode of function. Single-cell transcriptomics and pharmacological profiling reveal the receptor subtypes involved. Finally, 2D/3D tomography provides non-invasive insight into the intact VNO's anatomy and mechanics, enables measurement of luminal fluid volume, and allows an assessment of relative volume change upon noradrenergic stimulation. Together, we propose a revised conceptual framework for mouse vomeronasal pumping and, thus, stimulus sampling.
Collapse
Affiliation(s)
- Christoph Hamacher
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Rudolf Degen
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany; Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, 52074 Aachen, Germany
| | - Melissa Franke
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Victoria K Switacz
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany; Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, 52074 Aachen, Germany
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Raghu Ram Katreddi
- Department of Biological Sciences, The RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Andres Hernandez-Clavijo
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Martin Strauch
- Institute of Imaging and Computer Vision, RWTH Aachen University, 52074 Aachen, Germany
| | - Nao Horio
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Enno Hachgenei
- Department of Production Metrology, Fraunhofer Institute for Production Technology, 52074 Aachen, Germany
| | - Jennifer Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Stephen D Liberles
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dorit Merhof
- Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, 52074 Aachen, Germany; Institute of Imaging and Computer Vision, RWTH Aachen University, 52074 Aachen, Germany
| | - Paolo E Forni
- Department of Biological Sciences, The RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Geraldine Zimmer-Bensch
- Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, 52074 Aachen, Germany; Department of Neuroepigenetics, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany; Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
3
|
Balthazart J, Roselli CE. Hormonal, Genetic, Immunological: An Array of Mechanisms but How Do They Interact, If at All? ARCHIVES OF SEXUAL BEHAVIOR 2023; 52:2963-2971. [PMID: 36376746 DOI: 10.1007/s10508-022-02469-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 05/20/2023]
Affiliation(s)
| | - Charles E Roselli
- Department of Chemical, Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
4
|
Bhattarai JP, Etyemez S, Jaaro-Peled H, Janke E, Leon Tolosa UD, Kamiya A, Gottfried JA, Sawa A, Ma M. Olfactory modulation of the medial prefrontal cortex circuitry: Implications for social cognition. Semin Cell Dev Biol 2022; 129:31-39. [PMID: 33975755 PMCID: PMC8573060 DOI: 10.1016/j.semcdb.2021.03.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Olfactory dysfunction is manifested in a wide range of neurological and psychiatric diseases, and often emerges prior to the onset of more classical symptoms and signs. From a behavioral perspective, olfactory deficits typically arise in conjunction with impairments of cognition, motivation, memory, and emotion. However, a conceptual framework for explaining the impact of olfactory processing on higher brain functions in health and disease remains lacking. Here we aim to provide circuit-level insights into this question by synthesizing recent advances in olfactory network connectivity with other cortical brain regions such as the prefrontal cortex. We will focus on social cognition as a representative model for exploring and critically evaluating the relationship between olfactory cortices and higher-order cortical regions in rodent models. Although rodents do not recapitulate all dimensions of human social cognition, they have experimentally accessible neural circuits and well-established behavioral tests for social motivation, memory/recognition, and hierarchy, which can be extrapolated to other species including humans. In particular, the medial prefrontal cortex (mPFC) has been recognized as a key brain region in mediating social cognition in both rodents and humans. This review will highlight the underappreciated connectivity, both anatomical and functional, between the olfactory system and mPFC circuitry, which together provide a neural substrate for olfactory modulation of social cognition and social behaviors. We will provide future perspectives on the functional investigation of the olfactory-mPFC circuit in rodent models and discuss how to translate such animal research to human studies.
Collapse
Affiliation(s)
- Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Semra Etyemez
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hanna Jaaro-Peled
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emma Janke
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Usuy D Leon Tolosa
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Atsushi Kamiya
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jay A Gottfried
- Department of Psychology, University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Akira Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA; Departments of Neuroscience, Biomedical Engineering, and Genetic Medicine, John Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
A Review of Suggested Mechanisms of MHC Odor Signaling. BIOLOGY 2022; 11:biology11081187. [PMID: 36009814 PMCID: PMC9405088 DOI: 10.3390/biology11081187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022]
Abstract
Simple Summary Immune genes of the vertebrate MHC vary among individuals. Each individual collection is optimally diverse to provide resistance against some infectious diseases but not too diverse to cause autoimmune diseases. MHC-dependent mate choice aims for optimally complementary MHC alleles. Each potential partner signals through body odor his/her MHC alleles. Identifying the signal molecules was a long-lasting puzzle solved only recently after many deviations as described. Commensal microbiota which are controlled by the individual MHC genes differ among individuals. They were suspected repeatedly to provide the signal, though mice raised germ-free could still smell MHC genes. Carrier hypotheses came in various versions, centered around the specificity of each MHC molecule for binding peptides from diseases, shown to T lymphocytes to induce the immune response. Volatiles of various origins were suggested to fill the place of the peptide and thus reflect the identity of the MHC molecule. Finally, the bound peptides themselves were identified as the sought info-chemicals. Synthesized peptides affect mate choice as predicted. Specific olfactory neurons were shown to react to these peptides but only to the anchors that define the binding specificity. Even eggs choose sperm to produce offspring with optimal MHC, though the signaling pathway needs further research. Abstract Although an individual’s mix of MHC immune genes determines its resistance, finding MHC-dependent mate choice occurred by accident in inbred mice. Inbred mice prefer MHC dissimilar mates, even when the choice was restricted to urine. It took decades to find the info-chemicals, which have to be as polymorphic as the MHC. Microbiota were suggested repeatedly as the origin of the odor signal though germ-free mice maintained normal preference. Different versions of the ‘carrier hypothesis’ suggested MHC molecules carry volatiles after the bound peptide is released. Theory predicted an optimal individual MHC diversity to maximize resistance. The optimally complementary mate should be and is preferred as several studies show. Thus, the odor signal needs to transmit the exact information of the sender’s MHC alleles, as do MHC ligand peptides but not microbiota. The ‘MHC peptide hypothesis’ assumes that olfactory perception of the peptide ligand provides information about the MHC protein in a key-lock fashion. Olfactory neurons react only to the anchors of synthesized MHC peptides, which reflect the binding MHC molecule’s identity. Synthesized peptides supplemented to a male’s signal affect choice in the predicted way, however, not when anchors are mutated. Also, the human brain detects smelled synthesized self-peptides as such. After mate choice, the lottery of meiosis of randomly paired oocyte and sperm haplotypes would often produce MHC non-optimal offspring. In sticklebacks, eggs select MHC-compatible sperm, thus prefer the best combination close to the population optimum.
Collapse
|
6
|
Hoglen NEG, Manoli DS. Cupid's quiver: Integrating sensory cues in rodent mating systems. Front Neural Circuits 2022; 16:944895. [PMID: 35958042 PMCID: PMC9358210 DOI: 10.3389/fncir.2022.944895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022] Open
Abstract
In many animal species, males and females exploit different mating strategies, display sex-typical behaviors, and use distinct systems to recognize ethologically relevant cues. Mate selection thus requires mutual recognition across diverse social interactions based on distinct sensory signals. These sex differences in courtship and mating behaviors correspond to differences in sensory systems and downstream neural substrates engaged to recognize and respond to courtship signals. In many rodents, males tend to rely heavily on volatile olfactory and pheromone cues, while females appear to be guided more by a combination of these chemosensory signals with acoustic cues in the form of ultrasonic vocalizations. The mechanisms by which chemical and acoustic cues are integrated to control behavior are understudied in mating but are known to be important in the control of maternal behaviors. Socially monogamous species constitute a behaviorally distinct group of rodents. In these species, anatomic differences between males and females outside the nervous system are less prominent than in species with non-monogamous mating systems, and both sexes engage in more symmetric social behaviors and form attachments. Nevertheless, despite the apparent similarities in behaviors displayed by monogamous males and females, the circuitry supporting social, mating, and attachment behaviors in these species is increasingly thought to differ between the sexes. Sex differences in sensory modalities most important for mate recognition in across species are of particular interest and present a wealth of questions yet to be answered. Here, we discuss how distinct sensory cues may be integrated to drive social and attachment behaviors in rodents, and the differing roles of specific sensory systems in eliciting displays of behavior by females or males.
Collapse
Affiliation(s)
- Nerissa E G Hoglen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA, United States
| | - Devanand S Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
7
|
SRF depletion in early life contributes to social interaction deficits in the adulthood. Cell Mol Life Sci 2022; 79:278. [PMID: 35505150 PMCID: PMC9064851 DOI: 10.1007/s00018-022-04291-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/11/2022] [Accepted: 04/05/2022] [Indexed: 12/05/2022]
Abstract
Alterations in social behavior are core symptoms of major developmental neuropsychiatric diseases such as autism spectrum disorders or schizophrenia. Hence, understanding their molecular and cellular underpinnings constitutes the major research task. Dysregulation of the global gene expression program in the developing brain leads to modifications in a number of neuronal connections, synaptic strength and shape, causing unbalanced neuronal plasticity, which may be important substrate in the pathogenesis of neurodevelopmental disorders, contributing to their clinical outcome. Serum response factor (SRF) is a major transcription factor in the brain. The behavioral influence of SRF deletion during neuronal differentiation and maturation has never been studied because previous attempts to knock-out the gene caused premature death. Herein, we generated mice that lacked SRF from early postnatal development to precisely investigate the role of SRF starting in the specific time window before maturation of excitatory synapses that are located on dendritic spine occurs. We show that the time-controlled loss of SRF in neurons alters specific aspects of social behaviors in SRF knock-out mice, and causes deficits in developmental spine maturation at both the structural and functional levels, including downregulated expression of the AMPARs subunits GluA1 and GluA2, and increases the percentage of filopodial/immature dendritic spines. In aggregate, our study uncovers the consequences of postnatal SRF elimination for spine maturation and social interactions revealing novel mechanisms underlying developmental neuropsychiatric diseases.
Collapse
|
8
|
Tao K, Chung M, Watarai A, Huang Z, Wang MY, Okuyama T. Disrupted social memory ensembles in the ventral hippocampus underlie social amnesia in autism-associated Shank3 mutant mice. Mol Psychiatry 2022; 27:2095-2105. [PMID: 35115700 PMCID: PMC9126818 DOI: 10.1038/s41380-021-01430-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022]
Abstract
The ability to remember conspecifics is critical for adaptive cognitive functioning and social communication, and impairments of this ability are hallmarks of autism spectrum disorders (ASDs). Although hippocampal ventral CA1 (vCA1) neurons are known to store social memories, how their activities are coordinated remains unclear. Here we show that vCA1 social memory neurons, characterized by enhanced activity in response to memorized individuals, were preferentially reactivated during sharp-wave ripples (SPW-Rs). Spike sequences of these social replays reflected the temporal orders of neuronal activities within theta cycles during social experiences. In ASD model Shank3 knockout mice, the proportion of social memory neurons was reduced, and neuronal ensemble spike sequences during SPW-Rs were disrupted, which correlated with impaired discriminatory social behavior. These results suggest that SPW-R-mediated sequential reactivation of neuronal ensembles is a canonical mechanism for coordinating hippocampus-dependent social memories and its disruption underlie the pathophysiology of social memory defects associated with ASD.
Collapse
Affiliation(s)
- Kentaro Tao
- grid.26999.3d0000 0001 2151 536XLaboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, 113-0032 Japan
| | - Myung Chung
- grid.26999.3d0000 0001 2151 536XLaboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, 113-0032 Japan
| | - Akiyuki Watarai
- grid.26999.3d0000 0001 2151 536XLaboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, 113-0032 Japan
| | - Ziyan Huang
- grid.26999.3d0000 0001 2151 536XLaboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, 113-0032 Japan
| | - Mu-Yun Wang
- grid.26999.3d0000 0001 2151 536XLaboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, 113-0032 Japan
| | - Teruhiro Okuyama
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, 113-0032, Japan. .,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
9
|
Lessmann ME, Guducu C, Ibarlucea B, Hummel T. Electrophysiological Recordings from the Olfactory Epithelium and Human Brain in Response to Stimulation with HLA Related Peptides. Neuroscience 2021; 473:44-51. [PMID: 34407460 DOI: 10.1016/j.neuroscience.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
In many species, social communication and mate choice are influenced by olfactory cues associated with the major histocompatibility complex (MHC). It has been reported that humans also respond to olfactory signals related to the human MHC-equivalent, the Human Leucocyte Antigen (HLA)-System, and exhibit an olfactory-mediated preference for potential mating partners with a dissimilar, disassortative, HLA-type compared to their own. The aim of this study was to investigate whether HLA-associated peptides, presented as volatile cues, elicit neuronal responses at the receptors in the human olfactory epithelium and can be consciously perceived. To this end the discrimination ability for peptides was tested in a 3-alternative forced choice model. Furthermore electro-olfactograms of the olfactory epithelium and EEG-derived chemosensory event related potentials were recorded using precisely controlled olfactometric stimulation with peptides and control odors. Based on responses from 52 young, healthy participants the peptides could not be discriminated and the electrophysiological signals provided no evidence for a specific response to the peptides which was in contrast to the control odors. In conclusion, within the current setup the results suggest that HLA-associated peptides do not produce specific olfactory activation in humans.
Collapse
Affiliation(s)
- Marie-Elisabeth Lessmann
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Dresden, Germany.
| | - Cagdas Guducu
- Department of Biophysics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Bergoi Ibarlucea
- Institute of Materials Science, Max Bergmann Center of Biomaterials, and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden, Germany
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
10
|
Sievert T, Ylönen H, Blande JD, Saunier A, van der Hulst D, Ylönen O, Haapakoski M. Bank vole alarm pheromone chemistry and effects in the field. Oecologia 2021; 196:667-677. [PMID: 34173057 PMCID: PMC8292297 DOI: 10.1007/s00442-021-04977-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/19/2021] [Indexed: 11/29/2022]
Abstract
Chemical communication plays an important role in mammalian life history decisions. Animals send and receive information based on body odour secretions. Odour cues provide important social information on identity, kinship, sex, group membership or genetic quality. Recent findings show, that rodents alarm their conspecifics with danger-dependent body odours after encountering a predator. In this study, we aim to identify the chemistry of alarm pheromones (AP) in the bank vole, a common boreal rodent. Furthermore, the vole foraging efficiency under perceived fear was measured in a set of field experiments in large outdoor enclosures. During the analysis of bank vole odour by gas chromatography–mass spectrometry, we identified that 1-octanol, 2-octanone, and one unknown compound as the most likely candidates to function as alarm signals. These compounds were independent of the vole’s sex. In a field experiment, voles were foraging less, i.e. they were more afraid in the AP odour foraging trays during the first day, as the odour was fresh, than in the second day. This verified the short lasting effect of volatile APs. Our results clarified the chemistry of alarming body odour compounds in mammals, and enhanced our understanding of the ecological role of AP and chemical communication in mammals.
Collapse
Affiliation(s)
- Thorbjörn Sievert
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - Hannu Ylönen
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Amélie Saunier
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Dave van der Hulst
- Environmental Sciences Department, Resource Ecology Group, Wageningen University, 6700 AA, Wageningen, Netherlands
| | - Olga Ylönen
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Marko Haapakoski
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| |
Collapse
|
11
|
Invitto S, Keshmiri S, Mazzatenta A, Grasso A, Romano D, Bona F, Shiomi M, Sumioka H, Ishiguro H. Perception of Social Odor and Gender-Related Differences Investigated Through the Use of Transfer Entropy and Embodied Medium. Front Syst Neurosci 2021; 15:650528. [PMID: 34177474 PMCID: PMC8232750 DOI: 10.3389/fnsys.2021.650528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022] Open
Abstract
The perception of putative pheromones or social odors (PPSO) in humans is a widely debated topic because the published results seem ambiguous. Our research aimed to evaluate how cross-modal processing of PPSO and gender voice can affect the behavioral and psychophysiological states of the subject during a listening task with a bodily contact medium, and how these effects could be gender related. Before the experimental session, three embodied media, were exposed to volatilized estratetraenol (Estr), 5α-androst-16-en-3 α-ol (Andr), and Vaseline oil. The experimental session consisted in listening to a story that were transmitted, with a male or female voice, by the communicative medium via a Bluetooth system during a listening task, recorded through 64-active channel electroencephalography (EEG). The sense of co-presence and social presence, elicited by the medium, showed how the established relationship with the medium was gender dependent and modulated by the PPSO. In particular, Andr induced greater responses related to co-presence. The gender of the participants was related to the co-presence desire, where women imagined higher medium co-presence than men. EEG findings seemed to be more responsive to the PPSO–gender voice interaction, than behavioral results. The mismatch between female PPSO and male voice elicited the greatest cortical flow of information. In the case of the Andr–male voice condition, the trained model appeared to assign more relevance to the flow of information to the right frontotemporal regions (involved in odor recognition memory and social behavior). The Estr–male voice condition showed activation of the bilateral frontoparietal network, which is linked to cognitive control, cognitive flexibility, and auditory consciousness. The model appears to distinguish the dissonance condition linked to Andr matched with a female voice: it highlights a flow of information to the right occipital lobe and to the frontal pole. The PPSO could influence the co-presence judgements and EEG response. The results seem suggest that could be an implicit pattern linked to PPSO-related gender differences and gender voice.
Collapse
Affiliation(s)
- Sara Invitto
- INSPIRE-Laboratory of Cognitive and Psychophysiological Olfactory Processes, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Soheil Keshmiri
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Andrea Mazzatenta
- Neurophysiology, Olfaction and Chemoreception Laboratory, Physiology and Physiopathology Section, Neuroscience, Imaging and Clinical Sciences Department, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Alberto Grasso
- INSPIRE-Laboratory of Cognitive and Psychophysiological Olfactory Processes, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Daniele Romano
- Department of Psychology and NeuroMi, University of Milano-Bicocca, Milan, Italy.,Department of History, Society and Human Studies, University of Salento, Lecce, Italy
| | - Fabio Bona
- INSPIRE-Laboratory of Cognitive and Psychophysiological Olfactory Processes, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Masahiro Shiomi
- Interaction Science Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Hidenobu Sumioka
- Hiroshi Ishiguro Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Hiroshi Ishiguro
- Hiroshi Ishiguro Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan.,Graduate School of Engineering Science, Osaka University, Osaka, Japan
| |
Collapse
|
12
|
Milinski M. MHC mediates social odor via microbiota-it cannot work: a comment on Schubert et al. Behav Ecol 2021; 32:374-375. [PMID: 34104108 PMCID: PMC8177797 DOI: 10.1093/beheco/arab017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 02/02/2023] Open
Affiliation(s)
- Manfred Milinski
- Max-Planck-Institute of Evolutionary Biology, August-Thienemann-Str. 2, Plön, Germany
| |
Collapse
|
13
|
Riddell P, Paris MCJ, Joonè CJ, Pageat P, Paris DBBP. Appeasing Pheromones for the Management of Stress and Aggression during Conservation of Wild Canids: Could the Solution Be Right under Our Nose? Animals (Basel) 2021; 11:ani11061574. [PMID: 34072227 PMCID: PMC8230031 DOI: 10.3390/ani11061574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Many canid species are declining globally. It is important to conserve these species that often serve as important predators within ecosystems. Continued human expansion and the resulting habitat fragmentation necessitate conservation interventions, such as translocation, artificial pack formation, and captive breeding programs. However, chronic stress often occurs during these actions, and can result in aggression, and the physiological suppression of immunity and reproduction. Limited options are currently available for stress and aggression management in wild canids. Pheromones provide a promising natural alternative for stress management; an appeasing pheromone has been identified for multiple domestic species and may reduce stress and aggression behaviours. Many pheromones are species-specific, and the appeasing pheromone has been found to have slight compositional changes across species. In this review, the benefits of a dog appeasing pheromone and the need to investigate species-specific derivatives to produce more pronounced and beneficial behavioural and physiological modulation in target species as a conservation tool are examined. Abstract Thirty-six species of canid exist globally, two are classified as critically endangered, three as endangered, and five as near threatened. Human expansion and the coinciding habitat fragmentation necessitate conservation interventions to mitigate concurrent population deterioration. The current conservation management of wild canids includes animal translocation and artificial pack formation. These actions often cause chronic stress, leading to increased aggression and the suppression of the immune and reproductive systems. Castration and pharmaceutical treatments are currently used to reduce stress and aggression in domestic and captive canids. The undesirable side effects make such treatments inadvisable during conservation management of wild canids. Pheromones are naturally occurring chemical messages that modulate behaviour between conspecifics; as such, they offer a natural alternative for behaviour modification. Animals are able to distinguish between pheromones of closely related species through small compositional differences but are more likely to have greater responses to pheromones from individuals of the same species. Appeasing pheromones have been found to reduce stress- and aggression-related behaviours in domestic species, including dogs. Preliminary evidence suggests that dog appeasing pheromones (DAP) may be effective in wild canids. However, the identification and testing of species-specific derivatives could produce more pronounced and beneficial behavioural and physiological changes in target species. In turn, this could provide a valuable tool to improve the conservation management of many endangered wild canids.
Collapse
Affiliation(s)
- Pia Riddell
- Gamete and Embryology (GAME) Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, James Cook Drive, Townsville, QLD 4811, Australia;
- Institute for Breeding Rare and Endangered African Mammals (IBREAM), 9 Ainslie Place, Edinburgh EH3 6AT SCT, UK;
- Centre for Tropical Environmental and Sustainability Science, James Cook University, James Cook Drive, Townsville, QLD 4811, Australia
| | - Monique C. J. Paris
- Institute for Breeding Rare and Endangered African Mammals (IBREAM), 9 Ainslie Place, Edinburgh EH3 6AT SCT, UK;
- Mammal Research Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Carolynne J. Joonè
- Discipline of Veterinary Science, College of Public Health, Medical and Veterinary Sciences, James Cook University, Solander Drive, Townsville, QLD 4811, Australia;
| | - Patrick Pageat
- Institut de Recherche en Sémiochemie et Ethologie Appliquée, 84400 Apt, France;
| | - Damien B. B. P. Paris
- Gamete and Embryology (GAME) Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, James Cook Drive, Townsville, QLD 4811, Australia;
- Institute for Breeding Rare and Endangered African Mammals (IBREAM), 9 Ainslie Place, Edinburgh EH3 6AT SCT, UK;
- Centre for Tropical Environmental and Sustainability Science, James Cook University, James Cook Drive, Townsville, QLD 4811, Australia
- Correspondence: ; Tel.: +61-7-4781-6006
| |
Collapse
|
14
|
Schubert N, Nichols HJ, Winternitz JC. How can the MHC mediate social odor via the microbiota community? A deep dive into mechanisms. Behav Ecol 2021. [DOI: 10.1093/beheco/arab004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Abstract
Genes of the major histocompatibility complex (MHC) have long been linked to odor signaling and recently researchers’ attention has focused on MHC structuring of microbial communities and how this may in turn impact odor. However, understanding of the mechanisms through which the MHC could affect the microbiota to produce a chemical signal that is both reliable and strong enough to ensure unambiguous transmission of behaviorally important information remains poor. This is largely because empirical studies are rare, predictions are unclear, and the underlying immunological mechanisms governing MHC–microbiota interactions are often neglected. Here, we review the immunological processes involving MHC class II (MHC-II) that could affect the commensal community. Focusing on immunological and medical research, we provide background knowledge for nonimmunologists by describing key players within the vertebrate immune system relating to MHC-II molecules (which present extracellular-derived peptides, and thus interact with extracellular commensal microbes). We then systematically review the literature investigating MHC–odor–microbiota interactions in animals and identify areas for future research. These insights will help to design studies that are able to explore the role of MHC-II and the microbiota in the behavior of wild populations in their natural environment and consequently propel this research area forward.
Collapse
Affiliation(s)
- Nadine Schubert
- Department of Animal Behavior, Bielefeld University, Konsequenz, Bielefeld, Germany
| | - Hazel J Nichols
- Department of Animal Behavior, Bielefeld University, Konsequenz, Bielefeld, Germany
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - Jamie C Winternitz
- Department of Animal Behavior, Bielefeld University, Konsequenz, Bielefeld, Germany
| |
Collapse
|
15
|
Sung JY, Harris OK, Hensley NM, Chemero AP, Morehouse NI. Beyond cognitive templates: re-examining template metaphors used for animal recognition and navigation. Integr Comp Biol 2021; 61:825-841. [PMID: 33970266 DOI: 10.1093/icb/icab040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The term 'cognitive template' originated from work in human-based cognitive science to describe a literal, stored, neural representation used in recognition tasks. As the study of cognition has expanded to non-human animals, the term has diffused to describe a wider range of animal cognitive tools and strategies that guide action through the recognition of and discrimination between external states. One potential reason for this non-standardized meaning and variable employment is that researchers interested in the broad range of animal recognition tasks enjoy the simplicity of the cognitive template concept and have allowed it to become shorthand for many dissimilar or unknown neural processes without deep scrutiny of how this metaphor might comport with underlying neurophysiology. We review the functional evidence for cognitive templates in fields such as perception, navigation, communication, and learning, highlighting any neural correlates identified by these studies. We find that the concept of cognitive templates has facilitated valuable exploration at the interface between animal behavior and cognition, but the quest for a literal template has failed to attain mechanistic support at the level of neurophysiology. This may be the result of a misled search for a single physical locus for the 'template' itself. We argue that recognition and discrimination processes are best treated as emergent and, as such, may not be physically localized within single structures of the brain. Rather, current evidence suggests that such tasks are accomplished through synergies between multiple distributed processes in animal nervous systems. We thus advocate for researchers to move towards a more ecological, process-oriented conception, especially when discussing the neural underpinnings of recognition-based cognitive tasks.
Collapse
Affiliation(s)
- Jenny Y Sung
- Department of Biological Sciences, University of Cincinnati
| | | | | | | | | |
Collapse
|
16
|
Abstract
Odors may be pleasant or unpleasant and in practice, pleasant odors are attractive while unpleasant odors are repellent. However, an odor that is noxious to one species may be attractive to another. Plants, predators, and pathogens may enhance their transmission by manipulating these signals. This may be especially significant when odors attract arthropod disease vectors. Odor detection may also be important in small prey species for evasion of macropredators such as large carnivores. Conversely, pleasant odors may identify family members, parents, or sexual partners. They may also generate signals of good health or fitness and contribute to the process of mate selection. In this review, we seek to integrate these odor-driven processes into a coherent pattern of behaviors that serve to complement the innate and adaptive immune systems. It may be considered the 'behavioral immune system'.
Collapse
|
17
|
Tirindelli R. Coding of pheromones by vomeronasal receptors. Cell Tissue Res 2021; 383:367-386. [PMID: 33433690 DOI: 10.1007/s00441-020-03376-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023]
Abstract
Communication between individuals is critical for species survival, reproduction, and expansion. Most terrestrial species, with the exception of humans who predominantly use vision and phonation to create their social network, rely on the detection and decoding of olfactory signals, which are widely known as pheromones. These chemosensory cues originate from bodily fluids, causing attractive or avoidance behaviors in subjects of the same species. Intraspecific pheromone signaling is then crucial to identify sex, social ranking, individuality, and health status, thus establishing hierarchies and finalizing the most efficient reproductive strategies. Indeed, all these features require fine tuning of the olfactory systems to detect molecules containing this information. To cope with this complexity of signals, tetrapods have developed dedicated olfactory subsystems that refer to distinct peripheral sensory detectors, called the main olfactory and the vomeronasal organ, and two minor structures, namely the septal organ of Masera and the Grueneberg ganglion. Among these, the vomeronasal organ plays the most remarkable role in pheromone coding by mediating several behavioral outcomes that are critical for species conservation and amplification. In rodents, this organ is organized into two segregated neuronal subsets that express different receptor families. To some extent, this dichotomic organization is preserved in higher projection areas of the central nervous system, suggesting, at first glance, distinct functions for these two neuronal pathways. Here, I will specifically focus on this issue and discuss the role of vomeronasal receptors in mediating important innate behavioral effects through the recognition of pheromones and other biological chemosignals.
Collapse
Affiliation(s)
- Roberto Tirindelli
- Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125, Parma, Italy.
| |
Collapse
|
18
|
Chung M, Wang M, Huang Z, Okuyama T. Diverse sensory cues for individual recognition. Dev Growth Differ 2020; 62:507-515. [DOI: 10.1111/dgd.12697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Myung Chung
- Laboratory of Behavioral Neuroscience Institute for Quantitative Biosciences (IQB) The University of Tokyo Tokyo Japan
| | - Mu‐Yun Wang
- Laboratory of Behavioral Neuroscience Institute for Quantitative Biosciences (IQB) The University of Tokyo Tokyo Japan
| | - Ziyan Huang
- Laboratory of Behavioral Neuroscience Institute for Quantitative Biosciences (IQB) The University of Tokyo Tokyo Japan
| | - Teruhiro Okuyama
- Laboratory of Behavioral Neuroscience Institute for Quantitative Biosciences (IQB) The University of Tokyo Tokyo Japan
- JST, PRESTO Tokyo Japan
| |
Collapse
|
19
|
Leblanc H, Ramirez S. Linking Social Cognition to Learning and Memory. J Neurosci 2020; 40:8782-8798. [PMID: 33177112 PMCID: PMC7659449 DOI: 10.1523/jneurosci.1280-20.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
Many mammals have evolved to be social creatures. In humans, the ability to learn from others' experiences is essential to survival; and from an early age, individuals are surrounded by a social environment that helps them develop a variety of skills, such as walking, talking, and avoiding danger. Similarly, in rodents, behaviors, such as food preference, exploration of novel contexts, and social approach, can be learned through social interaction. Social encounters facilitate new learning and help modify preexisting memories throughout the lifespan of an organism. Moreover, social encounters can help buffer stress or the effects of negative memories, as well as extinguish maladaptive behaviors. Given the importance of such interactions, there has been increasing work studying social learning and applying its concepts in a wide range of fields, including psychotherapy and medical sociology. The process of social learning, including its neural and behavioral mechanisms, has also been a rapidly growing field of interest in neuroscience. However, the term "social learning" has been loosely applied to a variety of psychological phenomena, often without clear definition or delineations. Therefore, this review gives a definition for specific aspects of social learning, provides an overview of previous work at the circuit, systems, and behavioral levels, and finally, introduces new findings on the social modulation of learning. We contextualize such social processes in the brain both through the role of the hippocampus and its capacity to process "social engrams" as well as through the brainwide realization of social experiences. With the integration of new technologies, such as optogenetics, chemogenetics, and calcium imaging, manipulating social engrams will likely offer a novel therapeutic target to enhance the positive buffering effects of social experiences or to inhibit fear-inducing social stimuli in models of anxiety and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Heloise Leblanc
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, 02119
- Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, 02119
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02119
- Neurophotonics Center at Boston University, Boston, Massachusetts, 02119
- Center for Systems Neuroscience at Boston University, Boston, Massachusetts, 02119
| |
Collapse
|
20
|
Balthazart J. Sexual partner preference in animals and humans. Neurosci Biobehav Rev 2020; 115:34-47. [PMID: 32450091 PMCID: PMC7484171 DOI: 10.1016/j.neubiorev.2020.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022]
Abstract
Sex differences in brain and behavior of animals including humans result from an interaction between biological and environmental influences. This is also true for the differences between men and women concerning sexual orientation. Sexual differentiation is mediated by three groups of biological mechanisms: early actions of sex steroids, more direct actions of sex-specific genes not mediated by gonadal sex steroids and epigenetic mechanisms. Differential interactions with parents and conspecifics have additionally long-term influences on behavior. This presentation reviews available evidence indicating that these different mechanisms play a significant role in the control of sexual partner preference in animals and humans, in other words the homosexual versus heterosexual orientation. Clinical and epidemiological studies of phenotypically selected populations indicate that early actions of hormones and genetic factors clearly contribute to the determination of sexual orientation. The maternal embryonic environment also modifies the incidence of male homosexuality via immunological mechanisms. The relative contribution of each of these mechanisms remains however to be determined.
Collapse
|
21
|
Havlíček J, Winternitz J, Roberts SC. Major histocompatibility complex-associated odour preferences and human mate choice: near and far horizons. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190260. [PMID: 32306884 PMCID: PMC7209936 DOI: 10.1098/rstb.2019.0260] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
The major histocompatibility complex (MHC) is a core part of the adaptive immune system. As in other vertebrate taxa, it may also affect human chemical communication via odour-based mate preferences, with greater attraction towards MHC-dissimilar partners. However, despite some well-known findings, the available evidence is equivocal and made complicated by varied approaches to quantifying human mate choice. To address this, we here conduct comprehensive meta-analyses focusing on studies assessing: (i) genomic mate selection, (ii) relationship satisfaction, (iii) odour preference, and (iv) all studies combined. Analysis of genomic studies reveals no association between MHC-dissimilarity and mate choice in actual couples; however, MHC effects appear to be independent of the genomic background. The effect of MHC-dissimilarity on relationship satisfaction was not significant, and we found evidence for publication bias in studies on this area. There was also no significant association between MHC-dissimilarity and odour preferences. Finally, combining effect sizes from all genomic, relationship satisfaction, odour preference and previous mate choice studies into an overall estimate showed no overall significant effect of MHC-similarity on human mate selection. Based on these findings, we make a set of recommendations for future studies, focusing both on aspects that should be implemented immediately and those that lurk on the far horizon. We need larger samples with greater geographical and cultural diversity that control for genome-wide similarity. We also need more focus on mechanisms of MHC-associated odour preferences and on MHC-associated pregnancy loss. This article is part of the Theo Murphy meeting issue 'Olfactory communication in humans'.
Collapse
Affiliation(s)
- Jan Havlíček
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 42 Prague 2, Czech Republic
| | - Jamie Winternitz
- Department of Animal Behaviour, Bielefeld University, Bielefeld 33615, Germany
| | - S. Craig Roberts
- Division of Psychology, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
22
|
Wang Y, Jiang H, Yang L. Transcriptome Analysis of Zebrafish Olfactory Epithelium Reveal Sexual Differences in Odorant Detection. Genes (Basel) 2020; 11:genes11060592. [PMID: 32471067 PMCID: PMC7349279 DOI: 10.3390/genes11060592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 01/04/2023] Open
Abstract
Animals have evolved a large number of olfactory receptor genes in their genome to detect numerous odorants in their surrounding environments. However, we still know little about whether males and females possess the same abilities to sense odorants, especially in fish. In this study, we used deep RNA sequencing to examine the difference of transcriptome between male and female zebrafish olfactory epithelia. We found that the olfactory transcriptomes between males and females are highly similar. We also found evidence of some genes showing differential expression or alternative splicing, which may be associated with odorant-sensing between sexes. Most chemosensory receptor genes showed evidence of expression in the zebrafish olfactory epithelium, with a higher expression level in males than in females. Taken together, our results provide a comprehensive catalog of the genes mediating olfactory perception and pheromone-evoked behavior in fishes.
Collapse
Affiliation(s)
- Ying Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan 430056, Hubei, China;
| | - Haifeng Jiang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China;
- Correspondence: ; Tel.: +86-27-6878-0281
| |
Collapse
|
23
|
Behavioral Responses by Adult Northern Leopard Frogs to Conspecific Chemical Cues. J HERPETOL 2020. [DOI: 10.1670/19-029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
The Role of Olfactory Genes in the Expression of Rodent Paternal Care Behavior. Genes (Basel) 2020; 11:genes11030292. [PMID: 32164379 PMCID: PMC7140856 DOI: 10.3390/genes11030292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022] Open
Abstract
Olfaction is the dominant sensory modality in rodents, and is crucial for regulating social behaviors, including parental care. Paternal care is rare in rodents, but can have significant consequences for offspring fitness, suggesting a need to understand the factors that regulate its expression. Pup-related odor cues are critical for the onset and maintenance of paternal care. Here, I consider the role of olfaction in the expression of paternal care in rodents. The medial preoptic area shares neural projections with the olfactory and accessory olfactory bulbs, which are responsible for the interpretation of olfactory cues detected by the main olfactory and vomeronasal systems. The olfactory, trace amine, membrane-spanning 4-pass A, vomeronasal 1, vomeronasal 2 and formyl peptide receptors are all involved in olfactory detection. I highlight the roles that 10 olfactory genes play in the expression of direct paternal care behaviors, acknowledging that this list is not exhaustive. Many of these genes modulate parental aggression towards intruders, and facilitate the recognition and discrimination of pups in general. Much of our understanding comes from studies on non-naturally paternal laboratory rodents. Future studies should explore what role these genes play in the regulation and expression of paternal care in naturally biparental species.
Collapse
|
25
|
Cherry JA, Baum MJ. Sex differences in main olfactory system pathways involved in psychosexual function. GENES BRAIN AND BEHAVIOR 2019; 19:e12618. [PMID: 31634411 DOI: 10.1111/gbb.12618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/21/2023]
Abstract
We summarize literature from animal and human studies assessing sex differences in the ability of the main olfactory system to detect and process sex-specific olfactory signals ("pheromones") that control the expression of psychosexual functions in males and females. A case is made in non primate mammals for an obligatory role of pheromonal signaling via the main olfactory system (in addition to the vomeronasal-accessory olfactory system) in mate recognition and sexual arousal, with male-specific as well as female-specific pheromones subserving these functions in the opposite sex. Although the case for an obligatory role of pheromones in mate recognition and mating among old world primates, including humans, is weaker, we review the current literature assessing the role of putative human pheromones (eg, AND, EST, "copulin"), detected by the main olfactory system, in promoting mate choice and mating in men and women. Based on animal studies, we hypothesize that sexually dimorphic effects of putative human pheromones are mediated via main olfactory inputs to the medial amygdala which, in turn, transmits olfactory information to sites in the hypothalamus that regulate reproduction.
Collapse
Affiliation(s)
- James A Cherry
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
| | - Michael J Baum
- Department of Biology, Boston University, Boston, Massachusetts
| |
Collapse
|
26
|
Grigoletto L, Brito LF, Mattos EC, Eler JP, Bussiman FO, Silva BDCA, da Silva RP, Carvalho FE, Berton MP, Baldi F, Ferraz JBS. Genome-wide associations and detection of candidate genes for direct and maternal genetic effects influencing growth traits in the Montana Tropical® Composite population. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Bufe B, Teuchert Y, Schmid A, Pyrski M, Pérez-Gómez A, Eisenbeis J, Timm T, Ishii T, Lochnit G, Bischoff M, Mombaerts P, Leinders-Zufall T, Zufall F. Bacterial MgrB peptide activates chemoreceptor Fpr3 in mouse accessory olfactory system and drives avoidance behaviour. Nat Commun 2019; 10:4889. [PMID: 31653840 PMCID: PMC6814738 DOI: 10.1038/s41467-019-12842-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/02/2019] [Indexed: 12/31/2022] Open
Abstract
Innate immune chemoreceptors of the formyl peptide receptor (Fpr) family are expressed by vomeronasal sensory neurons (VSNs) in the accessory olfactory system. Their biological function and coding mechanisms remain unknown. We show that mouse Fpr3 (Fpr-rs1) recognizes the core peptide motif f-MKKFRW that is predominantly present in the signal sequence of the bacterial protein MgrB, a highly conserved regulator of virulence and antibiotic resistance in Enterobacteriaceae. MgrB peptide can be produced and secreted by bacteria, and is selectively recognized by a subset of VSNs. Exposure to the peptide also stimulates VSNs in freely behaving mice and drives innate avoidance. Our data shows that Fpr3 is required for neuronal detection and avoidance of peptides derived from a conserved master virulence regulator of enteric bacteria.
Collapse
Affiliation(s)
- Bernd Bufe
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424, Homburg, Germany.,Molecular Immunology Section, Faculty of Computer Science and Microsystems Engineering, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482, Zweibrücken, Germany
| | - Yannick Teuchert
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424, Homburg, Germany
| | - Andreas Schmid
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424, Homburg, Germany
| | - Martina Pyrski
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424, Homburg, Germany
| | - Anabel Pérez-Gómez
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424, Homburg, Germany.,Department of Molecular Medicine, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Janina Eisenbeis
- Institute for Medical Microbiology and Hygiene, Saarland University, 66424, Homburg, Germany
| | - Thomas Timm
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Tomohiro Ishii
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438, Frankfurt, Germany.,Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland University, 66424, Homburg, Germany
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438, Frankfurt, Germany
| | - Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424, Homburg, Germany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424, Homburg, Germany.
| |
Collapse
|
28
|
Santos PSC, Mezger M, Kolar M, Michler FU, Sommer S. The best smellers make the best choosers: mate choice is affected by female chemosensory receptor gene diversity in a mammal. Proc Biol Sci 2019; 285:20182426. [PMID: 30963892 DOI: 10.1098/rspb.2018.2426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The products of the genes of the major histocompatibility complex (MHC) are known to be drivers of pathogen resistance and sexual selection enhancing offspring genetic diversity. The MHC further influences individual odour types and social communication. However, little is known about the receptors and their volatile ligands that are involved in this type of chemical communication. Here, we have investigated chemosensory receptor genes that ultimately enable females to assess male genes through odour cues. As a model, we used an invasive population of North American raccoons ( Procyon lotor) in Germany. We investigated the effect of two groups of chemosensory receptor genes-trace amine-associated receptors (TAARs) and olfactory receptors (ORs)-on MHC-dependent mate choice. Females with more alleles of the TAAR or OR loci were more likely to choose a male with a diverse MHC. We additionally found that MHC class I genes have a stronger effect on mate choice than the recently reported effect for MHC class II genes, probably because of their immunological relevance for viral resistance. Our study is among the first to show a genetic link between behaviour and chemosensory receptor genes. These results contribute to understanding the link between genetics, olfaction and associated life-history decisions.
Collapse
Affiliation(s)
- Pablo S C Santos
- 1 Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm , Ulm , Germany
| | - Maja Mezger
- 1 Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm , Ulm , Germany
| | - Miriam Kolar
- 1 Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm , Ulm , Germany
| | - Frank-Uwe Michler
- 2 Institute of Forest Botany and Forest Zoology, Technical University of Dresden , Tharandt , Germany
| | - Simone Sommer
- 1 Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm , Ulm , Germany
| |
Collapse
|
29
|
Fan G, Zhang Y, Liu X, Wang J, Sun Z, Sun S, Zhang H, Chen J, Lv M, Han K, Tan X, Hu J, Guan R, Fu Y, Liu S, Chen X, Xu Q, Qin Y, Liu L, Bai J, Wang O, Tang J, Lu H, Shang Z, Wang B, Hu G, Zhao X, Zou Y, Chen A, Gong M, Zhang W, Lee SM, Li S, Liu J, Li Z, Lu Y, Sabir JSM, Sabir MJ, Khan M, Hajrah NH, Yin Y, Kristiansen K, Yang H, Wang J, Xu X, Liu X. The first chromosome‐level genome for a marine mammal as a resource to study ecology and evolution. Mol Ecol Resour 2019; 19:944-956. [DOI: 10.1111/1755-0998.13003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
|
30
|
Gerlach G, Tietje K, Biechl D, Namekawa I, Schalm G, Sulmann A. Behavioural and neuronal basis of olfactory imprinting and kin recognition in larval fish. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb189746. [PMID: 30728237 DOI: 10.1242/jeb.189746] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Imprinting is a specific form of long-term memory of a cue acquired during a sensitive phase of development. To ensure that organisms memorize the right cue, the learning process must happen during a specific short time period, mostly soon after hatching, which should end before irrelevant or misleading signals are encountered. A well-known case of olfactory imprinting in the aquatic environment is that of the anadromous Atlantic and Pacific salmon, which prefer the olfactory cues of natal rivers to which they return after migrating several years in the open ocean. Recent research has shown that olfactory imprinting and olfactory guided navigation in the marine realm are far more common than previously assumed. Here, we present evidence for the involvement of olfactory imprinting in the navigation behaviour of coral reef fish, which prefer their home reef odour over that of other reefs. Two main olfactory imprinting processes can be differentiated: (1) imprinting on environmental cues and (2) imprinting on chemical compounds released by kin, which is based on genetic relatedness among conspecifics. While the first process allows for plasticity, so that organisms can imprint on a variety of chemical signals, the latter seems to be restricted to specific genetically determined kin signals. We focus on the second, elucidating the behavioural and neuronal basis of the imprinting process on kin cues using larval zebrafish (Danio rerio) as a model. Our data suggest that the process of imprinting is not confined to the central nervous system but also triggers some changes in the olfactory epithelium.
Collapse
Affiliation(s)
- Gabriele Gerlach
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany .,Helmholtz Institute for Functional Marine Biodiversity Oldenburg (HIFMB), 26129 Oldenburg, Germany.,Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, QLD 4811, Australia
| | - Kristin Tietje
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Daniela Biechl
- Graduate School of Systemic Neurosciences & Department Biology II, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany
| | - Iori Namekawa
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Gregor Schalm
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Astrid Sulmann
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
31
|
Noguchi T, Miyazono S, Kashiwayanagi M. Stimulus dynamics-dependent information transfer of olfactory and vomeronasal sensory neurons in mice. Neuroscience 2018; 400:48-61. [PMID: 30599273 DOI: 10.1016/j.neuroscience.2018.12.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 01/29/2023]
Abstract
The parallel processing of chemical signals by the main olfactory system and the vomeronasal system has been known to control animal behavior. The physiological significance of peripheral parallel pathways consisting of olfactory sensory neurons and vomeronasal sensory neurons is not well understood. Here, we show complementary characteristics of the information transfer of the olfactory sensory neurons and vomeronasal sensory neurons. A difference in excitability between the sensory neurons was revealed by patch-clamp experiments. The olfactory and vomeronasal sensory neurons showed phasic and tonic firing, respectively. Intrinsic channel kinetics determining firing patterns was demonstrated by a Hodgkin-Huxley-style computation. Our estimation of the information carried by action potentials during one cycle of sinusoidal stimulation with variable durations revealed distinct characteristics of information transfer between the sensory neurons. Phasic firing of the olfactory sensory neurons was suitable to carry information about rapid changes in a shorter cycle (<200 ms). In contrast, tonic firing of the vomeronasal sensory neurons was able to convey information about smaller stimuli changing slowly with longer cycles (>500 ms). Thus, the parallel pathways of the two types of sensory neurons can convey information about a wide range of dynamic stimuli. A combination of complementary characteristics of olfactory information transfer may enhance the synergy of the interaction between the main olfactory system and the vomeronasal system.
Collapse
Affiliation(s)
- Tomohiro Noguchi
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Japan.
| | - Sadaharu Miyazono
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Japan.
| | - Makoto Kashiwayanagi
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|
32
|
Monfils MH, Agee LA. Insights from social transmission of information in rodents. GENES BRAIN AND BEHAVIOR 2018; 18:e12534. [DOI: 10.1111/gbb.12534] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/25/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Marie H. Monfils
- Department of Psychology University of Texas at Austin Austin Texas
| | - Laura A. Agee
- Department of Psychology University of Texas at Austin Austin Texas
| |
Collapse
|
33
|
Abts KC, Ivy JA, DeWoody JA. Demographic, environmental and genetic determinants of mating success in captive koalas (Phascolarctos cinereus). Zoo Biol 2018; 37:416-433. [PMID: 30488502 DOI: 10.1002/zoo.21457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/29/2018] [Accepted: 10/22/2018] [Indexed: 01/26/2023]
Abstract
Many factors have been shown to affect mating behavior. For instance, genes of the major histocompatibility complex (MHC) are known to influence mate choice in a wide variety of vertebrate species. The genetic management of captive populations can be confounded if intrinsic mate choice reduces or eliminates reproductive success between carefully chosen breeding pairs. For example, the San Diego Zoo koala colony only has a 45% copulation rate for matched individuals. Herein, we investigated determinants of koala mating success using breeding records (1984-2010) and genotypes for 52 individuals at four MHC markers. We quantified MHC diversity according to functional amino acids, heterozygosity, and the probability of producing a heterozygous offspring. We then used categorical analysis and logistic regression to investigate both copulation and parturition success. In addition, we also examined age, day length, and average pairwise kinship. Our post-hoc power analysis indicates that at a power level of 1-β = 0.8, we should have been able to detect strong MHC preferences. However, we did not find a significant MHC effect on either copulation or parturition success with one exception: pairs with lower or no production of a joey had significantly lower MHC functional amino acid diversity in the categorical analysis. In contrast, day length and dam age (or age difference of the pair) consistently had an effect on mating success. These findings may be leveraged to improve the success of attempted pairs, conserve resources, and facilitate genetic management.
Collapse
Affiliation(s)
- Kendra C Abts
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana
| | | | - J Andrew DeWoody
- Departments of Forestry and Natural Resources and Biological Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
34
|
Identification and Field Testing of Volatile Components in the Sex Attractant Pheromone Blend of Female House Mice. J Chem Ecol 2018; 45:18-27. [PMID: 30411204 DOI: 10.1007/s10886-018-1032-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/20/2018] [Accepted: 10/29/2018] [Indexed: 10/27/2022]
Abstract
Recently, it was reported (i) that the sex pheromone blend of male house mice, Mus musculus, comprises not only volatile components (3,4-dehydro-exo-brevicomin; 2-sec-butyl-4,5-dihydrothiazole) but also a component of low volatility (the sex steroid testosterone), and (ii) that the sex steroids progesterone and estradiol are sex pheromone components of female house mice. Here we tested the hypothesis that the sex attractant pheromone blend of female mice, analogous to that of male mice, also comprises volatile pheromone components. Analyzing by GC-MS the head space volatiles of bedding soiled with urine and feces of laboratory-kept females and males revealed three candidate pheromone components (CPCs) that were adult female-specific: butyric acid, 2-methyl butyric acid and 4-heptanone. In a two-choice laboratory experiment, adult males spent significantly more time in the treatment chamber baited with both the synthetic steroids (progesterone, estradiol) and the synthetic CPCs than in the paired control chamber baited only with the synthetic steroids. In field experiments, trap boxes baited with both the CPCs and the steroids captured 6.7-times more adult males and 4.7-times more juvenile males than trap boxes baited with the steroids alone. Conversely, trap boxes baited with both the CPCs and the steroids captured 4.3-times more adult males and 2.7-fold fewer adult females than trap boxes baited with the CPCs alone. In combination, these data support the conclusion that butyric acid, 2-methyl butyric acid and 4-heptanone are part of the sex attractant pheromone of female house mice. With progesterone and estradiol being pheromone components of both female brown rats, Rattus norvegicus, and female house mice, these three volatile components could impart specificity to the sexual communication system of house mice, brown rats and possibly other rodent species.
Collapse
|
35
|
Holy TE. The Accessory Olfactory System: Innately Specialized or Microcosm of Mammalian Circuitry? Annu Rev Neurosci 2018; 41:501-525. [DOI: 10.1146/annurev-neuro-080317-061916] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammals, the accessory olfactory system is a distinct circuit that has received attention for its role in detecting and responding to pheromones. While the neuroscientific investigation of this system is comparatively new, recent advances and its compact size have made it an attractive model for developing an end-to-end understanding of such questions as regulation of essential behaviors, plasticity, and individual recognition. Recent discoveries have indicated a need to reevaluate our conception of this system, suggesting that ( a) physical principles—rather than biological necessity—play an underappreciated role in its raison d'être and that ( b) the anatomy of downstream projections is not dominated by unique specializations but instead consists of an abbreviated cortical/basal ganglia motif reminiscent of other sensorimotor systems. These observations suggest that the accessory olfactory system distinguishes itself primarily by the physicochemical properties of its ligands, but its architecture is otherwise a microcosm of mammalian neurocircuitry.
Collapse
Affiliation(s)
- Timothy E. Holy
- Department of Neuroscience, Washington University, St. Louis, Missouri 63132, USA
| |
Collapse
|
36
|
Burger D, Thomas S, Aepli H, Dreyer M, Fabre G, Marti E, Sieme H, Robinson MR, Wedekind C. Major histocompatibility complex-linked social signalling affects female fertility. Proc Biol Sci 2018; 284:rspb.2017.1824. [PMID: 29212724 DOI: 10.1098/rspb.2017.1824] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/02/2017] [Indexed: 02/03/2023] Open
Abstract
Genes of the major histocompatibility complex (MHC) have been shown to influence social signalling and mate preferences in many species, including humans. First observations suggest that MHC signalling may also affect female fertility. To test this hypothesis, we exposed 191 female horses (Equus caballus) to either an MHC-similar or an MHC-dissimilar stimulus male around the time of ovulation and conception. A within-subject experimental design controlled for non-MHC-linked male characteristics, and instrumental insemination with semen of other males (n = 106) controlled for potential confounding effects of semen or embryo characteristics. We found that females were more likely to become pregnant if exposed to an MHC-dissimilar than to an MHC-similar male, while overall genetic distance to the stimulus males (based on microsatellite markers on 20 chromosomes) had no effect. Our results demonstrate that early pregnancy failures can be due to maternal life-history decisions (cryptic female choice) influenced by MHC-linked social signalling.
Collapse
Affiliation(s)
- D Burger
- Swiss Institute of Equine Medicine, Agroscope and University of Berne, 1580 Avenches, Switzerland
| | - S Thomas
- Swiss Institute of Equine Medicine, Agroscope and University of Berne, 1580 Avenches, Switzerland
| | - H Aepli
- Swiss Institute of Equine Medicine, Agroscope and University of Berne, 1580 Avenches, Switzerland
| | - M Dreyer
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| | - G Fabre
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| | - E Marti
- Department of Clinical Research, Vetsuisse Faculty, University of Berne, 3012 Bern, Switzerland
| | - H Sieme
- Clinic for Horses, Unit for Reproductive Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - M R Robinson
- Department of Computational Biology, Genopode, University of Lausanne, 1015 Lausanne, Switzerland
| | - C Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
37
|
Okuyama T. Social memory engram in the hippocampus. Neurosci Res 2018; 129:17-23. [DOI: 10.1016/j.neures.2017.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/21/2017] [Accepted: 05/25/2017] [Indexed: 01/10/2023]
|
38
|
Jeannerat E, Marti E, Berney C, Janett F, Bollwein H, Sieme H, Burger D, Wedekind C. Stallion semen quality depends on major histocompatibility complex matching to teaser mare. Mol Ecol 2018; 27:1025-1035. [PMID: 29334412 DOI: 10.1111/mec.14490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 01/11/2023]
Abstract
The major histocompatibility complex (MHC) has repeatedly been found to influence mate choice of vertebrates, with MHC-dissimilar mates typically being preferred over MHC-similar mates. We used horses (Equus caballus) to test whether MHC matching also affects male investment into ejaculates after short exposure to a female. Semen characteristics varied much among stallions. Controlling for this variance with a full-factorial within-subject experimental design, we found that a short exposure to an MHC-dissimilar mare enhanced male plasma testosterone and led to ejaculates with elevated sperm numbers as compared to exposure to an MHC-similar mare. Sperm velocity seemed not affected by the treatment. Overall genetic similarity between stallions and mares (determined from polymorphic microsatellites on 20 different chromosomes) played no significant role here. The MHC type of the teaser mare also affected characteristics of cold-stored sperm after 24 and 48 hr. As expected from ejaculate economics, sperm viability was elevated after exposure to an MHC-dissimilar mare. However, oxidative stress and the percentage of sperm with a high DNA fragmentation were mostly increased after exposure to an MHC-dissimilar mare, depending also on whether the teaser mare was in oestrous or not. We conclude that males can quickly adjust ejaculate quality relative to a female's MHC, and that this male reaction to the social environment can also affect important characteristics of cold-stored semen.
Collapse
Affiliation(s)
- E Jeannerat
- Swiss Institute of Equine Medicine ISME, Agroscope and University of Berne, Avenches, Switzerland
| | - E Marti
- Department of Clinical Research, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | - C Berney
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - F Janett
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - H Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - H Sieme
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - D Burger
- Swiss Institute of Equine Medicine ISME, Agroscope and University of Berne, Avenches, Switzerland
| | - C Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
39
|
Stengel D, Wahby S, Braunbeck T. In search of a comprehensible set of endpoints for the routine monitoring of neurotoxicity in vertebrates: sensory perception and nerve transmission in zebrafish (Danio rerio) embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4066-4084. [PMID: 29022183 DOI: 10.1007/s11356-017-0399-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 10/02/2017] [Indexed: 05/20/2023]
Abstract
In order to develop a test battery based on a variety of neurological systems in fish, three sensory systems (vision, olfaction, and lateral line) as well as nerve transmission (acetylcholine esterase) were analyzed in zebrafish (Danio rerio) embryos with respect to their suitability as a model for the screening of neurotoxic trace substances in aquatic ecosystems. As a selection of known or putative neurotoxic compounds, amidotrizoic acid, caffeine, cypermethrin, dichlorvos, 2,4-dinitrotoluene, 2,4-dichlorophenol, 4-nonylphenol, perfluorooctanoic acid, and perfluorooctane sulfonic acid were tested in the fish embryo test (OECD test guideline 236) to determine EC10 values, which were then used as maximum test concentration in subsequent neurotoxicity tests. Whereas inhibition of acetylcholinesterase was investigated biochemically both in vivo and in vitro (ex vivo), the sensory organs were studied in vivo by means of fluorescence microscopy and histopathology in 72- or 96-h-old zebrafish embryos, which are not regarded as protected developmental stages in Europe and thus - at least de jure - represent alternative test methods. Various steps of optimization allowed this neurotoxicity battery to identify neurotoxic potentials for five out of the nine compounds: Cypermethrin and dichlorvos could be shown to specifically modulate acetylcholinesterase activity; dichlorvos, 2,4-dichlorophenol, 4-nonylphenol, and perfluorooctane sulfonic acid led to a degeneration of neuromasts, whereas both vision and olfaction proved quite resistant to concentrations ≤ EC10 of all of the model neurotoxicants tested. Comparison of neurotoxic effects on acetylcholinesterase activity following in vivo and in vitro (ex vivo) exposure to cypermethrin provided hints to a specific enzyme-modulating activity of pyrethroid compounds. Enhancement of the neuromast assay by applying a simultaneous double-staining procedure and implementing a 4-scale scoring system (Stengel et al. 2017) led to reduced variability of results and better statistical resolution and allowed to differentiate location-dependent effects in single neuromasts. Since acetylcholinesterase inhibition and neuromast degeneration can be analyzed in 72- and 96-h-old zebrafish embryos exposed to neurotoxicants according to the standard protocol of the fish embryo toxicity test (OECD TG 236), the fish embryo toxicity test can be enhanced to serve as a sensitive neurotoxicity screening test in non-protected stages of vertebrates.
Collapse
Affiliation(s)
- Daniel Stengel
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, 69120, Heidelberg, Germany
| | - Sarah Wahby
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, 69120, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, 69120, Heidelberg, Germany.
| |
Collapse
|
40
|
Behavioral Changes in Mice Lacking Interleukin-33. eNeuro 2017; 4:eN-NWR-0147-17. [PMID: 29379874 PMCID: PMC5788055 DOI: 10.1523/eneuro.0147-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/21/2017] [Accepted: 12/03/2017] [Indexed: 12/26/2022] Open
Abstract
Interleukin (IL)-33 is a member of the IL-1 family of cytokines. IL-33 is expressed in nuclei and secreted as alarmin upon cellular damage to deliver a danger signal to the surrounding cells. Previous studies showed that IL-33 is expressed in the brain and that it is involved in neuroinflammatory and neurodegenerative processes in both humans and rodents. Nevertheless, the role of IL-33 in physiological brain function and behavior remains unclear. Here, we have investigated the behaviors of mice lacking IL-33 (Il33−/− mice). IL-33 is constitutively expressed throughout the adult mouse brain, mainly in oligodendrocyte-lineage cells and astrocytes. Notably, Il33−/− mice exhibited reduced anxiety-like behaviors in the elevated plus maze (EPM) and the open field test (OFT), as well as deficits in social novelty recognition, despite their intact sociability, in the three-chamber social interaction test. The immunoreactivity of c-Fos proteins, an indicator of neuronal activity, was altered in several brain regions implicated in anxiety-related behaviors, such as the medial prefrontal cortex (mPFC), amygdala, and piriform cortex (PCX), in Il33−/− mice after the EPM. Altered c-Fos immunoreactivity in Il33−/− mice was not correlated with IL-33 expression in wild-type (WT) mice nor was IL-33 expression affected by the EPM in WT mice. Thus, our study has revealed that Il33−/− mice exhibit multiple behavioral deficits, such as reduced anxiety and impaired social recognition. Our findings also indicate that IL-33 may regulate the development and/or maturation of neuronal circuits, rather than control neuronal activities in adult brains.
Collapse
|
41
|
Balthazart J, Court L. Human Sexual Orientation: The Importance of Evidentiary Convergence. ARCHIVES OF SEXUAL BEHAVIOR 2017; 46:1595-1600. [PMID: 28500563 PMCID: PMC5532062 DOI: 10.1007/s10508-017-0997-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/02/2017] [Indexed: 05/26/2023]
Affiliation(s)
- Jacques Balthazart
- GIGA Neurosciences, University of Liège, 15 Avenue Hippocrate, 4000, Liège, Belgium.
| | - Lucas Court
- GIGA Neurosciences, University of Liège, 15 Avenue Hippocrate, 4000, Liège, Belgium
| |
Collapse
|
42
|
Marking S, Krosnowski K, Ogura T, Lin W. Dichotomous Distribution of Putative Cholinergic Interneurons in Mouse Accessory Olfactory Bulb. Front Neuroanat 2017; 11:10. [PMID: 28289379 PMCID: PMC5326757 DOI: 10.3389/fnana.2017.00010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/10/2017] [Indexed: 01/14/2023] Open
Abstract
Sensory information processing in the olfactory bulb (OB) relies on diverse populations of bulbar interneurons. In rodents, the accessory OB (AOB) is divided into two bulbar regions, the anterior (aAOB) and posterior (pAOB), which differ substantially in their circuitry connections and associated behaviors. We previously identified and characterized a large number of morphologically diverse cholinergic interneurons in the main OB (MOB) using transgenic mice to visualize the cell bodies of choline acetyltransferase (ChAT-expressing neurons and immunolabeling (Krosnowski et al., 2012)). However, whether there are cholinergic neurons in the AOB is controversial and there is no detailed characterization of such neurons. Using the same line of ChAT(bacterial artificial chromosome, BAC)-enhanced green fluorescent protein (eGFP) transgenic mice, we investigated cholinergic neurons in the AOB. We found significant differences in the number and location of GFP-expressing (GFP+), putative cholinergic interneurons between the aAOB and pAOB. The highest numbers of GFP+ interneurons were found in the aAOB glomerular layer (aGL) and pAOB mitral/tufted cell layer (pMCL). We also noted a high density of GFP+ interneurons encircling the border region of the pMCL. Interestingly, a small subset of glomeruli in the middle of the GL receives strong MCL GFP+ nerve processes. These local putative cholinergic-innervated glomeruli are situated just outside the aGL, setting the boundary between the pGL and aGL. Many but not all GFP+ neurons in the AOB were weakly labeled with antibodies against ChAT and vesicular acetylcholine transporter (VAChT). We further determined if these GFP+ interneurons differ from other previously characterized interneuron populations in the AOB and found that AOB GFP+ interneurons express neither GABAergic nor dopaminergic markers and most also do not express the glutamatergic marker. Similar to the cholinergic interneurons of the MOB, some AOB GFP+ interneurons express the calcium binding protein, calbindin-D28K. Moreover, exposure to either a male intruder or soiled bedding from a mating cage leads to an increase in the number of c-Fos-expressing MCL GFP+ neurons. Taken together, our data reveal a population of largely unidentified putative cholinergic neurons in the AOB. Their dichotomous distribution in the aAOB and pAOB suggests region-specific cholinergic involvement in olfactory information processing.
Collapse
Affiliation(s)
- Sarah Marking
- Department of Biological Sciences, University of Maryland, Baltimore County Baltimore, MD, USA
| | - Kurt Krosnowski
- Department of Biological Sciences, University of Maryland, Baltimore County Baltimore, MD, USA
| | - Tatsuya Ogura
- Department of Biological Sciences, University of Maryland, Baltimore County Baltimore, MD, USA
| | - Weihong Lin
- Department of Biological Sciences, University of Maryland, Baltimore County Baltimore, MD, USA
| |
Collapse
|
43
|
Trpm5 expression in the olfactory epithelium. Mol Cell Neurosci 2017; 80:75-88. [PMID: 28188885 DOI: 10.1016/j.mcn.2017.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 11/20/2022] Open
Abstract
The Ca2+-activated monovalent cation channel Trpm5 is a key element in chemotransduction of taste receptor cells of the tongue, but the extent to which Trpm5 channels are expressed in olfactory sensory neurons (OSNs) of the main olfactory epithelium (MOE) of adult mice as part of a specific pheromonal detection system is debated. Here, we used a novel Trpm5-IRES-Cre knockin strain to drive Cre recombinase expression, employed previously validated Trpm5 antibodies, performed in situ hybridization experiments to localize Trpm5 RNA, and searched extensively for Trpm5 splice variants in genetically-labeled, Trpm5-expressing MOE cells. In contrast to previous reports, we find no evidence for the existence in adult mouse OSNs of the classical Trpm5 channel known from taste cells. We show that Trpm5-expressing adult OSNs express a novel Trpm5 splice variant, Trpm5-9, that is unlikely to form a functional cation channel by itself. We also demonstrate that Trpm5 is transiently expressed in a subpopulation of mature OSNs in the embryonic olfactory epithelium, indicating that Trpm5 channels could play a specific role in utero during a narrow developmental time window. Ca2+ imaging with GCaMP3 under the control of the Trpm5-IRES-Cre allele using a newly developed MOE wholemount preparation of the adult olfactory epithelium reveals that Trpm5-GCaMP3 OSNs comprise a heterogeneous group of sensory neurons many of which can detect general odorants. Together, these studies are essential for understanding the role of transient receptor potential channels in mammalian olfaction.
Collapse
|
44
|
Abstract
Social signals are identified through processing in sensory systems to trigger appropriate behavioral responses. Social signals are received primarily in most mammals through the olfactory system. Individuals are recognized based on their unique blend of odorants. Such individual recognition is critical to distinguish familiar conspecifics from intruders and to recognize offspring. Social signals can also trigger stereotyped responses like mating behaviors. Specific sensory pathways for individual recognition and eliciting stereotyped responses have been identified both in the early olfactory system and its connected cortices. Oxytocin is emerging as a major state modulator of sensory processing with distinct functions in early and higher olfactory brain regions. The brain state induced through Oxytocin influences social perception. Oxytocin acting on different brain regions can promote either exploration and recognition towards same- or other-sex conspecifics, or association learning. Region-specific deletion of Oxytocin receptors suffices to disrupt these behaviors. Together, these recent insights highlight that Oxytocin's function in social behaviors cannot be understood without considering its actions on sensory processing.
Collapse
|
45
|
Santos PSC, Courtiol A, Heidel AJ, Höner OP, Heckmann I, Nagy M, Mayer F, Platzer M, Voigt CC, Sommer S. MHC-dependent mate choice is linked to a trace-amine-associated receptor gene in a mammal. Sci Rep 2016; 6:38490. [PMID: 27941813 PMCID: PMC5150237 DOI: 10.1038/srep38490] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/11/2016] [Indexed: 01/28/2023] Open
Abstract
Major histocompatibility complex (MHC) genes play a pivotal role in vertebrate self/nonself recognition, parasite resistance and life history decisions. In evolutionary terms, the MHC’s exceptional diversity is likely maintained by sexual and pathogen-driven selection. Even though MHC-dependent mating preferences have been confirmed for many species, the sensory and genetic mechanisms underlying mate recognition remain cryptic. Since olfaction is crucial for social communication in vertebrates, variation in chemosensory receptor genes could explain MHC-dependent mating patterns. Here, we investigated whether female mate choice is based on MHC alleles and linked to variation in chemosensory trace amine-associated receptors (TAARs) in the greater sac-winged bat (Saccopteryx bilineata). We sequenced several MHC and TAAR genes and related their variation to mating and paternity data. We found strong evidence for MHC class I-dependent female choice for genetically diverse and dissimilar males. We also detected a significant interaction between mate choice and the female TAAR3 genotype, with TAAR3-heterozygous females being more likely to choose MHC-diverse males. These results suggest that TAARs and olfactory cues may be key mediators in mammalian MHC-dependent mate choice. Our study may help identify the ligands involved in the chemical communication between potential mates.
Collapse
Affiliation(s)
- Pablo S C Santos
- Leibniz Institute for Zoo and Wildlife Research (IZW) Berlin, Germany.,Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Alexandre Courtiol
- Leibniz Institute for Zoo and Wildlife Research (IZW) Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research (BeGenDiv), 14195 Berlin, Germany
| | - Andrew J Heidel
- Leibniz Institute on Age - Fritz Lipmann Institute, Jena, Germany
| | - Oliver P Höner
- Leibniz Institute for Zoo and Wildlife Research (IZW) Berlin, Germany
| | - Ilja Heckmann
- Leibniz Institute for Zoo and Wildlife Research (IZW) Berlin, Germany
| | - Martina Nagy
- Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity, Berlin, Germany
| | - Frieder Mayer
- Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity, Berlin, Germany
| | - Matthias Platzer
- Leibniz Institute on Age - Fritz Lipmann Institute, Jena, Germany
| | - Christian C Voigt
- Leibniz Institute for Zoo and Wildlife Research (IZW) Berlin, Germany
| | - Simone Sommer
- Leibniz Institute for Zoo and Wildlife Research (IZW) Berlin, Germany.,Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
46
|
Li S, Ahmed L, Zhang R, Pan Y, Matsunami H, Burger JL, Block E, Batista VS, Zhuang H. Smelling Sulfur: Copper and Silver Regulate the Response of Human Odorant Receptor OR2T11 to Low-Molecular-Weight Thiols. J Am Chem Soc 2016; 138:13281-13288. [PMID: 27659093 DOI: 10.1021/jacs.6b06983] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mammalian survival depends on ultrasensitive olfactory detection of volatile sulfur compounds, since these compounds can signal the presence of rancid food, O2 depleted atmospheres, and predators (through carnivore excretions). Skunks exploit this sensitivity with their noxious spray. In commerce, natural and liquefied gases are odorized with t-BuSH and EtSH, respectively, as warnings. The 100-million-fold difference in olfactory perception between structurally similar EtSH and EtOH has long puzzled those studying olfaction. Mammals detect thiols and other odorants using odorant receptors (ORs), members of the family of seven transmembrane G-protein-coupled receptors (GPCRs). Understanding the regulator cofactors and response of ORs is particularly challenging due to the lack of X-ray structural models. Here, we combine computational modeling and site-directed mutagenesis with saturation transfer difference (STD) NMR spectroscopy and measurements of the receptor response profiles. We find that human thiol receptor OR2T11 responds specifically to gas odorants t-BuSH and EtSH requiring ionic copper for its robust activation and that this role of copper is mimicked by ionic and nanoparticulate silver. While copper is both an essential nutrient for life and, in excess, a hallmark of various pathologies and neurodegenerative diseases, its involvement in human olfaction has not been previously demonstrated. When screened against a series of alcohols, thiols, sulfides, and metal-coordinating ligands, OR2T11 responds with enhancement by copper to the mouse semiochemical CH3SCH2SH and derivatives, to four-membered cyclic sulfide thietane and to one- to four-carbon straight- and branched-chain and five-carbon branched-chain thiols but not to longer chain thiols, suggesting compact receptor dimensions. Alcohols are unreactive.
Collapse
Affiliation(s)
- Shengju Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiaotong University School of Medicine , Shanghai 200025, China
| | - Lucky Ahmed
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Ruina Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiaotong University School of Medicine , Shanghai 200025, China
| | - Yi Pan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiaotong University School of Medicine , Shanghai 200025, China
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology and Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Jessica L Burger
- Applied Chemicals and Materials Division, National Institute of Standards and Technology , Boulder, Colorado 80305, United States
| | - Eric Block
- Department of Chemistry, University at Albany, State University of New York , Albany, New York 12222, United States
| | - Victor S Batista
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Hanyi Zhuang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiaotong University School of Medicine , Shanghai 200025, China.,Institute of Health Sciences, Shanghai Jiaotong University School of Medicine/Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences , Shanghai 200031, China
| |
Collapse
|
47
|
Westberry JM, Meredith M. GABAergic mechanisms contributing to categorical amygdala responses to chemosensory signals. Neuroscience 2016; 331:186-96. [PMID: 27329335 PMCID: PMC4955787 DOI: 10.1016/j.neuroscience.2016.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/24/2016] [Accepted: 06/10/2016] [Indexed: 11/15/2022]
Abstract
Chemosensory stimuli from conspecific and heterospecific animals, elicit categorically different immediate-early gene response-patterns in medial amygdala in male hamsters and mice. We previously showed that conspecific signals activate posterior (MeP) as well as anterior medial amygdala (MeA), and especially relevant heterospecific signals such as chemosensory stimuli from potential predators also activate MeP in mice. Other heterospecific chemosignals activate MeA, but not MeP. Here we show that male hamster amygdala responds significantly differentially to different conspecific signals, by activating different proportions of cells of different phenotype, possibly leading to differential activation of downstream circuits. Heterospecific signals that fail to activate MeP do activate GABA-immunoreactive cells in the adjacent caudal main intercalated nucleus (mICNc) and elicit selective suppression of MeP cells bearing GABA-Receptors, suggesting GABA inhibition in MeP by GABAergic cells in mICNc. Overall, work presented here suggests that medial amygdala may discriminate between important conspecific social signals, distinguish them from the social signals of other species and convey that information to brain circuits eliciting appropriate social behavior.
Collapse
Affiliation(s)
- Jenne M Westberry
- Program in Neuroscience and Department Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA.
| | - Michael Meredith
- Program in Neuroscience and Department Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA.
| |
Collapse
|
48
|
Kanageswaran N, Nagel M, Scholz P, Mohrhardt J, Gisselmann G, Hatt H. Modulatory Effects of Sex Steroids Progesterone and Estradiol on Odorant Evoked Responses in Olfactory Receptor Neurons. PLoS One 2016; 11:e0159640. [PMID: 27494699 PMCID: PMC4975405 DOI: 10.1371/journal.pone.0159640] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 07/06/2016] [Indexed: 11/18/2022] Open
Abstract
The influence of the sex steroid hormones progesterone and estradiol on physiology and behavior during menstrual cycles and pregnancy is well known. Several studies indicate that olfactory performance changes with cyclically fluctuating steroid hormone levels in females. Knowledge of the exact mechanisms behind how female sex steroids modulate olfactory signaling is limited. A number of different known genomic and non-genomic actions that are mediated by progesterone and estradiol via interactions with different receptors may be responsible for this modulation. Next generation sequencing-based RNA-Seq transcriptome data from the murine olfactory epithelium (OE) and olfactory receptor neurons (ORNs) revealed the expression of several membrane progestin receptors and the estradiol receptor Gpr30. These receptors are known to mediate rapid non-genomic effects through interactions with G proteins. RT-PCR and immunohistochemical staining results provide evidence for progestin and estradiol receptors in the ORNs. These data support the hypothesis that steroid hormones are capable of modulating the odorant-evoked activity of ORNs. Here, we validated this hypothesis through the investigation of steroid hormone effects by submerged electro-olfactogram and whole cell patch-clamp recordings of ORNs. For the first time, we demonstrate that the sex steroid hormones progesterone and estradiol decrease odorant-evoked signals in the OE and ORNs of mice at low nanomolar concentrations. Thus, both of these sex steroids can rapidly modulate the odor responsiveness of ORNs through membrane progestin receptors and the estradiol receptor Gpr30.
Collapse
Affiliation(s)
| | - Maximilian Nagel
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Paul Scholz
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Julia Mohrhardt
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Günter Gisselmann
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
- * E-mail:
| | - Hanns Hatt
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| |
Collapse
|
49
|
Doyle WI, Dinser JA, Cansler HL, Zhang X, Dinh DD, Browder NS, Riddington IM, Meeks JP. Faecal bile acids are natural ligands of the mouse accessory olfactory system. Nat Commun 2016; 7:11936. [PMID: 27324439 PMCID: PMC4919516 DOI: 10.1038/ncomms11936] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 05/13/2016] [Indexed: 01/06/2023] Open
Abstract
The accessory olfactory system (AOS) guides behaviours that are important for survival and reproduction, but understanding of AOS function is limited by a lack of identified natural ligands. Here we report that mouse faeces are a robust source of AOS chemosignals and identify bile acids as a class of natural AOS ligands. Single-unit electrophysiological recordings from accessory olfactory bulb neurons in ex vivo preparations show that AOS neurons are strongly and selectively activated by peripheral stimulation with mouse faecal extracts. Faecal extracts contain several unconjugated bile acids that cause concentration-dependent neuronal activity in the AOS. Many AOS neurons respond selectively to bile acids that are variably excreted in male and female mouse faeces, and others respond to bile acids absent in mouse faeces. These results identify faeces as a natural source of AOS information, and suggest that bile acids may be mammalian pheromones and kairomones. The accessory olfactory system (AOS) processes social chemosensory information and guides behaviors that are important for survival and reproduction in mammals. Here the authors report that mouse feces are a source of AOS neuronal activity and identify unconjugated bile acids in feces as a class of natural AOS ligands.
Collapse
Affiliation(s)
- Wayne I Doyle
- Department of Neuroscience, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA.,Neuroscience Graduate Program, The University of Texas, Southwestern Graduate School of Biomedical Sciences, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Jordan A Dinser
- Department of Chemistry, The University of Texas, 120 Inner Campus Drive, Austin, Texas 78712, USA
| | - Hillary L Cansler
- Department of Neuroscience, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA.,Neuroscience Graduate Program, The University of Texas, Southwestern Graduate School of Biomedical Sciences, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Xingjian Zhang
- Department of Neuroscience, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA.,Neuroscience Graduate Program, The University of Texas, Southwestern Graduate School of Biomedical Sciences, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Daniel D Dinh
- Department of Neuroscience, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Natasha S Browder
- Department of Neuroscience, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Ian M Riddington
- Department of Chemistry, The University of Texas, 120 Inner Campus Drive, Austin, Texas 78712, USA
| | - Julian P Meeks
- Department of Neuroscience, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| |
Collapse
|
50
|
Vargas-Barroso V, Ordaz-Sánchez B, Peña-Ortega F, Larriva-Sahd JA. Electrophysiological Evidence for a Direct Link between the Main and Accessory Olfactory Bulbs in the Adult Rat. Front Neurosci 2016; 9:518. [PMID: 26858596 PMCID: PMC4726767 DOI: 10.3389/fnins.2015.00518] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/22/2015] [Indexed: 12/18/2022] Open
Abstract
It is accepted that the main- and accessory- olfactory systems exhibit overlapping responses to pheromones and odorants. We performed whole-cell patch-clamp recordings in adult rat olfactory bulb slices to define a possible interaction between the first central relay of these systems: the accessory olfactory bulb (AOB) and the main olfactory bulb (MOB). This was tested by applying electrical field stimulation in the dorsal part of the MOB while recording large principal cells (LPCs) of the anterior AOB (aAOB). Additional recordings of LPCs were performed at either side of the plane of intersection between the aAOB and posterior-AOB (pAOB) halves, or linea alba, while applying field stimulation to the opposite half. A total of 92 recorded neurons were filled during whole-cell recordings with biocytin and studied at the light microscope. Neurons located in the aAOB (n = 6, 8%) send axon collaterals to the MOB since they were antidromically activated in the presence of glutamate receptor antagonists (APV and CNQX). Recorded LPCs evoked orthodromic excitatory post-synaptic responses (n = 6, aAOB; n = 1, pAOB) or antidromic action potentials (n = 8, aAOB; n = 7, pAOB) when applying field stimulation to the opposite half of the recording site (e.g., recording in aAOB; stimulating in pAOB, and vice-versa). Observation of the filled neurons revealed that indeed, LPCs send axon branches that cross the linea alba to resolve in the internal cellular layer. Additionally, LPCs of the aAOB send axon collaterals to dorsal-MOB territory. Notably, while performing AOB recordings we found a sub-population of neurons (24% of the total) that exhibited voltage-dependent bursts of action potentials. Our findings support the existence of: 1. a direct projection from aAOB LPCs to dorsal-MOB, 2. physiologically active synapses linking aAOB and pAOB, and 3. pacemaker-like neurons in both AOB halves. This work was presented in the form of an Abstract on SfN 2014 (719.14/EE17).
Collapse
Affiliation(s)
- Victor Vargas-Barroso
- Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla Querétaro, México
| | - Benito Ordaz-Sánchez
- Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla Querétaro, México
| | - Fernando Peña-Ortega
- Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla Querétaro, México
| | - Jorge A Larriva-Sahd
- Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla Querétaro, México
| |
Collapse
|