1
|
Feng L, Huo H, Li Q, Yang T, Zhao Y, Zhang P, Ping P, Fu S. Mutant rs189037 in ataxia-telangiectasia mutated gene had a negative association with metabolic syndrome but not cognitive decline in centenarians. Genes Dis 2024; 11:101054. [PMID: 38292183 PMCID: PMC10825438 DOI: 10.1016/j.gendis.2023.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/07/2023] [Accepted: 06/27/2023] [Indexed: 02/01/2024] Open
Affiliation(s)
- Long Feng
- Department of Anesthesiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan 572013, China
| | - Hongqi Huo
- Nuclear Medicine Department, Handan Central Hospital, Handan, Hebei 056001, China
| | - Qun Li
- Department of Neurosurgery, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan 572013, China
| | - Tao Yang
- Department of Oncology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan 572013, China
| | - Yali Zhao
- Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan 572013, China
| | - Pei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ping Ping
- General Station for Drug and Instrument Supervision and Control, Joint Logistic Support Force of Chinese People's Liberation Army, Beijing 100071, China
| | - Shihui Fu
- Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan 572013, China
- Department of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
2
|
Deacon S, Dalleywater W, Peat C, Paine SML, Dineen RA. Disproportionate Expression of ATM in Cerebellar Cortex During Human Neurodevelopment. CEREBELLUM (LONDON, ENGLAND) 2024; 23:502-511. [PMID: 37120494 PMCID: PMC10951037 DOI: 10.1007/s12311-023-01560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/01/2023]
Abstract
Cerebellar neurodegeneration is a classical feature of ataxia telangiectasia (A-T), an autosomal recessive condition caused by loss-of-function mutation of the ATM gene, a gene with multiple regulatory functions. The increased vulnerability of cerebellar neurones to degeneration compared to cerebral neuronal populations in individuals with ataxia telangiectasia implies a specific importance of intact ATM function in the cerebellum. We hypothesised that there would be elevated transcription of ATM in the cerebellar cortex relative to ATM expression in other grey matter regions during neurodevelopment in individuals without A-T. Using ATM transcription data from the BrainSpan Atlas of the Developing Human Brain, we demonstrate a rapid increase in cerebellar ATM expression relative to expression in other brain regions during gestation and remaining elevated during early childhood, a period corresponding to the emergence of cerebellar neurodegeneration in ataxia telangiectasia patients. We then used gene ontology analysis to identify the biological processes represented in the genes correlated with cerebellar ATM expression. This analysis demonstrated that multiple processes are associated with expression of ATM in the cerebellum, including cellular respiration, mitochondrial function, histone methylation, and cell-cycle regulation, alongside its canonical role in DNA double-strand break repair. Thus, the enhanced expression of ATM in the cerebellum during early development may be related to the specific energetic demands of the cerebellum and its role as a regulator of these processes.
Collapse
Affiliation(s)
- Simon Deacon
- Department of Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - William Dalleywater
- Department of Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Charles Peat
- Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Simon M L Paine
- Department of Neuropathology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Rob A Dineen
- Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK.
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK.
| |
Collapse
|
3
|
Paull TT, Woolley PR. A-T neurodegeneration and DNA damage-induced transcriptional stress. DNA Repair (Amst) 2024; 135:103647. [PMID: 38377644 PMCID: PMC11707827 DOI: 10.1016/j.dnarep.2024.103647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Loss of the ATM protein kinase in humans results in Ataxia-telangiectasia, a disorder characterized by childhood-onset neurodegeneration of the cerebellum as well as cancer predisposition and immunodeficiency. Although many aspects of ATM function are well-understood, the mechanistic basis of the progressive cerebellar ataxia that occurs in patients is not. Here we review recent progress related to the role of ATM in neurons and the cerebellum that comes from many sources: animal models, post-mortem brain tissue samples, and human neurons in culture. These observations have revealed new insights into the consequences of ATM loss on DNA damage, gene expression, and immune signaling in the brain. Many results point to the importance of reactive oxygen species as well as single-strand DNA breaks in the progression of molecular events leading to neuronal dysfunction. In addition, innate immunity signaling pathways appear to play a critical role in ATM functions in microglia, responding to various forms of nucleic acid sensors and regulating survival of neurons and other cell types. Overall, the results lead to an updated view of transcriptional stress and DNA damage resulting from ATM loss that results in changes in gene expression as well as neuroinflammation that contribute to the cerebellar neurodegeneration observed in patients.
Collapse
Affiliation(s)
- Tanya T Paull
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA.
| | - Phillip R Woolley
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA
| |
Collapse
|
4
|
Briguglio S, Cambria C, Albizzati E, Marcello E, Provenzano G, Frasca A, Antonucci F. New Views of the DNA Repair Protein Ataxia-Telangiectasia Mutated in Central Neurons: Contribution in Synaptic Dysfunctions of Neurodevelopmental and Neurodegenerative Diseases. Cells 2023; 12:2181. [PMID: 37681912 PMCID: PMC10486624 DOI: 10.3390/cells12172181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023] Open
Abstract
Ataxia-Telangiectasia Mutated (ATM) is a serine/threonine protein kinase principally known to orchestrate DNA repair processes upon DNA double-strand breaks (DSBs). Mutations in the Atm gene lead to Ataxia-Telangiectasia (AT), a recessive disorder characterized by ataxic movements consequent to cerebellar atrophy or dysfunction, along with immune alterations, genomic instability, and predisposition to cancer. AT patients show variable phenotypes ranging from neurologic abnormalities and cognitive impairments to more recently described neuropsychiatric features pointing to symptoms hardly ascribable to the canonical functions of ATM in DNA damage response (DDR). Indeed, evidence suggests that cognitive abilities rely on the proper functioning of DSB machinery and specific synaptic changes in central neurons of ATM-deficient mice unveiled unexpected roles of ATM at the synapse. Thus, in the present review, upon a brief recall of DNA damage responses, we focus our attention on the role of ATM in neuronal physiology and pathology and we discuss recent findings showing structural and functional changes in hippocampal and cortical synapses of AT mouse models. Collectively, a deeper knowledge of ATM-dependent mechanisms in neurons is necessary not only for a better comprehension of AT neurological phenotypes, but also for a higher understanding of the pathological mechanisms in neurodevelopmental and degenerative disorders involving ATM dysfunctions.
Collapse
Affiliation(s)
- Sabrina Briguglio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via F.lli Cervi 93, 20129 Segrate (MI) and via Vanvitelli 32, 20129 Milan, MI, Italy; (S.B.); (C.C.); (A.F.)
| | - Clara Cambria
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via F.lli Cervi 93, 20129 Segrate (MI) and via Vanvitelli 32, 20129 Milan, MI, Italy; (S.B.); (C.C.); (A.F.)
| | - Elena Albizzati
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Giuseppe Balzaretti 9, 20133 Milan, MI, Italy;
| | - Giovanni Provenzano
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, Via Sommarive 9, 38068 Trento, TN, Italy;
| | - Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via F.lli Cervi 93, 20129 Segrate (MI) and via Vanvitelli 32, 20129 Milan, MI, Italy; (S.B.); (C.C.); (A.F.)
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via F.lli Cervi 93, 20129 Segrate (MI) and via Vanvitelli 32, 20129 Milan, MI, Italy; (S.B.); (C.C.); (A.F.)
- Institute of Neuroscience, IN-CNR, Via Raoul Follereau 3, 20854 Vedano al Lambro, MB, Italy
| |
Collapse
|
5
|
Caraci F, Fidilio A, Santangelo R, Caruso G, Giuffrida ML, Tomasello MF, Nicoletti F, Copani A. Molecular Connections between DNA Replication and Cell Death in β-Amyloid-Treated Neurons. Curr Neuropharmacol 2023; 21:2006-2018. [PMID: 37021419 PMCID: PMC10514525 DOI: 10.2174/1570159x21666230404121903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Ectopic cell cycle reactivation in neurons is associated with neuronal death in Alzheimer's disease. In cultured rodent neurons, synthetic β-amyloid (Aβ) reproduces the neuronal cell cycle re-entry observed in the Alzheimer's brain, and blockade of the cycle prevents Aβ-induced neurodegeneration. DNA polymerase-β, whose expression is induced by Aβ, is responsible for the DNA replication process that ultimately leads to neuronal death, but the molecular mechanism(s) linking DNA replication to neuronal apoptosis are presently unknown. AIM To explore the role of a conserved checkpoint pathway started by DNA replication stress, namely the ATM-ATR/Claspin/Chk-1 pathway, in switching the neuronal response from DNA replication to apoptosis. METHODS Experiments were carried out in cultured rat cortical neurons challenged with toxic oligomers of Aβ protein. RESULTS Small inhibitory molecules of ATM/ATR kinase or Chk-1 amplified Aβ-induced neuronal DNA replication and apoptosis, as they were permissive to the DNA polymerase-β activity triggered by Aβ oligomers. Claspin, i.e., the adaptor protein between ATM/ATR kinase and the downstream Chk-1, was present on DNA replication forks of neurons early after Aβ challenge, and decreased at times coinciding with neuronal apoptosis. The caspase-3/7 inhibitor I maintained overtime the amount of Claspin loaded on DNA replication forks and, concomitantly, reduced neuronal apoptosis by holding neurons in the S phase. Moreover, a short phosphopeptide mimicking the Chk-1-binding motif of Claspin was able to prevent Aβ-challenged neurons from entering apoptosis. CONCLUSION We speculate that, in the Alzheimer's brain, Claspin degradation by intervening factors may precipitate the death of neurons engaged into DNA replication.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- UOR of Neuropharmacology and Translational Neurosciences, Oasi Research Institute - IRCCS, Troina, Italy
| | - Annamaria Fidilio
- UOR of Neuropharmacology and Translational Neurosciences, Oasi Research Institute - IRCCS, Troina, Italy
| | - Rosa Santangelo
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Maria Laura Giuffrida
- Institute of Crystallography, National Council of Research, Catania Unit, Catania, Italy
| | | | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University Sapienza of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Agata Copani
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Institute of Crystallography, National Council of Research, Catania Unit, Catania, Italy
| |
Collapse
|
6
|
Mkrtchyan GV, Veviorskiy A, Izumchenko E, Shneyderman A, Pun FW, Ozerov IV, Aliper A, Zhavoronkov A, Scheibye-Knudsen M. High-confidence cancer patient stratification through multiomics investigation of DNA repair disorders. Cell Death Dis 2022; 13:999. [PMID: 36435816 PMCID: PMC9701218 DOI: 10.1038/s41419-022-05437-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022]
Abstract
Multiple cancer types have limited targeted therapeutic options, in part due to incomplete understanding of the molecular processes underlying tumorigenesis and significant intra- and inter-tumor heterogeneity. Identification of novel molecular biomarkers stratifying cancer patients with different survival outcomes may provide new opportunities for target discovery and subsequent development of tailored therapies. Here, we applied the artificial intelligence-driven PandaOmics platform ( https://pandaomics.com/ ) to explore gene expression changes in rare DNA repair-deficient disorders and identify novel cancer targets. Our analysis revealed that CEP135, a scaffolding protein associated with early centriole biogenesis, is commonly downregulated in DNA repair diseases with high cancer predisposition. Further screening of survival data in 33 cancers available at TCGA database identified sarcoma as a cancer type where lower survival was significantly associated with high CEP135 expression. Stratification of cancer patients based on CEP135 expression enabled us to examine therapeutic targets that could be used for the improvement of existing therapies against sarcoma. The latter was based on application of the PandaOmics target-ID algorithm coupled with in vitro studies that revealed polo-like kinase 1 (PLK1) as a potential therapeutic candidate in sarcoma patients with high CEP135 levels and poor survival. While further target validation is required, this study demonstrated the potential of in silico-based studies for a rapid biomarker discovery and target characterization.
Collapse
Affiliation(s)
- Garik V Mkrtchyan
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Gupta R, Jha A, Ambasta RK, Kumar P. Regulatory mechanism of cyclins and cyclin-dependent kinases in post-mitotic neuronal cell division. Life Sci 2021; 285:120006. [PMID: 34606852 DOI: 10.1016/j.lfs.2021.120006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022]
Abstract
Neurodegenerative diseases (NDDs) are the most common life-threatening disease of the central nervous system and it cause the progressive loss of neuronal cells. The exact mechanism of the disease's progression is not clear and thus line of treatment for NDDs is a baffling issue. During the progression of NDDs, oxidative stress and DNA damage play an important regulatory function, and ultimately induces neurodegeneration. Recently, aberrant cell cycle events have been demonstrated in the progression of different NDDs. However, the pertinent role of signaling mechanism, for instance, post-translational modifications, oxidative stress, DNA damage response pathway, JNK/p38 MAPK, MEK/ERK cascade, actively participated in the aberrant cell cycle reentry induced neuronal cell death. Mounting evidence has demonstrated that aberrant cell cycle re-entry is a major contributing factor in the pathogenesis of NDDs rather than a secondary phenomenon. In the brain of AD patients with mild cognitive impairment, post miotic cell division can be seen in the early stage of the disease. However, in the brain of PD patients, response to various neurotoxic signals, the cell cycle re-entry has been observed that causes neuronal apoptosis. On contrary, the contributing factors that leads to the induction of cell cycle events in mature neurons in HD and ALS brain pathology is remain unclear. Various pharmacological drugs have been developed to reduce the pathogenesis of NDDs, but they are still not helpful in eliminating the cause of these NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Ankita Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
8
|
Sah E, Krishnamurthy S, Ahmidouch MY, Gillispie GJ, Milligan C, Orr ME. The Cellular Senescence Stress Response in Post-Mitotic Brain Cells: Cell Survival at the Expense of Tissue Degeneration. Life (Basel) 2021; 11:229. [PMID: 33799628 PMCID: PMC7998276 DOI: 10.3390/life11030229] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 01/10/2023] Open
Abstract
In 1960, Rita Levi-Montalcini and Barbara Booker made an observation that transformed neuroscience: as neurons mature, they become apoptosis resistant. The following year Leonard Hayflick and Paul Moorhead described a stable replicative arrest of cells in vitro, termed "senescence". For nearly 60 years, the cell biology fields of neuroscience and senescence ran in parallel, each separately defining phenotypes and uncovering molecular mediators to explain the 1960s observations of their founding mothers and fathers, respectively. During this time neuroscientists have consistently observed the remarkable ability of neurons to survive. Despite residing in environments of chronic inflammation and degeneration, as occurs in numerous neurodegenerative diseases, often times the neurons with highest levels of pathology resist death. Similarly, cellular senescence (hereon referred to simply as "senescence") now is recognized as a complex stress response that culminates with a change in cell fate. Instead of reacting to cellular/DNA damage by proliferation or apoptosis, senescent cells survive in a stable cell cycle arrest. Senescent cells simultaneously contribute to chronic tissue degeneration by secreting deleterious molecules that negatively impact surrounding cells. These fields have finally collided. Neuroscientists have begun applying concepts of senescence to the brain, including post-mitotic cells. This initially presented conceptual challenges to senescence cell biologists. Nonetheless, efforts to understand senescence in the context of brain aging and neurodegenerative disease and injury emerged and are advancing the field. The present review uses pre-defined criteria to evaluate evidence for post-mitotic brain cell senescence. A closer interaction between neuro and senescent cell biologists has potential to advance both disciplines and explain fundamental questions that have plagued their fields for decades.
Collapse
Affiliation(s)
- Eric Sah
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.S.); (S.K.); (M.Y.A.); (G.J.G.)
| | - Sudarshan Krishnamurthy
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.S.); (S.K.); (M.Y.A.); (G.J.G.)
- Bowman Gray Center for Medical Education, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Mohamed Y. Ahmidouch
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.S.); (S.K.); (M.Y.A.); (G.J.G.)
- Departments of Biology and Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Gregory J. Gillispie
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.S.); (S.K.); (M.Y.A.); (G.J.G.)
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Carol Milligan
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Miranda E. Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.S.); (S.K.); (M.Y.A.); (G.J.G.)
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Salisbury VA Medical Center, Salisbury, NC 28144, USA
| |
Collapse
|
9
|
Onyango IG, Bennett JP, Stokin GB. Regulation of neuronal bioenergetics as a therapeutic strategy in neurodegenerative diseases. Neural Regen Res 2021; 16:1467-1482. [PMID: 33433460 PMCID: PMC8323696 DOI: 10.4103/1673-5374.303007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are a heterogeneous group of debilitating disorders with multifactorial etiologies and pathogeneses that manifest distinct molecular mechanisms and clinical manifestations with abnormal protein dynamics and impaired bioenergetics. Mitochondrial dysfunction is emerging as an important feature in the etiopathogenesis of these age-related neurodegenerative diseases. The prevalence and incidence of these diseases is on the rise with the increasing global population and average lifespan. Although many therapeutic approaches have been tested, there are currently no effective treatment routes for the prevention or cure of these diseases. We present the current status of our knowledge and understanding of the involvement of mitochondrial dysfunction in these diseases and highlight recent advances in novel therapeutic strategies targeting neuronal bioenergetics as potential approach for treating these diseases.
Collapse
Affiliation(s)
- Isaac G Onyango
- Center for Translational Medicine, International Clinical Research Centre (ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - James P Bennett
- Neurodegeneration Therapeutics, 3050A Berkmar Drive, Charlottesville, VA, USA
| | - Gorazd B Stokin
- Center for Translational Medicine, International Clinical Research Centre (ICRC), St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
10
|
Pizzamiglio L, Focchi E, Antonucci F. ATM Protein Kinase: Old and New Implications in Neuronal Pathways and Brain Circuitry. Cells 2020; 9:E1969. [PMID: 32858941 PMCID: PMC7564642 DOI: 10.3390/cells9091969] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
Despite that the human autosomal recessive disease ataxia telangiectasia (A-T) is a rare pathology, interest in the function of ataxia-telangiectasia mutated protein (ATM) is extensive. From a clinical point of view, the role of ATM in the central nervous system (CNS) is the most impacting, as motor disability is the predominant symptom affecting A-T patients. Coherently, spino-cerebellar neurodegeneration is the principal hallmark of A-T and other CNS regions such as dentate and olivary nuclei and brain stem are implicated in A-T pathophysiology. Recently, several preclinical studies also highlighted the involvement of ATM in the cerebral cortex and hippocampus, thus extending A-T symptomatology to new brain areas and pathways. Here, we review old and recent evidence that largely demonstrates not only the historical ATM account in DNA damage response and cell cycle regulation, but the multiple pathways through which ATM controls oxidative stress homeostasis, insulin signalling pathways, epigenetic regulation, synaptic transmission, and excitatory-inhibitory balance. We also summarise recent evidence on ATM implication in neurological and cognitive diseases beyond A-T, bringing out ATM as new pathological substrate and potential therapeutic target.
Collapse
Affiliation(s)
- Lara Pizzamiglio
- Institute of Molecular and Cellular Pharmacology (IPMC), Université Côte d’Azur (UCA), CNRS UMR7275, 06560 Valbonne-Sophia Antipolis, France;
| | - Elisa Focchi
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, 20100 Milan, Italy;
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, 20100 Milan, Italy;
| |
Collapse
|
11
|
Nandakumar S, Grushko O, Buttitta LA. Polyploidy in the adult Drosophila brain. eLife 2020; 9:e54385. [PMID: 32840209 PMCID: PMC7447450 DOI: 10.7554/elife.54385] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Long-lived cells such as terminally differentiated postmitotic neurons and glia must cope with the accumulation of damage over the course of an animal's lifespan. How long-lived cells deal with ageing-related damage is poorly understood. Here we show that polyploid cells accumulate in the adult fly brain and that polyploidy protects against DNA damage-induced cell death. Multiple types of neurons and glia that are diploid at eclosion, become polyploid in the adult Drosophila brain. The optic lobes exhibit the highest levels of polyploidy, associated with an elevated DNA damage response in this brain region. Inducing oxidative stress or exogenous DNA damage leads to an earlier onset of polyploidy, and polyploid cells in the adult brain are more resistant to DNA damage-induced cell death than diploid cells. Our results suggest polyploidy may serve a protective role for neurons and glia in adult Drosophila melanogaster brains.
Collapse
Affiliation(s)
- Shyama Nandakumar
- Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| | - Olga Grushko
- Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| | - Laura A Buttitta
- Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| |
Collapse
|
12
|
Sunderland P, Augustyniak J, Lenart J, Bużańska L, Carlessi L, Delia D, Sikora E. ATM-deficient neural precursors develop senescence phenotype with disturbances in autophagy. Mech Ageing Dev 2020; 190:111296. [PMID: 32621937 DOI: 10.1016/j.mad.2020.111296] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/29/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023]
Abstract
ATM is a kinase involved in DNA damage response (DDR), regulation of response to oxidative stress, autophagy and mitophagy. Mutations in the ATM gene in humans result in ataxi A-Telangiectasia disease (A-T) characterized by a variety of symptoms with neurodegeneration and premature ageing among them. Since brain is one of the most affected organs in A-T, we have focused on senescence of neural progenitor cells (NPCs) derived from A-T reprogrammed fibroblasts. Accordingly, A-T NPCs obtained through neural differentiation of iPSCs in 5% oxygen possessed some features of senescence including increased activity of SA-β-gal and secretion of IL6 and IL8 in comparison to control NPCs. This phenotype of A-T NPC was accompanied by elevated oxidative stress. A-T NPCs exhibited symptoms of impaired autophagy and mitophagy with lack of response to chloroquine treatment. Additional sources of oxidative stress like increased oxygen concentration (20 %) and H2O2 respectively aggravated the phenotype of senescence and additionally disturbed the process of mitophagy. In both cases only A-T NPCs reacted to the treatment. We conclude that oxidative stress may be responsible for the phenotype of senescence and impairment of autophagy in A-T NPCs. Our results point to senescent A-T cells as a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Piotr Sunderland
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Justyna Augustyniak
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Jacek Lenart
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Leonora Bużańska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Luigi Carlessi
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Domenico Delia
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy; IFOM, FIRC Institute of Molecular Oncology, Milano, Italy
| | - Ewa Sikora
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
13
|
Sorond FA, Whitehead S, Arai K, Arnold D, Carmichael ST, De Carli C, Duering M, Fornage M, Flores-Obando RE, Graff-Radford J, Hamel E, Hess DC, Ihara M, Jensen MK, Markus HS, Montagne A, Rosenberg G, Shih AY, Smith EE, Thiel A, Tse KH, Wilcock D, Barone F. Proceedings from the Albert Charitable Trust Inaugural Workshop on white matter and cognition in aging. GeroScience 2019; 42:81-96. [PMID: 31811528 DOI: 10.1007/s11357-019-00141-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
This third in a series of vascular cognitive impairment (VCI) workshops, supported by "The Leo and Anne Albert Charitable Trust," was held from February 8 to 12 at the Omni Resort in Carlsbad, CA. This workshop followed the information gathered from the earlier two workshops suggesting that we focus more specifically on brain white matter in age-related cognitive impairment. The Scientific Program Committee (Frank Barone, Shawn Whitehead, Eric Smith, and Rod Corriveau) assembled translational, clinical, and basic scientists with unique expertise in acute and chronic white matter injury at the intersection of cerebrovascular and neurodegenerative etiologies. As in previous Albert Trust workshops, invited participants addressed key topics related to mechanisms of white matter injury, biomarkers of white matter injury, and interventions to prevent white matter injury and age-related cognitive decline. This report provides a synopsis of the presentations and discussions by the participants, including the existing knowledge gaps and the delineation of the next steps towards advancing our understanding of white matter injury and age-related cognitive decline. Workshop discussions and consensus resulted in action by The Albert Trust to (1) increase support from biannual to annual "White Matter and Cognition" workshops; (2) provide funding for two collaborative, novel research grants annually submitted by meeting participants; and (3) coordinate the formation of the "Albert Research Institute for White Matter and Cognition." This institute will fill a gap in white matter science, providing white matter and cognition communications, including annual updates from workshops and the literature and interconnecting with other Albert Trust scientific endeavors in cognition and dementia, and providing support for newly established collaborations between seasoned investigators and to the development of talented young investigators in the VCI-dementia (VCID) and white matter cognition arena.
Collapse
Affiliation(s)
- Farzaneh A Sorond
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA.
| | - Shawn Whitehead
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Ken Arai
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Douglas Arnold
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - S Thomas Carmichael
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Charles De Carli
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Marco Duering
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Myriam Fornage
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Rafael E Flores-Obando
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Jonathan Graff-Radford
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Edith Hamel
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - David C Hess
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Massafumi Ihara
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Majken K Jensen
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Hugh S Markus
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Axel Montagne
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Gary Rosenberg
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Andy Y Shih
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Eric E Smith
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Alex Thiel
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Kai Hei Tse
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Donna Wilcock
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Frank Barone
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| |
Collapse
|
14
|
Chow HM, Shi M, Cheng A, Gao Y, Chen G, Song X, So RWL, Zhang J, Herrup K. Age-related hyperinsulinemia leads to insulin resistance in neurons and cell-cycle-induced senescence. Nat Neurosci 2019; 22:1806-1819. [DOI: 10.1038/s41593-019-0505-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/21/2019] [Indexed: 01/17/2023]
|
15
|
Zhu B, Li Z, Qian PY, Herrup K. Marine bacterial extracts as a new rich source of drugs against Alzheimer's disease. J Neurochem 2019; 152:493-508. [PMID: 31381155 DOI: 10.1111/jnc.14847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is a prevalent, progressive and irreversible, neurodegenerative disease with no disease modifying treatment yet available. The projected burden of AD on our healthcare system is immense and thus there is an immediate need for new drugs that prevent or attenuate AD symptoms. While most efforts in the field are directed at treatments that reduce amyloid or tau burden in the brain, we have taken an alternate approach - a model based on reducing AD-associated neuronal cell cycle events. Using this model, we have screened a largely unexplored source of compounds with therapeutic potential - the natural products created by diverse strains of marine bacteria. Two hundred and twenty-five bacterial extracts from different strains were tested for both toxicity and neuroprotective properties by crystal violet and In-cell Western - first in HT22 cells and then in mouse primary neuronal cultures. Based on these screens, we have identified several promising leads, and here we focus on the most promising of these. We found that we could directly assay even a crude bacterial extract in our E16 mouse cortical neuronal cultures and screen for activities that prevent cell cycle reentry and preserve synaptic structure. Preliminary tests in 1-month-old animals from a mouse model of Ataxia telangiectasia, showed that blockage of cell cycle-related neuronal death could also be successful in vivo. This adds an important extension to our in vitro studies. These findings showcase a new effective and efficient assay system and validate the use of marine natural compounds as a novel source for new drugs to fight Alzheimer's disease. Cover Image for this issue: doi: 10.1111/jnc.14733.
Collapse
Affiliation(s)
- Beika Zhu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhongrui Li
- Department of Ocean Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Pei-Yuan Qian
- Department of Ocean Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Karl Herrup
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
16
|
Testing the Neuroprotective Properties of PCSO-524 ® Using a Neuronal Cell Cycle Suppression Assay. Mar Drugs 2019; 17:md17020079. [PMID: 30682813 PMCID: PMC6409808 DOI: 10.3390/md17020079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Cell cycle reentry is a unified mechanism shared by several neurodegenerative diseases, including Alzheimer’s disease (AD) and Ataxia Telangiectasia (A-T). This phenotype is often related to neuroinflammation in the central nervous system. To mimic brain inflammation in vitro, we adopted the previously established method of using conditioned medium collected from activated THP-1 cells and applied it to both differentiated HT22 cells and primary neurons. Unscheduled cell cycle events were observed in both systems, indicating the potential of this approach as an in vitro model of neurodegenerative disease. We used this assay to measure the neuroprotective effects of New Zealand green-lipped mussel extract, PCSO-524®, to protect post-mitotic cells from cell cycle reentry. We found that, both in vitro and in an animal model, PCSO-524® displayed promising neuroprotective effects, and thus has potential to postpone or prevent the onset of neurodegenerative disease.
Collapse
|
17
|
Hui CW, Song X, Ma F, Shen X, Herrup K. Ibuprofen prevents progression of ataxia telangiectasia symptoms in ATM-deficient mice. J Neuroinflammation 2018; 15:308. [PMID: 30400801 PMCID: PMC6220455 DOI: 10.1186/s12974-018-1338-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 10/18/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Inflammation plays a critical role in accelerating the progression of neurodegenerative diseases, such as Alzheimer's disease (AD) and ataxia telangiectasia (A-T). In A-T mouse models, LPS-induced neuroinflammation advances the degenerative changes found in cerebellar Purkinje neurons both in vivo and in vitro. In the current study, we ask whether ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), can have the opposite effect and delay the symptoms of the disease. METHODS We tested the beneficial effects of ibuprofen in both in vitro and in vivo models. Conditioned medium from LPS stimulated primary microglia (LM) applied to cultures of dissociated cortical neurons leads to numerous degenerative changes. Pretreatment of the neurons with ibuprofen, however, blocked this damage. Systemic injection of LPS into either adult wild-type or adult Atm-/- mice produced an immune challenge that triggered profound behavioral, biochemical, and histological effects. We used a 2-week ibuprofen pretreatment regimen to investigate whether these LPS effects could be blocked. We also treated young presymptomatic Atm-/- mice to determine if ibuprofen could delay the appearance of symptoms. RESULTS Adding ibuprofen directly to neuronal cultures significantly reduced LM-induced degeneration. Curiously, adding ibuprofen to the microglia cultures before the LPS challenge had little effect, thus implying a direct effect of the NSAID on the neuronal cultures. In vivo administration of ibuprofen to Atm-/- animals before a systemic LPS immune challenge suppressed cytological damage. The ibuprofen effects were widespread as microglial activation, p38 phosphorylation, DNA damage, and neuronal cell cycle reentry were all reduced. Unfortunately, ibuprofen only slightly improved the LPS-induced behavioral deficits. Yet, while the behavioral symptoms could not be reversed once they were established in adult Atm-/- animals, administration of ibuprofen to young mutant pups prevented their symptoms from appearing. CONCLUSION Inflammatory processes impact the normal progression of A-T implying that modulation of the immune system can have therapeutic benefit for both the behavioral and cellular symptoms of this neurodegenerative disease.
Collapse
Affiliation(s)
- Chin Wai Hui
- Division of Life Science and State Key Laboratory of Molecular Neurobiology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xuan Song
- Division of Life Science and State Key Laboratory of Molecular Neurobiology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Fulin Ma
- Division of Life Science and State Key Laboratory of Molecular Neurobiology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xuting Shen
- Division of Life Science and State Key Laboratory of Molecular Neurobiology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Present address: School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Karl Herrup
- Division of Life Science and State Key Laboratory of Molecular Neurobiology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
18
|
Canet-Pons J, Schubert R, Duecker RP, Schrewe R, Wölke S, Kieslich M, Schnölzer M, Chiocchetti A, Auburger G, Zielen S, Warnken U. Ataxia telangiectasia alters the ApoB and reelin pathway. Neurogenetics 2018; 19:237-255. [DOI: 10.1007/s10048-018-0557-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
|
19
|
Tse KH, Cheng A, Ma F, Herrup K. DNA damage-associated oligodendrocyte degeneration precedes amyloid pathology and contributes to Alzheimer's disease and dementia. Alzheimers Dement 2018; 14:664-679. [PMID: 29328926 PMCID: PMC5938117 DOI: 10.1016/j.jalz.2017.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/18/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022]
Abstract
INTRODUCTION In looking for novel non-amyloid-based etiologies for Alzheimer's disease, we explore the hypothesis that age-related myelin loss is an attractive explanation for age-associated cognitive decline and dementia. METHODS We performed a meta-analysis of data in the National Alzheimer's Coordinating Center database accompanied by quantitative histopathology of myelin and oligodendrocytes (OLs) in frontal cortices of 24 clinically characterized individuals. Pathological findings were further validated in an Alzheimer's disease mouse model and in culture. RESULTS Myelin lesions increased with cognitive impairment in an amyloid-independent fashion with signs of degeneration appearing before neuronal loss. Myelinating OLs in the gray matter showed greater vulnerability than those in white matter, and the degenerative changes correlated with evidence of DNA damage. Similar results were found in myelinating OL cultures where DNA damage caused aberrant OL cell cycle re-entry and death. DISCUSSION We present the first comprehensive analysis of the cell biology of early myelin loss in sporadic Alzheimer's disease.
Collapse
Affiliation(s)
- Kai-Hei Tse
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Aifang Cheng
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Fulin Ma
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Karl Herrup
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
20
|
Di Siena S, Campolo F, Gimmelli R, Di Pietro C, Marazziti D, Dolci S, Lenzi A, Nussenzweig A, Pellegrini M. Atm reactivation reverses ataxia telangiectasia phenotypes in vivo. Cell Death Dis 2018; 9:314. [PMID: 29472706 PMCID: PMC5833483 DOI: 10.1038/s41419-018-0357-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 12/27/2022]
Abstract
Hereditary deficiencies in DNA damage signaling are invariably associated with cancer predisposition, immunodeficiency, radiation sensitivity, gonadal abnormalities, premature aging, and tissue degeneration. ATM kinase has been established as a central player in DNA double-strand break repair and its deficiency causes ataxia telangiectasia, a rare, multi-system disease with no cure. So ATM represents a highly attractive target for the development of novel types of gene therapy or transplantation strategies. Atm tamoxifen-inducible mouse models were generated to explore whether Atm reconstitution is able to restore Atm function in an Atm-deficient background. Body weight, immunodeficiency, spermatogenesis, and radioresistance were recovered in transgenic mice within 1 month from Atm induction. Notably, life span was doubled after Atm restoration, mice were protected from thymoma and no cerebellar defects were observed. Atm signaling was functional after DNA damage in vivo and in vitro. In summary, we propose a new Atm mouse model to investigate novel therapeutic strategies for ATM activation in ataxia telangiectasia disease.
Collapse
Affiliation(s)
- Sara Di Siena
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University, Rome, Italy
| | - Federica Campolo
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Roberto Gimmelli
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Chiara Di Pietro
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Daniela Marazziti
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, 20893, USA
| | - Manuela Pellegrini
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University, Rome, Italy. .,Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy. .,Department of Medicine and Health Science 'V. Tiberio', University of Molise, Campobasso, Italy.
| |
Collapse
|
21
|
Tse KH, Herrup K. Re-imagining Alzheimer's disease - the diminishing importance of amyloid and a glimpse of what lies ahead. J Neurochem 2017; 143:432-444. [PMID: 28547865 DOI: 10.1111/jnc.14079] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/13/2017] [Accepted: 05/23/2017] [Indexed: 12/13/2022]
Abstract
Many have criticized the amyloid cascade hypothesis of Alzheimer's disease for its inconsistencies and failures to either accurately predict disease symptoms or guide the development of productive therapies. In addition to criticisms, however, we believe that the field would benefit from having alternative narratives and disease models that can either replace or function alongside of an amyloid-centric view of Alzheimer's. This review is an attempt to meet that need. We offer three experimentally verified amyloid-independent mechanisms, each of which plausibly contributes substantially to the aetiology of Alzheimer's disease: loss of DNA integrity, faulty cell cycle regulation, regression of myelination. We outline the ways in which the failure of each can contribute to AD initiation and progression, and review how, acting alone or in combination with each other, they are sufficient for explaining the full range of AD pathologies. Yet, these three alternatives represent only a few of the many non-amyloid mechanisms that can explain AD pathogenesis. Therefore instead of proposing a single 'alternative hypothesis' to the amyloid cascade theory, sporadic AD is pictured as the result of independent yet intersecting age-related pathologies that afflict the ageing human brain. This article is part of the series "Beyond Amyloid". Cover Image for this issue: doi. 10.1111/jnc.13823.
Collapse
Affiliation(s)
- Kai-Hei Tse
- Division of Life Science and the State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Karl Herrup
- Division of Life Science and the State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
22
|
Choy KR, Watters DJ. Neurodegeneration in ataxia-telangiectasia: Multiple roles of ATM kinase in cellular homeostasis. Dev Dyn 2017; 247:33-46. [PMID: 28543935 DOI: 10.1002/dvdy.24522] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is characterized by neuronal degeneration, cancer, diabetes, immune deficiency, and increased sensitivity to ionizing radiation. A-T is attributed to the deficiency of the protein kinase coded by the ATM (ataxia-telangiectasia mutated) gene. ATM is a sensor of DNA double-strand breaks (DSBs) and signals to cell cycle checkpoints and the DNA repair machinery. ATM phosphorylates numerous substrates and activates many cell-signaling pathways. There has been considerable debate about whether a defective DNA damage response is causative of the neurological aspects of the disease. In proliferating cells, ATM is localized mainly in the nucleus; however, in postmitotic cells such as neurons, ATM is mostly cytoplasmic. Recent studies reveal an increasing number of roles for ATM in the cytoplasm, including activation by oxidative stress. ATM associates with organelles including mitochondria and peroxisomes, both sources of reactive oxygen species (ROS), which have been implicated in neurodegenerative diseases and aging. ATM is also associated with synaptic vesicles and has a role in regulating cellular homeostasis and autophagy. The cytoplasmic roles of ATM provide a new perspective on the neurodegenerative process in A-T. This review will examine the expanding roles of ATM in cellular homeostasis and relate these functions to the complex A-T phenotype. Developmental Dynamics 247:33-46, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kay Rui Choy
- School of Natural Sciences, Griffith University, Brisbane, Queensland, Australia
| | - Dianne J Watters
- School of Natural Sciences, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Kanungo J. DNA-PK and P38 MAPK: A Kinase Collusion in Alzheimer's Disease? BRAIN DISORDERS & THERAPY 2017; 6:232. [PMID: 28706768 PMCID: PMC5504707 DOI: 10.4172/2168-975x.1000232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD), characterized by prevalent neuronal death and extracellular deposit of amyloid plaques, is poorly understood. DNA lesions downstream of reduced DNA repair ability have been reported in AD brains. Neurons predominantly use a mechanism to repair double-strand DNA breaks (DSB), which is non-homologous end joining (NHEJ). NHEJ requires DNA-dependent protein kinase (DNA-PK) activity. DNA-PK is a holoenzyme comprising the p460 kD catalytic subunit (DNA-PKcs) and its activator Ku, a heterodimer of p86 and p70 subunits. Ku first binds and then recruits DNA-PKcs to double-stranded DNA ends before NHEJ process begins. Studies have shown reduced NHEJ activity as well as DNA-PKcs and Ku protein levels in AD brains suggesting possible contribution of unrepaired DSB to AD development. However, normal aging brains also show reduced DNA-PKcs and Ku levels thus challenging the notion of any direct link between NHEJ and AD. Another kinase, p38 MAPK is induced by various DNA damaging agents and DSB itself. Increased DNA damage with aging could induce p38 MAPK and its induction may be sustained when DNA repair is compromised in the brain with reduced DNA-PK activity. Combined, these two events may potentially set the stage for an awry nervous system approaching AD.
Collapse
Affiliation(s)
- Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, USA
| |
Collapse
|
24
|
Fielder E, von Zglinicki T, Jurk D. The DNA Damage Response in Neurons: Die by Apoptosis or Survive in a Senescence-Like State? J Alzheimers Dis 2017; 60:S107-S131. [PMID: 28436392 DOI: 10.3233/jad-161221] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons are exposed to high levels of DNA damage from both physiological and pathological sources. Neurons are post-mitotic and their loss cannot be easily recovered from; to cope with DNA damage a complex pathway called the DNA damage response (DDR) has evolved. This recognizes the damage, and through kinases such as ataxia-telangiectasia mutated (ATM) recruits and activates downstream factors that mediate either apoptosis or survival. This choice between these opposing outcomes integrates many inputs primarily through a number of key cross-road proteins, including ATM, p53, and p21. Evidence of re-entry into the cell-cycle by neurons can be seen in aging and diseases such as Alzheimer's disease. This aberrant cell-cycle re-entry is lethal and can lead to the apoptotic death of the neuron. Many downstream factors of the DDR promote cell-cycle arrest in response to damage and appear to protect neurons from apoptotic death. However, neurons surviving with a persistently activated DDR show all the features known from cell senescence; including metabolic dysregulation, mitochondrial dysfunction, and the hyper-production of pro-oxidant, pro-inflammatory and matrix-remodeling factors. These cells, termed senescence-like neurons, can negatively influence the extracellular environment and may promote induction of the same phenotype in surrounding cells, as well as driving aging and age-related diseases. Recently developed interventions targeting the DDR and/or the senescent phenotype in a range of non-neuronal tissues are being reviewed as they might become of therapeutic interest in neurodegenerative diseases.
Collapse
Affiliation(s)
- Edward Fielder
- The Ageing Biology Centre and Institute for Cell and Molecular Biology, Newcastle University, Newcastle Upon Tyne, UK
| | - Thomas von Zglinicki
- The Ageing Biology Centre and Institute for Cell and Molecular Biology, Newcastle University, Newcastle Upon Tyne, UK
| | - Diana Jurk
- The Ageing Biology Centre and Institute for Cell and Molecular Biology, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
25
|
Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis 2016; 11:159. [PMID: 27884168 PMCID: PMC5123280 DOI: 10.1186/s13023-016-0543-7] [Citation(s) in RCA: 389] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/16/2016] [Indexed: 12/15/2022] Open
Abstract
DEFINITION OF THE DISEASE Ataxia telangiectasia (A-T) is an autosomal recessive disorder primarily characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility and radiation sensitivity. A-T is often referred to as a genome instability or DNA damage response syndrome. EPIDEMIOLOGY The world-wide prevalence of A-T is estimated to be between 1 in 40,000 and 1 in 100,000 live births. CLINICAL DESCRIPTION A-T is a complex disorder with substantial variability in the severity of features between affected individuals, and at different ages. Neurological symptoms most often first appear in early childhood when children begin to sit or walk. They have immunological abnormalities including immunoglobulin and antibody deficiencies and lymphopenia. People with A-T have an increased predisposition for cancers, particularly of lymphoid origin. Pulmonary disease and problems with feeding, swallowing and nutrition are common, and there also may be dermatological and endocrine manifestations. ETIOLOGY A-T is caused by mutations in the ATM (Ataxia Telangiectasia, Mutated) gene which encodes a protein of the same name. The primary role of the ATM protein is coordination of cellular signaling pathways in response to DNA double strand breaks, oxidative stress and other genotoxic stress. DIAGNOSIS The diagnosis of A-T is usually suspected by the combination of neurologic clinical features (ataxia, abnormal control of eye movement, and postural instability) with one or more of the following which may vary in their appearance: telangiectasia, frequent sinopulmonary infections and specific laboratory abnormalities (e.g. IgA deficiency, lymphopenia especially affecting T lymphocytes and increased alpha-fetoprotein levels). Because certain neurological features may arise later, a diagnosis of A-T should be carefully considered for any ataxic child with an otherwise elusive diagnosis. A diagnosis of A-T can be confirmed by the finding of an absence or deficiency of the ATM protein or its kinase activity in cultured cell lines, and/or identification of the pathological mutations in the ATM gene. DIFFERENTIAL DIAGNOSIS There are several other neurologic and rare disorders that physicians must consider when diagnosing A-T and that can be confused with A-T. Differentiation of these various disorders is often possible with clinical features and selected laboratory tests, including gene sequencing. ANTENATAL DIAGNOSIS Antenatal diagnosis can be performed if the pathological ATM mutations in that family have been identified in an affected child. In the absence of identifying mutations, antenatal diagnosis can be made by haplotype analysis if an unambiguous diagnosis of the affected child has been made through clinical and laboratory findings and/or ATM protein analysis. GENETIC COUNSELING Genetic counseling can help family members of a patient with A-T understand when genetic testing for A-T is feasible, and how the test results should be interpreted. MANAGEMENT AND PROGNOSIS Treatment of the neurologic problems associated with A-T is symptomatic and supportive, as there are no treatments known to slow or stop the neurodegeneration. However, other manifestations of A-T, e.g. immunodeficiency, pulmonary disease, failure to thrive and diabetes can be treated effectively.
Collapse
Affiliation(s)
| | - Jennifer Wright
- The Ataxia Telangiectasia Clinical Center, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| | - Maureen A. Lefton-Greif
- The Ataxia Telangiectasia Clinical Center, Departments of Pediatrics and Pediatric Respiratory Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| | - Sharon A. McGrath-Morrow
- The Ataxia Telangiectasia Clinical Center, Departments of Pediatrics and Pediatric Respiratory Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| | - Thomas O. Crawford
- The Ataxia Telangiectasia Clinical Center, Departments of Pediatrics and Neurology, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| | - Howard M. Lederman
- The Ataxia Telangiectasia Clinical Center, Departments of Pediatrics, Medicine and Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| |
Collapse
|
26
|
Abstract
Alzheimer's disease (AD) is characterized by neuronal death with an accumulaton of intra-cellular neurofibrillary tangles (NFT) and extracellular amyloid plaques. Reduced DNA repair ability has been reported in AD brains. In neurons, the predominant mechanism to repair double-strand DNA breaks (DSB) is non-homologous end joining (NHEJ) that requires DNA-dependent protein kinase (DNA-PK) activity. DNA-PK is a holoenzyme comprising the p460 kD DNA-PK catalytic subunit (DNA-PKcs) and its activator Ku, a heterodimer of p86 (Ku80) and p70 (Ku70) subunits. Upon binding to double-stranded DNA ends, Ku recruits DNA-PKcs to process NHEJ. In AD brains, reduced NHEJ activity as well as DNA-PKcs and Ku protein levels have been shown. Normal aging brains also show a reduction in both DNA-PKcs and Ku levels questioning a direct link between NHEJ ability and AD, and suggesting additional players/events in AD pathogenesis. Deficiency of Ku80, a somatostatin receptor, can disrupt somatostatin signaling thus inducing amyloid beta (Aβ) generation, which in turn can potentiate DNA-PKcs degradation and consequently loss of NHEJ activity, an additional step negatively affecting DSB repair. Trigger of these two different pathways culminating in genome instability may differentiate the outcomes between AD and normal aging.
Collapse
Affiliation(s)
- Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| |
Collapse
|
27
|
Atwood CS, Bowen RL. A Unified Hypothesis of Early- and Late-Onset Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2016; 47:33-47. [PMID: 26402752 DOI: 10.3233/jad-143210] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Early-onset familial Alzheimer's disease (EOFAD) and late-onset sporadic AD (LOSAD) both follow a similar pathological and biochemical course that includes: neuron and synapse loss and dysfunction, microvascular damage, microgliosis, extracellular amyloid-β deposition, tau phosphorylation, formation of intracellular neurofibrillary tangles, endoreduplication and related cell cycle events in affected brain regions. Any mechanistic explanation of AD must accommodate these biochemical and neuropathological features for both forms of the disease. In this insight paper we provide a unifying hypothesis for EOFAD and LOSAD that proposes that the aberrant re-entry of terminally differentiated, post-mitotic neurons into the cell division cycle is a common pathway that explains both early and late-onset forms of AD. Cell cycle abnormalities appear very early in the disease process, prior to the appearance of plaques and tangles, and explain the biochemical (e.g. tau phosphorylation), neuropathological (e.g. neuron hypertrophy; polypoidy) and cognitive changes observed in EOFAD and LOSAD. Genetic mutations in AβPP, PSEN1, and PSEN2 that alter amyloid-β precursor protein and Notch processing drive reactivation of the cell cycle in EOFAD, while age-related reproductive endocrine dyscrasia that upregulates mitogenic TNF signaling and AβPP processing toward the amyloidogenic pathway drives reactivation of the cell cycle in LOSAD. In essence, AβPP and presenilin mutations initiate early, what endocrine dyscrasia initiates later: aberrant cell cycle re-entry of post-mitotic neurons leading to neurodegeneration and cognitive decline in AD. Inhibition of cell cycle re-entry in post-mitotic neurons may be a useful therapeutic strategy to prevent, slow or halt disease progression.
Collapse
Affiliation(s)
- Craig S Atwood
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI, USA.,School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | | |
Collapse
|
28
|
Tse KH, Herrup K. DNA damage in the oligodendrocyte lineage and its role in brain aging. Mech Ageing Dev 2016; 161:37-50. [PMID: 27235538 DOI: 10.1016/j.mad.2016.05.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 11/25/2022]
Abstract
Myelination is a recent evolutionary addition that significantly enhances the speed of transmission in the neural network. Even slight defects in myelin integrity impair performance and enhance the risk of neurological disorders. Indeed, myelin degeneration is an early and well-recognized neuropathology that is age associated, but appears before cognitive decline. Myelin is only formed by fully differentiated oligodendrocytes, but the entire oligodendrocyte lineage are clear targets of the altered chemistry of the aging brain. As in neurons, unrepaired DNA damage accumulates in the postmitotic oligodendrocyte genome during normal aging, and indeed may be one of the upstream causes of cellular aging - a fact well illustrated by myelin co-morbidity in premature aging syndromes arising from deficits in DNA repair enzymes. The clinical and experimental evidence from Alzheimer's disease, progeroid syndromes, ataxia-telangiectasia and other conditions strongly suggest that oligodendrocytes may in fact be uniquely vulnerable to oxidative DNA damage. If this damage remains unrepaired, as is increasingly true in the aging brain, myelin gene transcription and oligodendrocyte differentiation is impaired. Delineating the relationships between early myelin loss and DNA damage in brain aging will offer an additional dimension outside the neurocentric view of neurodegenerative disease.
Collapse
Affiliation(s)
- Kai-Hei Tse
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Karl Herrup
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
29
|
Tokarz P, Kaarniranta K, Blasiak J. Role of the Cell Cycle Re-Initiation in DNA Damage Response of Post-Mitotic Cells and Its Implication in the Pathogenesis of Neurodegenerative Diseases. Rejuvenation Res 2016. [DOI: 10.1089/rej.2015.1717] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Paulina Tokarz
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, Lodz, Poland
| |
Collapse
|
30
|
Neurons in Vulnerable Regions of the Alzheimer's Disease Brain Display Reduced ATM Signaling. eNeuro 2016; 3:eN-NWR-0124-15. [PMID: 27022623 PMCID: PMC4770009 DOI: 10.1523/eneuro.0124-15.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/03/2016] [Accepted: 02/06/2016] [Indexed: 01/30/2023] Open
Abstract
Ataxia telangiectasia (A-T) is a multisystemic disease caused by mutations in the ATM (A-T mutated) gene. It strikes before 5 years of age and leads to dysfunctions in many tissues, including the CNS, where it leads to neurodegeneration, primarily in cerebellum. Alzheimer's disease (AD), by contrast, is a largely sporadic neurodegenerative disorder that rarely strikes before the 7th decade of life with primary neuronal losses in hippocampus, frontal cortex, and certain subcortical nuclei. Despite these differences, we present data supporting the hypothesis that a failure of ATM signaling is involved in the neuronal death in individuals with AD. In both, partially ATM-deficient mice and AD mouse models, neurons show evidence for a loss of ATM. In human AD, three independent indices of reduced ATM function-nuclear translocation of histone deacetylase 4, trimethylation of histone H3, and the presence of cell cycle activity-appear coordinately in neurons in regions where degeneration is prevalent. These same neurons also show reduced ATM protein levels. And though they represent only a fraction of the total neurons in each affected region, their numbers significantly correlate with disease stage. This previously unknown role for the ATM kinase in AD pathogenesis suggests that the failure of ATM function may be an important contributor to the death of neurons in AD individuals.
Collapse
|
31
|
van Os N, Roeleveld N, Weemaes C, Jongmans M, Janssens G, Taylor A, Hoogerbrugge N, Willemsen M. Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline. Clin Genet 2016; 90:105-17. [DOI: 10.1111/cge.12710] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/13/2015] [Accepted: 12/07/2015] [Indexed: 01/03/2023]
Affiliation(s)
- N.J.H. van Os
- Department of Neurology - Pediatric Neurology, Donders Institute for Brain, Cognition and Behaviour; Nijmegen The Netherlands
| | - N. Roeleveld
- Department for Health Evidence, Radboud Institute for Health Sciences; Nijmegen The Netherlands
- Department of Pediatrics, Radboudumc Amalia Children's Hospital; Nijmegen The Netherlands
| | - C.M.R. Weemaes
- Department of Pediatrics, Radboudumc Amalia Children's Hospital; Nijmegen The Netherlands
| | - M.C.J. Jongmans
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences; Radboud university medical center; Nijmegen The Netherlands
| | - G.O. Janssens
- Department of Radiation Oncology; University Medical Center Utrecht and Princess Maxima Center for Pediatric Oncology; Utrecht The Netherlands
| | - A.M.R. Taylor
- School of Cancer Sciences; University of Birmingham; Birmingham UK
| | - N. Hoogerbrugge
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences; Radboud university medical center; Nijmegen The Netherlands
| | - M.A.A.P. Willemsen
- Department of Neurology - Pediatric Neurology, Donders Institute for Brain, Cognition and Behaviour; Nijmegen The Netherlands
| |
Collapse
|
32
|
Fan HC, Chi CS, Cheng SN, Lee HF, Tsai JD, Lin SZ, Harn HJ. Targeting New Candidate Genes by Small Molecules Approaching Neurodegenerative Diseases. Int J Mol Sci 2015; 17:E26. [PMID: 26712747 PMCID: PMC4730273 DOI: 10.3390/ijms17010026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/10/2015] [Accepted: 12/21/2015] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases (NDs) are among the most feared of the disorders that afflict humankind for the lack of specific diagnostic tests and effective treatments. Understanding the molecular, cellular, biochemical changes of NDs may hold therapeutic promise against debilitating central nerve system (CNS) disorders. In the present review, we summarized the clinical presentations and biology backgrounds of NDs, including Parkinson's disease (PD), Huntington's disease (HD), and Alzheimer's disease (AD) and explored the role of molecular mechanisms, including dys-regulation of epigenetic control mechanisms, Ataxia-telangiectasia-mutated protein kinase (ATM), and neuroinflammation in the pathogenesis of NDs. Targeting these mechanisms may hold therapeutic promise against these devastating diseases.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tung's Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan.
| | - Ching-Shiang Chi
- Department of Pediatrics, Tung's Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan.
| | - Shin-Nan Cheng
- Department of Pediatrics, Tung's Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan.
| | - Hsiu-Fen Lee
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Jeng-Dau Tsai
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Shinn-Zong Lin
- Graduate Institute of Immunology, China Medical University, Taichung 404, Taiwan.
- Center for Neuropsychiatry, China Medical University and Hospital, Taichung 404, Taiwan.
- Department of Neurosurgery, China Medical University Beigang Hospital, Yunlin 651, Taiwan.
| | - Horng-Jyh Harn
- Department of Pathology, China Medical University and Hospital, Taichung 404, Taiwan.
| |
Collapse
|
33
|
Jiang D, Zhang Y, Hart RP, Chen J, Herrup K, Li J. Alteration in 5-hydroxymethylcytosine-mediated epigenetic regulation leads to Purkinje cell vulnerability in ATM deficiency. Brain 2015; 138:3520-36. [PMID: 26510954 DOI: 10.1093/brain/awv284] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/05/2015] [Indexed: 11/13/2022] Open
Abstract
A long-standing mystery surrounding ataxia-telangiectasia is why it is mainly cerebellar neurons, Purkinje cells in particular, that appear vulnerable to ATM deficiency. Here we present data showing that 5-hydroxymethylcytosine (5hmC), a newly recognized epigenetic marker found at high levels in neurons, is substantially reduced in human ataxia-telangiectasia and Atm(-/-) mouse cerebellar Purkinje cells. We further show that TET1, an enzyme that converts 5-methylcytosine (5mC) to 5hmC, responds to DNA damage and manipulation of TET1 activity directly affects the DNA damage signalling and ATM-deficient neuronal cell cycle re-entry and death. Quantitative genome-wide analysis of 5hmC-containing sequences shows that in ATM deficiency there is a cerebellum- and Purkinje cell-specific shift in 5hmC enrichment in both regulatory elements and repeated sequences. Finally, we verify that TET1-mediated 5hmC production is linked to the degenerative process of Purkinje cells and behavioural deficits in Atm(-/-) mice. Taken together, the selective loss of 5hmC plays a critical role in driving Purkinje cell vulnerability in ATM deficiency.
Collapse
Affiliation(s)
- Dewei Jiang
- 1 Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China 2 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Ying Zhang
- 1 Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Ronald P Hart
- 3 Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Jianmin Chen
- 3 Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Karl Herrup
- 4 Division of Life Science and the State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jiali Li
- 1 Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| |
Collapse
|
34
|
Abstract
DNA damage is correlated with and may drive the ageing process. Neurons in the brain are postmitotic and are excluded from many forms of DNA repair; therefore, neurons are vulnerable to various neurodegenerative diseases. The challenges facing the field are to understand how and when neuronal DNA damage accumulates, how this loss of genomic integrity might serve as a 'time keeper' of nerve cell ageing and why this process manifests itself as different diseases in different individuals.
Collapse
Affiliation(s)
- Hei-man Chow
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.,Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Karl Herrup
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
35
|
Beraldi R, Chan CH, Rogers CS, Kovács AD, Meyerholz DK, Trantzas C, Lambertz AM, Darbro BW, Weber KL, White KAM, Rheeden RV, Kruer MC, Dacken BA, Wang XJ, Davis BT, Rohret JA, Struzynski JT, Rohret FA, Weimer JM, Pearce DA. A novel porcine model of ataxia telangiectasia reproduces neurological features and motor deficits of human disease. Hum Mol Genet 2015; 24:6473-84. [PMID: 26374845 DOI: 10.1093/hmg/ddv356] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/01/2015] [Indexed: 11/14/2022] Open
Abstract
Ataxia telangiectasia (AT) is a progressive multisystem disorder caused by mutations in the AT-mutated (ATM) gene. AT is a neurodegenerative disease primarily characterized by cerebellar degeneration in children leading to motor impairment. The disease progresses with other clinical manifestations including oculocutaneous telangiectasia, immune disorders, increased susceptibly to cancer and respiratory infections. Although genetic investigations and physiological models have established the linkage of ATM with AT onset, the mechanisms linking ATM to neurodegeneration remain undetermined, hindering therapeutic development. Several murine models of AT have been successfully generated showing some of the clinical manifestations of the disease, however they do not fully recapitulate the hallmark neurological phenotype, thus highlighting the need for a more suitable animal model. We engineered a novel porcine model of AT to better phenocopy the disease and bridge the gap between human and current animal models. The initial characterization of AT pigs revealed early cerebellar lesions including loss of Purkinje cells (PCs) and altered cytoarchitecture suggesting a developmental etiology for AT and could advocate for early therapies for AT patients. In addition, similar to patients, AT pigs show growth retardation and develop motor deficit phenotypes. By using the porcine system to model human AT, we established the first animal model showing PC loss and motor features of the human disease. The novel AT pig provides new opportunities to unmask functions and roles of ATM in AT disease and in physiological conditions.
Collapse
Affiliation(s)
- Rosanna Beraldi
- Children's Health Research Center, Sanford Research, 2301 E. 60 Street North, Sioux Falls, SD 57104, USA
| | - Chun-Hung Chan
- Children's Health Research Center, Sanford Research, 2301 E. 60 Street North, Sioux Falls, SD 57104, USA
| | | | - Attila D Kovács
- Children's Health Research Center, Sanford Research, 2301 E. 60 Street North, Sioux Falls, SD 57104, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Allyn M Lambertz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin W Darbro
- Department of Cytogenetics/Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52241, USA and
| | - Krystal L Weber
- Children's Health Research Center, Sanford Research, 2301 E. 60 Street North, Sioux Falls, SD 57104, USA
| | - Katherine A M White
- Children's Health Research Center, Sanford Research, 2301 E. 60 Street North, Sioux Falls, SD 57104, USA
| | - Richard V Rheeden
- Department of Cytogenetics/Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52241, USA and
| | - Michael C Kruer
- Children's Health Research Center, Sanford Research, 2301 E. 60 Street North, Sioux Falls, SD 57104, USA
| | | | | | | | | | | | | | - Jill M Weimer
- Children's Health Research Center, Sanford Research, 2301 E. 60 Street North, Sioux Falls, SD 57104, USA, School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - David A Pearce
- Children's Health Research Center, Sanford Research, 2301 E. 60 Street North, Sioux Falls, SD 57104, USA, School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| |
Collapse
|
36
|
Campbell A, Krupp B, Bushman J, Noble M, Pröschel C, Mayer-Pröschel M. A novel mouse model for ataxia-telangiectasia with a N-terminal mutation displays a behavioral defect and a low incidence of lymphoma but no increased oxidative burden. Hum Mol Genet 2015; 24:6331-49. [PMID: 26310626 DOI: 10.1093/hmg/ddv342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/17/2015] [Indexed: 12/13/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is a rare multi-system disorder caused by mutations in the ATM gene. Significant heterogeneity exists in the underlying genetic mutations and clinical phenotypes. A number of mouse models have been generated that harbor mutations in the distal region of the gene, and a recent study suggests the presence of residual ATM protein in the brain of one such model. These mice recapitulate many of the characteristics of A-T seen in humans, with the notable exception of neurodegeneration. In order to study how an N-terminal mutation affects the disease phenotype, we generated an inducible Atm mutant mouse model (Atm(tm1Mmpl/tm1Mmpl), referred to as A-T [M]) predicted to express only the first 62 amino acids of Atm. Cells derived from A-T [M] mutant mice exhibited reduced cellular proliferation and an altered DNA damage response, but surprisingly, showed no evidence of an oxidative imbalance. Examination of the A-T [M] animals revealed an altered immunophenotype consistent with A-T. In contrast to mice harboring C-terminal Atm mutations that disproportionately develop thymic lymphomas, A-T [M] mice developed lymphoma at a similar rate as human A-T patients. Morphological analyses of A-T [M] cerebella revealed no substantial cellular defects, similar to other models of A-T, although mice display behavioral defects consistent with cerebellar dysfunction. Overall, these results suggest that loss of Atm is not necessarily associated with an oxidized phenotype as has been previously proposed and that loss of ATM protein is not sufficient to induce cerebellar degeneration in mice.
Collapse
Affiliation(s)
- Andrew Campbell
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA, Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY 14642, USA and
| | - Brittany Krupp
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA
| | - Jared Bushman
- Division of Pharmaceutical Sciences, University of Wyoming School of Pharmacy, 1000 East University Ave., Dept. 3375, Laramie, WY 82071, USA
| | - Mark Noble
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA
| | - Christoph Pröschel
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA,
| |
Collapse
|
37
|
Li J, Jiang D. The role of epigenomics in the neurodegeneration of ataxia-telangiectasia. Epigenomics 2015; 7:137-41. [DOI: 10.2217/epi.14.81] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jiali Li
- Key Laboratory of Animal Models & Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Dewei Jiang
- Key Laboratory of Animal Models & Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
38
|
Physiological and pathophysiological functions of cell cycle proteins in post-mitotic neurons: implications for Alzheimer's disease. Acta Neuropathol 2015; 129:511-25. [PMID: 25618528 PMCID: PMC4366542 DOI: 10.1007/s00401-015-1382-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/02/2015] [Accepted: 01/03/2015] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder for which no effective treatment is available. Increased insight into the disease mechanism in early stages of pathology is required for the development of a successful therapy. Over the years, numerous studies have shown that cell cycle proteins are expressed in neurons of AD patients. Traditionally, neurons are considered to be post-mitotic, which means that they permanently retract from the cell cycle. The expression of cell cycle proteins in adult neurons of AD patients has therefore been suggested to promote or even instigate pathomechanisms underlying AD. Interestingly, expression of cell cycle proteins is detected in post-mitotic neurons of healthy controls as well, albeit to a lesser extent than in AD patients. This indicates that cell cycle proteins may serve important physiological functions in differentiated neurons. Here, we provide an overview of studies that support a role of cell cycle proteins in DNA repair and neuroplasticity in post-mitotic neurons. Aberrant control of these processes could, in turn, contribute to cell cycle-mediated neurodegeneration. The balance between regenerative and degenerative effects of cell cycle proteins in post-mitotic neurons might change throughout the different stages of AD. In the early stages of AD pathology, cell cycle protein expression may primarily occur to aid in the repair of sublethal double-strand breaks in DNA. With the accumulation of pathology, cell cycle-mediated neuroplasticity and neurodegeneration may become more predominant. Understanding the physiological and pathophysiological role of cell cycle proteins in AD could give us more insight into the neurodegenerative process in AD.
Collapse
|
39
|
|
40
|
Herrup K, Chen J, Li J, Plummer MR. Ataxia-Telangiectasia and the Biology of Ataxia-Telangiectasia Mutated (ATM). Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
41
|
Kuhla A, Ludwig SC, Kuhla B, Münch G, Vollmar B. Advanced glycation end products are mitogenic signals and trigger cell cycle reentry of neurons in Alzheimer's disease brain. Neurobiol Aging 2014; 36:753-61. [PMID: 25448604 DOI: 10.1016/j.neurobiolaging.2014.09.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/16/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
Abstract
Neurons that reenter the cell cycle die rather than divide, a phenomenon that is associated with neurodegeneration in Alzheimer's disease (AD). Reexpression of cell-cycle related genes in differentiated neurons in AD might be rooted in aberrant mitogenic signaling. Because microglia and astroglia proliferate in the vicinity of amyloid plaques, it is likely that plaque components or factors secreted from plaque-activated glia induce neuronal mitogenic signaling. Advanced glycation end products (AGEs), protein-bound oxidation products of sugar, might be one of those mitogenic compounds. Cyclin D1 positive neurons are colocalized with AGEs or directly surrounded by extracellular AGE deposits in AD brain. However, a direct proof of DNA replication in these cells has been missing. Here, we report by using fluorescent in situ hybridization that consistent with the expression of cell cycle proteins, hyperploid neuronal cells are in colocalization with AGE staining in AD brains but not in nondemented controls. To complement human data, we used apolipoprotein E-deficient mice as model of neurodegeneration and showed that increased oxidative stress caused an intensified neuronal deposition of AGEs, being accompanied by an activation of the MAPK cascade via RAGE. This cascade, in turn, induced the expression of cyclin D1 and DNA replication. In addition, reduction of oxidative stress by application of α-lipoic acid decreased AGE accumulations, and this decrease was accompanied by a reduction in cell cycle reentry and a more euploid neuronal genome.
Collapse
Affiliation(s)
- Angela Kuhla
- Institute for Experimental Surgery, Medical School Rostock, University of Rostock, Rostock, Germany
| | - Sophie C Ludwig
- Institute for Experimental Surgery, Medical School Rostock, University of Rostock, Rostock, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, University of Western Sydney, Penrith, New South Wales, Australia
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Medical School Rostock, University of Rostock, Rostock, Germany
| |
Collapse
|
42
|
|
43
|
Kwon B, Kumar P, Lee HK, Zeng L, Walsh K, Fu Q, Barakat A, Querfurth HW. Aberrant cell cycle reentry in human and experimental inclusion body myositis and polymyositis. Hum Mol Genet 2014; 23:3681-94. [PMID: 24556217 DOI: 10.1093/hmg/ddu077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Inclusion body myositis (IBM), a degenerative and inflammatory disorder of skeletal muscle, and Alzheimer's disease share protein derangements and attrition of postmitotic cells. Overexpression of cyclins and proliferating cell nuclear antigen (PCNA) and evidence for DNA replication is reported in Alzheimer's disease brain, possibly contributing to neuronal death. It is unknown whether aberrant cell cycle reentry also occurs in IBM. We examined cell cycle markers in IBM compared with normal control, polymyositis (PM) and non-inflammatory dystrophy sample sets. Next, we tested for evidence of reentry and DNA synthesis in C2C12 myotubes induced to express β-amyloid (Aβ42). We observed increased levels of Ki-67, PCNA and cyclins E/D1 in IBM compared with normals and non-inflammatory conditions. Interestingly, PM samples displayed similar increases. Satellite cell markers did not correlate with Ki-67-affected myofiber nuclei. DNA synthesis and cell cycle markers were induced in Aβ-bearing myotubes. Cell cycle marker and cyclin protein expressions were also induced in an experimental allergic myositis-like model of PM in mice. Levels of p21 (Cip1/WAF1), a cyclin-dependent kinase inhibitor, were decreased in affected myotubes. However, overexpression of p21 did not rescue cells from Aβ-induced toxicity. This is the first report of cell cycle reentry in human myositis. The absence of rescue and evidence for reentry in separate models of myodegeneration and inflammation suggest that new DNA synthesis may be a reactive response to either or both stressors.
Collapse
Affiliation(s)
- Bumsup Kwon
- Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Pravir Kumar
- Department of Biotechnology, Delhi Technological University, New Delhi 110042, India
| | - Han-Kyu Lee
- Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Ling Zeng
- Molecular Cardiology and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02135, USA
| | - Kenneth Walsh
- Molecular Cardiology and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02135, USA
| | - Qinghao Fu
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | - Amey Barakat
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | - Henry W Querfurth
- Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA Molecular Cardiology and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02135, USA
| |
Collapse
|
44
|
Yang Y, Hui CW, Li J, Herrup K. The interaction of the atm genotype with inflammation and oxidative stress. PLoS One 2014; 9:e85863. [PMID: 24465754 PMCID: PMC3896418 DOI: 10.1371/journal.pone.0085863] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/04/2013] [Indexed: 01/11/2023] Open
Abstract
In ataxia-telangiectasia (A–T) the death of neurons is associated with the loss of neuronal cell cycle control. In most Atm−/− mouse models, however, these cell cycle anomalies are present but the phenotype of neuronal cell loss found in humans is not. Mouse Atm−/− neurons re-enter a cell cycle and replicate their DNA, but they do not die – even months after initiating the cycle. In the current study, we explore whether systemic inflammation or hypoxia-induced oxidative stress can serve as second stressors that can promote cell death in ATM-deficient neurons. We find that after either immune or hypoxic challenge, the levels of cell cycle proteins – PCNA, cyclin A and cyclin B – are significantly elevated in cerebellar Purkinje cells. Both the number of cells that express cell cycle proteins as well as the intensity of the expression levels in each cell is increased in the stressed animals. The cell cycle-positive neurons also increasingly express cell death markers such as activated caspase-3, γ-H2AX and TUNEL staining. Interestingly, nuclear HDAC4 localization is also enhanced in Atm−/− Purkinje neurons after the immune challenge suggesting that both genetic and epigenetic changes in Atm−/− mice respond to environmental challenges. Our findings support the hypothesis that multiple insults are needed to drive even genetically vulnerable neurons to die a cell cycle-related cell death and point to either inflammation or oxidative stressors as potential contributors to the A−T disease process.
Collapse
Affiliation(s)
- Yan Yang
- Department of Neurology & Neurosciences, SOM E720, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
| | - Chin Wai Hui
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jiali Li
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Karl Herrup
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong ; Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| |
Collapse
|
45
|
Dingledine R, Varvel NH, Dudek FE. When and how do seizures kill neurons, and is cell death relevant to epileptogenesis? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:109-22. [PMID: 25012371 PMCID: PMC4624106 DOI: 10.1007/978-94-017-8914-1_9] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The effect of seizures on neuronal death and the role of seizure-induced neuronal death in acquired epileptogenesis have been debated for decades. Isolated brief seizures probably do not kill neurons; however, severe and repetitive seizures (i.e., status epilepticus) certainly do. Because status epilepticus both kills neurons and also leads to chronic epilepsy, neuronal death has been proposed to be an integral part of acquired epileptogenesis. Several studies, particularly in the immature brain, have suggested that neuronal death is not necessary for acquired epileptogenesis; however, the lack of neuronal death is difficult if not impossible to prove, and more recent studies have challenged this concept. Novel mechanisms of cell death, beyond the traditional concepts of necrosis and apoptosis, include autophagy, phagoptosis, necroptosis, and pyroptosis. The traditional proposal for why neuronal death may be necessary for epileptogenesis is based on the recapitulation of development hypothesis, where a loss of synaptic input from the dying neurons is considered a critical signal to induce axonal sprouting and synaptic-circuit reorganization. We propose a second hypothesis - the neuronal death pathway hypothesis, which states that the biochemical pathways causing programmed neurodegeneration, rather than neuronal death per se, are responsible for or contribute to epileptogenesis. The reprogramming of neuronal death pathways - if true - is proposed to derive from necroptosis or pyroptosis. The proposed new hypothesis may inform on why neuronal death seems closely linked to epileptogenesis, but may not always be.
Collapse
Affiliation(s)
- Ray Dingledine
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicholas H. Varvel
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - F. Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| |
Collapse
|
46
|
Li J, Hart RP, Mallimo EM, Swerdel MR, Kusnecov AW, Herrup K. EZH2-mediated H3K27 trimethylation mediates neurodegeneration in ataxia-telangiectasia. Nat Neurosci 2013; 16:1745-53. [PMID: 24162653 PMCID: PMC3965909 DOI: 10.1038/nn.3564] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/03/2013] [Indexed: 12/14/2022]
Abstract
The symptoms of ataxia-telangiectasia (A-T) include a progressive neurodegeneration caused by ATM protein deficiency. We previously found that nuclear accumulation of histone deacetylase-4, HDAC4, contributes to this degeneration; we now report that increased histone H3K27 trimethylation (H3K27me3) mediated by polycomb repressive complex 2 (PRC2) also plays an important role in the A-T phenotype. Enhancer of zeste homolog 2 (EZH2), a core catalytic component of PRC2, is a new ATM kinase target, and ATM-mediated S734 phosphorylation of EZH2 reduces protein stability. Thus, PRC2 formation is elevated along with H3K27me3in ATM deficiency. ChIP-sequencing shows a significant increase in H3K27me3 ‘marks’ and a dramatic shift in their location. The change of H3K27me3 chromatin-binding pattern is directly related to cell cycle re-entry and cell death of ATM-deficient neurons. Lentiviral knockdown of EZH2 rescues Purkinje cell degeneration and behavioral abnormalities in Atm−/− mice, demonstrating that EZH2 hyperactivity is another key factor in A-T neurodegeneration.
Collapse
Affiliation(s)
- Jiali Li
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
47
|
Lasagni L, Lazzeri E, Shankland SJ, Anders HJ, Romagnani P. Podocyte mitosis - a catastrophe. Curr Mol Med 2013; 13:13-23. [PMID: 23176147 PMCID: PMC3624791 DOI: 10.2174/1566524011307010013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/14/2012] [Accepted: 11/20/2012] [Indexed: 12/20/2022]
Abstract
Podocyte loss plays a key role in the progression of glomerular disorders towards glomerulosclerosis and chronic kidney disease. Podocytes form unique cytoplasmic extensions, foot processes, which attach to the outer surface of the glomerular basement membrane and interdigitate with neighboring podocytes to form the slit diaphragm. Maintaining these sophisticated structural elements requires an intricate actin cytoskeleton. Genetic, mechanic, and immunologic or toxic forms of podocyte injury can cause podocyte loss, which causes glomerular filtration barrier dysfunction, leading to proteinuria. Cell migration and cell division are two processes that require a rearrangement of the actin cytoskeleton; this rearrangement would disrupt the podocyte foot processes, therefore, podocytes have a limited capacity to divide or migrate. Indeed, all cells need to rearrange their actin cytoskeleton to assemble a correct mitotic spindle and to complete mitosis. Podocytes, even when being forced to bypass cell cycle checkpoints to initiate DNA synthesis and chromosome segregation, cannot complete cytokinesis efficiently and thus usually generate aneuploid podocytes. Such aneuploid podocytes rapidly detach and die, a process referred to as mitotic catastrophe. Thus, detached or dead podocytes cannot be adequately replaced by the proliferation of adjacent podocytes. However, even glomerular disorders with severe podocyte injury can undergo regression and remission, suggesting alternative mechanisms to compensate for podocyte loss, such as podocyte hypertrophy or podocyte regeneration from resident renal progenitor cells. Together, mitosis of the terminally differentiated podocyte rather accelerates podocyte loss and therefore glomerulosclerosis. Finding ways to enhance podocyte regeneration from other sources remains a challenge goal to improve the treatment of chronic kidney disease in the future.
Collapse
Affiliation(s)
- L Lasagni
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Viale Pieraccini 6, 50139, Firenze, Italy.
| | | | | | | | | |
Collapse
|
48
|
Herrup K. Post-mitotic role of the cell cycle machinery. Curr Opin Cell Biol 2013; 25:711-6. [PMID: 24055434 DOI: 10.1016/j.ceb.2013.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/08/2013] [Indexed: 12/27/2022]
Abstract
The process of cell division is highly complex. The DNA of the genome must be accurately replicated and segregated into two precisely equal portions; the cytoskeleton must be actively rearranged; and the cellular motor forces that allow the separation of the replicated chromosomes and the splitting of the mother cell into two daughters must be kept under strict spatial and temporal regulation. Not surprisingly for a process of this complexity, there is a wide range of proteins whose location and activity must be accurately controlled to ensure both efficiency and precision. Although the demands placed on these cell cycle proteins are high, once cells such as neurons differentiate they enter a long non-mitotic phase where evolution has conspired to repurpose many of these proteins, leading them to assume new and often unrelated cellular tasks. In neurons there is a wide range of non-cycling functions for these 'cell cycle' proteins and this review covers some of the best-known examples. There is little apparent logic to the second use, but the sheer number of examples suggests that there must be a significant evolutionary advantage to this repurposing strategy.
Collapse
Affiliation(s)
- Karl Herrup
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Dept. of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, United States.
| |
Collapse
|
49
|
Carlessi L, Fusar Poli E, Delia D. Brain and induced pluripotent stem cell-derived neural stem cells as an in vitro model of neurodegeneration in ataxia-telangiectasia. Exp Biol Med (Maywood) 2013; 238:301-7. [PMID: 23598976 DOI: 10.1177/1535370213480703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The ataxia telangiectasia mutated (ATM) kinase is a key transducer of the cellular response to DNA double strand breaks and its deficiency causes ataxia-telangiectasia (A-T), a pleiotropic genetic disorder primarily characterized by cerebellar neuropathy, immunodeficiency and cancer predisposition. While enormous progress has been achieved in elucidating the biochemical and functional regulation of ATM in DNA damage response, and more recently in redox signalling and antioxidant defence, the factors that make neurons in A-T extremely vulnerable remain unclear. Given also that ATM knockout mice do not recapitulate the central nervous system phenotype, a number of human neural stem cell (hNSC) model systems have been developed to provide insights into the mechanisms of neurodegeneration associated with ATM dysfunction. Here we review the hNSC systems developed by us an others to model A-T.
Collapse
Affiliation(s)
- Luigi Carlessi
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133 Milan, Italy
| | | | | |
Collapse
|
50
|
Lavin MF. The appropriateness of the mouse model for ataxia-telangiectasia: neurological defects but no neurodegeneration. DNA Repair (Amst) 2013; 12:612-9. [PMID: 23731731 DOI: 10.1016/j.dnarep.2013.04.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Patients with ataxia-telangiectasia (A-T) are characterised by genome instability, cancer predisposition and a progressive neurodegeneration. A number of model systems have been developed for A-T but none recapitulate all the phenotype. The majority of these models have been generated in mice. While Atm deficient mouse models exhibit much of the phenotype described in patients with A-T, the broad consensus is that they do not display the most debilitating aspect of A-T, i.e. neurodegeneration. Cerebellar atrophy is one of the neuronal characteristics of A-T patients due to defects in neuronal development and progressive loss of Purkinje and granule cells. This is not evident in Atm-deficient mutants but there are multiple reports on neurological abnormalities in these mice. The focus of this review is to evaluate the appropriateness of Atm mutant mouse models for A-T, particularly with reference to neurological abnormalities and how they might relate to neurodegeneration.
Collapse
Affiliation(s)
- Martin F Lavin
- Queensland Institute of Medical Research, Radiation Biology and Oncology, Brisbane, QLD 4029, Australia.
| |
Collapse
|