1
|
Wang T, Weng H, Li Y. Comparative study of the effects of prenatal sevoflurane exposure at different cortical stages on forebrain development and maturation in offspring. Front Neurosci 2025; 19:1556703. [PMID: 40248263 PMCID: PMC12003305 DOI: 10.3389/fnins.2025.1556703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/20/2025] [Indexed: 04/19/2025] Open
Abstract
Introduction Brain development involves several critical stages, such as proliferation, neuronal migration, axonal pathfinding, and connection formation. Sevoflurane, a γ-aminobutyric acid (GABA) receptor agonist, is widely used as an inhaled general anesthetic. However, its impact on brain development has raised increasing concerns, particularly regarding prenatal exposure. This study aims to investigate the effects of prenatal sevoflurane exposure (PSE) at different cortical stages, focusing on its impact on the migration of glutamatergic and GABAergic neurons and neuronal behavior in offspring. Methods PSE was administered at two critical prenatal stages: embryonic day (E) 12.5 and E18.5. Double in situ hybridization was used to identify the coexpression of GABA receptors in Pax6- and Mash1-positive cells in the forebrain. The radial migration of glutamatergic neurons and the tangential migration of GABAergic neurons were analyzed. Behavioral tests, including the open-field test, elevated plus-maze test, forced swim test, tail suspension test, sucrose preference test, and Morris water maze, were performed on offspring to assess anxiety-like behaviors, depression, and learning and memory impairments. Results PSE inhibits the radial migration of glutamatergic neurons and promotes the tangential migration of GABAergic neurons. Specifically, early exposure (E12.5) inhibited the expression of the Pax6-Tbr2-Tbr1 cascade and the radial migration of Tbr1 in the ventral prefrontal cortex (PFC), whereas late exposure (E18.5) inhibited this process on the dorsal side. In addition, offspring mice with PSE exhibited increased anxiety-like behaviors, rather than depression, as demonstrated by reduced time spent in the center of the open-field test and in the open arms of the elevated plus-maze test. No significant differences were observed in the forced swim test, tail suspension test, or sucrose preference test. Furthermore, learning and memory impairments were observed in the Morris water maze. Conclusion Our results indicate that PSE at E12.5 and E18.5 leads to abnormalities in the migration of glutamatergic and GABAergic neurons, affecting long-term anxiety-like behaviors and causing learning and memory impairments in offspring mice.
Collapse
Affiliation(s)
- Tianyuan Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huandi Weng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yalan Li
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Karatayev O, Collier AD, Targoff SR, Leibowitz SF. Neurological Disorders Induced by Drug Use: Effects of Adolescent and Embryonic Drug Exposure on Behavioral Neurodevelopment. Int J Mol Sci 2024; 25:8341. [PMID: 39125913 PMCID: PMC11313660 DOI: 10.3390/ijms25158341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Clinical studies demonstrate that the risk of developing neurological disorders is increased by overconsumption of the commonly used drugs, alcohol, nicotine and cannabis. These drug-induced neurological disorders, which include substance use disorder (SUD) and its co-occurring emotional conditions such as anxiety and depression, are observed not only in adults but also with drug use during adolescence and after prenatal exposure to these drugs, and they are accompanied by long-lasting disturbances in brain development. This report provides overviews of clinical and preclinical studies, which confirm these adverse effects in adolescents and the offspring prenatally exposed to the drugs and include a more in-depth description of specific neuronal systems, their neurocircuitry and molecular mechanisms, affected by drug exposure and of specific techniques used to determine if these effects in the brain are causally related to the behavioral disturbances. With analysis of further studies, this review then addresses four specific questions that are important for fully understanding the impact that drug use in young individuals can have on future pregnancies and their offspring. Evidence demonstrates that the adverse effects on their brain and behavior can occur: (1) at low doses with short periods of drug exposure during pregnancy; (2) after pre-conception drug use by both females and males; (3) in subsequent generations following the initial drug exposure; and (4) in a sex-dependent manner, with drug use producing a greater risk in females than males of developing SUDs with emotional conditions and female offspring after prenatal drug exposure responding more adversely than male offspring. With the recent rise in drug use by adolescents and pregnant women that has occurred in association with the legalization of cannabis and increased availability of vaping tools, these conclusions from the clinical and preclinical literature are particularly alarming and underscore the urgent need to educate young women and men about the possible harmful effects of early drug use and to seek novel therapeutic strategies that might help to limit drug use in young individuals.
Collapse
Affiliation(s)
| | | | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA; (O.K.); (S.R.T.)
| |
Collapse
|
3
|
Topchiy I, Mohbat J, Folorunso OO, Wang ZZ, Lazcano-Etchebarne C, Engin E. GABA system as the cause and effect in early development. Neurosci Biobehav Rev 2024; 161:105651. [PMID: 38579901 PMCID: PMC11081854 DOI: 10.1016/j.neubiorev.2024.105651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
GABA is the primary inhibitory neurotransmitter in the adult brain and through its actions on GABAARs, it protects against excitotoxicity and seizure activity, ensures temporal fidelity of neurotransmission, and regulates concerted rhythmic activity of neuronal populations. In the developing brain, the development of GABAergic neurons precedes that of glutamatergic neurons and the GABA system serves as a guide and framework for the development of other brain systems. Despite this early start, the maturation of the GABA system also continues well into the early postnatal period. In this review, we organize evidence around two scenarios based on the essential and protracted nature of GABA system development: 1) disruptions in the development of the GABA system can lead to large scale disruptions in other developmental processes (i.e., GABA as the cause), 2) protracted maturation of this system makes it vulnerable to the effects of developmental insults (i.e., GABA as the effect). While ample evidence supports the importance of GABA/GABAAR system in both scenarios, large gaps in existing knowledge prevent strong mechanistic conclusions.
Collapse
Affiliation(s)
- Irina Topchiy
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Julie Mohbat
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland
| | - Oluwarotimi O Folorunso
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Ziyi Zephyr Wang
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | | | - Elif Engin
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Yasmin N, Collier AD, Abdulai AR, Karatayev O, Yu B, Fam M, Leibowitz SF. Role of Chemokine Cxcl12a in Mediating the Stimulatory Effects of Ethanol on Embryonic Development of Subpopulations of Hypocretin/Orexin Neurons and Their Projections. Cells 2023; 12:1399. [PMID: 37408233 PMCID: PMC10216682 DOI: 10.3390/cells12101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Studies in zebrafish and rats show that embryonic ethanol exposure at low-moderate concentrations stimulates hypothalamic neurons expressing hypocretin/orexin (Hcrt) that promote alcohol consumption, effects possibly involving the chemokine Cxcl12 and its receptor Cxcr4. Our recent studies in zebrafish of Hcrt neurons in the anterior hypothalamus (AH) demonstrate that ethanol exposure has anatomically specific effects on Hcrt subpopulations, increasing their number in the anterior AH (aAH) but not posterior AH (pAH), and causes the most anterior aAH neurons to become ectopically expressed further anterior in the preoptic area (POA). Using tools of genetic overexpression and knockdown, our goal here was to determine whether Cxcl12a has an important function in mediating the specific effects of ethanol on these Hcrt subpopulations and their projections. The results demonstrate that the overexpression of Cxcl12a has stimulatory effects similar to ethanol on the number of aAH and ectopic POA Hcrt neurons and the long anterior projections from ectopic POA neurons and posterior projections from pAH neurons. They also demonstrate that knockdown of Cxcl12a blocks these effects of ethanol on the Hcrt subpopulations and projections, providing evidence supporting a direct role of this specific chemokine in mediating ethanol's stimulatory effects on embryonic development of the Hcrt system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
5
|
Tousley AR, Yeh PWL, Yeh HH. Precocious emergence of cognitive and synaptic dysfunction in 3xTg-AD mice exposed prenatally to ethanol. Alcohol 2023; 107:56-72. [PMID: 36038084 PMCID: PMC10183974 DOI: 10.1016/j.alcohol.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting approximately 50 million people worldwide. Early life risk factors for AD, including prenatal exposures, remain underexplored. Exposure of the fetus to alcohol (ethanol) is not uncommon during pregnancy, and may result in physical, behavioral, and cognitive changes that are first detected during childhood but result in lifelong challenges. Whether or not prenatal ethanol exposure may contribute to Alzheimer's disease risk is not yet known. Here we exposed a mouse model of Alzheimer's disease (3xTg-AD), bearing three dementia-associated transgenes, presenilin1 (PS1M146V), human amyloid precursor protein (APPSwe), and human tau (TauP301S), to ethanol on gestational days 13.5-16.5 using an established binge-type maternal ethanol exposure paradigm. We sought to investigate whether prenatal ethanol exposure resulted in a precocious onset or increased severity of AD progression, or both. We found that a brief binge-type gestational exposure to ethanol during a period of peak neuronal migration to the developing cortex resulted in an earlier onset of spatial memory deficits and behavioral inflexibility in the progeny, as assessed by performance on the modified Barnes maze task. The observed cognitive changes coincided with alterations to both GABAergic and glutamatergic synaptic transmission in layer V/VI neurons, diminished GABAergic interneurons, and increased β-amyloid accumulation in the medial prefrontal cortex. These findings provide the first preclinical evidence for prenatal ethanol exposure as a potential factor for modifying the onset of AD-like behavioral dysfunction and set the groundwork for more comprehensive investigations into the underpinnings of AD-like cognitive changes in individuals with fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Adelaide R Tousley
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States; MD-PhD Program, Geisel School of Medicine at Dartmouth; Integrative Neuroscience at Dartmouth Graduate Program, Hanover, NH, United States
| | - Pamela W L Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Hermes H Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.
| |
Collapse
|
6
|
Rouzer SK, Gutierrez J, Larin KV, Miranda RC. Alcohol & cannabinoid co-use: Implications for impaired fetal brain development following gestational exposure. Exp Neurol 2023; 361:114318. [PMID: 36627039 PMCID: PMC9892278 DOI: 10.1016/j.expneurol.2023.114318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Alcohol and marijuana are two of the most consumed psychoactive substances by pregnant people, and independently, both substances have been associated with lifelong impacts on fetal neurodevelopment. Importantly, individuals of child-bearing age are increasingly engaging in simultaneous alcohol and cannabinoid (SAC) use, which amplifies each drug's pharmacodynamic effects and increases craving for both substances. However, to date, investigations of prenatal polysubstance use are notably limited in both human and non-human populations. In this review paper, we will address what is currently known about combined exposure to these substances, both directly and prenatally, and identify shared prenatal targets from single-exposure paradigms that may highlight susceptible neurobiological mechanisms for future investigation and therapeutic intervention. Finally, we conclude this manuscript by discussing factors that we feel are essential in the consideration and experimental design of future preclinical SAC studies.
Collapse
Affiliation(s)
- Siara Kate Rouzer
- Department of Neuroscience & Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX 77807, United States.
| | - Jessica Gutierrez
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States
| | - Rajesh C Miranda
- Department of Neuroscience & Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX 77807, United States
| |
Collapse
|
7
|
Luhmann HJ. Malformations-related neocortical circuits in focal seizures. Neurobiol Dis 2023; 178:106018. [PMID: 36706927 DOI: 10.1016/j.nbd.2023.106018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
This review article gives an overview on the molecular, cellular and network mechanisms underlying focal seizures in neocortical networks with developmental malformations. Neocortical malformations comprise a large variety of structural abnormalities associated with epilepsy and other neurological and psychiatric disorders. Genetic or acquired disorders of neocortical cell proliferation, neuronal migration and/or programmed cell death may cause pathologies ranging from the expression of dysmorphic neurons and heterotopic cell clusters to abnormal layering and cortical misfolding. After providing a brief overview on the pathogenesis and structure of neocortical malformations in humans, animal models are discussed and how they contributed to our understanding on the mechanisms of neocortical hyperexcitability associated with developmental disorders. State-of-the-art molecular biological and electrophysiological techniques have been also used in humans and on resectioned neocortical tissue of epileptic patients and provide deep insights into the subcellular, cellular and network mechanisms contributing to focal seizures. Finally, a brief outlook is given how novel models and methods can shape translational research in the near future.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz, Germany.
| |
Collapse
|
8
|
Popova S, Charness ME, Burd L, Crawford A, Hoyme HE, Mukherjee RAS, Riley EP, Elliott EJ. Fetal alcohol spectrum disorders. Nat Rev Dis Primers 2023; 9:11. [PMID: 36823161 DOI: 10.1038/s41572-023-00420-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/25/2023]
Abstract
Alcohol readily crosses the placenta and may disrupt fetal development. Harm from prenatal alcohol exposure (PAE) is determined by the dose, pattern, timing and duration of exposure, fetal and maternal genetics, maternal nutrition, concurrent substance use, and epigenetic responses. A safe dose of alcohol use during pregnancy has not been established. PAE can cause fetal alcohol spectrum disorders (FASD), which are characterized by neurodevelopmental impairment with or without facial dysmorphology, congenital anomalies and poor growth. FASD are a leading preventable cause of birth defects and developmental disability. The prevalence of FASD in 76 countries is >1% and is high in individuals living in out-of-home care or engaged in justice and mental health systems. The social and economic effects of FASD are profound, but the diagnosis is often missed or delayed and receives little public recognition. Future research should be informed by people living with FASD and be guided by cultural context, seek consensus on diagnostic criteria and evidence-based treatments, and describe the pathophysiology and lifelong effects of FASD. Imperatives include reducing stigma, equitable access to services, improved quality of life for people with FASD and FASD prevention in future generations.
Collapse
Affiliation(s)
- Svetlana Popova
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada.
| | - Michael E Charness
- VA Boston Healthcare System, West Roxbury, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.,Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Larry Burd
- North Dakota Fetal Alcohol Syndrome Center, Department of Pediatrics, University of North Dakota School of Medicine and Health Sciences, Pediatric Therapy Services, Altru Health System, Grand Forks, ND, USA
| | - Andi Crawford
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - H Eugene Hoyme
- Sanford Children's Genomic Medicine Consortium, Sanford Health, and University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA
| | - Raja A S Mukherjee
- National UK FASD Clinic, Surrey and Borders Partnership NHS Foundation Trust, Redhill, Surrey, UK
| | - Edward P Riley
- Center for Behavioral Teratology, San Diego State University, San Diego, CA, USA
| | - Elizabeth J Elliott
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,New South Wales FASD Assessment Service, CICADA Centre for Care and Intervention for Children and Adolescents affected by Drugs and Alcohol, Sydney Children's Hospitals Network, Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Basavarajappa BS, Subbanna S. Synaptic Plasticity Abnormalities in Fetal Alcohol Spectrum Disorders. Cells 2023; 12:442. [PMID: 36766783 PMCID: PMC9913617 DOI: 10.3390/cells12030442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The brain's ability to strengthen or weaken synaptic connections is often termed synaptic plasticity. It has been shown to function in brain remodeling following different types of brain damage (e.g., drugs of abuse, alcohol use disorders, neurodegenerative diseases, and inflammatory conditions). Although synaptic plasticity mechanisms have been extensively studied, how neural plasticity can influence neurobehavioral abnormalities in alcohol use disorders (AUDs) is far from being completely understood. Alcohol use during pregnancy and its harmful effects on the developing offspring are major public health, social, and economic challenges. The significant attribute of prenatal alcohol exposure on offspring is damage to the central nervous system (CNS), causing a range of synaptic structural, functional, and behavioral impairments, collectively called fetal alcohol spectrum disorder (FASD). Although the synaptic mechanisms in FASD are limited, emerging evidence suggests that FASD pathogenesis involves altering a set of molecules involved in neurotransmission, myelination, and neuroinflammation. These studies identify several immediate and long-lasting changes using many molecular approaches that are essential for synaptic plasticity and cognitive function. Therefore, they can offer potential synaptic targets for the many neurobehavioral abnormalities observed in FASD. In this review, we discuss the substantial research progress in different aspects of synaptic and molecular changes that can shed light on the mechanism of synaptic dysfunction in FASD. Increasing our understanding of the synaptic changes in FASD will significantly advance our knowledge and could provide a basis for finding novel therapeutic targets and innovative treatment strategies.
Collapse
Affiliation(s)
- Balapal S. Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
10
|
Collier AD, Yasmin N, Karatayev O, Abdulai AR, Yu B, Khalizova N, Fam M, Leibowitz SF. Neuronal chemokine concentration gradients mediate effects of embryonic ethanol exposure on ectopic hypocretin/orexin neurons and behavior in zebrafish. Sci Rep 2023; 13:1447. [PMID: 36702854 PMCID: PMC9880007 DOI: 10.1038/s41598-023-28369-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Embryonic ethanol exposure in zebrafish and rats, while stimulating hypothalamic hypocretin/orexin (Hcrt) neurons along with alcohol consumption and related behaviors, increases the chemokine receptor Cxcr4 that promotes neuronal migration and may mediate ethanol's effects on neuronal development. Here we performed a more detailed anatomical analysis in zebrafish of ethanol's effects on the Cxcl12a/Cxcr4b system throughout the entire brain as it relates to Hcrt neurons developing within the anterior hypothalamus (AH) where they are normally located. We found that ethanol increased these Hcrt neurons only in the anterior part of the AH and induced ectopic Hcrt neurons further anterior in the preoptic area, and these effects along with ethanol-induced behaviors were completely blocked by a Cxcr4 antagonist. Analysis of cxcl12a transcripts and internalized Cxcr4b receptors throughout the brain showed they both exhibited natural posterior-to-anterior concentration gradients, with levels lowest in the posterior AH and highest in the anterior telencephalon. While stimulating their density in all areas and maintaining these gradients, ethanol increased chemokine expression only in the more anterior and ectopic Hcrt neurons, effects blocked by the Cxcr4 antagonist. These findings demonstrate how increased chemokine expression acting along natural gradients mediates ethanol-induced anterior migration of ectopic Hcrt neurons and behavioral disturbances.
Collapse
Affiliation(s)
- Adam D Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Nushrat Yasmin
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Olga Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Abdul R Abdulai
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Boyi Yu
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Nailya Khalizova
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Milisia Fam
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Hawley LE, Prochaska F, Stringer M, Goodlett CR, Roper RJ. Sexually dimorphic DYRK1A overexpression on postnatal day 15 in the Ts65Dn mouse model of Down syndrome: Effects of pharmacological targeting on behavioral phenotypes. Pharmacol Biochem Behav 2022; 217:173404. [DOI: 10.1016/j.pbb.2022.173404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
12
|
Shang W, Dai Z, Zhang J, Shen F, Sui N, Liang J. Embryonic opioid exposure impairs inhibitory transmission of striatum in day‐old chicks. Dev Psychobiol 2022; 64:e22273. [DOI: 10.1002/dev.22273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Wen Shang
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Zhonghua Dai
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Jianjun Zhang
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Fang Shen
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Nan Sui
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Jing Liang
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
- Sino‐Danish Center for Education and Research University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
13
|
Bottom RT, Kozanian OO, Rohac DJ, Erickson MA, Huffman KJ. Transgenerational Effects of Prenatal Ethanol Exposure in Prepubescent Mice. Front Cell Dev Biol 2022; 10:812429. [PMID: 35386207 PMCID: PMC8978834 DOI: 10.3389/fcell.2022.812429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Fetal alcohol spectrum disorders (FASD) represent a leading cause of non-genetic neuropathologies. Recent preclinical evidence from suggests that prenatal ethanol exposure (PrEE), like other environmental exposures, may have a significant, transgenerational impact on the offspring of directly exposed animals, including altered neocortical development at birth and behavior in peri-pubescent mice. How these adverse behavioral outcomes are manifested within the brain at the time of behavioral disruption remains unknown. Methods: A transgenerational mouse model of FASD was used to generate up to a third filial generation of offspring to study. Using a multi-modal battery of behavioral assays, we assessed motor coordination/function, sensorimotor processing, risk-taking behavior, and depressive-like behavior in postnatal day (P) 20 pre-pubescent mice. Additionally, sensory neocortical area connectivity using dye tracing, neocortical gene expression using in situ RNA hybridization, and spine density of spiny stellate cells in the somatosensory cortex using Golgi-Cox staining were examined in mice at P20. Results: We found that PrEE induces behavioral abnormalities including abnormal sensorimotor processing, increased risk-taking behavior, and increased depressive-like behaviors that extend to the F3 generation in 20-day old mice. Assessment of both somatosensory and visual cortical connectivity, as well as cortical RZRβ expression in pre-pubescent mice yielded no significant differences among any experimental generations. In contrast, only directly-exposed F1 mice displayed altered cortical expression of Id2 and decreased spine density among layer IV spiny stellate cells in somatosensory cortex at this pre-pubescent, post weaning age. Conclusion: Our results suggest that robust, clinically-relevant behavioral abnormalities are passed transgenerationally to the offspring of mice directly exposed to prenatal ethanol. Additionally, in contrast to our previous findings in the newborn PrEE mouse, a lack of transgenerational findings within the brain at this later age illuminates the critical need for future studies to attempt to discover the link between neurological function and the described behavioral changes. Overall, our study suggests that multi-generational effects of PrEE may have a substantial impact on human behavior as well as health and well-being and that these effects likely extend beyond early childhood.
Collapse
Affiliation(s)
- Riley T Bottom
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA, United States
| | - Olga O Kozanian
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - David J Rohac
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Michael A Erickson
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Kelly J Huffman
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA, United States.,Department of Psychology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
14
|
Ossola C, Kalebic N. Roots of the Malformations of Cortical Development in the Cell Biology of Neural Progenitor Cells. Front Neurosci 2022; 15:817218. [PMID: 35069108 PMCID: PMC8766818 DOI: 10.3389/fnins.2021.817218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
The cerebral cortex is a structure that underlies various brain functions, including cognition and language. Mammalian cerebral cortex starts developing during the embryonic period with the neural progenitor cells generating neurons. Newborn neurons migrate along progenitors’ radial processes from the site of their origin in the germinal zones to the cortical plate, where they mature and integrate in the forming circuitry. Cell biological features of neural progenitors, such as the location and timing of their mitoses, together with their characteristic morphologies, can directly or indirectly regulate the abundance and the identity of their neuronal progeny. Alterations in the complex and delicate process of cerebral cortex development can lead to malformations of cortical development (MCDs). They include various structural abnormalities that affect the size, thickness and/or folding pattern of the developing cortex. Their clinical manifestations can entail a neurodevelopmental disorder, such as epilepsy, developmental delay, intellectual disability, or autism spectrum disorder. The recent advancements of molecular and neuroimaging techniques, along with the development of appropriate in vitro and in vivo model systems, have enabled the assessment of the genetic and environmental causes of MCDs. Here we broadly review the cell biological characteristics of neural progenitor cells and focus on those features whose perturbations have been linked to MCDs.
Collapse
|
15
|
Lee SM, Yeh PWL, Yeh HH. L-Type Calcium Channels Contribute to Ethanol-Induced Aberrant Tangential Migration of Primordial Cortical GABAergic Interneurons in the Embryonic Medial Prefrontal Cortex. eNeuro 2022; 9:ENEURO.0359-21.2021. [PMID: 34930830 PMCID: PMC8805770 DOI: 10.1523/eneuro.0359-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022] Open
Abstract
Exposure of the fetus to alcohol (ethanol) via maternal consumption during pregnancy can result in fetal alcohol spectrum disorders (FASD), hallmarked by long-term physical, behavioral, and intellectual abnormalities. In our preclinical mouse model of FASD, prenatal ethanol exposure disrupts tangential migration of corticopetal GABAergic interneurons (GINs) in the embryonic medial prefrontal cortex (mPFC). We postulated that ethanol perturbed the normal pattern of tangential migration via enhancing GABAA receptor-mediated membrane depolarization that prevails during embryonic development in GABAergic cortical interneurons. However, beyond this, our understanding of the underlying mechanisms is incomplete. Here, we tested the hypothesis that the ethanol-enhanced depolarization triggers downstream an increase in high-voltage-activated nifedipine-sensitive L-type calcium channel (LTCC) activity and provide evidence implicating calcium dynamics in the signaling scheme underlying the migration of embryonic GINs and its aberrance. Tangentially migrating Nkx2.1+ GINs expressed immunoreactivity to Cav1.2, the canonical neuronal isoform of the L-type calcium channel. Prenatal ethanol exposure did not alter its protein expression profile in the embryonic mPFC. However, exposing ethanol concomitantly with the LTCC blocker nifedipine prevented the ethanol-induced aberrant migration both in vitro and in vivo In addition, whole-cell patch clamp recording of LTCCs in GINs migrating in embryonic mPFC slices revealed that acutely applied ethanol potentiated LTCC activity in migrating GINs. Based on evidence reported in the present study, we conclude that calcium is an important intracellular intermediary downstream of GABAA receptor-mediated depolarization in the mechanistic scheme of an ethanol-induced aberrant tangential migration of embryonic GABAergic cortical interneurons.
Collapse
Affiliation(s)
- Stephanie M Lee
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Pamela W L Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Hermes H Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
16
|
Bukina ES, Kondratyev NV, Kozin SV, Golimbet VE, Artyuhov AS, Dashinimaev EB. SLC6A1 and Neuropsychiatric Diseases: The Role of Mutations and Prospects for Treatment with Genome Editing Systems. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Bariselli S, Lovinger DM. Corticostriatal Circuit Models of Cognitive Impairments Induced by Fetal Exposure to Alcohol. Biol Psychiatry 2021; 90:516-528. [PMID: 34281711 PMCID: PMC8463431 DOI: 10.1016/j.biopsych.2021.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 12/26/2022]
Abstract
The term fetal alcohol spectrum disorder includes a group of diseases caused by fetal alcohol exposure (FAE). Patients with fetal alcohol spectrum disorder display heterogeneous socioemotional and cognitive deficits, particularly in the domain of executive function, that share symptoms with other neuropsychiatric disorders. Despite the availability of several preclinical models, the developmental brain defects causally linked to behavioral deficits induced by FAE remain poorly understood. Here, we first review the effects of FAE on corticostriatal development and its impact on both corticostriatal pathway function and cognitive abilities. We propose three non-mutually exclusive circuit models of corticostriatal dysfunctions to account for some of the FAE-induced cognitive deficits. One model posits that associative-sensorimotor imbalance causes hyper goal-directed behavior, and a second model implies that alteration of prefrontal-striatal behavioral suppression circuits results in loss of behavioral inhibition. A third model suggests that local striatal circuit deficits affect striatal neuronal ensemble function to impair action selection and performance. Finally, we discuss how preclinical approaches applied to these circuit models could offer potential rescue strategies for executive function deficits in patients with fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- Sebastiano Bariselli
- National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, Bethesda, MD (20892-941),Center on Compulsive Behaviors, Intramural Research Program, National Institute of Health (NIH), Bethesda, MD, United States
| | - David M. Lovinger
- National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, Bethesda, MD (20892-941),Corresponding author:
| |
Collapse
|
18
|
Legault LM, Doiron K, Breton-Larrivée M, Langford-Avelar A, Lemieux A, Caron M, Jerome-Majewska LA, Sinnett D, McGraw S. Pre-implantation alcohol exposure induces lasting sex-specific DNA methylation programming errors in the developing forebrain. Clin Epigenetics 2021; 13:164. [PMID: 34425890 PMCID: PMC8381495 DOI: 10.1186/s13148-021-01151-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background Prenatal alcohol exposure is recognized for altering DNA methylation profiles of brain cells during development, and to be part of the molecular basis underpinning Fetal Alcohol Spectrum Disorder (FASD) etiology. However, we have negligible information on the effects of alcohol exposure during pre-implantation, the early embryonic window marked with dynamic DNA methylation reprogramming, and on how this may rewire the brain developmental program. Results Using a pre-clinical in vivo mouse model, we show that a binge-like alcohol exposure during pre-implantation at the 8-cell stage leads to surge in morphological brain defects and adverse developmental outcomes during fetal life. Genome-wide DNA methylation analyses of fetal forebrains uncovered sex-specific alterations, including partial loss of DNA methylation maintenance at imprinting control regions, and abnormal de novo DNA methylation profiles in various biological pathways (e.g., neural/brain development). Conclusion These findings support that alcohol-induced DNA methylation programming deviations during pre-implantation could contribute to the manifestation of neurodevelopmental phenotypes associated with FASD. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01151-0.
Collapse
Affiliation(s)
- L M Legault
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - K Doiron
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - M Breton-Larrivée
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - A Langford-Avelar
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - A Lemieux
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - M Caron
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - L A Jerome-Majewska
- McGill University Health Centre Glen Site, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada.,Department of Pediatrics, McGill University, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
| | - D Sinnett
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Pediatrics, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - S McGraw
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada. .,Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
19
|
Pinson MR, Holloway KN, Douglas JC, Kane CJM, Miranda RC, Drew PD. Divergent and overlapping hippocampal and cerebellar transcriptome responses following developmental ethanol exposure during the secondary neurogenic period. Alcohol Clin Exp Res 2021; 45:1408-1423. [PMID: 34060105 PMCID: PMC8312515 DOI: 10.1111/acer.14633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/16/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
Abstract
Background The developing hippocampus and cerebellum, unique among brain regions, exhibit a secondary surge in neurogenesis during the third trimester of pregnancy. Ethanol (EtOH) exposure during this period is results in a loss of tissue volume and associated neurobehavioral deficits. However, mechanisms that link EtOH exposure to teratology in these regions are not well understood. We therefore analyzed transcriptomic adaptations to EtOH exposure to identify mechanistic linkages. Methods Hippocampi and cerebella were microdissected at postnatal day (P)10, from control C57BL/6J mouse pups, and pups treated with 4 g/kg of EtOH from P4 to P9. RNA was isolated and RNA‐seq analysis was performed. We compared gene expression in EtOH‐ and vehicle‐treated control neonates and performed biological pathway‐overrepresentation analysis. Results While EtOH exposure resulted in the general induction of genes associated with the S‐phase of mitosis in both cerebellum and hippocampus, overall there was little overlap in differentially regulated genes and associated biological pathways between these regions. In cerebellum, EtOH additionally induced gene expression associated with the G2/M‐phases of the cell cycle and sonic hedgehog signaling, while in hippocampus, EtOH‐induced the pathways for ribosome biogenesis and protein translation. Moreover, EtOH inhibited the transcriptomic identities associated with inhibitory interneuron subpopulations in the hippocampus, while in the cerebellum there was a more pronounced inhibition of transcripts across multiple oligodendrocyte maturation stages. Conclusions These data indicate that during the delayed neurogenic period, EtOH may stimulate the cell cycle, but it otherwise results in widely divergent molecular effects in the hippocampus and cerebellum. Moreover, these data provide evidence for region‐ and cell‐type‐specific vulnerability, which may contribute to the pathogenic effects of developmental EtOH exposure.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Kalee N Holloway
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - James C Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
20
|
Martin MM, McCarthy DM, Schatschneider C, Trupiano MX, Jones SK, Kalluri A, Bhide PG. Effects of Developmental Nicotine Exposure on Frontal Cortical GABA-to-Non-GABA Neuron Ratio and Novelty-Seeking Behavior. Cereb Cortex 2021; 30:1830-1842. [PMID: 31599922 DOI: 10.1093/cercor/bhz207] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cigarette smoking during pregnancy is a major public health concern, resulting in detrimental health effects in the mother and her offspring. The adverse behavioral consequences for children include increased risk for attention deficit hyperactivity disorder, working memory deficits, epilepsy, novelty-seeking, and risk-taking behaviors. Some of these behavioral conditions are consistent with an imbalance in frontal cortical excitatory (glutamate) and inhibitory (GABA) neurotransmitter signaling. We used a GAD67-GFP knock-in mouse model to examine if developmental nicotine exposure alters frontal cortical GABA neuron numbers, GABA-to-non-GABA neuron ratio and behavioral phenotypes. Female mice were exposed to nicotine (100 or 200 μg/mL) in drinking water beginning 3 weeks prior to breeding and until 3 weeks postpartum. Male and female offspring were examined beginning at 60 days of age. The nicotine exposure produced dose-dependent decreases in GABA-to-non-GABA neuron ratios in the prefrontal and medial prefrontal cortices without perturbing the intrinsic differences in cortical thickness and laminar distribution of GABA or non-GABA neurons between these regions. A significant increase in exploratory behavior and a shift toward "approach" in the approach-avoidance paradigm were also observed. Thus, developmental nicotine exposure shifts the cortical excitation-inhibition balance toward excitation and produces behavioral changes consistent with novelty-seeking behavior.
Collapse
Affiliation(s)
- Melissa M Martin
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306-4300, USA
| | - Deirdre M McCarthy
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306-4300, USA
| | - Chris Schatschneider
- Department of Psychology, Florida State University, Tallahassee, FL 32306-4300, USA
| | - Mia X Trupiano
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306-4300, USA
| | - Sara K Jones
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306-4300, USA
| | - Aishani Kalluri
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306-4300, USA
| | - Pradeep G Bhide
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306-4300, USA
| |
Collapse
|
21
|
Elser BA, Kayali K, Dhakal R, O'Hare B, Wang K, Lehmler HJ, Stevens HE. Combined Maternal Exposure to Cypermethrin and Stress Affect Embryonic Brain and Placental Outcomes in Mice. Toxicol Sci 2021; 175:182-196. [PMID: 32191333 DOI: 10.1093/toxsci/kfaa040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prenatal exposure to cypermethrin is a risk factor for adverse neurodevelopmental outcomes in children. In addition, maternal psychological stress during pregnancy has significant effects on fetal neurodevelopment and may influence end-stage toxicity to offspring by altering maternal xenobiotic metabolism. As such, this study examined effects of maternal exposure to alpha-cypermethrin and stress, alone and in combination, on offspring development, with a focus on fetal neurotoxicity. CD1 mouse dams were administered 10 mg/kg alpha-cypermethrin or corn oil vehicle via oral gavage from embryonic day 11 (E11) to E14. In addition, dams from each treatment were subjected to a standard model of restraint stress from E12 to E14. Cypermethrin treatment impaired fetal growth, reduced fetal forebrain volume, and increased ventral forebrain proliferative zone volume, the latter effects driven by combined exposure with stress. Cypermethrin also impaired migration of GABAergic progenitors, with different transcriptional changes alone and in combination with stress. Stress and cypermethrin also interacted in effects on embryonic microglia morphology. In addition, levels of cypermethrin were elevated in the serum of stressed dams, which was accompanied by interacting effects of cypermethrin and stress on hepatic expression of cytochrome P450 enzymes. Levels of cypermethrin in amniotic fluid were below the limit of quantification, suggesting minimal transfer to fetal circulation. Despite this, cypermethrin increased placental malondialdehyde levels and increased placental expression of genes responsive to oxidative stress, effects significantly modified by stress exposure. These findings suggest a role for interaction between maternal exposures to cypermethrin and stress on offspring neurodevelopment, involving indirect mechanisms in the placenta and maternal liver.
Collapse
Affiliation(s)
- Benjamin A Elser
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College.,Department of Psychiatry, Carver College of Medicine
| | - Khaled Kayali
- Department of Psychiatry, Carver College of Medicine
| | - Ram Dhakal
- Department of Occupational and Environmental Health
| | - Bailey O'Hare
- Department of Psychiatry, Carver College of Medicine
| | - Kai Wang
- Department of Biostatistics, College of Public Health, The University of Iowa, Iowa City, Iowa 52242
| | - Hans-Joachim Lehmler
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College.,Department of Occupational and Environmental Health
| | - Hanna E Stevens
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College.,Department of Psychiatry, Carver College of Medicine
| |
Collapse
|
22
|
Jahangir M, Zhou JS, Lang B, Wang XP. GABAergic System Dysfunction and Challenges in Schizophrenia Research. Front Cell Dev Biol 2021; 9:663854. [PMID: 34055795 PMCID: PMC8160111 DOI: 10.3389/fcell.2021.663854] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Despite strenuous studies since the last century, the precise cause and pathology of schizophrenia are still largely unclear and arguably controversial. Although many hypotheses have been proposed to explain the etiology of schizophrenia, the definitive genes or core pathological mechanism remains absent. Among these hypotheses, however, GABAergic dysfunction stands out as a common feature consistently reported in schizophrenia, albeit a satisfactory mechanism that could be exploited for therapeutic purpose has not been developed yet. This review is focusing on the progress made to date in the field in terms of understanding the mechanisms involving dysfunctional GABAergic system and loops identified in schizophrenia research.
Collapse
Affiliation(s)
- Muhammad Jahangir
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jian-Song Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Xiao-Ping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
23
|
Fischer M, Chander P, Kang H, Mellios N, Weick JP. Transcriptomic changes due to early, chronic intermittent alcohol exposure during forebrain development implicate WNT signaling, cell-type specification, and cortical regionalization as primary determinants of fetal alcohol syndrome. Alcohol Clin Exp Res 2021; 45:979-995. [PMID: 33682149 PMCID: PMC8643076 DOI: 10.1111/acer.14590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fetal alcohol syndrome (FAS) due to gestational alcohol exposure represents one of the most common causes of nonheritable lifelong disability worldwide. In vitro and in vivo models have successfully recapitulated multiple facets of the disorder, including morphological and behavioral deficits, but far less is understood regarding the molecular and genetic mechanisms underlying FAS. METHODS In this study, we utilized an in vitro human pluripotent stem cell-based (hPSC) model of corticogenesis to probe the effects of early, chronic intermittent alcohol exposure on the transcriptome of first trimester-equivalent cortical neurons. RESULTS We used RNA sequencing of developing hPSC-derived neurons treated for 50 days with 50 mM ethanol and identified a relatively small number of biological pathways significantly altered by alcohol exposure. These included cell-type specification, axon guidance, synaptic function, and regional patterning, with a notable upregulation of WNT signaling-associated transcripts observed in alcohol-exposed cultures relative to alcohol-naïve controls. Importantly, this effect paralleled a shift in gene expression of transcripts associated with regional patterning, such that caudal forebrain-related transcripts were upregulated at the expense of more anterior ones. Results from H9 embryonic stem cells were largely replicated in an induced pluripotent stem cell line (IMR90-4), indicating that these patterning alterations are not cell line-specific. CONCLUSIONS We found that a major effect of chronic intermittent alcohol on the developing cerebral cortex is an overall imbalance in regionalization, with enrichment of gene expression related to the production of posterodorsal progenitors and a diminution of anteroventral progenitors. This finding parallels behavioral and morphological phenotypes observed in animal models of high-dose prenatal alcohol exposure, as well as patients with FAS.
Collapse
Affiliation(s)
- Máté Fischer
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA
| | - Praveen Chander
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA
| | - Huining Kang
- Department of Internal Medicine, University of New Mexico HSC, Albuquerque, NM, USA
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA.,Autophagy Inflammation and Metabolism (AIM) Center, University of New Mexico HSC, Albuquerque, NM, USA
| | - Jason P Weick
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA.,Center for Brain Recovery and Repair, University of New Mexico HSC, Albuquerque, NM, USA.,New Mexico Alcohol Research Center, University of New Mexico HSC, Albuquerque, NM, USA
| |
Collapse
|
24
|
Moderate prenatal alcohol exposure increases total length of L1-expressing axons in E15.5 mice. Neurotoxicol Teratol 2021; 85:106962. [PMID: 33636300 DOI: 10.1016/j.ntt.2021.106962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
Public health campaigns broadcast the link between heavy alcohol consumption during pregnancy and physical, cognitive, and behavioral birth defects; however, they appear less effective in deterring moderate consumption prevalent in women who are pregnant or of childbearing age. The incidence of mild Fetal Alcohol Spectrum Disorders (FASD) is likely underestimated because the affected individuals lack physical signs such as retarded growth and facial dysmorphology and cognitive/behavioral deficits are not commonly detected until late childhood. Sensory information processing is distorted in FASD, but alcohol's effects on the development of axons that mediate these functions are not widely investigated. We hypothesize that alcohol exposure alters axon growth and guidance contributing to the aberrant connectivity that is a hallmark of FASD. To test this, we administered alcohol to pregnant dams from embryonic day (E) 7.5 to 14.5, during the time that axons which form the major forebrain tracts are growing. We found that moderate alcohol exposure had no effect on body weight of E15.5 embryos, but significantly increased the length of L1+ axons. To investigate a possible cause of increased L1+ axon length, we investigated the number and distribution of corridor cells, one of multiple guidance cues for thalamocortical axons which are involved in sensory processing. Alcohol did not affect corridor cell number or distribution at the time when thalamocortical axons are migrating. Future studies will investigate the function of other guidance cues for thalamocortical axons, as well as lasting consequences of axon misguidance with prenatal alcohol exposure.
Collapse
|
25
|
Enhancement of parvalbumin interneuron-mediated neurotransmission in the retrosplenial cortex of adolescent mice following third trimester-equivalent ethanol exposure. Sci Rep 2021; 11:1716. [PMID: 33462326 PMCID: PMC7814038 DOI: 10.1038/s41598-021-81173-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Prenatal ethanol exposure causes a variety of cognitive deficits that have a persistent impact on quality of life, some of which may be explained by ethanol-induced alterations in interneuron function. Studies from several laboratories, including our own, have demonstrated that a single binge-like ethanol exposure during the equivalent to the third trimester of human pregnancy leads to acute apoptosis and long-term loss of interneurons in the rodent retrosplenial cortex (RSC). The RSC is interconnected with the hippocampus, thalamus, and other neocortical regions and plays distinct roles in visuospatial processing and storage, as well as retrieval of hippocampal-dependent episodic memories. Here we used slice electrophysiology to characterize the acute effects of ethanol on GABAergic neurotransmission in the RSC of neonatal mice, as well as the long-term effects of neonatal ethanol exposure on parvalbumin-interneuron mediated neurotransmission in adolescent mice. Mice were exposed to ethanol using vapor inhalation chambers. In postnatal day (P) 7 mouse pups, ethanol unexpectedly failed to potentiate GABAA receptor-mediated synaptic transmission. Binge-like ethanol exposure of P7 mice expressing channel rhodopsin in parvalbumin-positive interneurons enhanced the peak amplitudes, asynchronous activity and total charge, while decreasing the rise-times of optically-evoked GABAA receptor-mediated inhibitory postsynaptic currents in adolescent animals. These effects could partially explain the learning and memory deficits that have been documented in adolescent and young adult mice exposed to ethanol during the third trimester-equivalent developmental period.
Collapse
|
26
|
Mathews E, Dewees K, Diaz D, Favero C. White matter abnormalities in fetal alcohol spectrum disorders: Focus on axon growth and guidance. Exp Biol Med (Maywood) 2021; 246:812-821. [PMID: 33423552 DOI: 10.1177/1535370220980398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fetal Alcohol Spectrum Disorders (FASDs) describe a range of deficits, affecting physical, mental, cognitive, and behavioral function, arising from prenatal alcohol exposure. FASD causes widespread white matter abnormalities, with significant alterations of tracts in the cerebral cortex, cerebellum, and hippocampus. These brain regions present with white-matter volume reductions, particularly at the midline. Neural pathways herein are guided primarily by three guidance cue families: Semaphorin/Neuropilin, Netrin/DCC, and Slit/Robo. These guidance cue/receptor pairs attract and repulse axons and ensure that they reach the proper target to make functional connections. In several cases, these signals cooperate with each other and/or additional molecular partners. Effects of alcohol on guidance cue mechanisms and their associated effectors include inhibition of growth cone response to repellant cues as well as changes in gene expression. Relevant to the corpus callosum, specifically, developmental alcohol exposure alters GABAergic and glutamatergic cell populations and glial cells that serve as guidepost cells for callosal axons. In many cases, deficits seen in FASD mirror aberrancies in guidance cue/receptor signaling. We present evidence for the need for further study on how prenatal alcohol exposure affects the formation of neural connections which may underlie disrupted functional connectivity in FASD.
Collapse
Affiliation(s)
- Erin Mathews
- Biology Department, Ursinus College, Collegeville, PA 19426-1000, USA
| | - Kevyn Dewees
- Biology Department, Ursinus College, Collegeville, PA 19426-1000, USA
| | - Deborah Diaz
- Biology Department, Ursinus College, Collegeville, PA 19426-1000, USA
| | - Carlita Favero
- Biology Department, Ursinus College, Collegeville, PA 19426-1000, USA
| |
Collapse
|
27
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Marguet F, Friocourt G, Brosolo M, Sauvestre F, Marcorelles P, Lesueur C, Marret S, Gonzalez BJ, Laquerrière A. Prenatal alcohol exposure is a leading cause of interneuronopathy in humans. Acta Neuropathol Commun 2020; 8:208. [PMID: 33256853 PMCID: PMC7706035 DOI: 10.1186/s40478-020-01089-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022] Open
Abstract
Alcohol affects multiple neurotransmitter systems, notably the GABAergic system and has been recognised for a long time as particularly damaging during critical stages of brain development. Nevertheless, data from the literature are most often derived from animal or in vitro models. In order to study the production, migration and cortical density disturbances of GABAergic interneurons upon prenatal alcohol exposure, we performed immunohistochemical studies by means of the proliferation marker Ki67, GABA and calretinin antibodies in the frontal cortical plate of 17 foetal and infant brains antenatally exposed to alcohol, aged 15 weeks’ gestation to 22 postnatal months and in the ganglionic eminences and the subventricular zone of the dorsal telencephalon until their regression, i.e., 34 weeks’ gestation. Results were compared with those obtained in 17 control brains aged 14 weeks of gestation to 35 postnatal months. We also focused on interneuron vascular migration along the cortical microvessels by confocal microscopy with double immunolabellings using Glut1, GABA and calretinin. Semi-quantitative and quantitative analyses of GABAergic and calretininergic interneuron density allowed us to identify an insufficient and delayed production of GABAergic interneurons in the ganglionic eminences during the two first trimesters of the pregnancy and a delayed incorporation into the laminar structures of the frontal cortex. Moreover, a mispositioning of GABAergic and calretininergic interneurons persisted throughout the foetal life, these cells being located in the deep layers instead of the superficial layers II and III. Moreover, vascular migration of calretininergic interneurons within the cortical plate was impaired, as reflected by low numbers of interneurons observed close to the cortical perforating vessel walls that may in part explain their abnormal intracortical distribution. Our results are globally concordant with those previously obtained in mouse models, in which alcohol has been shown to induce an interneuronopathy by affecting interneuron density and positioning within the cortical plate, and which could account for the neurological disabilities observed in children with foetal alcohol disorder spectrum.
Collapse
|
29
|
Kenton JA, Ontiveros T, Bird CW, Valenzuela CF, Brigman JL. Moderate prenatal alcohol exposure alters the number and function of GABAergic interneurons in the murine orbitofrontal cortex. Alcohol 2020; 88:33-41. [PMID: 32540413 DOI: 10.1016/j.alcohol.2020.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/22/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Exposure to alcohol during development produces Fetal Alcohol Spectrum Disorders (FASD), characterized by a wide range of effects that include deficits in multiple cognitive domains. Early identification and treatment of individuals with FASD remain a challenge because neurobehavioral alterations do not become a significant problem until late childhood and early adolescence. Understanding the mechanisms underlying low and moderate prenatal alcohol exposure (PAE) effects on behavior and cognition is essential for improved diagnosis and treatment. Here, we examined the functional and morphological changes in an area known to be involved in executive control, the orbitofrontal cortex (OFC). We found that a moderate PAE model, previously shown to impair behavioral flexibility and to alter OFC activity in vivo, produced moderate functional and morphological changes within the OFC of mice in vitro. Specifically, slice electrophysiological recordings of spontaneous inhibitory post-synaptic currents in OFC pyramidal neurons revealed a significant increase in the amplitude and area in PAE mice relative to controls. Immunohistochemistry uncovered an increase in calretinin-, but not somatostatin- or parvalbumin-expressing cortical interneurons in the OFC of PAE mice. Together, these data suggest that moderate prenatal alcohol exposure alters the disinhibitory function in the OFC, which may contribute to the executive function deficits associated with FASD.
Collapse
Affiliation(s)
- Johnny A Kenton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Tiahna Ontiveros
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Clark W Bird
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - C Fernando Valenzuela
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; New Mexico Alcohol Research Center, University of New Mexico HSC, Albuquerque, NM 87131, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; New Mexico Alcohol Research Center, University of New Mexico HSC, Albuquerque, NM 87131, United States.
| |
Collapse
|
30
|
Glycine Receptor Inhibition Differentially Affect Selected Neuronal Populations of the Developing Embryonic Cortex, as Evidenced by the Analysis of Spontaneous Calcium Oscillations. Int J Mol Sci 2020; 21:ijms21218013. [PMID: 33126495 PMCID: PMC7672546 DOI: 10.3390/ijms21218013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 12/30/2022] Open
Abstract
The embryonic developing cerebral cortex is characterized by the presence of distinctive cell types such as progenitor pools, immature projection neurons and interneurons. Each of these cell types is diverse on itself, but they all take part of the developmental process responding to intrinsic and extrinsic cues that can affect their calcium oscillations. Importantly, calcium activity is crucial for controlling cellular events linked to cell cycle progression, cell fate determination, specification, cell positioning, morphological development and maturation. Therefore, in this work we measured calcium activity in control conditions and in response to neurotransmitter inhibition. Different data analysis methods were applied over the experimental measurements including statistical methods entropy and fractal calculations, and spectral and principal component analyses. We found that developing projection neurons are differentially affected by classic inhibitory neurotransmission as a cell type and at different places compared to migrating interneurons, which are also heterogeneous in their response to neurotransmitter inhibition. This reveals important insights into the developmental role of neurotransmitters and calcium oscillations in the forming brain cortex. Moreover, we present an improved analysis proposing a Gini coefficient-based inequality distribution and principal component analysis as mathematical tools for understanding the earliest patterns of brain activity.
Collapse
|
31
|
Zhao T, Chen Y, Sun Z, Shi Z, Qin J, Lu J, Li C, Ma D, Zhou L, Song X. Prenatal sevoflurane exposure causes neuronal excitatory/inhibitory imbalance in the prefrontal cortex and neurofunctional abnormality in rats. Neurobiol Dis 2020; 146:105121. [PMID: 33007389 DOI: 10.1016/j.nbd.2020.105121] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/22/2020] [Accepted: 09/24/2020] [Indexed: 02/02/2023] Open
Abstract
The balance of excitatory and inhibitory neurons in the central nervous system is critical for maintaining brain function and sevoflurane, a general anesthetic and an GABA receptor modulator, may change the balance of excitatory and inhibitory neurons in the cortex during early brain development. Herein, we investigated whether prenatal sevoflurane exposure (PSE) disturbs cortical neuronal development and brain function. Pregnant rats at the gestational day 14.5 were subjected to sevoflurane exposure at 3.0% for 3 h and their offspring were studied thereafter. We found a significant increase of parvalbumin-positive neurons, vesicular GABA transporter (VGAT) and GAD67 expression, and GABA neurotransmitter, and a significant decrease of vesicular glutamate transporter 1 (VGLUT1) expression and glutamate in the medial prefrontal cortex (mPFC) of offspring. Pyramidal neurons showed atrophy with shorter dendrites, less branches and lower spine density visualized by Golgi stain and a decrease of excitability with the increased miniature inhibitory postsynaptic current (mIPSC) frequency and amplitude, the decreased miniature excitatory postsynaptic current (mEPSC) frequency and excitation/inhibition (E/I) ratio using whole-cell recording in offspring. There was a significant increase of inhibitory synapse in the mPFC detected by electron microscopy. Furthermore, PSE animals showed hypo-excitatory phenotype including depression-like behaviors and learning deficits. Thus, our studies provide novel evidence that PSE causes the persisted imbalance of excitatory and inhibitory neurons in the mPFC, and this is very likely the mechanisms of the sevoflurane-induced brain functional abnormalities.
Collapse
Affiliation(s)
- Tianyun Zhao
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanxin Chen
- Department of Anesthesiology, Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhixiang Sun
- Department of Anesthesiology, Shanghai Fengxian District Central Hospital, Southern Medical University, Shanghai, China
| | - Ziwen Shi
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingwen Qin
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Junming Lu
- Department of Anesthesiology, Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Chuanxiang Li
- Department of Anesthesiology, Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Daqing Ma
- Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China.
| | - Xingrong Song
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
32
|
Léger C, Dupré N, Laquerrière A, Lecointre M, Dumanoir M, Janin F, Hauchecorne M, Fabre M, Jégou S, Frébourg T, Cleren C, Leroux P, Marcorelles P, Brasse-Lagnel C, Marret S, Marguet F, Gonzalez BJ. In utero alcohol exposure exacerbates endothelial protease activity from pial microvessels and impairs GABA interneuron positioning. Neurobiol Dis 2020; 145:105074. [PMID: 32890773 DOI: 10.1016/j.nbd.2020.105074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
In utero alcohol exposure can induce severe neurodevelopmental disabilities leading to long-term behavioral deficits. Because alcohol induces brain defects, many studies have focused on nervous cells. However, recent reports have shown that alcohol markedly affects cortical angiogenesis in both animal models and infants with fetal alcohol spectrum disorder (FASD). In addition, the vascular system is known to contribute to controlling gamma-aminobutyric acid (GABA)ergic interneuron migration in the developing neocortex. Thus, alcohol-induced vascular dysfunction may contribute to the neurodevelopmental defects in FASD. The present study aimed at investigating the effects of alcohol on endothelial activity of pial microvessels. Ex vivo experiments on cortical slices from mouse neonates revealed that in endothelial cells from pial microvessels acute alcohol exposure inhibits both glutamate-induced calcium mobilization and activities of matrix metalloproteinase-9 (MMP-9) and tissue plasminogen activator (tPA). The inhibitory effect of alcohol on glutamate-induced MMP-9 activity was abrogated in tPA-knockout and Grin1flox/VeCadcre mice suggesting that alcohol interacts through the endothelial NMDAR/tPA/MMP-9 vascular pathway. Contrasting with the effects from acute alcohol exposure, in mouse neonates exposed to alcohol in utero during the last gestational week, glutamate exacerbated both calcium mobilization and endothelial protease activities from pial microvessels. This alcohol-induced vascular dysfunction was associated with strong overexpression of the N-methyl-d-aspartate receptor subunit GluN1 and mispositioning of the Gad67-GFP interneurons that normally populate the superficial cortical layers. By comparing several human control fetuses with a fetus chronically exposed to alcohol revealed that alcohol exposure led to mispositioning of the calretinin-positive interneurons, whose density was decreased in the superficial cortical layers II-III and increased in deepest layers. This study provides the first mechanistic and functional evidence that alcohol impairs glutamate-regulated activity of pial microvessels. Endothelial dysfunction is characterized by altered metalloproteinase activity and interneuron mispositioning, which was also observed in a fetus with fetal alcohol syndrome. These data suggest that alcohol-induced endothelial dysfunction may contribute in ectopic cortical GABAergic interneurons, that has previously been described in infants with FASD.
Collapse
Affiliation(s)
- Cécile Léger
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Nicolas Dupré
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Annie Laquerrière
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Maryline Lecointre
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Marion Dumanoir
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - François Janin
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Michelle Hauchecorne
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Maëlle Fabre
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Sylvie Jégou
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Thierry Frébourg
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Carine Cleren
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Philippe Leroux
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Carole Brasse-Lagnel
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Stéphane Marret
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Florent Marguet
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Bruno J Gonzalez
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.
| |
Collapse
|
33
|
Diaz MR, Johnson JM, Varlinskaya EI. Increased ethanol intake is associated with social anxiety in offspring exposed to ethanol on gestational day 12. Behav Brain Res 2020; 393:112766. [PMID: 32535179 DOI: 10.1016/j.bbr.2020.112766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 01/21/2023]
Abstract
Prenatal alcohol exposure (PAE) can result in physical, cognitive, and neurological deficits termed Fetal Alcohol Spectrum Disorder (FASD). Deficits in social functioning associated with PAE are frequently observed and persist throughout the lifespan. Social impairments, such as social anxiety, are associated with increased alcohol abuse, which is also highly pervasive following PAE. Yet, the relationship between PAE-induced social alterations and alcohol intake later in life is not well understood. In order to test this relationship, we exposed pregnant female Sprague Dawley rats to a single instance of PAE on gestational day 12, a period of substantial neural development, and tested offspring in adulthood (postnatal day 63) in a modified social interaction test followed by alternating alone and social ethanol intake sessions. Consistent with our previous findings, we found that, in general, PAE reduced social preference (measure of social anxiety-like behavior) in female but not male adults. However, ethanol intake was significantly higher in the PAE group regardless of sex. When dividing subjects according to level of social anxiety-like behavior (low, medium, or high), PAE males (under both drinking contexts) and control females (under the social drinking context) with a high social anxiety phenotype showed the highest level of ethanol intake. Taken together, these data indicate that PAE differentially affects the interactions between social anxiety, ethanol intake, and drinking context in males and females. These findings extend our understanding of the complexity and persistence of PAE's sex-dependent effects into adulthood.
Collapse
Affiliation(s)
- Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience Binghamton University, Binghamton, NY13902, United States; Developmental Exposure Alcohol Research Center, Baltimore MD21201, Binghamton NY 13902, Syracuse NY13210, United States.
| | - Julia M Johnson
- Developmental Exposure Alcohol Research Center, Baltimore MD21201, Binghamton NY 13902, Syracuse NY13210, United States
| | - Elena I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience Binghamton University, Binghamton, NY13902, United States; Developmental Exposure Alcohol Research Center, Baltimore MD21201, Binghamton NY 13902, Syracuse NY13210, United States
| |
Collapse
|
34
|
Delatour LC, Yeh PWL, Yeh HH. Prenatal Exposure to Ethanol Alters Synaptic Activity in Layer V/VI Pyramidal Neurons of the Somatosensory Cortex. Cereb Cortex 2020; 30:1735-1751. [PMID: 31647550 PMCID: PMC7132917 DOI: 10.1093/cercor/bhz199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/04/2019] [Accepted: 08/04/2019] [Indexed: 12/31/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) encompasses a range of cognitive and behavioral deficits, with aberrances in the function of cerebral cortical pyramidal neurons implicated in its pathology. However, the mechanisms underlying these aberrances, including whether they persist well beyond ethanol exposure in utero, remain to be explored. We addressed these issues by employing a mouse model of FASD in which pregnant mice were exposed to binge-type ethanol from embryonic day 13.5 through 16.5. In both male and female offspring (postnatal day 28-32), whole-cell patch clamp recording of layer V/VI somatosensory cortex pyramidal neurons revealed increases in the frequency of excitatory and inhibitory postsynaptic currents. Furthermore, expressing channelrhodopsin in either GABAergic interneurons (Nkx2.1Cre-Ai32) or glutamatergic pyramidal neurons (Emx1IRES Cre-Ai32) revealed a shift in optically evoked paired-pulse ratio. These findings are consistent with an excitatory-inhibitory imbalance with prenatal ethanol exposure due to diminished inhibitory but enhanced excitatory synaptic strength. Prenatal ethanol exposure also altered the density and morphology of spines along the apical dendrites of pyramidal neurons. Thus, while both presynaptic and postsynaptic mechanisms are affected following prenatal exposure to ethanol, there is a prominent presynaptic component that contributes to altered inhibitory and excitatory synaptic transmission in the somatosensory cortex.
Collapse
Affiliation(s)
- Laurie C Delatour
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Pamela W L Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Hermes H Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
35
|
Bottom RT, Abbott CW, Huffman KJ. Rescue of ethanol-induced FASD-like phenotypes via prenatal co-administration of choline. Neuropharmacology 2020; 168:107990. [PMID: 32044264 DOI: 10.1016/j.neuropharm.2020.107990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
Maternal consumption of alcohol during pregnancy can generate a multitude of deficits in the offspring. Fetal Alcohol Spectrum Disorders, or FASD, describe a palette of potentially life-long phenotypes that result from exposure to ethanol during human gestation. There is no cure for FASD and cognitive-behavioral therapies typically have low success rates, especially in severe cases. The neocortex, responsible for complex cognitive and behavioral function, is altered by prenatal ethanol exposure (PrEE). Supplementation with choline, an essential nutrient, during the prenatal ethanol insult has been associated with a reduction of negative outcomes associated with PrEE. However, choline's ability to prevent deficits within the developing neocortex, as well as the underlying mechanisms, remain unclear. Here, we exposed pregnant mice to 25% ethanol in addition to a 642 mg/L choline chloride supplement throughout gestation to determine the impact of choline supplementation on neocortical and behavioral development in ethanol-exposed offspring. We found that concurrent choline supplementation prevented gross developmental abnormalities associated with PrEE including reduced body weight, brain weight, and cortical length as well as partially ameliorated PrEE-induced abnormalities in intraneocortical circuitry. Additionally, choline supplementation prevented altered expression of RZRβ and Id2, two genes implicated in postmitotic patterning of neocortex, and global DNA hypomethylation within developing neocortex. Lastly, choline supplementation prevented sensorimotor behavioral dysfunction and partially ameliorated increased anxiety-like behavior observed in PrEE mice, as assessed by the Suok and Ledge tests. Our results suggest that choline supplementation may represent a potent preventative measure for the adverse outcomes associated with PrEE.
Collapse
Affiliation(s)
- Riley T Bottom
- Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Charles W Abbott
- Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Kelly J Huffman
- Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA; Dept. of Psychology, University of California, Riverside; 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
36
|
Wille-Bille A, Bellia F, Jiménez García AM, Miranda-Morales RS, D'Addario C, Pautassi RM. Early exposure to environmental enrichment modulates the effects of prenatal ethanol exposure upon opioid gene expression and adolescent ethanol intake. Neuropharmacology 2019; 165:107917. [PMID: 31926456 DOI: 10.1016/j.neuropharm.2019.107917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022]
Abstract
Prenatal ethanol exposure (PEE) promotes ethanol consumption in the adolescent offspring accompanied by the transcriptional regulation of kappa opioid receptor (KOR) system genes. This study analysed if environmental enrichment (EE, from gestational day 20 to postnatal day 26) exerts protective effects upon PEE-modulation of gene expression, ethanol intake and anxiety responses. Pregnant rats were exposed to PEE (0.0 or 2.0 g/kg ethanol, gestational days 17-20) and subsequently the dam and offspring were reared under EE or standard conditions. PEE upregulated KOR mRNA levels in amygdala (AMY) and prodynorphin (PDYN) mRNA levels in ventral tegmental area (VTA) with the latter effect associated with lower DNA methylation at the gene promoter. These effects were normalized by exposure to EE. PEE modulated BDNF mRNA levels in VTA and Nucleus accumbens (AcbN), and EE mitigated the changes in AcbN. EE induced a protective effect on ethanol intake and preference, an effect more noticeable in males than in females, and in prenatal vehicle-treated (PV) than in PEE rats. The male offspring drank significantly less ethanol than the female offspring. The latter result suggests that the protective effect of EE on ethanol drinking may only emerge at lower levels of drinking. In the dams, PEE induced an upregulation of PDYN and KOR in AcbN. PDYN gene expression was normalized by exposure to EE. These results suggest that EE is a promising treatment to inhibit the effects of PEE. The results confirm that PEE effects are mediated by alterations in the transcriptional regulation of KOR system genes.
Collapse
Affiliation(s)
- Aranza Wille-Bille
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, C.P. 5000, Argentina
| | - Fabio Bellia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, Università degli Studi di Teramo, Teramo, C.P. 64100, Italy
| | - Ana María Jiménez García
- Facultad de Medicina, Departamento de Farmacología, Universidad de Granada, Granada, C.P. 18071, Spain
| | - Roberto Sebastián Miranda-Morales
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, C.P. 5000, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, Università degli Studi di Teramo, Teramo, C.P. 64100, Italy.
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, C.P. 5000, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina.
| |
Collapse
|
37
|
De La Fuente-Ortega E, Plaza-Briceño W, Vargas-Robert S, Haeger P. Prenatal Ethanol Exposure Misregulates Genes Involved in Iron Homeostasis Promoting a Maladaptation of Iron Dependent Hippocampal Synaptic Transmission and Plasticity. Front Pharmacol 2019; 10:1312. [PMID: 31787896 PMCID: PMC6855190 DOI: 10.3389/fphar.2019.01312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/15/2019] [Indexed: 01/05/2023] Open
Abstract
Prenatal ethanol exposure (PAE) induces behavioral maladptations in offspring, including a deficit in memory formation which is part of the umbrella sign of fetal alcohol spectrum disorder. Clinical and preclinical studies have shown that iron depletion exacerbates cognitive problems in offspring exposed to ethanol in utero and that PAE promotes dysregulation in brain iron homeostasis. However, the mechanisms underlying brain iron dysregulation and neuronal activity defects in adolescent offspring of PAE are unclear and poorly understand. Here, we used a PAE rat model to analyze messenger RNA (mRNA) and protein expression of iron homeostasis genes such as transferrin receptor (TfR), divalent metal transporter (DMT1), ferroportin (FPN1), and ferritin (FT) in brain areas associated with memory formation such as the prefrontal cortex (PFC), ventral tegmental area, and hippocampus. Interestingly, we found that 21 day old PAE rats have higher mRNA expression of DMT1 in the PFC, and TfR in the hippocampus, compared to control animals. In contrast FPN has lower mRNA expression in the PFC, and FT and FPN1 have lower expression in the hippocampus. In agreement with these results, we found a 1.5–2 fold increase of TfR and DMT1 protein levels both in the hippocampus and the PFC. Additionally, using an electrophysiological approach, we found that in hippocampal slices from PAE rats, iron treatment decreased long-term potentiation (LTP), but not AMPAR basal transmission (AMPAR fEPSP). In contrast, in control slices Fe-NTA did not affect LTP but decreased significantly the AMPAR fEPSP. Meanwhile, iron chelation with deferiprone decreased AMPAR transmission in PAE and control slices and decreased LTP only in controls slices. These results suggest that PAE affects iron homeostasis of specific brain areas—PFC and hippocampus—which could be involved in maladaptive cognition observed in this animal model.
Collapse
Affiliation(s)
- Erwin De La Fuente-Ortega
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Wladimir Plaza-Briceño
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Sofía Vargas-Robert
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Paola Haeger
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
38
|
Bird CW, Barber MJ, Post HR, Jacquez B, Chavez GJ, Faturos NG, Valenzuela CF. Neonatal ethanol exposure triggers apoptosis in the murine retrosplenial cortex: Role of inhibition of NMDA receptor-driven action potential firing. Neuropharmacology 2019; 162:107837. [PMID: 31689422 DOI: 10.1016/j.neuropharm.2019.107837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/07/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
Exposure to ethanol during the last trimester equivalent of human pregnancy causes apoptotic neurodegeneration in the developing brain, an effect that is thought to be mediated, in part, by inhibition of NMDA receptors. However, NMDA receptors can rapidly adapt to the acute effects of ethanol and are ethanol resistant in some populations of developing neurons. Here, we characterized the effect of ethanol on NMDA and non-NMDA receptor-mediated synaptic transmission in the retrosplenial cortex (RSC), a brain region involved in the integration of different modalities of spatial information that is among the most sensitive regions to ethanol-induced neurodegeneration. A single 4-h exposure to ethanol vapor of 7-day-old transgenic mice that express the Venus fluorescent protein in interneurons triggered extensive apoptosis in the RSC. Slice electrophysiological recordings showed that bath-applied ethanol inhibits NMDA and non-NMDA receptor excitatory postsynaptic currents (EPSCs) in pyramidal neurons and interneurons; however, we found no evidence of acute tolerance development to this effect after the 4-h in-vivo ethanol vapor exposure. Acute bath application of ethanol reduced action potential firing evoked by synaptic stimulation to a greater extent in pyramidal neurons than interneurons. Submaximal inhibition of NMDA EPSCs, but not non-NMDA EPSCs, mimicked the acute effect of ethanol on synaptically-evoked action potential firing. These findings indicate that partial inhibition of NMDA receptors by ethanol has sizable effects on the excitability of glutamatergic and GABAergic neurons in the developing RSC, and suggest that positive allosteric modulators of these receptors could ameliorate ethanol intoxication-induced neurodegeneration during late stages of fetal development.
Collapse
Affiliation(s)
- Clark W Bird
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Megan J Barber
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Hilary R Post
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Belkis Jacquez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Glenna J Chavez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Nicholas G Faturos
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| |
Collapse
|
39
|
Skorput AG, Lee SM, Yeh PW, Yeh HH. The NKCC1 antagonist bumetanide mitigates interneuronopathy associated with ethanol exposure in utero. eLife 2019; 8:48648. [PMID: 31545168 PMCID: PMC6768659 DOI: 10.7554/elife.48648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/22/2019] [Indexed: 11/15/2022] Open
Abstract
Prenatal exposure to ethanol induces aberrant tangential migration of corticopetal GABAergic interneurons, and long-term alterations in the form and function of the prefrontal cortex. We have hypothesized that interneuronopathy contributes significantly to the pathoetiology of fetal alcohol spectrum disorders (FASD). Activity-dependent tangential migration of GABAergic cortical neurons is driven by depolarizing responses to ambient GABA present in the cortical enclave. We found that ethanol exposure potentiates the depolarizing action of GABA in GABAergic cortical interneurons of the embryonic mouse brain. Pharmacological antagonism of the cotransporter NKCC1 mitigated ethanol-induced potentiation of GABA depolarization and prevented aberrant patterns of tangential migration induced by ethanol in vitro. In a model of FASD, maternal bumetanide treatment prevented interneuronopathy in the prefrontal cortex of ethanol exposed offspring, including deficits in behavioral flexibility. These findings position interneuronopathy as a mechanism of FASD symptomatology, and posit NKCC1 as a pharmacological target for the management of FASD.
Collapse
Affiliation(s)
- Alexander Gj Skorput
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States.,Department of Neuroscience, School of Medicine, University of Minnesota Twin Cities, Minneapolis, United States
| | - Stephanie M Lee
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Pamela Wl Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Hermes H Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
40
|
Hwang HM, Ku RY, Hashimoto-Torii K. Prenatal Environment That Affects Neuronal Migration. Front Cell Dev Biol 2019; 7:138. [PMID: 31380373 PMCID: PMC6652208 DOI: 10.3389/fcell.2019.00138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/08/2019] [Indexed: 11/22/2022] Open
Abstract
Migration of neurons starts in the prenatal period and continues into infancy. This developmental process is crucial for forming a proper neuronal network, and the disturbance of this process results in dysfunction of the brain such as epilepsy. Prenatal exposure to environmental stress, including alcohol, drugs, and inflammation, disrupts neuronal migration and causes neuronal migration disorders (NMDs). In this review, we summarize recent findings on this topic and specifically focusing on two different modes of migration, radial, and tangential migration during cortical development. The shared mechanisms underlying the NMDs are discussed by comparing the molecular changes in impaired neuronal migration under exposure to different types of prenatal environmental stress.
Collapse
Affiliation(s)
- Hye M Hwang
- Center for Neuroscience Research, Children's National Medical Center, The Children's Research Institute, Washington, DC, United States.,The Institute for Biomedical Sciences, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Ray Y Ku
- Center for Neuroscience Research, Children's National Medical Center, The Children's Research Institute, Washington, DC, United States
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's National Medical Center, The Children's Research Institute, Washington, DC, United States.,Departments of Pediatrics, and Pharmacology & Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
41
|
Delatour LC, Yeh PW, Yeh HH. Ethanol Exposure In Utero Disrupts Radial Migration and Pyramidal Cell Development in the Somatosensory Cortex. Cereb Cortex 2019; 29:2125-2139. [PMID: 29688328 PMCID: PMC6458911 DOI: 10.1093/cercor/bhy094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/05/2018] [Indexed: 11/13/2022] Open
Abstract
Deficits in sensory processing in Fetal Alcohol Spectrum Disorders (FASD) implicate dysfunction in the somatosensory cortex. However, the effects of prenatal ethanol exposure on the development of this region await elucidation. Here, we used an established mouse model of FASD with binge-type ethanol exposure from embryonic day 13.5-16.5 to investigate the effects of prenatal ethanol exposure on pyramidal neurons in the somatosensory cortex. Specifically, we focused on the radial migration of primordial pyramidal neurons during embryonic corticogenesis and their morphology and function during active synaptogenesis in early postnatal development. We found that prenatal ethanol exposure resulted in aberrant radial migration, particularly affecting the populations of postmitotic pyramidal neurons. In addition, there was an enduring effect of prenatal ethanol exposure on glutamate-mediated synaptic transmission in layer V/VI pyramidal neurons. This persisted beyond a transient decrease in pyramidal neuron dendritic complexity that was evident only during early postnatal development. Adolescent mice exposed prenatally to ethanol also displayed decreased tactile sensitivity, as revealed by a modified adhesive tape removal assay. Our findings demonstrate the persistent effects of binge-type in utero ethanol exposure on pyramidal neuron form and function and ultimately sensory processing, the latter being reminiscent of that seen in individuals with FASD.
Collapse
Affiliation(s)
- Laurie C Delatour
- Program in Experimental and Molecular Medicine, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, 66 College Street, Hanover, NH, USA
| | - Pamela W Yeh
- Program in Experimental and Molecular Medicine, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, 66 College Street, Hanover, NH, USA
| | - Hermes H Yeh
- Program in Experimental and Molecular Medicine, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, 66 College Street, Hanover, NH, USA
| |
Collapse
|
42
|
Furuse K, Ukai W, Hashimoto E, Hashiguchi H, Kigawa Y, Ishii T, Tayama M, Deriha K, Shiraishi M, Kawanishi C. Antidepressant activities of escitalopram and blonanserin on prenatal and adolescent combined stress-induced depression model: Possible role of neurotrophic mechanism change in serum and nucleus accumbens. J Affect Disord 2019; 247:97-104. [PMID: 30658246 DOI: 10.1016/j.jad.2019.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND There has been number of studies suggesting experiences of adversity in early life interrelated subsequent brain development, however, neurobiological mechanisms confer risk for onset of psychiatric illness remains unclear. METHODS In order to elucidate the pathogenic mechanisms underlying early life adversity-induced refractory depression in more detail, we administered corticosterone (CORT) to adolescent rats with or without prenatal ethanol exposure followed by an antidepressant or antipsychotic and examined alterations in depressive and social function behaviors and brain-derived neurotrophic factor (BDNF) levels in serum, the hippocampus, anterior cingulate cortex, and nucleus accumbens. RESULTS The combined stress exposure of prenatal ethanol and adolescent CORT prolonged immobility times in the forced swim test (FST), and increased investigation times and numbers in the social interaction test (SIT). A treatment with escitalopram reversed depression-like behavior accompanied by reductions in BDNF levels in serum and the nucleus accumbens, while a treatment with blonanserin ameliorated abnormal social interaction behavior with reductions in serum BDNF levels. LIMITATIONS Further studies are needed to clarify the clinical evinces responding to these results, and many questions remain regarding the mechanisms by which refractory depression and antidepressant/antipsychotic treatments cause changes in serum and brain regional BDNF levels. CONCLUSION These results strongly implicate changes in BDNF levels in serum and the nucleus accumbens in the pathophysiology and treatment of early life combined stress-induced depression and highlight the therapeutic potential of escitalopram and new generation antipsychotic blonanserin for treatment-resistant refractory depression.
Collapse
Affiliation(s)
- Kengo Furuse
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo 0608543, Japan
| | - Wataru Ukai
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo 0608543, Japan.
| | - Eri Hashimoto
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo 0608543, Japan
| | - Hanako Hashiguchi
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo 0608543, Japan
| | - Yoshiyasu Kigawa
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo 0608543, Japan
| | - Takao Ishii
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo 0608543, Japan
| | - Masaya Tayama
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo 0608543, Japan
| | - Kenta Deriha
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo 0608543, Japan
| | - Masaki Shiraishi
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo 0608543, Japan
| | - Chiaki Kawanishi
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo 0608543, Japan
| |
Collapse
|
43
|
Jablonski SA, Robinson-Drummer PA, Schreiber WB, Asok A, Rosen JB, Stanton ME. Impairment of the context preexposure facilitation effect in juvenile rats by neonatal alcohol exposure is associated with decreased Egr-1 mRNA expression in the prefrontal cortex. Behav Neurosci 2018; 132:497-511. [PMID: 30346189 DOI: 10.1037/bne0000272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The context preexposure facilitation effect (CPFE) is a variant of contextual fear conditioning in which learning about the context (preexposure) and associating the context with a shock (training) occur on separate occasions. The CPFE is sensitive to a range of neonatal alcohol doses (Murawski & Stanton, 2011). The current study examined the impact of neonatal alcohol on Egr-1 mRNA expression in the infralimbic (IL) and prelimbic (PL) subregions of the mPFC, the CA1 of dorsal hippocampus (dHPC), and the lateral nucleus of the amygdala (LA), following the preexposure and training phases of the CPFE. Rat pups were exposed to a 5.25 g/kg/day single binge-like dose of alcohol (Group EtOH) or were sham intubated (SI; Group SI) over postnatal days (PD) 7-9. In behaviorally tested rats, alcohol administration disrupted freezing. Following context preexposure, Egr-1 mRNA was elevated in both EtOH and SI groups compared with baseline control animals in all regions analyzed. Following both preexposure and training, Group EtOH displayed a significant decrease in mPFC Egr-1 mRNA expression compared with Group SI. However, this decrease was greatest after training. Training day decreases in Egr-1 expression were not found in LA or CA1 in Group EtOH compared with Group SI. A second experiment confirmed that the EtOH-induced training-day deficits in mPFC Egr-1 mRNA expression were specific to groups which learned contextual fear (vs. nonassociative controls). Thus, memory processes that engage the mPFC during the context-shock association may be most susceptible to the teratogenic effects of neonatal alcohol. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | - Arun Asok
- Department of Psychological and Brain Sciences
| | | | | |
Collapse
|
44
|
Granato A, Dering B. Alcohol and the Developing Brain: Why Neurons Die and How Survivors Change. Int J Mol Sci 2018; 19:ijms19102992. [PMID: 30274375 PMCID: PMC6213645 DOI: 10.3390/ijms19102992] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 02/06/2023] Open
Abstract
The consequences of alcohol drinking during pregnancy are dramatic and usually referred to as fetal alcohol spectrum disorders (FASD). This condition is one of the main causes of intellectual disability in Western countries. The immature fetal brain exposed to ethanol undergoes massive neuron death. However, the same mechanisms leading to cell death can also be responsible for changes of developmental plasticity. As a consequence of such a maladaptive plasticity, the functional damage to central nervous system structures is amplified and leads to permanent sequelae. Here we review the literature dealing with experimental FASD, focusing on the alterations of the cerebral cortex. We propose that the reciprocal interaction between cell death and maladaptive plasticity represents the main pathogenetic mechanism of the alcohol-induced damage to the developing brain.
Collapse
Affiliation(s)
- Alberto Granato
- Department of Psychology, Catholic University, Largo A. Gemelli 1, 20123 Milan, Italy.
| | - Benjamin Dering
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| |
Collapse
|
45
|
Petrelli B, Weinberg J, Hicks GG. Effects of prenatal alcohol exposure (PAE): insights into FASD using mouse models of PAE. Biochem Cell Biol 2018; 96:131-147. [PMID: 29370535 PMCID: PMC5991836 DOI: 10.1139/bcb-2017-0280] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The potential impact of prenatal alcohol exposure (PAE) varies considerably among exposed individuals, with some displaying serious alcohol-related effects and many others showing few or no overt signs of fetal alcohol spectrum disorder (FASD). In animal models, variables such as nutrition, genetic background, health, other drugs, and stress, as well as dosage, duration, and gestational timing of exposure to alcohol can all be controlled in a way that is not possible in a clinical situation. In this review we examine mouse models of PAE and focus on those with demonstrated craniofacial malformations, abnormal brain development, or behavioral phenotypes that may be considered FASD-like outcomes. Analysis of these data should provide a valuable tool for researchers wishing to choose the PAE model best suited to their research questions or to investigate established PAE models for FASD comorbidities. It should also allow recognition of patterns linking gestational timing, dosage, and duration of PAE, such as recognizing that binge alcohol exposure(s) during early gestation can lead to severe FASD outcomes. Identified patterns could be particularly insightful and lead to a better understanding of the molecular mechanisms underlying FASD.
Collapse
Affiliation(s)
- Berardino Petrelli
- Department of Biochemistry & Medical Genetics; Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Joanne Weinberg
- Department of Cellular & Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, UBC Institute of Mental Health, Vancouver, British Columbia, Canada
| | - Geoffrey G. Hicks
- Department of Biochemistry & Medical Genetics; Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
46
|
Davis-Anderson KL, Wesseling H, Siebert LM, Lunde-Young ER, Naik VD, Steen H, Ramadoss J. Fetal regional brain protein signature in FASD rat model. Reprod Toxicol 2018; 76:84-92. [PMID: 29408587 DOI: 10.1016/j.reprotox.2018.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 12/30/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) describe neurodevelopmental deficits in children exposed to alcohol in utero. We hypothesized that gestational alcohol significantly alters fetal brain regional protein signature. Pregnant rats were binge-treated with alcohol or pair-fed and nutritionally-controlled. Mass spectrometry identified 1806, 2077, and 1456 quantifiable proteins in the fetal hippocampus, cortex, and cerebellum, respectively. A stronger effect of alcohol exposure on the hippocampal proteome was noted: over 600 hippocampal proteins were significantly (P < .05) altered, including annexin A2, nucleobindin-1, and glypican-4, regulators of cellular growth and developmental morphogenesis. In the cerebellum, cadherin-13, reticulocalbin-2, and ankyrin-2 (axonal growth regulators) were significantly (P < .05) altered; altered cortical proteins were involved in autophagy (endophilin-B1, synaptotagmin-1). Ingenuity analysis identified proteins involved in protein homeostasis, oxidative stress, mitochondrial dysfunction, and mTOR as major pathways in the cortex and hippocampus significantly (P < .05) affected by alcohol. Thus, neurodevelopmental protein changes may directly relate to FASD neuropathology.
Collapse
Affiliation(s)
- Katie L Davis-Anderson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - Hendrik Wesseling
- Departments of Pathology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Lara M Siebert
- Departments of Pathology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Emilie R Lunde-Young
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - Vishal D Naik
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - Hanno Steen
- Departments of Pathology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Jayanth Ramadoss
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA.
| |
Collapse
|
47
|
Lippert T, Gelineau L, Napoli E, Borlongan CV. Harnessing neural stem cells for treating psychiatric symptoms associated with fetal alcohol spectrum disorder and epilepsy. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:10-22. [PMID: 28365374 DOI: 10.1016/j.pnpbp.2017.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/09/2017] [Indexed: 12/20/2022]
Abstract
Brain insults with progressive neurodegeneration are inherent in pathological symptoms that represent many psychiatric illnesses. Neural network disruptions characterized by impaired neurogenesis have been recognized to precede, accompany, and possibly even exacerbate the evolution and progression of symptoms of psychiatric disorders. Here, we focus on the neurodegeneration and the resulting psychiatric symptoms observed in fetal alcohol spectrum disorder and epilepsy, in an effort to show that these two diseases are candidate targets for stem cell therapy. In particular, we provide preclinical evidence in the transplantation of neural stem cells (NSCs) in both conditions, highlighting the potential of this cell-based treatment for correcting the psychiatric symptoms that plague these two disorders. Additionally, we discuss the challenges of NSC transplantation and offer insights into the mechanisms that may mediate the therapeutic benefits and can be exploited to overcome the hurdles of translating this therapy from the laboratory to the clinic. Our ultimate goal is to advance stem cell therapy for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Trenton Lippert
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL 33612, USA
| | - Lindsey Gelineau
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL 33612, USA
| | - Eleonora Napoli
- Department of Molecular Biosciences, 3011 VM3B 1089 Veterinary Medicine Drive, University of California Davis, Davis, CA 95616, USA..
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL 33612, USA.
| |
Collapse
|
48
|
Wang Y, Yin SW, Zhang N, Zhao P. High-concentration sevoflurane exposure in mid-gestation induces apoptosis of neural stem cells in rat offspring. Neural Regen Res 2018; 13:1575-1584. [PMID: 30127118 PMCID: PMC6126114 DOI: 10.4103/1673-5374.237121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Sevoflurane is the most commonly used volatile anesthetic during pregnancy. The viability of neural stem cells directly affects the development of the brain. However, it is unknown whether the use of sevoflurane during the second trimester affects the survival of fetal neural stem cells. Therefore, in this study, we investigated whether exposure to sevoflurane in mid-gestation induces apoptosis of neural stem cells and behavioral abnormalities. On gestational day 14, pregnant rats were anesthetized with 2% or 3.5% sevoflurane for 2 hours. The offspring were weaned at 28 days and subjected to the Morris water maze test. The brains were harvested to examine neural stem cell apoptosis by immunofluorescence and to measure Nestin and SOX-2 levels by western blot assay at 6, 24 and 48 hours after anesthesia as well as on postnatal day (P) 0, 14 and 28. Vascular endothelial growth factor (VEGF) and phosphoinositide 3-kinase (PI3K)/AKT pathway protein levels in fetal brain at 6 hours after anesthesia were assessed by western blot assay. Exposure to high-concentration (3.5%) sevoflurane during mid-gestation increased escape latency and path length to the platform, and it reduced the average duration spent in the target quadrant and platform crossing times. At 6, 24 and 48 hours after anesthesia and at P0, P14 and P28, the percentage of Nestin/terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells was increased, but Nestin and SOX-2 protein levels were decreased in the hippocampus of the offspring. At 6 hours after anesthesia, VEGF, PI3K and phospho-AKT (p-AKT) levels were decreased in the fetal brain. These changes were not observed in animals given low-concentration (2%) sevoflurane exposure. Together, our findings indicate that exposure to a high concentration of sevoflurane (3.5%) in mid-gestation decreases VEGF, PI3K and p-AKT protein levels and induces neural stem cell apoptosis, thereby causing learning and memory dysfunction in the offspring.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shao-Wei Yin
- Department of Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Nan Zhang
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
49
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 PMCID: PMC6151493 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 569] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
50
|
Fazeli W, Zappettini S, Marguet SL, Grendel J, Esclapez M, Bernard C, Isbrandt D. Early-life exposure to caffeine affects the construction and activity of cortical networks in mice. Exp Neurol 2017; 295:88-103. [DOI: 10.1016/j.expneurol.2017.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/21/2017] [Accepted: 05/29/2017] [Indexed: 10/19/2022]
|