1
|
Kaiser J, Patel P, Fedde S, Lammers A, Kenwood MR, Iqbal A, Goldberg M, Sahni V. Developmental molecular signatures define de novo cortico-brainstem circuit for skilled forelimb movement. RESEARCH SQUARE 2025:rs.3.rs-6150344. [PMID: 40196004 PMCID: PMC11975033 DOI: 10.21203/rs.3.rs-6150344/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Skilled movement relies on descending cortical projections to the brainstem and spinal cord. While corticospinal neurons (CSN) have long been recognized for their role in fine motor control, the contribution of cortical projections to the brainstem remains poorly understood. Here, we identify a previously unrecognized direct cortico-brainstem circuit that emerges early in development and persists into adulthood. A subset of subcerebral projection neurons (SCPN) limit their projections to the brainstem from the earliest stages of axon extension without ever extending to the spinal cord. Using FACS purification and single-cell RNA sequencing, we show that these cortico-brainstem neurons (CBN) can be prospectively identified by the expression of Neuropeptide Y (Npy) in development. Functional silencing of Npy+ CBN in adulthood leads to impaired skilled forelimb reaching, demonstrating their essential role in adult motor control. Npy+ CBN project preferentially to rostral brainstem regions, including the midbrain reticular formation. These findings reveal developmental molecular signatures that define cortico-brainstem pathways for adult skilled movement. Our work provides new insights into the developmental logic that establishes descending cortical circuits and opens avenues for targeted investigation of their roles in motor function and recovery after injury.
Collapse
Affiliation(s)
- Julia Kaiser
- Burke Neurological Institute, White Plains, NY, 10605
| | - Payal Patel
- Burke Neurological Institute, White Plains, NY, 10605
| | - Sam Fedde
- Burke Neurological Institute, White Plains, NY, 10605
| | | | | | - Asim Iqbal
- Burke Neurological Institute, White Plains, NY, 10605
- Tibbling Technologies, Redmond, WA, 98052
| | - Mark Goldberg
- Department of Neurology, UT Health Sciences Center San Antonio, San Antonio, TX, USA
| | - Vibhu Sahni
- Burke Neurological Institute, White Plains, NY, 10605
- Department of Neurology, UT Health Sciences Center San Antonio, San Antonio, TX, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, NY, 10065
| |
Collapse
|
2
|
Flores MA, Garcia-Forn M, von Mueffling A, Ola P, Park Y, Boitnott A, De Rubeis S. A subpopulation of cortical neurons altered by mutations in the autism risk gene DDX3X. Biol Open 2025; 14:bio061854. [PMID: 39878593 PMCID: PMC11815569 DOI: 10.1242/bio.061854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/31/2025] Open
Abstract
Cell fate decisions during cortical development sculpt the identity of long-range connections that subserve complex behaviors. These decisions are largely dictated by mutually exclusive transcription factors, including CTIP2/Bcl11b for subcerebral projection neurons and BRN1/Pou3f3 for intra-telencephalic projection neurons. We have recently reported that the balance of cortical CTIP2-expressing neurons is altered in a mouse model of DDX3X syndrome, a female-biased neurodevelopmental disorder associated with intellectual disability, autism spectrum disorder, and significant motor challenges. Here, we studied the developmental dynamics of a subpopulation of cortical neurons co-expressing CTIP2 and BRN1. We found that CTIP2+BRN1+ neurons are born during early phases of neurogenesis like other CTIP2+ neurons, peak in expression during perinatal life, and persist in adult brains. We also found that CTIP2+BRN1+ neurons are excessive in number in prenatal and mature cortical motor areas of Ddx3x mutant mice, translating into altered laminar distribution of subcerebral projection neurons extending axons to the brainstem. These findings underscore the critical role of molecular specification during cortical development in health and disease.
Collapse
Affiliation(s)
- Michael A. Flores
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexa von Mueffling
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Praise Ola
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yeaji Park
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Boitnott
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
3
|
Di Bella DJ, Domínguez-Iturza N, Brown JR, Arlotta P. Making Ramón y Cajal proud: Development of cell identity and diversity in the cerebral cortex. Neuron 2024; 112:2091-2111. [PMID: 38754415 PMCID: PMC11771131 DOI: 10.1016/j.neuron.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Since the beautiful images of Santiago Ramón y Cajal provided a first glimpse into the immense diversity and complexity of cell types found in the cerebral cortex, neuroscience has been challenged and inspired to understand how these diverse cells are generated and how they interact with each other to orchestrate the development of this remarkable tissue. Some fundamental questions drive the field's quest to understand cortical development: what are the mechanistic principles that govern the emergence of neuronal diversity? How do extrinsic and intrinsic signals integrate with physical forces and activity to shape cell identity? How do the diverse populations of neurons and glia influence each other during development to guarantee proper integration and function? The advent of powerful new technologies to profile and perturb cortical development at unprecedented resolution and across a variety of modalities has offered a new opportunity to integrate past knowledge with brand new data. Here, we review some of this progress using cortical excitatory projection neurons as a system to draw out general principles of cell diversification and the role of cell-cell interactions during cortical development.
Collapse
Affiliation(s)
- Daniela J Di Bella
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Nuria Domínguez-Iturza
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Juliana R Brown
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
4
|
Ozkan A, Padmanabhan HK, Shipman SL, Azim E, Kumar P, Sadegh C, Basak AN, Macklis JD. Directed differentiation of functional corticospinal-like neurons from endogenous SOX6+/NG2+ cortical progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.21.590488. [PMID: 38712174 PMCID: PMC11071355 DOI: 10.1101/2024.04.21.590488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Corticospinal neurons (CSN) centrally degenerate in amyotrophic lateral sclerosis (ALS), along with spinal motor neurons, and loss of voluntary motor function in spinal cord injury (SCI) results from damage to CSN axons. For functional regeneration of specifically affected neuronal circuitry in vivo , or for optimally informative disease modeling and/or therapeutic screening in vitro , it is important to reproduce the type or subtype of neurons involved. No such appropriate in vitro models exist with which to investigate CSN selective vulnerability and degeneration in ALS, or to investigate routes to regeneration of CSN circuitry for ALS or SCI, critically limiting the relevance of much research. Here, we identify that the HMG-domain transcription factor Sox6 is expressed by a subset of NG2+ endogenous cortical progenitors in postnatal and adult cortex, and that Sox6 suppresses a latent neurogenic program by repressing inappropriate proneural Neurog2 expression by progenitors. We FACS-purify these genetically accessible progenitors from postnatal mouse cortex and establish a pure culture system to investigate their potential for directed differentiation into CSN. We then employ a multi-component construct with complementary and differentiation-sharpening transcriptional controls (activating Neurog2, Fezf2 , while antagonizing Olig2 with VP16:Olig2 ). We generate corticospinal-like neurons from SOX6+/NG2+ cortical progenitors, and find that these neurons differentiate with remarkable fidelity compared with corticospinal neurons in vivo . They possess appropriate morphological, molecular, transcriptomic, and electrophysiological characteristics, without characteristics of the alternate intracortical or other neuronal subtypes. We identify that these critical specifics of differentiation are not reproduced by commonly employed Neurog2 -driven differentiation. Neurons induced by Neurog2 instead exhibit aberrant multi-axon morphology and express molecular hallmarks of alternate cortical projection subtypes, often in mixed form. Together, this developmentally-based directed differentiation from genetically accessible cortical progenitors sets a precedent and foundation for in vitro mechanistic and therapeutic disease modeling, and toward regenerative neuronal repopulation and circuit repair.
Collapse
|
5
|
Veeraraghavan P, Engmann AK, Hatch JJ, Itoh Y, Nguyen D, Addison T, Macklis JD. Dynamic subtype- and context-specific subcellular RNA regulation in growth cones of developing neurons of the cerebral cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.24.559186. [PMID: 38328182 PMCID: PMC10849483 DOI: 10.1101/2023.09.24.559186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Molecular mechanisms that cells employ to compartmentalize function via localization of function-specific RNA and translation are only partially elucidated. We investigate long-range projection neurons of the cerebral cortex as highly polarized exemplars to elucidate dynamic regulation of RNA localization, stability, and translation within growth cones (GCs), leading tips of growing axons. Comparison of GC-localized transcriptomes between two distinct subtypes of projection neurons- interhemispheric-callosal and corticothalamic- across developmental stages identifies both distinct and shared subcellular machinery, and intriguingly highlights enrichment of genes associated with neurodevelopmental and neuropsychiatric disorders. Developmental context-specific components of GC-localized transcriptomes identify known and novel potential regulators of distinct phases of circuit formation: long-distance growth, target area innervation, and synapse formation. Further, we investigate mechanisms by which transcripts are enriched and dynamically regulated in GCs, and identify GC-enriched motifs in 3' untranslated regions. As one example, we identify cytoplasmic adenylation element binding protein 4 (CPEB4), an RNA binding protein regulating localization and translation of mRNAs encoding molecular machinery important for axonal branching and complexity. We also identify RNA binding motif single stranded interacting protein 1 (RBMS1) as a dynamically expressed regulator of RNA stabilization that enables successful callosal circuit formation. Subtly aberrant associative and integrative cortical circuitry can profoundly affect cortical function, often causing neurodevelopmental and neuropsychiatric disorders. Elucidation of context-specific subcellular RNA regulation for GC- and soma-localized molecular controls over precise circuit development, maintenance, and function offers generalizable insights for other polarized cells, and might contribute substantially to understanding neurodevelopmental and behavioral-cognitive disorders and toward targeted therapeutics.
Collapse
Affiliation(s)
- Priya Veeraraghavan
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Anne K. Engmann
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - John J. Hatch
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Yasuhiro Itoh
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Duane Nguyen
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Thomas Addison
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jeffrey D. Macklis
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
6
|
Zheng Y, Zhao C, Song Q, Xu L, Zhang B, Hu G, Kong X, Li S, Li X, Shen Y, Zhuang L, Wu M, Liu Y, Zhou Y. Histone methylation mediated by NSD1 is required for the establishment and maintenance of neuronal identities. Cell Rep 2023; 42:113496. [PMID: 37995181 DOI: 10.1016/j.celrep.2023.113496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/28/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Appropriate histone modifications emerge as essential cell fate regulators of neuronal identities across neocortical areas and layers. Here we showed that NSD1, the methyltransferase for di-methylated lysine 36 of histone H3 (H3K36me2), controls both area and layer identities of the neocortex. Nsd1-ablated neocortex showed an area shift of all four primary functional regions and aberrant wiring of cortico-thalamic-cortical projections. Nsd1 conditional knockout mice displayed defects in spatial memory, motor learning, and coordination, resembling patients with the Sotos syndrome carrying NSD1 mutations. On Nsd1 loss, superficial-layer pyramidal neurons (PNs) progressively mis-expressed markers for deep-layer PNs, and PNs remained immature both morphologically and electrophysiologically. Loss of Nsd1 in postmitotic PNs causes genome-wide loss of H3K36me2 and re-distribution of DNA methylation, which accounts for diminished expression of neocortical layer specifiers but ectopic expression of non-neural genes. Together, H3K36me2 mediated by NSD1 is required for the establishment and maintenance of region- and layer-specific neocortical identities.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Chen Zhao
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Qiulin Song
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Eye Center, Wuhan University Renmin Hospital, Wuhan 430071, China
| | - Lichao Xu
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Bo Zhang
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Guangda Hu
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Xiangfei Kong
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Shaowen Li
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Xiang Li
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Yin Shen
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Eye Center, Wuhan University Renmin Hospital, Wuhan 430071, China
| | - Lenan Zhuang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Wu
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China; College of Life Sciences, Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan 430071, China.
| | - Ying Liu
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China.
| | - Yan Zhou
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
7
|
Felske T, Tocco C, Péron S, Harb K, Alfano C, Galante C, Berninger B, Studer M. Lmo4 synergizes with Fezf2 to promote direct in vivo reprogramming of upper layer cortical neurons and cortical glia towards deep-layer neuron identities. PLoS Biol 2023; 21:e3002237. [PMID: 37552690 PMCID: PMC10409279 DOI: 10.1371/journal.pbio.3002237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
In vivo direct neuronal reprogramming relies on the implementation of an exogenous transcriptional program allowing to achieve conversion of a particular neuronal or glial cell type towards a new identity. The transcription factor (TF) Fezf2 is known for its role in neuronal subtype specification of deep-layer (DL) subcortical projection neurons. High ectopic Fezf2 expression in mice can convert both upper-layer (UL) and striatal projection neurons into a corticofugal fate, even if at low efficiency. In this study, we show that Fezf2 synergizes with the nuclear co-adaptor Lmo4 to further enhance reprogramming of UL cortical pyramidal neurons into DL corticofugal neurons, at both embryonic and early postnatal stages. Reprogrammed neurons express DL molecular markers and project toward subcerebral targets, including thalamus, cerebral peduncle (CP), and spinal cord (SC). We also show that co-expression of Fezf2 with the reprogramming factors Neurog2 and Bcl2 in early postnatal mouse glia promotes glia-to-neuron conversion with partial hallmarks of DL neurons and with Lmo4 promoting further morphological complexity. These data support a novel role for Lmo4 in synergizing with Fezf2 during direct lineage conversion in vivo.
Collapse
Affiliation(s)
| | - Chiara Tocco
- Université Côte d’Azur, CNRS, Inserm, iBV, Nice, France
| | - Sophie Péron
- Research Group “Adult Neurogenesis and Cellular Reprogramming”, Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Kawssar Harb
- Université Côte d’Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Chiara Galante
- Research Group “Adult Neurogenesis and Cellular Reprogramming”, Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
| | - Benedikt Berninger
- Research Group “Adult Neurogenesis and Cellular Reprogramming”, Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Focus Program Translational Neuroscience, Johannes Gutenberg University, Mainz, Germany
| | | |
Collapse
|
8
|
Itoh Y, Sahni V, Shnider SJ, McKee H, Macklis JD. Inter-axonal molecular crosstalk via Lumican proteoglycan sculpts murine cervical corticospinal innervation by distinct subpopulations. Cell Rep 2023; 42:112182. [PMID: 36934325 PMCID: PMC10167627 DOI: 10.1016/j.celrep.2023.112182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/07/2022] [Accepted: 02/14/2023] [Indexed: 03/19/2023] Open
Abstract
How CNS circuits sculpt their axonal arbors into spatially and functionally organized domains is not well understood. Segmental specificity of corticospinal connectivity is an exemplar for such regional specificity of many axon projections. Corticospinal neurons (CSN) innervate spinal and brainstem targets with segmental precision, controlling voluntary movement. Multiple molecularly distinct CSN subpopulations innervate the cervical cord for evolutionarily enhanced precision of forelimb movement. Evolutionarily newer CSNBC-lat exclusively innervate bulbar-cervical targets, while CSNmedial are heterogeneous; distinct subpopulations extend axons to either bulbar-cervical or thoraco-lumbar segments. We identify that Lumican controls balance of cervical innervation between CSNBC-lat and CSNmedial axons during development, which is maintained into maturity. Lumican, an extracellular proteoglycan expressed by CSNBC-lat, non-cell-autonomously suppresses cervical collateralization by multiple CSNmedial subpopulations. This inter-axonal molecular crosstalk between CSN subpopulations controls murine corticospinal circuitry refinement and forelimb dexterity. Such crosstalk is generalizable beyond the corticospinal system for evolutionary incorporation of new neuron populations into preexisting circuitry.
Collapse
Affiliation(s)
- Yasuhiro Itoh
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Vibhu Sahni
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Sara J Shnider
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Holly McKee
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
9
|
Nano PR, Bhaduri A. Evaluation of advances in cortical development using model systems. Dev Neurobiol 2022; 82:408-427. [PMID: 35644985 PMCID: PMC10924780 DOI: 10.1002/dneu.22879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/11/2022]
Abstract
Compared with that of even the closest primates, the human cortex displays a high degree of specialization and expansion that largely emerges developmentally. Although decades of research in the mouse and other model systems has revealed core tenets of cortical development that are well preserved across mammalian species, small deviations in transcription factor expression, novel cell types in primates and/or humans, and unique cortical architecture distinguish the human cortex. Importantly, many of the genes and signaling pathways thought to drive human-specific cortical expansion also leave the brain vulnerable to disease, as the misregulation of these factors is highly correlated with neurodevelopmental and neuropsychiatric disorders. However, creating a comprehensive understanding of human-specific cognition and disease remains challenging. Here, we review key stages of cortical development and highlight known or possible differences between model systems and the developing human brain. By identifying the developmental trajectories that may facilitate uniquely human traits, we highlight open questions in need of approaches to examine these processes in a human context and reveal translatable insights into human developmental disorders.
Collapse
Affiliation(s)
- Patricia R Nano
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
10
|
Moya MV, Kim RD, Rao MN, Cotto BA, Pickett SB, Sferrazza CE, Heintz N, Schmidt EF. Unique molecular features and cellular responses differentiate two populations of motor cortical layer 5b neurons in a preclinical model of ALS. Cell Rep 2022; 38:110556. [PMID: 35320722 PMCID: PMC9059890 DOI: 10.1016/j.celrep.2022.110556] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
Many neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), lead to the selective degeneration of discrete cell types in the CNS despite the ubiquitous expression of many genes linked to disease. Therapeutic advancement depends on understanding the unique cellular adaptations that underlie pathology of vulnerable cells in the context of disease-causing mutations. Here, we employ bacTRAP molecular profiling to elucidate cell type-specific molecular responses of cortical upper motor neurons in a preclinical ALS model. Using two bacTRAP mouse lines that label distinct vulnerable or resilient projection neuron populations in motor cortex, we show that the regulation of oxidative phosphorylation (Oxphos) pathways is a common response in both cell types. However, differences in the baseline expression of genes involved in Oxphos and the handling of reactive oxygen species likely lead to the selective degeneration of the vulnerable cells. These results provide a framework to identify cell-type-specific processes in neurodegenerative disease. Moya et al. use bacTRAP mouse lines to characterize two highly related subpopulations of layer 5b projection neurons in motor cortex that are differentially susceptible to neurodegeneration in the SOD1-G93A mouse model of ALS. They identify the regulation of genes involved in bioenergetics as a key factor regulating susceptibility.
Collapse
Affiliation(s)
- Maria V Moya
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Rachel D Kim
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Meghana N Rao
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Bianca A Cotto
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Sarah B Pickett
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Caroline E Sferrazza
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Eric F Schmidt
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA.
| |
Collapse
|
11
|
Harb K, Richter M, Neelagandan N, Magrinelli E, Harfoush H, Kuechler K, Henis M, Hermanns-Borgmeyer I, Calderon de Anda F, Duncan K. Pum2 and TDP-43 refine area-specific cytoarchitecture post-mitotically and modulate translation of Sox5, Bcl11b, and Rorb mRNAs in developing mouse neocortex. eLife 2022; 11:55199. [PMID: 35262486 PMCID: PMC8906809 DOI: 10.7554/elife.55199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
In the neocortex, functionally distinct areas process specific types of information. Area identity is established by morphogens and transcriptional master regulators, but downstream mechanisms driving area-specific neuronal specification remain unclear. Here, we reveal a role for RNA-binding proteins in defining area-specific cytoarchitecture. Mice lacking Pum2 or overexpressing human TDP-43 show apparent ‘motorization’ of layers IV and V of primary somatosensory cortex (S1), characterized by dramatic expansion of cells co-expressing Sox5 and Bcl11b/Ctip2, a hallmark of subcerebral projection neurons, at the expense of cells expressing the layer IV neuronal marker Rorβ. Moreover, retrograde labeling experiments with cholera toxin B in Pum2; Emx1-Cre and TDP43A315T mice revealed a corresponding increase in subcerebral connectivity of these neurons in S1. Intriguingly, other key features of somatosensory area identity are largely preserved, suggesting that Pum2 and TDP-43 may function in a downstream program, rather than controlling area identity per se. Transfection of primary neurons and in utero electroporation (IUE) suggest cell-autonomous and post-mitotic modulation of Sox5, Bcl11b/Ctip2, and Rorβ levels. Mechanistically, we find that Pum2 and TDP-43 directly interact with and affect the translation of mRNAs encoding Sox5, Bcl11b/Ctip2, and Rorβ. In contrast, effects on the levels of these mRNAs were not detectable in qRT-PCR or single-molecule fluorescent in situ hybridization assays, and we also did not detect effects on their splicing or polyadenylation patterns. Our results support the notion that post-transcriptional regulatory programs involving translational regulation and mediated by Pum2 and TDP-43 contribute to elaboration of area-specific neuronal identity and connectivity in the neocortex.
Collapse
Affiliation(s)
- Kawssar Harb
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Melanie Richter
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nagammal Neelagandan
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Elia Magrinelli
- Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Hend Harfoush
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Katrin Kuechler
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Melad Henis
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Anatomy and Histology, Faculty of Veterinary Medicine, New Valley University, New Valley, Egypt
| | - Irm Hermanns-Borgmeyer
- Transgenic Service Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Froylan Calderon de Anda
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kent Duncan
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
12
|
Tocco C, Øvsthus M, Bjaalie JG, Leergaard TB, Studer M. The topography of corticopontine projections is controlled by postmitotic expression of the area-mapping gene Nr2f1. Development 2022; 149:274658. [PMID: 35262177 PMCID: PMC8959144 DOI: 10.1242/dev.200026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/20/2021] [Indexed: 12/27/2022]
Abstract
Axonal projections from layer V neurons of distinct neocortical areas are topographically organized into discrete clusters within the pontine nuclei during the establishment of voluntary movements. However, the molecular determinants controlling corticopontine connectivity are insufficiently understood. Here, we show that an intrinsic cortical genetic program driven by Nr2f1 graded expression is directly implicated in the organization of corticopontine topographic mapping. Transgenic mice lacking cortical expression of Nr2f1 and exhibiting areal organization defects were used as model systems to investigate the arrangement of corticopontine projections. By combining three-dimensional digital brain atlas tools, Cre-dependent mouse lines and axonal tracing, we show that Nr2f1 expression in postmitotic neurons spatially and temporally controls somatosensory topographic projections, whereas expression in progenitor cells influences the ratio between corticopontine and corticospinal fibres passing the pontine nuclei. We conclude that cortical gradients of area-patterning genes are directly implicated in the establishment of a topographic somatotopic mapping from the cortex onto pontine nuclei. Summary: Cortical gradient expression of the area patterning gene Nr2f1 spatially and temporally controls corticopontine topographic connectivity in layer V projection neurons.
Collapse
Affiliation(s)
- Chiara Tocco
- University Côte d'Azur, CNRS, Inserm, iBV, Nice 06108, France
| | - Martin Øvsthus
- Institute of Basic Medical Sciences, University of Oslo, Oslo N-0317, Norway
| | - Jan G Bjaalie
- Institute of Basic Medical Sciences, University of Oslo, Oslo N-0317, Norway
| | - Trygve B Leergaard
- Institute of Basic Medical Sciences, University of Oslo, Oslo N-0317, Norway
| | - Michèle Studer
- University Côte d'Azur, CNRS, Inserm, iBV, Nice 06108, France
| |
Collapse
|
13
|
Huang Z. Simplifying cell fate map by determining lineage history of core pathway activation during fate specification. TRENDS IN DEVELOPMENTAL BIOLOGY 2022; 15:53-62. [PMID: 37396969 PMCID: PMC10312135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A fundamental question in developmental biology is how a single genome gives rise to the diversity of cell fates. In essence, each cell fate in the human body is a unique but stable output state of the genome, maintained by positive and negative feedbacks from both inside and outside the cell (a stable cell state). Traditionally, defining a cell fate means identifying a unique combination of transcriptional factors expressed by the specific cell type. The hundreds of transcriptional factors in the genome, however, have complicated the task of simplifying cell fate representation and obtaining insights into its regulation. Moreover, results from this approach provides only a mostly static picture, with each cell fate/state disconnected from one another. An alternative approach instead defines cell fates by determining their relationship to each other, through identifying the signaling pathways that control each step of their lineage transition from a common progenitor during development. Decades of studies have shown only a handful of signaling pathways are sufficient to specify all cell fates in the body, simplifying the execution of such a strategy. In this review, I will argue this alternative approach is not only feasible but also has the potential of simplifying the cell fate landscape as well as facilitating the engineering of different cell fates for regenerative medicine.
Collapse
Affiliation(s)
- Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI 53705 USA
| |
Collapse
|
14
|
Moussa AJ, Wester JC. Cell-type specific transcriptomic signatures of neocortical circuit organization and their relevance to autism. Front Neural Circuits 2022; 16:982721. [PMID: 36213201 PMCID: PMC9545608 DOI: 10.3389/fncir.2022.982721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
A prevailing challenge in neuroscience is understanding how diverse neuronal cell types select their synaptic partners to form circuits. In the neocortex, major classes of excitatory projection neurons and inhibitory interneurons are conserved across functionally distinct regions. There is evidence these classes form canonical circuit motifs that depend primarily on their identity; however, regional cues likely also influence their choice of synaptic partners. We mined the Allen Institute's single-cell RNA-sequencing database of mouse cortical neurons to study the expression of genes necessary for synaptic connectivity and physiology in two regions: the anterior lateral motor cortex (ALM) and the primary visual cortex (VISp). We used the Allen's metadata to parse cells by clusters representing major excitatory and inhibitory classes that are common to both ALM and VISp. We then performed two types of pairwise differential gene expression analysis: (1) between different neuronal classes within the same brain region (ALM or VISp), and (2) between the same neuronal class in ALM and VISp. We filtered our results for differentially expressed genes related to circuit connectivity and developed a novel bioinformatic approach to determine the sets uniquely enriched in each neuronal class in ALM, VISp, or both. This analysis provides an organized set of genes that may regulate synaptic connectivity and physiology in a cell-type-specific manner. Furthermore, it identifies candidate mechanisms for circuit organization that are conserved across functionally distinct cortical regions or that are region dependent. Finally, we used the SFARI Human Gene Module to identify genes from this analysis that are related to risk for autism spectrum disorder (ASD). Our analysis provides clear molecular targets for future studies to understand neocortical circuit organization and abnormalities that underlie autistic phenotypes.
Collapse
Affiliation(s)
- Anthony J Moussa
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Jason C Wester
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
15
|
Sahni V, Shnider SJ, Jabaudon D, Song JHT, Itoh Y, Greig LC, Macklis JD. Corticospinal neuron subpopulation-specific developmental genes prospectively indicate mature segmentally specific axon projection targeting. Cell Rep 2021; 37:109843. [PMID: 34686320 PMCID: PMC8653526 DOI: 10.1016/j.celrep.2021.109843] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/27/2021] [Accepted: 09/26/2021] [Indexed: 11/11/2022] Open
Abstract
For precise motor control, distinct subpopulations of corticospinal neurons (CSN) must extend axons to distinct spinal segments, from proximal targets in the brainstem and cervical cord to distal targets in thoracic and lumbar spinal segments. We find that developing CSN subpopulations exhibit striking axon targeting specificity in spinal white matter, which establishes the foundation for durable specificity of adult corticospinal circuitry. Employing developmental retrograde and anterograde labeling, and their distinct neocortical locations, we purified developing CSN subpopulations using fluorescence-activated cell sorting to identify genes differentially expressed between bulbar-cervical and thoracolumbar-projecting CSN subpopulations at critical developmental times. These segmentally distinct CSN subpopulations are molecularly distinct from the earliest stages of axon extension, enabling prospective identification even before eventual axon targeting decisions are evident in the spinal cord. This molecular delineation extends beyond simple spatial separation of these subpopulations in the cortex. Together, these results identify candidate molecular controls over segmentally specific corticospinal axon projection targeting.
Collapse
Affiliation(s)
- Vibhu Sahni
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Sara J Shnider
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Denis Jabaudon
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Janet H T Song
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yasuhiro Itoh
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Luciano C Greig
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
16
|
Sahni V, Itoh Y, Shnider SJ, Macklis JD. Crim1 and Kelch-like 14 exert complementary dual-directional developmental control over segmentally specific corticospinal axon projection targeting. Cell Rep 2021; 37:109842. [PMID: 34686337 PMCID: PMC8697027 DOI: 10.1016/j.celrep.2021.109842] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/27/2021] [Accepted: 09/26/2021] [Indexed: 11/20/2022] Open
Abstract
The cerebral cortex executes highly skilled movement, necessitating that it connects accurately with specific brainstem and spinal motor circuitry. Corticospinal neurons (CSN) must correctly target specific spinal segments, but the basis for this targeting remains unknown. In the accompanying report, we show that segmentally distinct CSN subpopulations are molecularly distinct from early development, identifying candidate molecular controls over segmentally specific axon targeting. Here, we functionally investigate two of these candidate molecular controls, Crim1 and Kelch-like 14 (Klhl14), identifying their critical roles in directing CSN axons to appropriate spinal segmental levels in the white matter prior to axon collateralization. Crim1 and Klhl14 are specifically expressed by distinct CSN subpopulations and regulate their differental white matter projection targeting-Crim1 directs thoracolumbar axon extension, while Klhl14 limits axon extension to bulbar-cervical segments. These molecular regulators of descending spinal projections constitute the first stages of a dual-directional set of complementary controls over CSN diversity for segmentally and functionally distinct circuitry.
Collapse
Affiliation(s)
- Vibhu Sahni
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yasuhiro Itoh
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Sara J Shnider
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
17
|
Abstract
Asymmetries in the functional and structural organization of the nervous system are widespread in the animal kingdom and especially characterize the human brain. Although there is little doubt that asymmetries arise through genetic and nongenetic factors, an overarching model to explain the development of functional lateralization patterns is still lacking. Current genetic psychology collects data on genes relevant to brain lateralizations, while animal research provides information on the cellular mechanisms mediating the effects of not only genetic but also environmental factors. This review combines data from human and animal research (especially on birds) and outlines a multi-level model for asymmetry formation. The relative impact of genetic and nongenetic factors varies between different developmental phases and neuronal structures. The basic lateralized organization of a brain is already established through genetically controlled embryonic events. During ongoing development, hemispheric specialization increases for specific functions and subsystems interact to shape the final functional organization of a brain. In particular, these developmental steps are influenced by environmental experiences, which regulate the fine-tuning of neural networks via processes that are referred to as ontogenetic plasticity. The plastic potential of the nervous system could be decisive for the evolutionary success of lateralized brains.
Collapse
|
18
|
Mossink B, Negwer M, Schubert D, Nadif Kasri N. The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cell Mol Life Sci 2021; 78:2517-2563. [PMID: 33263776 PMCID: PMC8004494 DOI: 10.1007/s00018-020-03714-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.
Collapse
Affiliation(s)
- Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Xu L, Zheng Y, Li X, Wang A, Huo D, Li Q, Wang S, Luo Z, Liu Y, Xu F, Wu X, Wu M, Zhou Y. Abnormal neocortex arealization and Sotos-like syndrome-associated behavior in Setd2 mutant mice. SCIENCE ADVANCES 2021; 7:7/1/eaba1180. [PMID: 33523829 PMCID: PMC7775761 DOI: 10.1126/sciadv.aba1180] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Proper formation of area identities of the cerebral cortex is crucial for cognitive functions and social behaviors of the brain. It remains largely unknown whether epigenetic mechanisms, including histone methylation, regulate cortical arealization. Here, we removed SETD2, the methyltransferase for histone 3 lysine-36 trimethylation (H3K36me3), in the developing dorsal forebrain in mice and showed that Setd2 is required for proper cortical arealization and the formation of cortico-thalamo-cortical circuits. Moreover, Setd2 conditional knockout mice exhibit defects in social interaction, motor learning, and spatial memory, reminiscent of patients with the Sotos-like syndrome bearing SETD2 mutations. SETD2 maintains the expression of clustered protocadherin (cPcdh) genes in an H3K36me3 methyltransferase-dependent manner. Aberrant cortical arealization was recapitulated in cPcdh heterozygous mice. Together, our study emphasizes epigenetic mechanisms underlying cortical arealization and pathogenesis of the Sotos-like syndrome.
Collapse
Affiliation(s)
- Lichao Xu
- College of Life Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, and Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430071, China
| | - Yue Zheng
- College of Life Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, and Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430071, China
| | - Xuejing Li
- College of Life Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, and Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430071, China
| | - Andi Wang
- College of Life Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, and Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430071, China
| | - Dawei Huo
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
- Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Qinglan Li
- College of Life Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, and Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430071, China
| | - Shikang Wang
- College of Life Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, and Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430071, China
| | - Zhiyuan Luo
- College of Life Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, and Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430071, China
| | - Ying Liu
- College of Life Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, and Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430071, China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xudong Wu
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
- Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Min Wu
- College of Life Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, and Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430071, China.
| | - Yan Zhou
- College of Life Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, and Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430071, China.
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
20
|
Ku RY, Torii M. New Molecular Players in the Development of Callosal Projections. Cells 2020; 10:cells10010029. [PMID: 33375263 PMCID: PMC7824101 DOI: 10.3390/cells10010029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/28/2022] Open
Abstract
Cortical development in humans is a long and ongoing process that continuously modifies the neural circuitry into adolescence. This is well represented by the dynamic maturation of the corpus callosum, the largest white matter tract in the brain. Callosal projection neurons whose long-range axons form the main component of the corpus callosum are evolved relatively recently with a substantial, disproportionate increase in numbers in humans. Though the anatomy of the corpus callosum and cellular processes in its development have been intensively studied by experts in a variety of fields over several decades, the whole picture of its development, in particular, the molecular controls over the development of callosal projections, still has many missing pieces. This review highlights the most recent progress on the understanding of corpus callosum formation with a special emphasis on the novel molecular players in the development of axonal projections in the corpus callosum.
Collapse
Affiliation(s)
- Ray Yueh Ku
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Masaaki Torii
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
- Correspondence:
| |
Collapse
|
21
|
An evolutionarily acquired microRNA shapes development of mammalian cortical projections. Proc Natl Acad Sci U S A 2020; 117:29113-29122. [PMID: 33139574 PMCID: PMC7682328 DOI: 10.1073/pnas.2006700117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The mammalian central nervous system contains unique projections from the cerebral cortex thought to underpin complex motor and cognitive skills, including the corticospinal tract and corpus callosum. The neurons giving rise to these projections—corticospinal and callosal projection neurons—develop from the same progenitors, but acquire strikingly different fates. The broad evolutionary conservation of known genes controlling cortical projection neuron fates raises the question of how the more narrowly conserved corticospinal and callosal projections evolved. We identify a microRNA cluster selectively expressed by corticospinal projection neurons and exclusive to placental mammals. One of these microRNAs promotes corticospinal fate via regulation of the callosal gene LMO4, suggesting a mechanism whereby microRNA regulation during development promotes evolution of neuronal diversity. The corticospinal tract is unique to mammals and the corpus callosum is unique to placental mammals (eutherians). The emergence of these structures is thought to underpin the evolutionary acquisition of complex motor and cognitive skills. Corticospinal motor neurons (CSMN) and callosal projection neurons (CPN) are the archetypal projection neurons of the corticospinal tract and corpus callosum, respectively. Although a number of conserved transcriptional regulators of CSMN and CPN development have been identified in vertebrates, none are unique to mammals and most are coexpressed across multiple projection neuron subtypes. Here, we discover 17 CSMN-enriched microRNAs (miRNAs), 15 of which map to a single genomic cluster that is exclusive to eutherians. One of these, miR-409-3p, promotes CSMN subtype identity in part via repression of LMO4, a key transcriptional regulator of CPN development. In vivo, miR-409-3p is sufficient to convert deep-layer CPN into CSMN. This is a demonstration of an evolutionarily acquired miRNA in eutherians that refines cortical projection neuron subtype development. Our findings implicate miRNAs in the eutherians’ increase in neuronal subtype and projection diversity, the anatomic underpinnings of their complex behavior.
Collapse
|
22
|
Cadwell CR, Bhaduri A, Mostajo-Radji MA, Keefe MG, Nowakowski TJ. Development and Arealization of the Cerebral Cortex. Neuron 2019; 103:980-1004. [PMID: 31557462 PMCID: PMC9245854 DOI: 10.1016/j.neuron.2019.07.009] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/15/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022]
Abstract
Adult cortical areas consist of specialized cell types and circuits that support unique higher-order cognitive functions. How this regional diversity develops from an initially uniform neuroepithelium has been the subject of decades of seminal research, and emerging technologies, including single-cell transcriptomics, provide a new perspective on area-specific molecular diversity. Here, we review the early developmental processes that underlie cortical arealization, including both cortex intrinsic and extrinsic mechanisms as embodied by the protomap and protocortex hypotheses, respectively. We propose an integrated model of serial homology whereby intrinsic genetic programs and local factors establish early transcriptomic differences between excitatory neurons destined to give rise to broad "proto-regions," and activity-dependent mechanisms lead to progressive refinement and formation of sharp boundaries between functional areas. Finally, we explore the potential of these basic developmental processes to inform our understanding of the emergence of functional neural networks and circuit abnormalities in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cathryn R Cadwell
- Department of Anatomic Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aparna Bhaduri
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94122, USA; The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mohammed A Mostajo-Radji
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94122, USA; The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew G Keefe
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J Nowakowski
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
23
|
Kast RJ, Levitt P. Precision in the development of neocortical architecture: From progenitors to cortical networks. Prog Neurobiol 2019; 175:77-95. [PMID: 30677429 PMCID: PMC6402587 DOI: 10.1016/j.pneurobio.2019.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/02/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023]
Abstract
Of all brain regions, the 6-layered neocortex has undergone the most dramatic changes in size and complexity during mammalian brain evolution. These changes, occurring in the context of a conserved set of organizational features that emerge through stereotypical developmental processes, are considered responsible for the cognitive capacities and sensory specializations represented within the mammalian clade. The modern experimental era of developmental neurobiology, spanning 6 decades, has deciphered a number of mechanisms responsible for producing the diversity of cortical neuron types, their precise connectivity and the role of gene by environment interactions. Here, experiments providing insight into the development of cortical projection neuron differentiation and connectivity are reviewed. This current perspective integrates discussion of classic studies and new findings, based on recent technical advances, to highlight an improved understanding of the neuronal complexity and precise connectivity of cortical circuitry. These descriptive advances bring new opportunities for studies related to the developmental origins of cortical circuits that will, in turn, improve the prospects of identifying pathogenic targets of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ryan J Kast
- Department of Pediatrics and Program in Developmental Neuroscience and Developmental Neurogenetics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Pat Levitt
- Department of Pediatrics and Program in Developmental Neuroscience and Developmental Neurogenetics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA.
| |
Collapse
|
24
|
Mancinelli S, Lodato S. Decoding neuronal diversity in the developing cerebral cortex: from single cells to functional networks. Curr Opin Neurobiol 2018; 53:146-155. [DOI: 10.1016/j.conb.2018.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022]
|
25
|
Nowakowski TJ, Bhaduri A, Pollen AA, Alvarado B, Mostajo-Radji MA, Di Lullo E, Haeussler M, Sandoval-Espinosa C, Liu SJ, Velmeshev D, Ounadjela JR, Shuga J, Wang X, Lim DA, West JA, Leyrat AA, Kent WJ, Kriegstein AR. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 2018; 358:1318-1323. [PMID: 29217575 DOI: 10.1126/science.aap8809] [Citation(s) in RCA: 599] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/10/2017] [Indexed: 12/16/2022]
Abstract
Systematic analyses of spatiotemporal gene expression trajectories during organogenesis have been challenging because diverse cell types at different stages of maturation and differentiation coexist in the emerging tissues. We identified discrete cell types as well as temporally and spatially restricted trajectories of radial glia maturation and neurogenesis in developing human telencephalon. These lineage-specific trajectories reveal the expression of neurogenic transcription factors in early radial glia and enriched activation of mammalian target of rapamycin signaling in outer radial glia. Across cortical areas, modest transcriptional differences among radial glia cascade into robust typological distinctions among maturing neurons. Together, our results support a mixed model of topographical, typological, and temporal hierarchies governing cell-type diversity in the developing human telencephalon, including distinct excitatory lineages emerging in rostral and caudal cerebral cortex.
Collapse
Affiliation(s)
- Tomasz J Nowakowski
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA. .,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA.,Department of Anatomy, UCSF, San Francisco, CA, USA
| | - Aparna Bhaduri
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA. .,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA
| | - Alex A Pollen
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA
| | - Beatriz Alvarado
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA
| | - Mohammed A Mostajo-Radji
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA
| | - Elizabeth Di Lullo
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA
| | | | - Carmen Sandoval-Espinosa
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA
| | - Siyuan John Liu
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA.,Department of Neurosurgery, UCSF, San Francisco, CA, USA
| | - Dmitry Velmeshev
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA
| | - Johain Ryad Ounadjela
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA.,Department of Anatomy, UCSF, San Francisco, CA, USA
| | - Joe Shuga
- New Technologies, Fluidigm, South San Francisco, CA, USA
| | - Xiaohui Wang
- New Technologies, Fluidigm, South San Francisco, CA, USA
| | - Daniel A Lim
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA.,Department of Neurosurgery, UCSF, San Francisco, CA, USA
| | - Jay A West
- New Technologies, Fluidigm, South San Francisco, CA, USA
| | - Anne A Leyrat
- New Technologies, Fluidigm, South San Francisco, CA, USA
| | - W James Kent
- Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Arnold R Kriegstein
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA.,Department of Anatomy, UCSF, San Francisco, CA, USA
| |
Collapse
|
26
|
MacDonald JL, Fame RM, Gillis-Buck EM, Macklis JD. Caveolin1 Identifies a Specific Subpopulation of Cerebral Cortex Callosal Projection Neurons (CPN) Including Dual Projecting Cortical Callosal/Frontal Projection Neurons (CPN/FPN). eNeuro 2018; 5:ENEURO.0234-17.2017. [PMID: 29379878 PMCID: PMC5780842 DOI: 10.1523/eneuro.0234-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/27/2022] Open
Abstract
The neocortex is composed of many distinct subtypes of neurons that must form precise subtype-specific connections to enable the cortex to perform complex functions. Callosal projection neurons (CPN) are the broad population of commissural neurons that connect the cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes and connectivity is specified, and how they differentiate to form highly precise and specific circuits, are largely unknown. We identify in mouse that the lipid-bound scaffolding domain protein Caveolin 1 (CAV1) is specifically expressed by a unique subpopulation of Layer V CPN that maintain dual ipsilateral frontal projections to premotor cortex. CAV1 is expressed by over 80% of these dual projecting callosal/frontal projection neurons (CPN/FPN), with expression peaking early postnatally as axonal and dendritic targets are being reached and refined. CAV1 is localized to the soma and dendrites of CPN/FPN, a unique population of neurons that shares information both between hemispheres and with premotor cortex, suggesting function during postmitotic development and refinement of these neurons, rather than in their specification. Consistent with this, we find that Cav1 function is not necessary for the early specification of CPN/FPN, or for projecting to their dual axonal targets. CPN subtype-specific expression of Cav1 identifies and characterizes a first molecular component that distinguishes this functionally unique projection neuron population, a population that expands in primates, and is prototypical of additional dual and higher-order projection neuron subtypes.
Collapse
Affiliation(s)
- Jessica L. MacDonald
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
- Department of Biology, Syracuse University, Syracuse, NY 13244
| | - Ryann M. Fame
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Eva M. Gillis-Buck
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Jeffrey D. Macklis
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| |
Collapse
|
27
|
Schmitz J, Kumsta R, Moser D, Güntürkün O, Ocklenburg S. DNA methylation in candidate genes for handedness predicts handedness direction. Laterality 2017; 23:441-461. [DOI: 10.1080/1357650x.2017.1377726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Judith Schmitz
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| | - Robert Kumsta
- Genetic Psychology, Department of Psychology, Ruhr University, Bochum, Germany
| | - Dirk Moser
- Genetic Psychology, Department of Psychology, Ruhr University, Bochum, Germany
| | - Onur Güntürkün
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Sebastian Ocklenburg
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| |
Collapse
|
28
|
LHX2 Interacts with the NuRD Complex and Regulates Cortical Neuron Subtype Determinants Fezf2 and Sox11. J Neurosci 2017; 37:194-203. [PMID: 28053041 PMCID: PMC5214630 DOI: 10.1523/jneurosci.2836-16.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022] Open
Abstract
In the developing cerebral cortex, sequential transcriptional programs take neuroepithelial cells from proliferating progenitors to differentiated neurons with unique molecular identities. The regulatory changes that occur in the chromatin of the progenitors are not well understood. During deep layer neurogenesis, we show that transcription factor LHX2 binds to distal regulatory elements of Fezf2 and Sox11, critical determinants of neuron subtype identity in the mouse neocortex. We demonstrate that LHX2 binds to the nucleosome remodeling and histone deacetylase histone remodeling complex subunits LSD1, HDAC2, and RBBP4, which are proximal regulators of the epigenetic state of chromatin. When LHX2 is absent, active histone marks at the Fezf2 and Sox11 loci are increased. Loss of LHX2 produces an increase, and overexpression of LHX2 causes a decrease, in layer 5 Fezf2 and CTIP2-expressing neurons. Our results provide mechanistic insight into how LHX2 acts as a necessary and sufficient regulator of genes that control cortical neuronal subtype identity. SIGNIFICANCE STATEMENT The functional complexity of the cerebral cortex arises from an array of distinct neuronal subtypes with unique connectivity patterns that are produced from common progenitors. This study reveals that transcription factor LHX2 regulates the numbers of specific cortical output neuron subtypes by controlling the genes that are required to produce them. Loss or increase in LHX2 during neurogenesis is sufficient to increase or decrease, respectively, a particular subcerebrally projecting population. Mechanistically, LHX2 interacts with chromatin modifying protein complexes to edit the chromatin landscape of its targets Fezf2 and Sox11, which regulates their expression and consequently the identities of the neurons produced. Thus, LHX2 is a key component of the control network for producing neurons that will participate in cortical circuitry.
Collapse
|
29
|
Cited2 Regulates Neocortical Layer II/III Generation and Somatosensory Callosal Projection Neuron Development and Connectivity. J Neurosci 2017; 36:6403-19. [PMID: 27307230 DOI: 10.1523/jneurosci.4067-15.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/04/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The neocortex contains hundreds to thousands of distinct subtypes of precisely connected neurons, allowing it to perform remarkably complex tasks of high-level cognition. Callosal projection neurons (CPN) connect the cerebral hemispheres via the corpus callosum, integrating cortical information and playing key roles in associative cognition. CPN are a strikingly diverse set of neuronal subpopulations, and development of this diversity requires precise control by a complex, interactive set of molecular effectors. We have found that the transcriptional coregulator Cited2 regulates and refines two stages of CPN development. Cited2 is expressed broadly by progenitors in the embryonic day 15.5 subventricular zone, during the peak of superficial layer CPN birth, with a progressive postmitotic refinement in expression, becoming restricted to CPN of the somatosensory cortex postnatally. We generated progenitor-stage and postmitotic forebrain-specific Cited2 conditional knock-out mice, using the Emx1-Cre and NEX-Cre mouse lines, respectively. We demonstrate that Cited2 functions in progenitors, but is not necessary postmitotically, to regulate both (1) broad generation of layer II/III CPN and (2) acquisition of precise area-specific molecular identity and axonal/dendritic connectivity of somatosensory CPN. This novel CPN subtype-specific and area-specific control from progenitor action of Cited2 adds yet another layer of complexity to the multistage developmental regulation of neocortical development. SIGNIFICANCE STATEMENT This study identifies Cited2 as a novel subtype-specific and area-specific control over development of distinct subpopulations within the broad population of callosal projection neurons (CPN), whose axons connect the two cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes is specified, and how they differentiate to form highly precise and specific circuits, are largely unknown. We found that Cited2 functions within subventricular zone progenitors to both broadly regulate generation of superficial layer CPN throughout the neocortex, and to refine precise area-specific development and connectivity of somatosensory CPN. Gaining insight into molecular development and heterogeneity of CPN will advance understanding of both diverse functions of CPN and of the remarkable range of neurodevelopmental deficits correlated with CPN/CC development.
Collapse
|
30
|
Greig LC, Woodworth MB, Greppi C, Macklis JD. Ctip1 Controls Acquisition of Sensory Area Identity and Establishment of Sensory Input Fields in the Developing Neocortex. Neuron 2017; 90:261-77. [PMID: 27100196 DOI: 10.1016/j.neuron.2016.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 11/16/2015] [Accepted: 03/07/2016] [Indexed: 12/19/2022]
Abstract
While transcriptional controls over the size and relative position of cortical areas have been identified, less is known about regulators that direct acquisition of area-specific characteristics. Here, we report that the transcription factor Ctip1 functions in primary sensory areas to repress motor and activate sensory programs of gene expression, enabling establishment of sharp molecular boundaries defining functional areas. In Ctip1 mutants, abnormal gene expression leads to aberrantly motorized corticocortical and corticofugal output connectivity. Ctip1 critically regulates differentiation of layer IV neurons, and selective loss of Ctip1 in cortex deprives thalamocortical axons of their receptive "sensory field" in layer IV, which normally provides a tangentially and radially defined compartment of dedicated synaptic territory. Therefore, although thalamocortical axons invade appropriate cortical regions, they are unable to organize into properly configured sensory maps. Together, these data identify Ctip1 as a critical control over sensory area development.
Collapse
Affiliation(s)
- Luciano C Greig
- Department of Stem Cell and Regenerative Biology, Center for Brain Science and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Mollie B Woodworth
- Department of Stem Cell and Regenerative Biology, Center for Brain Science and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Chloé Greppi
- Department of Stem Cell and Regenerative Biology, Center for Brain Science and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, Center for Brain Science and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
31
|
Fame RM, Dehay C, Kennedy H, Macklis JD. Subtype-Specific Genes that Characterize Subpopulations of Callosal Projection Neurons in Mouse Identify Molecularly Homologous Populations in Macaque Cortex. Cereb Cortex 2017; 27:1817-1830. [PMID: 26874185 DOI: 10.1093/cercor/bhw023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Callosal projection neurons (CPN) interconnect the neocortical hemispheres via the corpus callosum and are implicated in associative integration of multimodal information. CPN have undergone differential evolutionary elaboration, leading to increased diversity of cortical neurons-and more extensive and varied connections in neocortical gray and white matter-in primates compared with rodents. In mouse, distinct sets of genes are enriched in discrete subpopulations of CPN, indicating the molecular diversity of rodent CPN. Elements of rodent CPN functional and organizational diversity might thus be present in the further elaborated primate cortex. We address the hypothesis that genes controlling mouse CPN subtype diversity might reflect molecular patterns shared among mammals that arose prior to the divergence of rodents and primates. We find that, while early expression of the examined CPN-enriched genes, and postmigratory expression of these CPN-enriched genes in deep layers are highly conserved (e.g., Ptn, Nnmt, Cited2, Dkk3), in contrast, the examined genes expressed by superficial layer CPN show more variable levels of conservation (e.g., EphA3, Chn2). These results suggest that there has been evolutionarily differential retraction and elaboration of superficial layer CPN subpopulations between mouse and macaque, with independent derivation of novel populations in primates. Together, these data inform future studies regarding CPN subpopulations that are unique to primates and rodents, and indicate putative evolutionary relationships.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Colette Dehay
- Inserm U1208, Stem Cell and Brain Research Institute, Bron, France.,Université de Lyon, Université Lyon 1, Bron, France
| | - Henry Kennedy
- Inserm U1208, Stem Cell and Brain Research Institute, Bron, France.,Université de Lyon, Université Lyon 1, Bron, France
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
32
|
Olsen LC, O'Reilly KC, Liabakk NB, Witter MP, Sætrom P. MicroRNAs contribute to postnatal development of laminar differences and neuronal subtypes in the rat medial entorhinal cortex. Brain Struct Funct 2017; 222:3107-3126. [PMID: 28260163 PMCID: PMC5585308 DOI: 10.1007/s00429-017-1389-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/13/2017] [Indexed: 01/23/2023]
Abstract
The medial entorhinal cortex (MEC) is important in spatial navigation and memory formation and its layers have distinct neuronal subtypes, connectivity, spatial properties, and disease susceptibility. As little is known about the molecular basis for the development of these laminar differences, we analyzed microRNA (miRNA) and messenger RNA (mRNA) expression differences between rat MEC layer II and layers III–VI during postnatal development. We identified layer and age-specific regulation of gene expression by miRNAs, which included processes related to neuron specialization and locomotor behavior. Further analyses by retrograde labeling and expression profiling of layer II stellate neurons and in situ hybridization revealed that the miRNA most up-regulated in layer II, miR-143, was enriched in stellate neurons, whereas the miRNA most up-regulated in deep layers, miR-219-5p, was expressed in ependymal cells, oligodendrocytes and glia. Bioinformatics analyses of predicted mRNA targets with negatively correlated expression patterns to miR-143 found that miR-143 likely regulates the Lmo4 gene, which is known to influence hippocampal-based spatial learning.
Collapse
Affiliation(s)
- Lene C Olsen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kally C O'Reilly
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University for Science and Technology, Trondheim, Norway
| | - Nina B Liabakk
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University for Science and Technology, Trondheim, Norway
| | - Pål Sætrom
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway. .,Department of Computer and Information Science, Norwegian University for Science and Technology, Trondheim, Norway. .,Bioinformatics core facility-BioCore, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
33
|
Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nat Neurosci 2016; 19:542-53. [PMID: 27021939 DOI: 10.1038/nn.4273] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 02/22/2016] [Indexed: 02/08/2023]
Abstract
Directing the differentiation of induced pluripotent stem cells into motor neurons has allowed investigators to develop new models of amyotrophic lateral sclerosis (ALS). However, techniques vary between laboratories and the cells do not appear to mature into fully functional adult motor neurons. Here we discuss common developmental principles of both lower and upper motor neuron development that have led to specific derivation techniques. We then suggest how these motor neurons may be matured further either through direct expression or administration of specific factors or coculture approaches with other tissues. Ultimately, through a greater understanding of motor neuron biology, it will be possible to establish more reliable models of ALS. These in turn will have a greater chance of validating new drugs that may be effective for the disease.
Collapse
|
34
|
Galazo MJ, Emsley JG, Macklis JD. Corticothalamic Projection Neuron Development beyond Subtype Specification: Fog2 and Intersectional Controls Regulate Intraclass Neuronal Diversity. Neuron 2016; 91:90-106. [PMID: 27321927 DOI: 10.1016/j.neuron.2016.05.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 03/16/2016] [Accepted: 05/16/2016] [Indexed: 01/05/2023]
Abstract
Corticothalamic projection neurons (CThPN) are a diverse set of neurons, critical for function of the neocortex. CThPN development and diversity need to be precisely regulated, but little is known about molecular controls over their differentiation and functional specialization, critically limiting understanding of cortical development and complexity. We report the identification of a set of genes that both define CThPN and likely control their differentiation, diversity, and function. We selected the CThPN-specific transcriptional coregulator Fog2 for functional analysis. We identify that Fog2 controls CThPN molecular differentiation, axonal targeting, and diversity, in part by regulating the expression level of Ctip2 by CThPN, via combinatorial interactions with other molecular controls. Loss of Fog2 specifically disrupts differentiation of subsets of CThPN specialized in motor function, indicating that Fog2 coordinates subtype and functional-area differentiation. These results confirm that we identified key controls over CThPN development and identify Fog2 as a critical control over CThPN diversity.
Collapse
Affiliation(s)
- Maria J Galazo
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jason G Emsley
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
35
|
Harb K, Magrinelli E, Nicolas CS, Lukianets N, Frangeul L, Pietri M, Sun T, Sandoz G, Grammont F, Jabaudon D, Studer M, Alfano C. Area-specific development of distinct projection neuron subclasses is regulated by postnatal epigenetic modifications. eLife 2016; 5:e09531. [PMID: 26814051 PMCID: PMC4744182 DOI: 10.7554/elife.09531] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/13/2015] [Indexed: 12/25/2022] Open
Abstract
During cortical development, the identity of major classes of long-distance projection neurons is established by the expression of molecular determinants, which become gradually restricted and mutually exclusive. However, the mechanisms by which projection neurons acquire their final properties during postnatal stages are still poorly understood. In this study, we show that the number of neurons co-expressing Ctip2 and Satb2, respectively involved in the early specification of subcerebral and callosal projection neurons, progressively increases after birth in the somatosensory cortex. Ctip2/Satb2 postnatal co-localization defines two distinct neuronal subclasses projecting either to the contralateral cortex or to the brainstem suggesting that Ctip2/Satb2 co-expression may refine their properties rather than determine their identity. Gain- and loss-of-function approaches reveal that the transcriptional adaptor Lmo4 drives this maturation program through modulation of epigenetic mechanisms in a time- and area-specific manner, thereby indicating that a previously unknown genetic program postnatally promotes the acquisition of final subtype-specific features.
Collapse
Affiliation(s)
- Kawssar Harb
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Elia Magrinelli
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Céline S Nicolas
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Nikita Lukianets
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Laura Frangeul
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Mariel Pietri
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Tao Sun
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, United States
| | - Guillaume Sandoz
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Franck Grammont
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Laboratoire J.A. Dieudonné, Nice, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Michele Studer
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Christian Alfano
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| |
Collapse
|
36
|
Golonzhka O, Nord A, Tang PLF, Lindtner S, Ypsilanti AR, Ferretti E, Visel A, Selleri L, Rubenstein JLR. Pbx Regulates Patterning of the Cerebral Cortex in Progenitors and Postmitotic Neurons. Neuron 2015; 88:1192-1207. [PMID: 26671461 DOI: 10.1016/j.neuron.2015.10.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/13/2015] [Accepted: 10/13/2015] [Indexed: 11/27/2022]
Abstract
We demonstrate using conditional mutagenesis that Pbx1, with and without Pbx2(+/-) sensitization, regulates regional identity and laminar patterning of the developing mouse neocortex in cortical progenitors (Emx1-Cre) and in newly generated neurons (Nex1-Cre). Pbx1/2 mutants have three salient molecular phenotypes of cortical regional and laminar organization: hypoplasia of the frontal cortex, ventral expansion of the dorsomedial cortex, and ventral expansion of Reelin expression in the cortical plate of the frontal cortex, concomitant with an inversion of cortical layering in the rostral cortex. Molecular analyses, including PBX ChIP-seq, provide evidence that PBX promotes frontal cortex identity by repressing genes that promote dorsocaudal fate.
Collapse
Affiliation(s)
- Olga Golonzhka
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA; Acetylon Pharmaceuticals, 70 Fargo Street, Suite 205, Boston, MA 02210, USA.
| | - Alex Nord
- Departments of Neurobiology, Physiology, and Behavior and Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California Davis, Davis, CA 95618, USA
| | - Paul L F Tang
- Institute for Human Genetics, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Susan Lindtner
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Athena R Ypsilanti
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Elisabetta Ferretti
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA; The Danish Stem Cell Center, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Axel Visel
- Genomics Division, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
37
|
Abstract
The neocortex is the part of the brain responsible for execution of higher-order brain functions, including cognition, sensory perception, and sophisticated motor control. During evolution, the neocortex has developed an unparalleled neuronal diversity, which still remains partly unclassified and unmapped at the functional level. Here, we broadly review the structural blueprint of the neocortex and discuss the current classification of its neuronal diversity. We then cover the principles and mechanisms that build neuronal diversity during cortical development and consider the impact of neuronal class-specific identity in shaping cortical connectivity and function.
Collapse
Affiliation(s)
- Simona Lodato
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138; ,
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138; ,
| |
Collapse
|
38
|
Abstract
The neocortex is the part of the brain responsible for execution of higher-order brain functions, including cognition, sensory perception, and sophisticated motor control. During evolution, the neocortex has developed an unparalleled neuronal diversity, which still remains partly unclassified and unmapped at the functional level. Here, we broadly review the structural blueprint of the neocortex and discuss the current classification of its neuronal diversity. We then cover the principles and mechanisms that build neuronal diversity during cortical development and consider the impact of neuronal class-specific identity in shaping cortical connectivity and function.
Collapse
Affiliation(s)
- Simona Lodato
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138; ,
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138; ,
| |
Collapse
|
39
|
Postmitotic regulation of sensory area patterning in the mammalian neocortex by Lhx2. Proc Natl Acad Sci U S A 2015; 112:6736-41. [PMID: 25971728 DOI: 10.1073/pnas.1424440112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Current knowledge suggests that cortical sensory area identity is controlled by transcription factors (TFs) that specify area features in progenitor cells and subsequently their progeny in a one-step process. However, how neurons acquire and maintain these features is unclear. We have used conditional inactivation restricted to postmitotic cortical neurons in mice to investigate the role of the TF LIM homeobox 2 (Lhx2) in this process and report that in conditional mutant cortices area patterning is normal in progenitors but strongly affected in cortical plate (CP) neurons. We show that Lhx2 controls neocortical area patterning by regulating downstream genetic and epigenetic regulators that drive the acquisition of molecular properties in CP neurons. Our results question a strict hierarchy in which progenitors dominate area identity, suggesting a novel and more comprehensive two-step model of area patterning: In progenitors, patterning TFs prespecify sensory area blueprints. Sequentially, sustained function of alignment TFs, including Lhx2, is essential to maintain and to translate the blueprints into functional sensory area properties in cortical neurons postmitotically. Our results reemphasize critical roles for Lhx2 that acts as one of the terminal selector genes in controlling principal properties of neurons.
Collapse
|
40
|
Lodato S, Shetty AS, Arlotta P. Cerebral cortex assembly: generating and reprogramming projection neuron diversity. Trends Neurosci 2014; 38:117-25. [PMID: 25529141 DOI: 10.1016/j.tins.2014.11.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
The mammalian cerebral cortex is responsible for the highest levels of associative, cognitive and motor functions. In the central nervous system (CNS) the cortex stands as a prime example of extreme neuronal diversity, broadly classified into excitatory projection neurons (PNs) and inhibitory interneurons (INs). We review here recent progress made in understanding the strategies and mechanisms that shape PN diversity during embryogenesis, and discuss how PN classes may be maintained, postnatally, for the life of the organism. In addition, we consider the intriguing possibility that PNs may be amenable to directed reprogramming of their class-specific features to allow enhanced cortical plasticity in the adult.
Collapse
Affiliation(s)
- Simona Lodato
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Ashwin S Shetty
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
41
|
Sadegh C, Macklis JD. Established monolayer differentiation of mouse embryonic stem cells generates heterogeneous neocortical-like neurons stalled at a stage equivalent to midcorticogenesis. J Comp Neurol 2014; 522:2691-706. [PMID: 24610556 DOI: 10.1002/cne.23576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/27/2014] [Accepted: 02/03/2014] [Indexed: 02/02/2023]
Abstract
Two existing and widely applied protocols of embryonic stem (ES) cell differentiation have been developed to enable in vitro generation of neurons resembling neocortical projection neurons in monolayer culture and from embryoid bodies. The monolayer approach offers advantages for detailed in vitro characterizations and potential mechanistic and therapeutic screening. We investigated whether mouse ES cells undergoing largely undirected neocortical differentiation in monolayer culture recapitulate progressive developmental programs of in vivo progenitor and postmitotic differentiation and whether they develop into specific neocortical subtypes. We find that ES-derived mitotic cells that have been dorsalized by the sonic hedgehog antagonist cyclopamine, and that express, as a total population, cardinal markers of telencephalic progenitors, are, in fact, molecularly heterogeneous. We next show that these progenitors subsequently generate small numbers of heterogeneous neocortical-like neurons that are "stalled" at an immature stage of differentiation, based on multiple developmental criteria. Although some aspects of neocortical development are recapitulated by existing protocols of ES cell differentiation, these data indicate that mouse ES-derived neocortical progenitors both are more heterogeneous than their in vivo counterparts and seemingly include many incorrectly specified progenitors. Furthermore, these ES-derived progenitors spontaneously differentiate into sparse, and incompletely and largely imprecisely differentiated, neocortical-like neurons that fail to adopt specific neuronal identities in vitro. These results provide both foundation and motivation for refining and enhancing directed differentiation of clinically important neocortical projection neuron subtypes.
Collapse
Affiliation(s)
- Cameron Sadegh
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, and Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138
| | | |
Collapse
|
42
|
LMO4 is essential for paraventricular hypothalamic neuronal activity and calcium channel expression to prevent hyperphagia. J Neurosci 2014; 34:140-8. [PMID: 24381275 DOI: 10.1523/jneurosci.3419-13.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dramatic increase in the prevalence of obesity reflects a lack of progress in combating one of the most serious health problems of this century. Recent studies have improved our understanding of the appetitive network by focusing on the paraventricular hypothalamus (PVH), a key region responsible for the homeostatic balance of food intake. Here we show that mice with PVH-specific ablation of LIM domain only 4 (Lmo4) become rapidly obese when fed regular chow due to hyperphagia rather than to reduced energy expenditure. Brain slice recording of LMO4-deficient PVH neurons showed reduced basal cellular excitability together with reduced voltage-activated Ca(2+) currents. Real-time PCR quantification revealed that LMO4 regulates the expression of Ca(2+) channels (Cacna1h, Cacna1e) that underlie neuronal excitability. By increasing neuronal activity using designer receptors exclusively activated by designer drugs technology, we could suppress food intake of PVH-specific LMO4-deficient mice. Together, these results demonstrate that reduced neural activity in LMO4-deficient PVH neurons accounts for hyperphagia. Thus, maintaining PVH activity is important to prevent hyperphagia-induced obesity.
Collapse
|
43
|
Greig LC, Woodworth MB, Galazo MJ, Padmanabhan H, Macklis JD. Molecular logic of neocortical projection neuron specification, development and diversity. Nat Rev Neurosci 2013; 14:755-69. [PMID: 24105342 DOI: 10.1038/nrn3586] [Citation(s) in RCA: 627] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The sophisticated circuitry of the neocortex is assembled from a diverse repertoire of neuronal subtypes generated during development under precise molecular regulation. In recent years, several key controls over the specification and differentiation of neocortical projection neurons have been identified. This work provides substantial insight into the 'molecular logic' underlying cortical development and increasingly supports a model in which individual progenitor-stage and postmitotic regulators are embedded within highly interconnected networks that gate sequential developmental decisions. Here, we provide an integrative account of the molecular controls that direct the progressive development and delineation of subtype and area identity of neocortical projection neurons.
Collapse
|
44
|
Asante CO, Martin JH. Differential joint-specific corticospinal tract projections within the cervical enlargement. PLoS One 2013; 8:e74454. [PMID: 24058570 PMCID: PMC3776849 DOI: 10.1371/journal.pone.0074454] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/31/2013] [Indexed: 12/20/2022] Open
Abstract
The motor cortex represents muscle and joint control and projects to spinal cord interneurons and-in many primates, including humans-motoneurons, via the corticospinal tract (CST). To examine these spinal CST anatomical mechanisms, we determined if motor cortex sites controlling individual forelimb joints project differentially to distinct cervical spinal cord territories, defined regionally and by the locations of putative last-order interneurons that were transneuronally labeled by intramuscular injection of pseudorabies virus. Motor cortex joint-specific sites were identified using intracortical-microstimulation. CST segmental termination fields from joint-specific sites, determined using anterograde tracers, comprised a high density core of terminations that was consistent between animals and a surrounding lower density projection that was more variable. Core terminations from shoulder, elbow, and wrist control sites overlapped in the medial dorsal horn and intermediate zone at C5/C6 but were separated at C7/C8. Shoulder sites preferentially terminated dorsally, in the dorsal horn; wrist/digit sites, more ventrally in the intermediate zone; and elbow sites, medially in the dorsal horn and intermediate zone. Pseudorabies virus injected in shoulder, elbow, or wrist muscles labeled overlapping populations of predominantly muscle-specific putative premotor interneurons, at a survival time for disynaptic transfer from muscle. At C5/C6, CST core projections from all joint zones were located medial to regions of densely labeled last-order interneurons, irrespective of injected muscle. At C7/C8 wrist CST core projections overlapped the densest interneuron territory, which was located in the lateral intermediate zone. In contrast, elbow CST core projections were located medial to the densest interneuron territories, and shoulder CST core projections were located dorsally and only partially overlapped the densest interneuron territory. Our findings show a surprising fractionation of CST terminations in the caudal cervical enlargement that may be organized to engage different spinal premotor circuits for distal and proximal joint control.
Collapse
Affiliation(s)
- Curtis O. Asante
- Department of Physiology, Pharmacology, and Neuroscience, City College of the City University of New York, New York, New York, United States of America
| | - John H. Martin
- Department of Physiology, Pharmacology, and Neuroscience, City College of the City University of New York, New York, New York, United States of America
- Department of Neuroscience, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
45
|
Cobos I, Seeley WW. Human von Economo neurons express transcription factors associated with Layer V subcerebral projection neurons. Cereb Cortex 2013; 25:213-20. [PMID: 23960210 DOI: 10.1093/cercor/bht219] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The von Economo neurons (VENs) are large bipolar Layer V projection neurons found chiefly in the anterior cingulate and frontoinsular cortices. Although VENs have been linked to prevalent illnesses such as frontotemporal dementia, autism, and schizophrenia, little is known about VEN identity, including their major projection targets. Here, we undertook a developmental transcription factor expression study, focusing on markers associated with specific classes of Layer V projection neurons. Using mRNA in situ hybridization, we found that VENs prominently express FEZF2 and CTIP2, transcription factors that regulate the fate and differentiation of subcerebral projection neurons, in humans aged 3 months to 65 years. In contrast, few VENs expressed markers associated with callosal or corticothalamic projections. These findings suggest that VENs may represent a specialized Layer V projection neuron for linking cortical autonomic control sites to brainstem or spinal cord regions.
Collapse
Affiliation(s)
- Inma Cobos
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA Current address: Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
46
|
Establishing brain functional laterality in adult mice through unilateral gene manipulation in the embryonic cortex. Cell Res 2013; 23:1147-9. [PMID: 23917527 DOI: 10.1038/cr.2013.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|