1
|
Hetherington MC, Weissner M, Guédot C. Attraction of Lygus lineolaris (Hemiptera: Miridae) to a ubiquitous floral volatile in the field. ENVIRONMENTAL ENTOMOLOGY 2025; 54:243-255. [PMID: 39891892 DOI: 10.1093/ee/nvaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/04/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
Herbivorous insects utilize olfactory and visual cues to orient on suitable host plants, and such cues can be employed to facilitate insect monitoring. Lygus lineolaris Palisot de Beauvois is a polyphagous pest throughout North America. Monitoring this pest as it moves between crop and non-crop hosts remains challenging, and a lack of effective monitoring tools complicates management of this insect. In this study, we examined the electrophysiological and behavioral responses of L. lineolaris to the volatile emissions of 2 crop hosts: alfalfa and strawberry. Gas chromatography with electroantennographic detection was applied to identify antennally active compounds in headspace extracts of flowering host plants, before responses to individual compounds were examined in the field. Five compounds consistently elicited antennal depolarizations in adults of L. lineolaris and, of these, (±)-linalool increased the capture rate of L. lineolaris females in the field. Subsequent experiments examined the influence of visual cues and stereochemistry on capture rate, revealing that lures containing (±)-linalool and (S)-(+)-linalool significantly increased the capture rate of L. lineolaris females compared with traps baited with (R)-(-)-linalool and controls, indicating that L. lineolaris is attracted to (S)-(+)-linalool. While lures increased capture on red traps, this was not the case for white traps, emphasizing the importance of visual cues in the movements and monitoring of L. lineolaris. This study demonstrates that L. lineolaris is attracted to (S)-(+)-linalool in the field, and that attraction depends on trap color. This knowledge is expected to improve monitoring strategies for L. lineolaris in agricultural systems.
Collapse
Affiliation(s)
| | - Morgan Weissner
- Department of Entomology, University of Wisconsin - Madison, Madison, WI, USA
| | - Christelle Guédot
- Department of Entomology, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
2
|
Schuh E, Cassau S, Ismaieel AR, Stieber R, Krieger J, Hansson BS, Sachse S, Bisch-Knaden S. Females smell differently: characteristics and significance of the most common olfactory sensilla of female silkmoths. Proc Biol Sci 2024; 291:20232578. [PMID: 38228178 DOI: 10.1098/rspb.2023.2578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
In the silkmoth Bombyx mori, the role of male sensilla trichodea in pheromone detection is well established. Here we study the corresponding female sensilla, which contain two olfactory sensory neurons (OSNs) and come in two lengths, each representing a single physiological type. Only OSNs in medium trichoids respond to the scent of mulberry, the silkworm's exclusive host plant, and are more sensitive in mated females, suggesting a role in oviposition. In long trichoids, one OSN is tuned to (+)-linalool and the other to benzaldehyde and isovaleric acid, both odours emitted by silkworm faeces. While the significance of (+)-linalool detection remains unclear, isovaleric acid repels mated females and may therefore play a role in avoiding crowded oviposition sites. When we examined the underlying molecular components of neurons in female trichoids, we found non-canonical co-expression of Ir8a, the co-receptor for acid responses, and ORco, the co-receptor of odorant receptors, in long trichoids, and the unexpected expression of a specific odorant receptor in both trichoid sensillum types. In addition to elucidating the function of female trichoids, our results suggest that some accepted organizational principles of the insect olfactory system may not apply to the predominant sensilla on the antenna of female B. mori.
Collapse
Affiliation(s)
- Elisa Schuh
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Straße 8, 07745 Jena, Germany
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Hans-Knoell-Straße 8, 07745 Jena, Germany
| | - Sina Cassau
- Institute of Biology/Zoology, Department of Animal Physiology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Ahmed R Ismaieel
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Straße 8, 07745 Jena, Germany
- Entomology Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Regina Stieber
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Straße 8, 07745 Jena, Germany
| | - Jürgen Krieger
- Institute of Biology/Zoology, Department of Animal Physiology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Straße 8, 07745 Jena, Germany
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Hans-Knoell-Straße 8, 07745 Jena, Germany
| | - Sonja Bisch-Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Straße 8, 07745 Jena, Germany
| |
Collapse
|
3
|
Tom MT, Cortés Llorca L, Bucks S, Bisch-Knaden S, Hansson BS. Sex- and tissue-specific expression of chemosensory receptor genes in a hawkmoth. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.976521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For the nocturnal hawkmoth Manduca sexta, olfactory and gustatory cues are essential for finding partners, food, and oviposition sites. Three chemosensory receptor families, odorant receptors (ORs), ionotropic receptors (IRs), and gustatory receptors (GRs) are involved in the detection of these stimuli. While many chemosensory receptor genes have been identified, knowledge of their expression profile in potentially chemoreceptive organs is incomplete. Here, we studied the expression patterns of chemosensory receptors in different tissues including the antennae, labial palps, proboscis, legs, wings and ovipositor. We compared the receptors’ expression in female and male moths both before and after mating by using the NanoString platform. This tool allowed us to measure expression levels of chemosensory receptor genes in a single reaction using probes designed against 71 OR, 29 IR and 49 GR transcripts. In all tissues investigated, we detected expression of genes from all three receptor families. The highest number of receptors was detected in the antennae (92), followed by the ovipositor (59), while the least number was detected in the hindlegs (21). The highest number of OR genes were expressed in the antennae (63), of which 24 were specific to this main olfactory organ. The highest number of IRs were also expressed in the antennae (16), followed by the ovipositor (15). Likewise, antennae and ovipositor expressed the highest number of GRs (13 and 14). Expression of the OR co-receptor MsexORCo, presumably a prerequisite for OR function, was found in the antennae, labial palps, forelegs and ovipositor. IR co-receptors MsexIR25a and MsexIR76b were expressed across all tested tissues, while expression of the IR co-receptor MsexIR8a was restricted to antennae and ovipositor. Comparing the levels of all 149 transcripts across the nine tested tissues allowed us to identify sex-biased gene expression in the antennae and the legs, two appendages that are also morphologically different between the sexes. However, none of the chemosensory receptors was differentially expressed based on the moths’ mating state. The observed gene expression patterns form a strong base for the functional characterization of chemosensory receptors and the understanding of olfaction and gustation at the molecular level in M. sexta.
Collapse
|
4
|
Huff RM, Pitts RJ. Functional conservation of Anopheline linalool receptors through 100 million years of evolution. Chem Senses 2022; 47:bjac032. [PMID: 36458901 PMCID: PMC9717389 DOI: 10.1093/chemse/bjac032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Insects rely on olfactory receptors to detect and respond to diverse environmental chemical cues. Detection of semiochemicals by these receptors modulates insect behavior and has a direct impact on species fitness. Volatile organic compounds (VOCs) are released by animals and plants and can provide contextual cues that a blood meal host or nectar source is present. One such VOC is linalool, an enantiomeric monoterpene, that is emitted from plants and bacteria species. This compound exists in nature as one of two possible stereoisomers, (R)-(-)-linalool or (S)-(+)-linalool. In this study, we use a heterologous expression system to demonstrate differential responsiveness of a pair of Anopheline odorant receptors (Ors) to enantiomers of linalool. The mosquitoes Anopheles gambiae and Anopheles stephensi encode single copies of Or29 and Or53, which are expressed in the labella of An. gambiae. (S)-(+)-linalool activates Or29 orthologs with a higher potency than (R)-(-)-linalool, while the converse is observed for Or53 orthologs. The conservation of these receptors across a broad range of Anopheline species suggests they may function in the discrimination of linalool stereoisomers, thereby influencing the chemical ecology of mosquitoes. One potential application of this knowledge would be in the design of novel attractants or repellents to be used in integrated pest management practices.
Collapse
Affiliation(s)
- Robert M Huff
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | | |
Collapse
|
5
|
Tuckman H, Patel M, Lei H. Effects of Mechanosensory Input on the Tracking of Pulsatile Odor Stimuli by Moth Antennal Lobe Neurons. Front Neurosci 2021; 15:739730. [PMID: 34690678 PMCID: PMC8529024 DOI: 10.3389/fnins.2021.739730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Air turbulence ensures that in a natural environment insects tend to encounter odor stimuli in a pulsatile fashion. The frequency and duration of odor pulses varies with distance from the source, and hence successful mid-flight odor tracking requires resolution of spatiotemporal pulse dynamics. This requires both olfactory and mechanosensory input (from wind speed), a form of sensory integration observed within the antennal lobe (AL). In this work, we employ a model of the moth AL to study the effect of mechanosensory input on AL responses to pulsatile stimuli; in particular, we examine the ability of model neurons to: (1) encode the temporal length of a stimulus pulse; (2) resolve the temporal dynamics of a high frequency train of brief stimulus pulses. We find that AL glomeruli receiving olfactory input are adept at encoding the temporal length of a stimulus pulse but less effective at tracking the temporal dynamics of a pulse train, while glomeruli receiving mechanosensory input but little olfactory input can efficiently track the temporal dynamics of high frequency pulse delivery but poorly encode the duration of an individual pulse. Furthermore, we show that stronger intrinsic small-conductance calcium-dependent potassium (SK) currents tend to skew cells toward being better trackers of pulse frequency, while weaker SK currents tend to entail better encoding of the temporal length of individual pulses. We speculate a possible functional division of labor within the AL, wherein, for a particular odor, glomeruli receiving strong olfactory input exhibit prolonged spiking responses that facilitate detailed discrimination of odor features, while glomeruli receiving mechanosensory input (but little olfactory input) serve to resolve the temporal dynamics of brief, pulsatile odor encounters. Finally, we discuss how this hypothesis extends to explaining the functional significance of intraglomerular variability in observed phase II response patterns of AL neurons.
Collapse
Affiliation(s)
- Harrison Tuckman
- Department of Mathematics, William & Mary, Williamsburg, VA, United States
| | - Mainak Patel
- Department of Mathematics, William & Mary, Williamsburg, VA, United States
| | - Hong Lei
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
6
|
Borrego LG, Ramarosandratana N, Jeanneau E, Métay E, Ramanandraibe VV, Andrianjafy MT, Lemaire M. Effect of the Stereoselectivity of para-Menthane-3,8-diol Isomers on Repulsion toward Aedes albopictus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11095-11109. [PMID: 34514794 DOI: 10.1021/acs.jafc.1c03897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Vector-borne diseases cause around 700,000 deaths every year. Insect repellents are one of the strategies to limit them. Para-menthane-3,8-diol (PMD), a natural compound, is one of the most promising alternatives to conventional synthetic repellents. This work describes a diastereodivergent method to synthesize each diastereoisomer of PMD from enantiopure citronellal and studies their repellence activity against Aedes albopictus. We found that cis-PMD is the kinetic control product of the cyclization of citronellal, while trans-PMD is the thermodynamic control product. X-ray diffraction analysis of crystals highlighted some differences in hydrogen-bond patterns between cis or trans isomers. The present paper demonstrates that (1R)-(+)-cis-PMD has the highest repellency index using a new evaluation system for 24 h. (1S)-(-)-cis-PMD has somewhat lower and (1S)-(+)-trans-PMD and (1R)-(-)-trans-PMD have a slight effect. Volunteer tests show that (1R)-(+)-cis-PMD is the most efficient. This effect could be ascribed to the interaction of PMD/insect odorant receptors and their physical properties, that is, the evaporation rate.
Collapse
Affiliation(s)
- Lorenzo G Borrego
- Université Claude Bernard Lyon 1/CNRS. Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, (ICBMS), 1 rue Victor Grignard, 69100 Villeurbanne, France
| | | | - Erwann Jeanneau
- Centre de Diffactrométrie Henri Longchambon, Université Claude Bernard Lyon 1, 5 rue de la doua, 69100 Villeurbanne, France
| | - Estelle Métay
- Université Claude Bernard Lyon 1/CNRS. Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, (ICBMS), 1 rue Victor Grignard, 69100 Villeurbanne, France
| | | | | | - Marc Lemaire
- Université Claude Bernard Lyon 1/CNRS. Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, (ICBMS), 1 rue Victor Grignard, 69100 Villeurbanne, France
- Faculté des Sciences, Laboratoire International Associé, Antananarivo 101, Madagascar
| |
Collapse
|
7
|
Olfactory encoding within the insect antennal lobe: The emergence and role of higher order temporal correlations in the dynamics of antennal lobe spiking activity. J Theor Biol 2021; 522:110700. [PMID: 33819477 DOI: 10.1016/j.jtbi.2021.110700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 11/22/2022]
Abstract
In this review, we focus on the antennal lobe (AL) of three insect species - the fruit fly, sphinx moth, and locust. We first review the experimentally elucidated anatomy and physiology of the early olfactory system of each species; empirical studies of AL activity, however, often focus on assessing firing rates (averaged over time scales of about 100 ms), and hence the AL odor code is often analyzed in terms of a temporally evolving vector of firing rates. However, such a perspective necessarily misses the possibility of higher order temporal correlations in spiking activity within a single cell and across multiple cells over shorter time scales (of about 10 ms). Hence, we then review our prior theoretical work, where we constructed biophysically detailed, species-specific AL models within the fly, moth, and locust, finding that in each case higher order temporal correlations in spiking naturally emerge from model dynamics (i.e., without a prioriincorporation of elements designed to produce correlated activity). We therefore use our theoretical work to argue the perspective that temporal correlations in spiking over short time scales, which have received little experimental attention to-date, may provide valuable coding dimensions (complementing the coding dimensions provided by the vector of firing rates) that nature has exploited in the encoding of odors within the AL. We further argue that, if the AL does indeed utilize temporally correlated activity to represent odor information, such an odor code could be naturally and easily deciphered within the Mushroom Body.
Collapse
|
8
|
Tuckman H, Kim J, Rangan A, Lei H, Patel M. Dynamics of sensory integration of olfactory and mechanical stimuli within the response patterns of moth antennal lobe neurons. J Theor Biol 2020; 509:110510. [PMID: 33022286 DOI: 10.1016/j.jtbi.2020.110510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 11/19/2022]
Abstract
Odors emanating from a biologically relevant source are rapidly embedded within a windy, turbuluent medium that folds and spins filaments into fragmented strands of varying sizes. Environmental odor plumes therefore exhibit complex spatiotemporal dynamics, and rarely yield an easily discernible concentration gradient marking an unambiguous trail to an odor source. Thus, sensory integration of chemical input, encoding odor identity or concentration, and mechanosensory input, encoding wind speed, is a critical task that animals face in resolving the complex dynamics of odor plumes and tracking an odor source. In insects, who employ olfactory navigation as their primary means of foraging for food and finding mates, the antennal lobe (AL) is the first brain structure that processes sensory odor information. Although the importance of chemosensory and mechanosensory integration is widely recognized, the AL itself has traditionally been viewed purely from the perspective of odor encoding, with little attention given to its role as a bimodal integrator. In this work, we seek to explore the AL as a model for studying sensory integration - it boasts well-understood architecture, well-studied olfactory responses, and easily measurable cells. Using a moth model, we present experimental data that clearly demonstrates that AL neurons respond, in dynamically distinct ways, to both chemosensory and mechanosensory input; mechanosensory responses are transient and temporally precise, while olfactory responses are long-lasting but lack temporal precision. We further develop a computational model of the AL, show that our model captures odor response dynamics reported in the literature, and examine the dynamics of our model with the inclusion of mechanosensory input; we then use our model to pinpoint dynamical mechanisms underlying the bimodal AL responses revealed in our experimental work. Finally, we propose a novel hypothesis about the role of mechanosensory input in sculpting AL dynamics and the implications for biological odor tracking.
Collapse
Affiliation(s)
- Harrison Tuckman
- Department of Mathematics, William & Mary Williamsburg, VA 23187, USA
| | - Jungmin Kim
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Aaditya Rangan
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Hong Lei
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Mainak Patel
- Department of Mathematics, William & Mary Williamsburg, VA 23187, USA.
| |
Collapse
|
9
|
Wu H, Li RT, Dong JF, Jiang NJ, Huang LQ, Wang CZ. An odorant receptor and glomerulus responding to farnesene in Helicoverpa assulta (Lepidoptera: Noctuidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 115:103106. [PMID: 30468768 DOI: 10.1016/j.ibmb.2018.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/11/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Terpenoids emitted from herbivore-damaged plants were found to play an important role in regulating tritrophic interactions. How herbivores and their natural enemies perceive terpenoids has not been thoroughly elucidated to date. Using in vivo calcium imaging, we found in this study that farnesene activates one glomerulus in the antennal lobe of female Helicoverpa assulta. The response induced by a mixture of farnesene isomers is stronger than that elicited by E-β-farnesene alone. In the Xenopus oocyte expression system, HassOR23/ORco is narrowly tuned to farnesene isomers and compounds with similar structures. Finally, the behavioral studies showed that the farnesene isomers have an inhibitory effect on oviposition of female H. assulta, but have an attractive effect on host searching of Campoletis chlorideae, the key endoparasitoid of H. assulta larvae. These results demonstrate that farnesene isomers are encoded by a labeled-line mode in the olfactory system of female H. assulta, suggesting that farnesene as a chemical signal from plants has important behavioral relevance and evolutionary implications in the tritrophic context.
Collapse
Affiliation(s)
- Han Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Guangdong Engineering Research Center for Pesticide and Fertilizer, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, China
| | - Rui-Ting Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Feng Dong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Forestry College, Henan University of Science and Technology, Luoyang, China
| | - Nan-Ji Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
He J, Fandino RA, Halitschke R, Luck K, Köllner TG, Murdock MH, Ray R, Gase K, Knaden M, Baldwin IT, Schuman MC. An unbiased approach elucidates variation in ( S)-(+)-linalool, a context-specific mediator of a tri-trophic interaction in wild tobacco. Proc Natl Acad Sci U S A 2019; 116:14651-14660. [PMID: 31262827 PMCID: PMC6642400 DOI: 10.1073/pnas.1818585116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Plant volatile organic compounds (VOCs) mediate many interactions, and the function of common VOCs is especially likely to depend on ecological context. We used a genetic mapping population of wild tobacco, Nicotiana attenuata, originating from a cross of 2 natural accessions from Arizona and Utah, separated by the Grand Canyon, to dissect genetic variation controlling VOCs. Herbivory-induced leaf terpenoid emissions varied substantially, while green leaf volatile emissions were similar. In a field experiment, only emissions of linalool, a common VOC, correlated significantly with predation of the herbivore Manduca sexta by native predators. Using quantitative trait locus mapping and genome mining, we identified an (S)-(+)-linalool synthase (NaLIS). Genome resequencing, gene cloning, and activity assays revealed that the presence/absence of a 766-bp sequence in NaLIS underlies the variation of linalool emissions in 26 natural accessions. We manipulated linalool emissions and composition by ectopically expressing linalool synthases for both enantiomers, (S)-(+)- and (R)-(-)-linalool, reported to oppositely affect M. sexta oviposition, in the Arizona and Utah accessions. We used these lines to test ovipositing moths in increasingly complex environments. The enantiomers had opposite effects on oviposition preference, but the magnitude of the effect depended strongly both on plant genetic background, and complexity of the bioassay environment. Our study reveals that the emission of linalool, a common VOC, differs by orders-of-magnitude among geographically interspersed conspecific plants due to allelic variation in a linalool synthase, and that the response of a specialist herbivore to linalool depends on enantiomer, plant genotype, and environmental complexity.
Collapse
Affiliation(s)
- Jun He
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Richard A Fandino
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Katrin Luck
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Mark H Murdock
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- College of Life Sciences, Brigham Young University, Provo, UT 84606
| | - Rishav Ray
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
- Department of Geography, University of Zurich, 8057 Zürich, Switzerland
| |
Collapse
|
11
|
Cury KM, Prud'homme B, Gompel N. A short guide to insect oviposition: when, where and how to lay an egg. J Neurogenet 2019; 33:75-89. [PMID: 31164023 DOI: 10.1080/01677063.2019.1586898] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Egg-laying behavior is one of the most important aspects of female behavior, and has a profound impact on the fitness of a species. As such, it is controlled by several layers of regulation. Here, we review recent advances in our understanding of insect neural circuits that control when, where and how to lay an egg. We also outline outstanding open questions about the control of egg-laying decisions, and speculate on the possible neural underpinnings that can drive the diversification of oviposition behaviors through evolution.
Collapse
Affiliation(s)
- Kevin M Cury
- a Department of Neuroscience and the Mortimer B. Zuckerman Mind Brain Behavior Institute , Columbia University , New York , NY , USA
| | - Benjamin Prud'homme
- b Aix Marseille Université, CNRS , Institut de Biologie du Développement de Marseille (IBDM) , Marseille , France
| | - Nicolas Gompel
- c Fakultät für Biologie, Biozentrum , Ludwig-Maximilians Universität München , Munich , Germany
| |
Collapse
|
12
|
Yan X, Wang Z, Xie J, Deng C, Sun X, Hao C. Glomerular Organization of the Antennal Lobes of the Diamondback Moth, Plutella xylostella L. Front Neuroanat 2019; 13:4. [PMID: 30804761 PMCID: PMC6371844 DOI: 10.3389/fnana.2019.00004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/14/2019] [Indexed: 11/17/2022] Open
Abstract
The antennal lobe of the moth brain is the primary olfactory center processing information concerning pheromones and plant odors. Plutella xylostella is a major worldwide pest of cruciferous vegetables and its behavior is highly dependent on their olfactory system. However, detailed knowledge of the anatomy and function of the P. xylostella olfactory system remains limited. In the present study, we present the 3-Dimentional (3-D) map of the antennal lobe of P. xylostella, based on confocal microscopic analysis of glomerular segmentation and Neurobiotin backfills of Olfactory Receptor Neurons (ORNs). We identified 74–76 ordinary glomeruli and a macroglomerular complex (MGC) situated at the entrance of the antennal nerve in males. The MGC contained three glomeruli. The volumes of glomeruli in males ranged from 305.83 ± 129.53 to 25440.00 ± 1377.67 μm3. In females, 74–77 glomeruli were found, with the largest glomerulus ELG being situated at the entrance of the antennal nerve. The volumes of glomeruli in females ranged from 802.17 ± 95.68 to 8142.17 ± 509.46 μm3. Sexual dimorphism was observed in anomalous supernumerary, anomalous missing, shape, size, and array of several of the identified glomeruli in both sexes. All glomeruli, except one in the antennal lobe (AL), received projections of antennal ORNs. The glomeruli PV1 in both sexes received input from the labial palp nerve and was assumed as the labial pit organ glomerulus (LPOG). These results provide a foundation for better understanding of coding mechanisms of odors in this important pest insect.
Collapse
Affiliation(s)
- Xizhong Yan
- Department of Entomology, Agricultural College, Shanxi Agricultural University, Taigu, China
| | - Zhiyu Wang
- Department of Entomology, Agricultural College, Shanxi Agricultural University, Taigu, China
| | - Jiaoxin Xie
- Department of Entomology, Agricultural College, Shanxi Agricultural University, Taigu, China
| | - Caiping Deng
- Department of Entomology, Forestry College, Shanxi Agricultural University, Taigu, China
| | - Xuejun Sun
- Department of Entomology, Agricultural College, Shanxi Agricultural University, Taigu, China.,Department of Experimental Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Chi Hao
- Department of Entomology, Agricultural College, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
13
|
Lee SG, Celestino CF, Stagg J, Kleineidam C, Vickers NJ. Moth pheromone-selective projection neurons with cell bodies in the antennal lobe lateral cluster exhibit diverse morphological and neurophysiological characteristics. J Comp Neurol 2019; 527:1443-1460. [PMID: 30723902 DOI: 10.1002/cne.24611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 11/08/2022]
Abstract
Olfactory projection neurons convey information from the insect antennal lobe (AL) to higher brain centers. Previous reports have demonstrated that pheromone-responsive projection neurons with cell bodies in the moth medial cell cluster (mcPNs) predominantly have dendritic arborizations in the sexually dimorphic macroglomerular complex (MGC) and send an axon from the AL to the calyces of the mushroom body (CA) as well as the lateral horn (LH) of the protocerebrum via the medial AL tract. These neurons typically exhibit a narrow odor tuning range related to the restriction of their dendritic arbors within a single glomerulus (uniglomerular). In this study, we report on the diverse physiological and morphological properties of a group of pheromone-responsive olfactory projection neurons with cell bodies in the AL lateral cell cluster (MGC lcPNs) of two closely related moth species. All pheromone-responsive lcPNs appeared to exhibit "basket-like" dendritic arborizations in two MGC compartments and made connections with various protocerebral targets including ventrolateral and superior neuropils via projections primarily through the lateral AL tract and to a lesser extent the mediolateral antennal lobe tract. Physiological characterization of MGC lcPNs also revealed a diversity of response profiles including those either enhanced by or reliant upon presentation of a pheromone blend. These responses manifested themselves as higher maximum firing rates and/or improved temporal resolution of pulsatile stimuli. MGC lcPNs therefore participate in conveying diverse olfactory information relating to qualitative and temporal facets of the pheromone stimulus to a more expansive number of protocerebral targets than their mcPN counterparts.
Collapse
Affiliation(s)
- Seong-Gyu Lee
- School of Biological Sciences, University of Utah, Salt Lake City, Utah
| | - Christine Fogarty Celestino
- School of Biological Sciences, University of Utah, Salt Lake City, Utah.,Program in Neuroscience, University of Utah, Salt Lake City, Utah
| | - Jeffrey Stagg
- School of Biological Sciences, University of Utah, Salt Lake City, Utah
| | | | - Neil J Vickers
- School of Biological Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
14
|
Bisch-Knaden S, Dahake A, Sachse S, Knaden M, Hansson BS. Spatial Representation of Feeding and Oviposition Odors in the Brain of a Hawkmoth. Cell Rep 2018; 22:2482-2492. [DOI: 10.1016/j.celrep.2018.01.082] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/07/2017] [Accepted: 01/25/2018] [Indexed: 01/17/2023] Open
|
15
|
Raguso RA. More lessons from linalool: insights gained from a ubiquitous floral volatile. CURRENT OPINION IN PLANT BIOLOGY 2016; 32:31-36. [PMID: 27286000 DOI: 10.1016/j.pbi.2016.05.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 05/25/2023]
Abstract
Linalool (3,7-dimethyl-1,6-octadien-3-ol) is a common floral volatile with two distinct enantiomers and related metabolites involved in the full spectrum of plant-pollinator interactions. Recent studies reveal a complex interplay between pollinator attraction and plant defense mediated by linalool and its derivatives, from the smallest (Arabidopsis, Mitella) to the largest (Datura) flowers studied. Accordingly, fig wasps, fungus gnats and moths of all sizes show remarkable electrophysiological, neural and behavioral sensitivity to different enantiomers and quantitative ratios of linalool in floral bouquets. The diverse functions of linalool, ranging from toxin to long distance pollinator attractant are discussed in the broader context of floral volatile ecology and evolution.
Collapse
Affiliation(s)
- Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, 215 Tower Rd., Ithaca, NY 14853, USA.
| |
Collapse
|
16
|
Ho WW, Riffell JA. The Olfactory Neuroecology of Herbivory, Hostplant Selection and Plant-Pollinator Interactions. Integr Comp Biol 2016; 56:856-864. [PMID: 27471226 DOI: 10.1093/icb/icw096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plants experience often opposing energetic demands and selective pressures-for instance, where plants need to attract an insect that is both the pollinator and herbivore, or alternately, where plants attract prey (due to limited resources) and pollinators. Together, these selective pressures can modify the volatile signals available to the plant's mutualistic and antagonistic partners. Nevertheless, it remains an open question how changes in the information content of volatile signals modify behavioral responses in mutualists and antagonists, and what the underlying neural bases of these behaviors are. This review focuses on two systems to explore the impact of herbivory and resource availability on plant-pollinator interactions: hawkmoth-pollinated hostplants (where herbivory is common), and carnivorous bee-pollinated pitcher plants (where the plants differentially attract bee pollinators and other insect prey). We focus on (1) the volatile signals emitted from these plants because these volatiles operate as long-distance signals to attract, or deter, insect partners, (2) how this information is processed in the hawkmoth olfactory system, and (3) how volatile information changes spatiotemporally. In both the plants and their respective insect partner(s), volatile signaling, reception and behavior are dynamic and plastic, providing flexibility an ever-changing environment.
Collapse
Affiliation(s)
- Winnie W Ho
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Reisenman CE, Lei H, Guerenstein PG. Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects. Front Physiol 2016; 7:271. [PMID: 27445858 PMCID: PMC4928593 DOI: 10.3389/fphys.2016.00271] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/16/2016] [Indexed: 11/26/2022] Open
Abstract
Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of "semiochemicals", which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.
Collapse
Affiliation(s)
- Carolina E. Reisenman
- Department of Molecular and Cell Biology and Essig Museum of Entomology, University of California, BerkeleyBerkeley, CA, USA
| | - Hong Lei
- Department of Neuroscience, University of ArizonaTucson, AZ, USA
| | - Pablo G. Guerenstein
- Lab. de Estudio de la Biología de Insectos, CICyTTP-CONICETDiamante, Argentina
- Facultad de Ingeniería, Universidad Nacional de Entre RíosOro Verde, Argentina
| |
Collapse
|
18
|
Reisenman CE, Riffell JA. The neural bases of host plant selection in a Neuroecology framework. Front Physiol 2015; 6:229. [PMID: 26321961 PMCID: PMC4532911 DOI: 10.3389/fphys.2015.00229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/28/2015] [Indexed: 11/13/2022] Open
Abstract
Understanding how animals make use of environmental information to guide behavior is a fundamental problem in the field of neuroscience. Similarly, the field of ecology seeks to understand the role of behavior in shaping interactions between organisms at various levels of organization, including population-, community- and even ecosystem-level scales. Together, the newly emerged field of “Neuroecology” seeks to unravel this fundamental question by studying both the function of neurons at many levels of the sensory pathway and the interactions between organisms and their natural environment. The interactions between herbivorous insects and their host plants are ideal examples of Neuroecology given the strong ecological and evolutionary forces and the underlying physiological and behavioral mechanisms that shaped these interactions. In this review we focus on an exemplary herbivorous insect within the Lepidoptera, the giant sphinx moth Manduca sexta, as much is known about the natural behaviors related to host plant selection and the involved neurons at several level of the sensory pathway. We also discuss how herbivore-induced plant odorants and secondary metabolites in floral nectar in turn can affect moth behavior, and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Carolina E Reisenman
- Department of Molecular and Cell Biology, University of California Berkeley, CA, USA
| | | |
Collapse
|
19
|
Kergunteuil A, Dugravot S, Danner H, van Dam NM, Cortesero AM. Characterizing volatiles and attractiveness of five brassicaceous plants with potential for a 'push-pull' strategy toward the cabbage root fly, Delia radicum. J Chem Ecol 2015; 41:330-9. [PMID: 25893791 DOI: 10.1007/s10886-015-0575-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/26/2014] [Accepted: 03/23/2015] [Indexed: 12/17/2022]
Abstract
Volatile Organic Compounds (VOCs) released by plants are involved in various orientation processes of herbivorous insects and consequently play a crucial role in their reproductive success. In the context of developing new strategies for crop protection, several studies have previously demonstrated the possibility to limit insect density on crops using either host or non-host plants that release attractive or repellent VOCs, respectively. The cabbage root fly, Delia radicum, is an important pest of brassicaceous crops for which control methods have to be implemented. Several studies have shown that plant odors influence cabbage root fly behavior, but only few VOCs have been identified so far. The present study aimed at selecting both plants and olfactory stimuli that could be used in the development of a "push-pull" strategy against the cabbage root fly. Olfactometer results revealed that plants belonging to the same family, even to the same species, may exhibit different levels of attractiveness toward D. radicum. Plants that were found attractive in behavioral observations were characterized by high release rates of distinct terpenes, such as linalool, β-caryophyllene, humulene, and α-farnesene. This study represents a first step to identify both attractive plants of agronomic interest, and additional volatiles that could be used in the context of trap crops to protect broccoli fields against the cabbage root fly.
Collapse
|
20
|
Responses to Pheromones in a Complex Odor World: Sensory Processing and Behavior. INSECTS 2014; 5:399-422. [PMID: 26462691 PMCID: PMC4592597 DOI: 10.3390/insects5020399] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 11/21/2022]
Abstract
Insects communicating with pheromones, be it sex- or aggregation pheromones, are confronted with an olfactory environment rich in a diversity of volatile organic compounds of which plants are the main releaser. Certain of these volatiles can represent behaviorally relevant information, such as indications about host- or non-host plants; others will provide essentially a rich odor background out of which the behaviorally relevant information needs to be extracted. In an attempt to disentangle mechanisms of pheromone communication in a rich olfactory environment, which might underlie interactions between intraspecific signals and a background, we will summarize recent literature on pheromone/plant volatile interactions. Starting from molecular mechanisms, describing the peripheral detection and central nervous integration of pheromone-plant volatile mixtures, we will end with behavioral output in response to such mixtures and its plasticity.
Collapse
|
21
|
Odor detection in Manduca sexta is optimized when odor stimuli are pulsed at a frequency matching the wing beat during flight. PLoS One 2013; 8:e81863. [PMID: 24278463 PMCID: PMC3836951 DOI: 10.1371/journal.pone.0081863] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/19/2013] [Indexed: 11/23/2022] Open
Abstract
Sensory systems sample the external world actively, within the context of self-motion induced disturbances. Mammals sample olfactory cues within the context of respiratory cycles and have adapted to process olfactory information within the time frame of a single sniff cycle. In plume tracking insects, it remains unknown whether olfactory processing is adapted to wing beating, which causes similar physical effects as sniffing. To explore this we first characterized the physical properties of our odor delivery system using hotwire anemometry and photo ionization detection, which confirmed that odor stimuli were temporally structured. Electroantennograms confirmed that pulse trains were tracked physiologically. Next, we quantified odor detection in moths in a series of psychophysical experiments to determine whether pulsing odor affected acuity. Moths were first conditioned to respond to a target odorant using Pavlovian olfactory conditioning. At 24 and 48 h after conditioning, moths were tested with a dilution series of the conditioned odor. On separate days odor was presented either continuously or as 20 Hz pulse trains to simulate wing beating effects. We varied pulse train duty cycle, olfactometer outflow velocity, pulsing method, and odor. Results of these studies, established that detection was enhanced when odors were pulsed. Higher velocity and briefer pulses also enhanced detection. Post hoc analysis indicated enhanced detection was the result of a significantly lower behavioral response to blank stimuli when presented as pulse trains. Since blank responses are a measure of false positive responses, this suggests that the olfactory system makes fewer errors (i.e. is more reliable) when odors are experienced as pulse trains. We therefore postulate that the olfactory system of Manduca sexta may have evolved mechanisms to enhance odor detection during flight, where the effects of wing beating represent the norm. This system may even exploit temporal structure in a manner similar to sniffing.
Collapse
|
22
|
Heinbockel T, Shields VDC, Reisenman CE. Glomerular interactions in olfactory processing channels of the antennal lobes. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:929-46. [PMID: 23893248 PMCID: PMC4066976 DOI: 10.1007/s00359-013-0842-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/14/2013] [Accepted: 07/16/2013] [Indexed: 11/24/2022]
Abstract
An open question in olfactory coding is the extent of interglomerular connectivity: do olfactory glomeruli and their neurons regulate the odorant responses of neurons innervating other glomeruli? In the olfactory system of the moth Manduca sexta, the response properties of different types of antennal olfactory receptor cells are known. Likewise, a subset of antennal lobe glomeruli has been functionally characterized and the olfactory tuning of their innervating neurons identified. This provides a unique opportunity to determine functional interactions between glomeruli of known input, specifically, (1) glomeruli processing plant odors and (2) glomeruli activated by antennal stimulation with pheromone components of conspecific females. Several studies describe reciprocal inhibitory effects between different types of pheromone-responsive projection neurons suggesting lateral inhibitory interactions between pheromone component-selective glomerular neural circuits. Furthermore, antennal lobe projection neurons that respond to host plant volatiles and innervate single, ordinary glomeruli are inhibited during antennal stimulation with the female's sex pheromone. The studies demonstrate the existence of lateral inhibitory effects in response to behaviorally significant odorant stimuli and irrespective of glomerular location in the antennal lobe. Inhibitory interactions are present within and between olfactory subsystems (pheromonal and non-pheromonal subsystems), potentially to enhance contrast and strengthen odorant discrimination.
Collapse
Affiliation(s)
- Thomas Heinbockel
- Department of Anatomy, Howard University College of Medicine, 520 W St., N.W., Washington, DC, 20059, USA,
| | | | | |
Collapse
|
23
|
Allmann S, Späthe A, Bisch-Knaden S, Kallenbach M, Reinecke A, Sachse S, Baldwin IT, Hansson BS. Feeding-induced rearrangement of green leaf volatiles reduces moth oviposition. eLife 2013; 2:e00421. [PMID: 23682312 PMCID: PMC3654435 DOI: 10.7554/elife.00421] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/12/2013] [Indexed: 11/18/2022] Open
Abstract
The ability to decrypt volatile plant signals is essential if herbivorous insects are to optimize their choice of host plants for their offspring. Green leaf volatiles (GLVs) constitute a widespread group of defensive plant volatiles that convey a herbivory-specific message via their isomeric composition: feeding of the tobacco hornworm Manduca sexta converts (Z)-3- to (E)-2-GLVs thereby attracting predatory insects. Here we show that this isomer-coded message is monitored by ovipositing M. sexta females. We detected the isomeric shift in the host plant Datura wrightii and performed functional imaging in the primary olfactory center of M. sexta females with GLV structural isomers. We identified two isomer-specific regions responding to either (Z)-3- or (E)-2-hexenyl acetate. Field experiments demonstrated that ovipositing Manduca moths preferred (Z)-3-perfumed D. wrightii over (E)-2-perfumed plants. These results show that (E)-2-GLVs and/or specific (Z)-3/(E)-2-ratios provide information regarding host plant attack by conspecifics that ovipositing hawkmoths use for host plant selection. DOI:http://dx.doi.org/10.7554/eLife.00421.001 Plants have developed a variety of strategies to defend themselves against herbivorous animals, particularly insects. In addition to mechanical defences such as thorns and spines, plants also produce compounds known as secondary metabolites that keep insects and other herbivores at bay by acting as repellents or toxins. Some of these metabolites are produced on a continuous basis by plants, whereas others—notably compounds called green-leaf volatiles—are only produced once the plant has been attacked. Green-leaf volatiles—which are also responsible for the smell of freshly cut grass—have been observed to provide plants with both direct protection, by inhibiting or repelling herbivores, and indirect protection, by attracting predators of the herbivores themselves. The hawkmoth Manduca sexta lays its eggs on various plants, including tobacco plants and sacred Datura plants. Once the eggs have hatched into caterpillars, they start eating the leaves of their host plant, and if present in large numbers, these caterpillars can quickly defoliate and destroy it. In an effort to defend itself, the host plant releases green-leaf volatiles to attract various species of Geocoris, and these bugs eat the eggs. One of the green-leaf volatiles released by tobacco plants is known as (Z)-3-hexenal, but enzymes released by M. sexta caterpillars change some of these molecules into (E)-2-hexenal, which has the same chemical formula but a different structure. The resulting changes in the ‘volatile profile’ alerts Geocoris bugs to the presence of M. sexta eggs and caterpillars on the plant. Now Allmann et al. show that adult female M. sexta moths can also detect similar changes in the volatile profile emitted by sacred Datura plants that have been damaged by M. sexta caterpillars. This alerts the moths to the fact that Geocoris bugs are likely to be attacking eggs and caterpillars on the plant, or on their way to the plant, so they lay their eggs on other plants. This reduces competition for resources and also reduces the risk of newly laid eggs being eaten by predators. Allmann et al. also identified the neural mechanism that allows moths to detect changes in the volatile profile of plants—the E- and Z- odours lead to different activation patterns in the moth brain. DOI:http://dx.doi.org/10.7554/eLife.00421.002
Collapse
Affiliation(s)
- Silke Allmann
- Department of Molecular Ecology , Max Planck Institute for Chemical Ecology , Jena , Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Patel MJ, Rangan AV, Cai D. Coding of odors by temporal binding within a model network of the locust antennal lobe. Front Comput Neurosci 2013; 7:50. [PMID: 23630495 PMCID: PMC3635028 DOI: 10.3389/fncom.2013.00050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 04/09/2013] [Indexed: 11/13/2022] Open
Abstract
The locust olfactory system interfaces with the external world through antennal receptor neurons (ORNs), which represent odors in a distributed, combinatorial manner. ORN axons bundle together to form the antennal nerve, which relays sensory information centrally to the antennal lobe (AL). Within the AL, an odor generates a dynamically evolving ensemble of active cells, leading to a stimulus-specific temporal progression of neuronal spiking. This experimental observation has led to the hypothesis that an odor is encoded within the AL by a dynamically evolving trajectory of projection neuron (PN) activity that can be decoded piecewise to ascertain odor identity. In order to study information coding within the locust AL, we developed a scaled-down model of the locust AL using Hodgkin-Huxley-type neurons and biologically realistic connectivity parameters and current components. Using our model, we examined correlations in the precise timing of spikes across multiple neurons, and our results suggest an alternative to the dynamic trajectory hypothesis. We propose that the dynamical interplay of fast and slow inhibition within the locust AL induces temporally stable correlations in the spiking activity of an odor-dependent neural subset, giving rise to a temporal binding code that allows rapid stimulus detection by downstream elements.
Collapse
Affiliation(s)
- Mainak J Patel
- Department of Mathematics, Duke University Durham, NC, USA
| | | | | |
Collapse
|
25
|
Kariyat RR, Mauck KE, Balogh CM, Stephenson AG, Mescher MC, De Moraes CM. Inbreeding in horsenettle (Solanum carolinense) alters night-time volatile emissions that guide oviposition by Manduca sexta moths. Proc Biol Sci 2013; 280:20130020. [PMID: 23446531 PMCID: PMC3619486 DOI: 10.1098/rspb.2013.0020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/31/2013] [Indexed: 11/12/2022] Open
Abstract
Plant volatiles serve as key foraging and oviposition cues for insect herbivores as well as their natural enemies, but little is known about how genetic variation within plant populations influences volatile-mediated interactions among plants and insects. Here, we explore how inbred and outbred plants from three maternal families of the native weed horsenettle (Solanum carolinense) vary in the emission of volatile organic compounds during the dark phase of the photoperiod, and the effects of this variation on the oviposition preferences of Manduca sexta moths, whose larvae are specialist herbivores of Solanaceae. Compared with inbred plants, outbred plants consistently released more total volatiles at night and more individual compounds-including some previously reported to repel moths and attract predators. Female moths overwhelmingly chose to lay eggs on inbred (versus outbred) plants, and this preference persisted when olfactory cues were presented in the absence of visual and contact cues. These results are consistent with our previous findings that inbred plants recruit more herbivores and suffer greater herbivory under field conditions. Furthermore, they suggest that constitutive volatiles released during the dark portion of the photoperiod can convey accurate information about plant defence status (and/or other aspects of host plant quality) to foraging herbivores.
Collapse
Affiliation(s)
- Rupesh R. Kariyat
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kerry E. Mauck
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christopher M. Balogh
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew G. Stephenson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mark C. Mescher
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Consuelo M. De Moraes
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
26
|
Parachnowitsch AL, Burdon RCF, Raguso RA, Kessler A. Natural selection on floral volatile production in Penstemon digitalis: highlighting the role of linalool. PLANT SIGNALING & BEHAVIOR 2013; 8:e22704. [PMID: 23221753 PMCID: PMC3745574 DOI: 10.4161/psb.22704] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 10/29/2012] [Accepted: 10/29/2012] [Indexed: 05/29/2023]
Abstract
Natural selection is thought to have shaped the evolution of floral scent; however, unlike other floral characters, we have a rudimentary knowledge of how phenotypic selection acts on scent. We found that floral scent was under stronger selection than corolla traits such as flower size and flower color in weakly scented Penstemon digitalis. Our results suggest that to understand evolution in floral phenotypes, including scent in floral selection, studies are crucial. For P. digitalis, linalool was the direct target of selection in the scent bouquet. Therefore, we determined the enantiomeric configuration of linalool because interacting insects may perceive the enantiomers differentially. We found that P. digitalis produces only (S)-(+)-linalool and, more interestingly, it is also taken up into the nectar. Because the nectar is scented and flavored with (S)-(+)-linalool, it may be an important cue for pollinators visiting P. digitalis flowers.
Collapse
Affiliation(s)
- Amy L. Parachnowitsch
- Plant Ecology and Evolution; Evolutionary Biology Centre; Uppsala University; Uppsala, Sweden
| | - Rosalie C. F. Burdon
- Plant Ecology and Evolution; Evolutionary Biology Centre; Uppsala University; Uppsala, Sweden
| | - Robert A. Raguso
- Department of Neurobiology and Behavior; Cornell University; Ithaca, NY USA
| | - André Kessler
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca, NY USA
| |
Collapse
|
27
|
Riffell JA, Lei H, Abrell L, Hildebrand JG. Neural Basis of a Pollinator's Buffet: Olfactory Specialization and Learning in Manduca sexta. Science 2012; 339:200-4. [DOI: 10.1126/science.1225483] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
28
|
Ngumbi E, Fadamiro H. Species and sexual differences in behavioural responses of a specialist and generalist parasitoid species to host-related volatiles. BULLETIN OF ENTOMOLOGICAL RESEARCH 2012; 102:710-718. [PMID: 22647466 DOI: 10.1017/s0007485312000326] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The relationship between the degree of specialization of parasitoids and their responses to host-related volatiles is an important and current evolutionary question. Specialist parasitoids which have evolved to attack fewer host species are predicted to be more responsive to host-related volatiles than generalists. We tested the above prediction by comparing behavioural responses of both sexes of two parasitoids (Hymenoptera: Braconidae) with different degrees of host specificity, Microplitis croceipes (Cresson) (specialist) and Cotesia marginiventris (generalist), to different suites of synthetic host-related volatile compounds. The compounds tested at two doses (1 and 100 μg) include two green leaf volatiles (GLVs: hexanal and (Z)-3-hexen-1-ol) and four herbivore-induced plant volatiles (HIPVs: (Z)-3-hexenyl acetate, linalool, (Z)-3-hexenyl butyrate and (E,E)-α-farnesene). Two hypotheses were tested: (i) M. croceipes (specialist) would show relatively greater behavioural responses to the HIPVs, whereas C. marginiventris (generalist) would show greater behavioural responses to the GLVs, and (ii) females of both species would show greater responses than conspecific males to the host-related volatiles. At the low dose (1 μg), females of the specialist showed significantly greater responses than females of the generalist to three of the tested HIPVs, (Z)-3-hexenyl acetate, linalool and (Z)-3-hexenyl butyrate. In contrast, females of the generalist showed relatively greater responses to the GLVs. The same trends were recorded at the high dose but fewer significant differences were detected. In general, similar results were recorded for males, with the exception of linalool (an HIPV) which elicited significantly greater response in the generalist than the specialist. Comparing the sexes, females of both species showed greater responses than conspecific males to most of the tested volatiles. The ecological significance of these findings is discussed.
Collapse
Affiliation(s)
- E Ngumbi
- Department of Entomology and Plant Pathology, Auburn University, AL 36849, USA
| | | |
Collapse
|
29
|
Späthe A, Reinecke A, Olsson SB, Kesavan S, Knaden M, Hansson BS. Plant species- and status-specific odorant blends guide oviposition choice in the moth Manduca sexta. Chem Senses 2012; 38:147-59. [PMID: 23131861 DOI: 10.1093/chemse/bjs089] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The reproductive success of herbivorous insects largely depends on the mother's oviposition preference. In nocturnal insects, olfaction is arguably the most important sensory modality mediating mate finding, foraging, and host location. In most habitats, gravid females select among a number of plants of varying suitability, yet assessment of the neuroethological mechanisms underlying odor-guided choice between host plants is rare. Using a series of behavioral, electrophysiological, and chromatographic analyses in the Hawk moth, Manduca sexta, we show that gravid females perform a hierarchical choice among host plants of different species and qualities using olfactory cues. Both relevant plant species and qualities can be distinguished by volatile profiles collected from the headspace of these plants, and olfactory sensilla on female antennae detect more than half of the about 120 analytically detected volatiles in host plant headspace samples. Although olfactory sensory neurons present in antennal sensilla are mainly broadly tuned to multiple host compounds, some sensilla exhibit species and condition-specific responses. In fact, species and quality can be distinguished by the physiologically active components alone. Our findings thus suggest that distinguishing characteristics of both host species and quality are already represented at the sensory periphery.
Collapse
Affiliation(s)
- Anna Späthe
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, D-07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Namiki S, Kanzaki R. Heterogeneity in dendritic morphology of moth antennal lobe projection neurons. J Comp Neurol 2012; 519:3367-86. [PMID: 21858820 DOI: 10.1002/cne.22754] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A population of projection neurons (PNs) in the antennal lobe (AL) integrates sensory information from the antenna and is essential for processing odor information in the insect brain. We examined the anatomy of this neuronal population in the brain of the silkmoth Bombyx mori. Using intracellular dye injection, we labeled a total of 246 PNs and systematically analyzed their morphological features, including the soma position, antennocerebral tract, and number of innervating glomeruli. For example, we analyzed PNs that had somata in the different cell clusters, innervated overlapping but different groups of glomeruli, and ran through different pathways. We also identified glomeruli innervated by PNs using a previously established procedure that first classifies glomeruli into regional groups and then identifies individual glomeruli. We analyzed uniglomerular PNs (75.6% of the total) and found heterogeneity in the dendritic morphology of the PNs that was dependent on the regions and/or the innervating glomeruli. For example, most PNs innervating the macroglomerular complex did not have extraglomerular processes, whereas most PNs innervating ordinary glomeruli did. Moreover, PNs innervating the toroid glomerulus showed heterogeneity in their dendritic morphology. These PNs had dendritic arborization in different areas within the glomerulus. We found that, in some cases, the innervation pattern of the PN dendrite correlated with individual variation in the glomerular organization. These results indicate that PNs are not homogeneous populations, and in some cases morphological heterogeneity in PNs correlated with change in glomerular organization in the silkmoth AL.
Collapse
Affiliation(s)
- Shigehiro Namiki
- Intelligent Cooperative Systems Laboratory, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
31
|
Abstract
Animals typically perceive their olfactory environment as a complex blend of natural odor cues. In insects, the initial processing of odors occurs in the antennal lobe (AL). Afferent peripheral input from olfactory sensory neurons (OSNs) is modified via mostly inhibitory local interneurons (LNs) and transferred by projection neurons (PNs) to higher brain centers. Here we performed optophysiological studies in the AL of the moth, Manduca sexta, and recorded odor-evoked calcium changes in response to antennal stimulation with five monomolecular host volatiles and their artificial mixture. In a double staining approach, we simultaneously measured OSN network input in concert with PN output across the glomerular array. By comparing odor-evoked activity patterns and response intensities between the two processing levels, we show that host mixtures could generally be predicted from the linear summation of their components at the input of the AL, but output neurons established a unique, nonlinear spatial pattern separate from individual component identities. We then assessed whether particularly high levels of signal modulation correspond to behavioral relevance. One of our mixture components, phenyl acetaldehyde, evoked significant levels of nonlinear input-output modulation in observed spatiotemporal activation patterns that were unique from the other individual odorants tested. This compound also accelerated behavioral activity in subsequent wind tunnel tests, whereas another compound that did not exhibit high levels of modulation also did not affect behavior. These results suggest that the high degree of input-output modulation exhibited by the AL for specific odors can correlate to behavioral output.
Collapse
|
32
|
Choudhary AF, Laycock I, Wright GA. γ-Aminobutyric acid receptor A-mediated inhibition in the honeybee’s antennal lobe is necessary for the formation of configural olfactory percepts. Eur J Neurosci 2012; 35:1718-24. [DOI: 10.1111/j.1460-9568.2012.08090.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Leppik E, Frérot B. Volatile organic compounds and host-plant specialization in European corn borer E and Z pheromone races. CHEMOECOLOGY 2012. [DOI: 10.1007/s00049-012-0104-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Abstract
Animals can be innately attracted to certain odorants. Because these attractants are particularly salient, they might be expected to induce relatively strong responses throughout the olfactory pathway, helping animals detect the most relevant odors but limiting flexibility to respond to other odors. Alternatively, specific neural wiring might link innately preferred odors to appropriate behaviors without a need for intensity biases. How nonpheromonal attractants are processed by the general olfactory system remains largely unknown. In the moth Manduca sexta, we studied this with a set of innately preferred host plant odors and other, neutral odors. Electroantennogram recordings showed that, as a population, olfactory receptor neurons (ORNs) did not respond with greater intensity to host plant odors, and further local field potential recordings showed that no specific amplification of signals induced by host plant odors occurred between the first olfactory center and the second. Moreover, when odorants were mutually diluted to elicit equally intense output from the ORNs, moths were able to learn to associate all tested odorants equally well with food reward. Together, these results suggest that, although nonpheromonal host plant odors activate broadly distributed responses, they may be linked to attractive behaviors mainly through specific wiring in the brain.
Collapse
Affiliation(s)
- Rose C Ong
- National Institute of Child Health and Human Development, National Institutes of Health, 35 Lincoln Drive, Rm 3A-102, MSC 3715, Bethesda, MD 20892, USA
| | | |
Collapse
|
35
|
Martin JP, Beyerlein A, Dacks AM, Reisenman CE, Riffell JA, Lei H, Hildebrand JG. The neurobiology of insect olfaction: sensory processing in a comparative context. Prog Neurobiol 2011; 95:427-47. [PMID: 21963552 DOI: 10.1016/j.pneurobio.2011.09.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/10/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
Abstract
The simplicity and accessibility of the olfactory systems of insects underlie a body of research essential to understanding not only olfactory function but also general principles of sensory processing. As insect olfactory neurobiology takes advantage of a variety of species separated by millions of years of evolution, the field naturally has yielded some conflicting results. Far from impeding progress, the varieties of insect olfactory systems reflect the various natural histories, adaptations to specific environments, and the roles olfaction plays in the life of the species studied. We review current findings in insect olfactory neurobiology, with special attention to differences among species. We begin by describing the olfactory environments and olfactory-based behaviors of insects, as these form the context in which neurobiological findings are interpreted. Next, we review recent work describing changes in olfactory systems as adaptations to new environments or behaviors promoting speciation. We proceed to discuss variations on the basic anatomy of the antennal (olfactory) lobe of the brain and higher-order olfactory centers. Finally, we describe features of olfactory information processing including gain control, transformation between input and output by operations such as broadening and sharpening of tuning curves, the role of spiking synchrony in the antennal lobe, and the encoding of temporal features of encounters with an odor plume. In each section, we draw connections between particular features of the olfactory neurobiology of a species and the animal's life history. We propose that this perspective is beneficial for insect olfactory neurobiology in particular and sensory neurobiology in general.
Collapse
Affiliation(s)
- Joshua P Martin
- Department of Neuroscience, College of Science, University of Arizona, 1040 East Fourth Street, Tucson, AZ 85721-0077, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Varela N, Avilla J, Gemeno C, Anton S. Ordinary glomeruli in the antennal lobe of male and female tortricid moth Grapholita molesta (Busck) (Lepidoptera: Tortricidae) process sex pheromone and host-plant volatiles. ACTA ACUST UNITED AC 2011; 214:637-45. [PMID: 21270313 DOI: 10.1242/jeb.047316] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both sexes of Grapholita molesta, a key pest of stone fruits, are able to detect host-plant volatiles and the sex pheromone emitted by females, and to modify their behaviour accordingly. How olfactory information is processed in the central nervous system is unknown. Intracellular recordings and stainings were used to characterize antennal lobe (AL) neuron responses to single pheromone components, a behaviourally active blend of five peach volatiles and a pear-fruit ester. AL neurons with different response patterns responded to pheromone components and plant volatiles. In males more neurons responded specifically to the main pheromone component than in females, whereas neurons responding to all three pheromone components were more abundant in females. Neurons responding to all three pheromone components often responded also to the tested plant volatiles in both sexes. Responses to all pheromone components were dose dependent in males and females, but dose-response relationships differed between neurons and tested pheromone components. Among the five AL projection neurons identified neuroanatomically in males, no arborizations were observed in the enlarged cumulus (Cu), although all of them responded to pheromone compounds. In one of two stained projection neurons in females, however, the glomerulus, which is thought to be homologous to the Cu, was targeted. The processing of pheromone information by ordinary glomeruli rather than by the macroglomerular complex is thus a striking feature of this species, indicating that pheromone and plant volatile processing are not entirely separate in this tortricid moth AL. However, the absence of recorded pheromone responses in the Cu needs to be confirmed.
Collapse
Affiliation(s)
- Nélia Varela
- Department of Crop Protection, Centre UdL-IRTA, University of Lleida, Lleida, Spain
| | | | | | | |
Collapse
|
37
|
Kuebler LS, Olsson SB, Weniger R, Hansson BS. Neuronal processing of complex mixtures establishes a unique odor representation in the moth antennal lobe. Front Neural Circuits 2011; 5:7. [PMID: 21772814 PMCID: PMC3128929 DOI: 10.3389/fncir.2011.00007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 04/27/2011] [Indexed: 12/03/2022] Open
Abstract
Animals typically perceive natural odor cues in their olfactory environment as a complex mixture of chemically diverse components. In insects, the initial representation of an odor mixture occurs in the first olfactory center of the brain, the antennal lobe (AL). The contribution of single neurons to the processing of complex mixtures in insects, and in particular moths, is still largely unknown. Using a novel multicomponent stimulus system to equilibrate component and mixture concentrations according to vapor pressure, we performed intracellular recordings of projection and interneurons in an attempt to quantitatively characterize mixture representation and integration properties of single AL neurons in the moth. We found that the fine spatiotemporal representation of 2–7 component mixtures among single neurons in the AL revealed a highly combinatorial, non-linear process for coding host mixtures presumably shaped by the AL network: 82% of mixture responding projection neurons and local interneurons showed non-linear spike frequencies in response to a defined host odor mixture, exhibiting an array of interactions including suppression, hypoadditivity, and synergism. Our results indicate that odor mixtures are represented by each cell as a unique combinatorial representation, and there is no general rule by which the network computes the mixture in comparison to single components. On the single neuron level, we show that those differences manifest in a variety of parameters, including the spatial location, frequency, latency, and temporal pattern of the response kinetics.
Collapse
Affiliation(s)
- Linda S Kuebler
- Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology Jena, Germany
| | | | | | | |
Collapse
|
38
|
Abstract
In recent years, considerable progress has been made in understanding the molecular mechanisms underlying olfaction in insects. Because of the diverse nature of the gene families involved, this process has largely relied on genomic data. As a consequence, studies have focused on a small subset of species with extensive genomic information. For Lepidoptera, a large order historically crucial to olfactory research, this circumstance has mostly limited advances to the domesticated species Bombyx mori, with some progress in the noctuid Heliothis virescens based on a nonpublic partial genome database. Because of the limited behavioral repertoire and nonexistent ecological importance of Bombyx, molecular data on the tobacco hornworm Manduca sexta are of utmost importance, especially with regards to its position as a classical olfactory model and its complex natural behavior. Here we present the use of transcriptomic and microarray data to identify members of the main olfactory gene families of Manduca. To assess the quality of our data, we correlate information on expressed receptor genes with detailed morphological data on the antennal lobe. Finally, we compare the expression of the near-complete transcript sets in male and female antennae.
Collapse
|
39
|
Reisenman CE, Dacks AM, Hildebrand JG. Local interneuron diversity in the primary olfactory center of the moth Manduca sexta. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:653-65. [PMID: 21286727 DOI: 10.1007/s00359-011-0625-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/10/2011] [Accepted: 01/15/2011] [Indexed: 02/06/2023]
Abstract
Local interneurons (LNs) play important roles in shaping and modulating the activity of output neurons in primary olfactory centers. Here, we studied the morphological characteristics, odor responses, and neurotransmitter content of LNs in the antennal lobe (AL, the insect primary olfactory center) of the moth Manduca sexta. We found that most LNs are broadly tuned, with all LNs responding to at least one odorant. 70% of the odorants evoked a response, and 22% of the neurons responded to all the odorants tested. Some LNs showed excitatory (35%) or inhibitory (33%) responses only, while 33% of the neurons showed both excitatory and inhibitory responses, depending on the odorant. LNs that only showed inhibitory responses were the most responsive, with 78% of the odorants evoking a response. Neurons were morphologically diverse, with most LNs innervating almost all glomeruli and others innervating restricted portions of the AL. 61 and 39% of LNs were identified as GABA-immunoreactive (GABA-ir) and non-GABA-ir, respectively. We found no correlations between odor responses and GABA-ir, neither between morphology and GABA-ir. These results show that, as observed in other insects, LNs are diverse, which likely determines the complexity of the inhibitory network that regulates AL output.
Collapse
|
40
|
Ngumbi E, Chen L, Fadamiro H. Electroantennogram (EAG) responses of Microplitis croceipes and Cotesia marginiventris and their lepidopteran hosts to a wide array of odor stimuli: correlation between EAG response and degree of host specificity? JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1260-1268. [PMID: 20371248 DOI: 10.1016/j.jinsphys.2010.03.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 05/29/2023]
Abstract
In order to test whether the electroantennogram (EAG) response spectrum of an insect correlates to its degree of host specificity, we recorded EAG responses of two parasitoid species with different degrees of host specificity, Microplitis croceipes (specialist) and Cotesia marginiventris (generalist), to a wide array of odor stimuli including compounds representing green leaf volatiles (GLVs), herbivore-induced plant volatiles (HIPV), ecologically irrelevant (not used by the parasitoid species and their hosts for host location) plant volatiles, and host-specific odor stimuli (host sex pheromones, and extracts of host caterpillar body and frass). We also tested the EAG responses of female moths of the caterpillar hosts of the parasitoids, Heliothis virescens and Spodoptera exigua, to some of the odor stimuli. We hypothesized that the specialist parasitoid will have a narrower EAG response spectrum than the generalist, and that the two lepidopteran species, which are similar in their host plant use, will show similar EAG response spectra to plant volatiles. As predicted, the specialist parasitoid showed greater EAG responses than the generalist to host-specific odor and one HIPV (cis-3-hexenyl butyrate), whereas the generalist showed relatively greater EAG responses to the GLVs and unrelated plant volatiles. We detected no differences in the EAG responses of H. virescens and S. exigua to any of the tested odor.
Collapse
Affiliation(s)
- Esther Ngumbi
- Department of Entomology & Plant Pathology, Auburn University, AL 36849, USA
| | | | | |
Collapse
|
41
|
Große-Wilde E, Stieber R, Forstner M, Krieger J, Wicher D, Hansson BS. Sex-specific odorant receptors of the tobacco hornworm manduca sexta. Front Cell Neurosci 2010; 4. [PMID: 20725598 PMCID: PMC2922936 DOI: 10.3389/fncel.2010.00022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 06/03/2010] [Indexed: 11/13/2022] Open
Abstract
As odor information plays a vital role in the life of moths, their olfactory sense has evolved into a highly specific and sensitive apparatus relevant to reproduction and survival. The key players in the detection of odorants are olfactory receptor (OR) proteins. Here we identify four OR-encoding genes differentially expressed in the antennae of males and females of the sphingid moth Manduca sexta. Two male-specific receptors (the previously reported MsexOR-1 and the newly identified MsexOR-4) show great resemblance to other male moth pheromone ORs. The putative pheromone receptors are co-expressed with the co-receptor involved in general odorant signal transduction, the DmelOr83b homolog MsexOR-2. One female-specific receptor (MsexOR-5) displays similarities to BmorOR-19, a receptor in Bombyx mori tuned to the detection of the plant odor linalool.
Collapse
Affiliation(s)
- Ewald Große-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Kalberer NM, Reisenman CE, Hildebrand JG. Male moths bearing transplanted female antennae express characteristically female behaviour and central neural activity. ACTA ACUST UNITED AC 2010; 213:1272-80. [PMID: 20348339 DOI: 10.1242/jeb.033167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The primary olfactory centres of the sphinx moth Manduca sexta, the antennal lobes, contain a small number of sexually dimorphic glomeruli: the male-specific macroglomerular complex and the large female glomeruli. These glomeruli play important roles in sex-specific behaviours, such as the location of conspecific females and the selection of appropriate host plants for oviposition. The development of sexually dimorphic glomeruli depends strictly on the ingrowth of sex-specific olfactory receptor cell afferents. In the present study we tested the role of female-specific olfactory receptor cells (ORCs) in mediating female-specific host plant approach behaviour and in determining the response of downstream antennal lobe neurons. We generated male gynandromorphs by excising one imaginal disc from a male larva and replacing it with the antennal imaginal disc from a female donor. Most male gynandromorphs had an apparently normal female antenna and a feminised antennal lobe. These gynandromorphs were tested for flight responses in a wind tunnel towards tomato plants, a preferred host plant for oviposition in M. sexta. Male gynandromorphs landed on host plants as often as normal females, demonstrating that the presence of the induced female-specific glomeruli was necessary and sufficient to produce female-like, odour-oriented behaviour, i.e. orientation towards host plants. We also characterised the physiological and morphological properties of antennal lobe neurons of male gynandromorphs. We found that projection neurons with arborisations in the induced female-specific glomeruli showed physiological responses akin to those of female-specific projection neurons in normal females. These results therefore indicate that ORCs confer specific odour tuning to their glomerular targets and, furthermore, instruct odour-specific behaviour.
Collapse
Affiliation(s)
- N M Kalberer
- Department of Neuroscience, University of Arizona, 1040 E. Fourth Street, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
43
|
Electrophysiological responses and field attraction of the grey corn weevil, Tanymecus (Episomecus) dilaticollis Gyllenhal (Coleoptera: Curculionidae) to synthetic plant volatiles. CHEMOECOLOGY 2010. [DOI: 10.1007/s00049-010-0051-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Reisenman CE, Riffell JA, Bernays EA, Hildebrand JG. Antagonistic effects of floral scent in an insect-plant interaction. Proc Biol Sci 2010; 277:2371-9. [PMID: 20335210 DOI: 10.1098/rspb.2010.0163] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In southwestern USA, the jimsonweed Datura wrightii and the nocturnal moth Manduca sexta form a pollinator-plant and herbivore-plant association. Because the floral scent is probably important in mediating this interaction, we investigated the floral volatiles that might attract M. sexta for feeding and oviposition. We found that flower volatiles increase oviposition and include small amounts of both enantiomers of linalool, a common component of the scent of hawkmoth-pollinated flowers. Because (+)-linalool is processed in a female-specific glomerulus in the primary olfactory centre of M. sexta, we hypothesized that the enantiomers of linalool differentially modulate feeding and oviposition. Using a synthetic mixture that mimics the D. wrightii floral scent, we found that the presence of linalool was not necessary to evoke feeding and that mixtures containing (+)- and/or (-)-linalool were equally effective in mediating this behaviour. By contrast, females oviposited more on plants emitting (+)-linalool (alone or in mixtures) over control plants, while plants emitting (-)-linalool (alone or in mixtures) were less preferred than control plants. Together with our previous investigations, these results show that linalool has differential effects in feeding and oviposition through two neural pathways: one that is sexually isomorphic and non-enantioselective, and another that is female-specific and enantioselective.
Collapse
Affiliation(s)
- Carolina E Reisenman
- Department of Neuroscience, College of Science, University of Arizona, 1040 East Fourth Street, Tucson, AZ 85721-0077, USA.
| | | | | | | |
Collapse
|
45
|
El Jundi B, Huetteroth W, Kurylas AE, Schachtner J. Anisometric brain dimorphism revisited: Implementation of a volumetric 3D standard brain in Manduca sexta. J Comp Neurol 2009; 517:210-25. [PMID: 19731336 DOI: 10.1002/cne.22150] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Lepidopterans like the giant sphinx moth Manduca sexta are known for their conspicuous sexual dimorphism in the olfactory system, which is especially pronounced in the antennae and in the antennal lobe, the primary integration center of odor information. Even minute scents of female pheromone are detected by male moths, facilitated by a huge array of pheromone receptors on their antennae. The associated neuropilar areas in the antennal lobe, the glomeruli, are enlarged in males and organized in the form of the so-called macroglomerular complex (MGC). In this study we searched for anatomical sexual dimorphism more downstream in the olfactory pathway and in other neuropil areas in the central brain. Based on freshly eclosed animals, we created a volumetric female and male standard brain and compared 30 separate neuropilar regions. Additionally, we labeled 10 female glomeruli that were homologous to previously quantitatively described male glomeruli including the MGC. In summary, the neuropil volumes reveal an isometric sexual dimorphism in M. sexta brains. This proportional size difference between male and female brain neuropils masks an anisometric or disproportional dimorphism, which is restricted to the sex-related glomeruli of the antennal lobes and neither mirrored in other normal glomeruli nor in higher brain centers like the calyces of the mushroom bodies. Both the female and male 3D standard brain are also used for interspecies comparisons, and may serve as future volumetric reference in pharmacological and behavioral experiments especially regarding development and adult plasticity. J. Comp. Neurol. 517:210-225, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Basil El Jundi
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany
| | | | | | | |
Collapse
|
46
|
Reisenman CE, Riffell JA, Hildebrand JG. Neuroethology of oviposition behavior in the moth Manduca sexta. Ann N Y Acad Sci 2009; 1170:462-7. [PMID: 19686178 DOI: 10.1111/j.1749-6632.2009.03875.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Olfactory cues play decisive roles in the lives of most insect species, providing information about biologically relevant resources, such as food, mates, and oviposition sites. The nocturnal moth Manduca sexta feeds on floral nectar from a variety of plants (and thus serves as a pollinator), but females oviposit almost exclusively on solanaceous plants, which they recognize on the basis of olfactory cues. Plants, however, respond to herbivory by releasing blends of volatiles that attract natural enemies of herbivores. Thus, oviposition behavior probably results from the sensory evaluation not only of attractive host plant volatiles but also of repellent volatiles that indicate the acceptability or inappropriateness, respectively, of host plants for the females' offspring. Here we describe results from chemical-ecological, neurophysiological, and behavioral experiments aimed at understanding the neural mechanisms that control oviposition behavior in M. sexta.
Collapse
Affiliation(s)
- Carolina E Reisenman
- Division of Neurobiology, Arizona Research Laboratories, University of Arizona, Tucson, Arizona 85721-0077, USA.
| | | | | |
Collapse
|
47
|
Characterization of an enantioselective odorant receptor in the yellow fever mosquito Aedes aegypti. PLoS One 2009; 4:e7032. [PMID: 19753115 PMCID: PMC2737144 DOI: 10.1371/journal.pone.0007032] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/17/2009] [Indexed: 11/19/2022] Open
Abstract
Enantiomers differ only in the left or right handedness (chirality) of their orientations and exhibit identical chemical and physical properties. In chemical communication systems, enantiomers can be differentially active at the physiological and behavioral levels. Only recently were enantioselective odorant receptors demonstrated in mammals while their existence in insects has remained hypothetical. Using the two-microelectrode voltage clamp of Xenopus oocytes, we show that the yellow fever mosquito, Aedes aegypti, odorant receptor 8 (AaOR8) acts as a chiral selective receptor for the (R)-(-)-enantiomer of 1-octen-3-ol, which in the presence of other kairomones is an attractant used by blood-sucking insects to locate their hosts. In addition to steric constraints, chain length and degree of unsaturation play important roles in this recognition process. This is the first characterization of an enantioselective odorant receptor in insects and the results demonstrate that an OR alone, without helper proteins, can account for chiral specificity exhibited by olfactory sensory neurons (OSNs).
Collapse
|
48
|
Patel M, Rangan AV, Cai D. A large-scale model of the locust antennal lobe. J Comput Neurosci 2009; 27:553-67. [PMID: 19548077 DOI: 10.1007/s10827-009-0169-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 03/11/2009] [Accepted: 06/02/2009] [Indexed: 11/27/2022]
Abstract
The antennal lobe (AL) is the primary structure within the locust's brain that receives information from olfactory receptor neurons (ORNs) within the antennae. Different odors activate distinct subsets of ORNs, implying that neuronal signals at the level of the antennae encode odors combinatorially. Within the AL, however, different odors produce signals with long-lasting dynamic transients carried by overlapping neural ensembles, suggesting a more complex coding scheme. In this work we use a large-scale point neuron model of the locust AL to investigate this shift in stimulus encoding and potential consequences for odor discrimination. Consistent with experiment, our model produces stimulus-sensitive, dynamically evolving populations of active AL neurons. Our model relies critically on the persistence time-scale associated with ORN input to the AL, sparse connectivity among projection neurons, and a synaptic slow inhibitory mechanism. Collectively, these architectural features can generate network odor representations of considerably higher dimension than would be generated by a direct feed-forward representation of stimulus space.
Collapse
Affiliation(s)
- Mainak Patel
- The Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
49
|
Anderson AR, Wanner KW, Trowell SC, Warr CG, Jaquin-Joly E, Zagatti P, Robertson H, Newcomb RD. Molecular basis of female-specific odorant responses in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:189-197. [PMID: 19100833 DOI: 10.1016/j.ibmb.2008.11.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 11/06/2008] [Accepted: 11/13/2008] [Indexed: 05/27/2023]
Abstract
Males and females of many moth species exhibit important differences in sexual behaviours. Much research in this field has focused on the male-specific behaviour, electrophysiology and molecular biology of sex pheromone reception. Female-specific behaviours have been less well studied although, like male-specific behaviours, they could provide opportunities for intervention and management of lepidopteran pests. Previously, we identified genes encoding putative odorant receptors (ORs) from the genome of the silkworm, Bombyx mori, some of which have higher levels of steady-state transcript in the antennae of adult females compared with males. We have identified the full-length cDNA sequences of some of these ORs and described a novel OR that is part of a female-biased clade. Using expression in Sf9 cells and a calcium-imaging assay, we tested a range of compounds for their ability to activate the most highly female-biased ORs, BmOR19, BmOR30, BmOR45 and BmOR47. BmOR19 responds to linalool, while BmOR45 and BmOR47 respond to benzoic acid > 2-phenylethanol > benzaldehyde. No activating ligands were found for BmOR30. RNA in situ hybridisation experiments reveal that BmOR19 is expressed in female olfactory sensory neurons that are co-located in the same sensilla as a second ORN expressing BmOR45 and/or BmOR47. Taken together the activity and expression of these receptors is likely explanatory of the observed electrophysiology of long sensilla trichoidea of female B. mori, previously shown to each contain one terpene (BmOR19) and one benzoic acid (BmOR45, BmOR47) sensory neuron. Plant volatiles such as linalool, benzoic acid, 2-phenylethanol and benzaldehyde are oviposition cues for females of some moths. These compounds have also been found in male-produced pheromone blends extracted from the hair pencils of many noctuid species. Hair pencil structures have not previously been reported for B. mori, but we have found hair pencil-like structures in adult male B. mori that are absent in female moths. It is proposed that BmOR19, BmOR45 and BmOR47 account for some of the female-specific odorant responses in B. mori, such as oviposition and/or detection of an as yet unidentified male-produced sex pheromone.
Collapse
Affiliation(s)
- Alisha R Anderson
- CSIRO Food Futures Flagship & CSIRO Entomology, Black Mountain Laboratories, Canberra, Australia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Reisenman CE, Heinbockel T, Hildebrand JG. Inhibitory interactions among olfactory glomeruli do not necessarily reflect spatial proximity. J Neurophysiol 2008; 100:554-64. [PMID: 18417626 DOI: 10.1152/jn.90231.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhibitory interactions shape the activity of output neurons in primary olfactory centers and promote contrast enhancement of odor representations. Patterns of interglomerular connectivity, however, are largely unknown. To test whether the proximity of glomeruli to one another is correlated with interglomerular inhibitory interactions, we used intracellular recording and staining methods to record the responses of projection (output) neurons (PNs) associated with glomeruli of known olfactory tuning in the primary olfactory center of the moth Manduca sexta. We focused on Toroid I, a glomerulus in the male-specific macroglomerular complex (MGC) specialized to one of the two key components of the conspecific females' sex pheromone, and the adjacent, sexually isomorphic glomerulus 35, which is highly sensitive to Z-3-hexenyl acetate (Z3-6:OAc). We used the two odorants to activate these reference glomeruli and tested the effects of olfactory activation in other glomeruli. We found that Toroid-I PNs were not inhibited by input to G35, whereas G35 PNs were inhibited by input to Toroid-I PNs. We also recorded the responses of PNs arborizing in other sexually isomorphic glomeruli to stimulation with the sex pheromone and Z3-6:OAc. We found that inhibitory responses were not related to proximity to the MGC and G35: both distant and adjacent PNs were inhibited by stimulation with the sex pheromone, some others were affected by only one odorant, and yet others by neither. Similar results were obtained in female PNs recorded in proximity to female-specific glomeruli. Our findings indicate that inhibitory interactions among glomeruli are widespread and independent of their spatial proximity.
Collapse
Affiliation(s)
- Carolina E Reisenman
- Arizona Research Laboratories, Division of Neurobiology, University of Arizona, PO Box 210077, Tucson, AZ 85721-0077, USA.
| | | | | |
Collapse
|