1
|
Rathod SS, Agrawal YO, Nakhate KT, Meeran MFN, Ojha S, Goyal SN. Neuroinflammation in the Central Nervous System: Exploring the Evolving Influence of Endocannabinoid System. Biomedicines 2023; 11:2642. [PMID: 37893016 PMCID: PMC10604915 DOI: 10.3390/biomedicines11102642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Neuroinflammation is a complex biological process that typically originates as a protective response in the brain. This inflammatory process is triggered by the release of pro-inflammatory substances like cytokines, prostaglandins, and reactive oxygen and nitrogen species from stimulated endothelial and glial cells, including those with pro-inflammatory functions, in the outer regions. While neuronal inflammation is common in various central nervous system disorders, the specific inflammatory pathways linked with different immune-mediated cell types and the various factors influencing the blood-brain barrier significantly contribute to disease-specific characteristics. The endocannabinoid system consists of cannabinoid receptors, endogenous cannabinoids, and enzymes responsible for synthesizing and metabolizing endocannabinoids. The primary cannabinoid receptor is CB1, predominantly found in specific brain regions such as the brainstem, cerebellum, hippocampus, and cortex. The presence of CB2 receptors in certain brain components, like cultured cerebellar granular cells, Purkinje fibers, and microglia, as well as in the areas like the cerebral cortex, hippocampus, and cerebellum is also evidenced by immunoblotting assays, radioligand binding, and autoradiography studies. Both CB1 and CB2 cannabinoid receptors exhibit noteworthy physiological responses and possess diverse neuromodulatory capabilities. This review primarily aims to outline the distribution of CB1 and CB2 receptors across different brain regions and explore their potential roles in regulating neuroinflammatory processes.
Collapse
Affiliation(s)
- Sumit S. Rathod
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
- Department of Pharmacy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | - Yogeeta O. Agrawal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
| | - Kartik T. Nakhate
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
| | - M. F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Abu Dhabi P.O. Box 15551, United Arab Emirates;
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Abu Dhabi P.O. Box 15551, United Arab Emirates;
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
| |
Collapse
|
2
|
Vassall M, Chakraborty S, Feng Y, Faheem M, Wang X, Bhandari RK. Transcriptional Alterations Induced by Delta-9 Tetrahydrocannabinol in the Brain and Gonads of Adult Medaka. J Xenobiot 2023; 13:237-251. [PMID: 37367494 DOI: 10.3390/jox13020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 06/28/2023] Open
Abstract
With the legalization of marijuana smoking in several states of the United States and many other countries for medicinal and recreational use, the possibility of its release into the environment cannot be overruled. Currently, the environmental levels of marijuana metabolites are not monitored on a regular basis, and their stability in the environment is not well understood. Laboratory studies have linked delta 9-tetrahydrocannabinol (Δ9-THC) exposure with behavioral abnormalities in some fish species; however, their effects on endocrine organs are less understood. To understand the effects of THC on the brain and gonads, we exposed adult medaka (Oryzias latipes, Hd-rR strain, both male and female) to 50 ug/L THC for 21 days spanning their complete spermatogenic and oogenic cycles. We examined transcriptional responses of the brain and gonads (testis and ovary) to Δ9-THC, particularly molecular pathways associated with behavioral and reproductive functions. The Δ9-THC effects were more profound in males than females. The Δ9-THC-induced differential expression pattern of genes in the brain of the male fish suggested pathways to neurodegenerative diseases and pathways to reproductive impairment in the testis. The present results provide insights into endocrine disruption in aquatic organisms due to environmental cannabinoid compounds.
Collapse
Affiliation(s)
- Marlee Vassall
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
| | - Sourav Chakraborty
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
| | - Yashi Feng
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
| | - Mehwish Faheem
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
| | - Xuegeng Wang
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
- Institute of Modern Aquaculture Science and Engineering, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | | |
Collapse
|
3
|
Li S, Huang Y, Yu L, Ji X, Wu J. Impact of the Cannabinoid System in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:715-726. [PMID: 35105293 PMCID: PMC10207907 DOI: 10.2174/1570159x20666220201091006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Cannabinoids are compounds isolated from cannabis and are also widely present in both nervous and immune systems of animals. In recent years, with in-depth research on cannabinoids, their clinical medicinal value has been evaluated, and many exciting achievements have been continuously accumulating, especially in the field of neurodegenerative disease. Alzheimer's disease is the most common type of neurodegenerative disease that causes dementia and has become a global health problem that seriously impacts human health today. In this review, we discuss the therapeutic potential of cannabinoids for the treatment of Alzheimer's disease. How cannabinoids act on different endocannabinoid receptor subtypes to regulate Alzheimer's disease and the roles of the endocannabinoid system in Alzheimer's disease are outlined, and the underlying mechanisms are discussed. Finally, we summarize the most relevant opportunities of cannabinoid pharmacology related to Alzheimer's disease and discuss the potential usefulness of cannabinoids in the clinical treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Shuangtao Li
- Shantou University Medical College, Brain Function and Disease Laboratory, Shantou, #22 Road Xinling, Guangdong 515041, China
| | - Yuanbing Huang
- Department of Neurology, Yunfu People’s Hospital, Yunfu, Guangdong 527300, China
| | - Lijun Yu
- Shantou University Medical College, Brain Function and Disease Laboratory, Shantou, #22 Road Xinling, Guangdong 515041, China
| | - Xiaoyu Ji
- Department of Neurology, Yunfu People’s Hospital, Yunfu, Guangdong 527300, China
| | - Jie Wu
- Shantou University Medical College, Brain Function and Disease Laboratory, Shantou, #22 Road Xinling, Guangdong 515041, China
| |
Collapse
|
4
|
Wiese BM, Alvarez Reyes A, Vanderah TW, Largent-Milnes TM. The endocannabinoid system and breathing. Front Neurosci 2023; 17:1126004. [PMID: 37144090 PMCID: PMC10153446 DOI: 10.3389/fnins.2023.1126004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/16/2023] [Indexed: 05/06/2023] Open
Abstract
Recent changes in cannabis accessibility have provided adjunct therapies for patients across numerous disease states and highlights the urgency in understanding how cannabinoids and the endocannabinoid (EC) system interact with other physiological structures. The EC system plays a critical and modulatory role in respiratory homeostasis and pulmonary functionality. Respiratory control begins in the brainstem without peripheral input, and coordinates the preBötzinger complex, a component of the ventral respiratory group that interacts with the dorsal respiratory group to synchronize burstlet activity and drive inspiration. An additional rhythm generator: the retrotrapezoid nucleus/parafacial respiratory group drives active expiration during conditions of exercise or high CO2. Combined with the feedback information from the periphery: through chemo- and baroreceptors including the carotid bodies, the cranial nerves, stretch of the diaphragm and intercostal muscles, lung tissue, and immune cells, and the cranial nerves, our respiratory system can fine tune motor outputs that ensure we have the oxygen necessary to survive and can expel the CO2 waste we produce, and every aspect of this process can be influenced by the EC system. The expansion in cannabis access and potential therapeutic benefits, it is essential that investigations continue to uncover the underpinnings and mechanistic workings of the EC system. It is imperative to understand the impact cannabis, and exogenous cannabinoids have on these physiological systems, and how some of these compounds can mitigate respiratory depression when combined with opioids or other medicinal therapies. This review highlights the respiratory system from the perspective of central versus peripheral respiratory functionality and how these behaviors can be influenced by the EC system. This review will summarize the literature available on organic and synthetic cannabinoids in breathing and how that has shaped our understanding of the role of the EC system in respiratory homeostasis. Finally, we look at some potential future therapeutic applications the EC system has to offer for the treatment of respiratory diseases and a possible role in expanding the safety profile of opioid therapies while preventing future opioid overdose fatalities that result from respiratory arrest or persistent apnea.
Collapse
Affiliation(s)
- Beth M. Wiese
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Angelica Alvarez Reyes
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
- College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Todd W. Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Tally M. Largent-Milnes
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
- *Correspondence: Tally M. Largent-Milnes,
| |
Collapse
|
5
|
Correia LC, Ferreira JV, de Lima HB, Silva GM, da Silva CHTP, de Molfetta FA, Hage-Melim LIS. Pharmacophore-based virtual screening from phytocannabinoids as antagonist r-CB1. J Mol Model 2022; 28:258. [PMID: 35978141 DOI: 10.1007/s00894-022-05219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
Abstract
Search for new pharmacological alternatives for obesity is based on the design and development of compounds that can aid in weight loss so that they can be used safely and effectively over a long period while maintaining their function. The endocannabinoid system is related to obesity by increasing orexigenic signals and reducing satiety signals. Cannabis sativa is a medicinal plant of polypharmaceutical potential that has been widely studied for various medicinal purposes. The in silico evaluation of their natural cannabinoids (also called phytocannabinoids) for anti-obesity purpose stems from the existence of synthetic cannabinoid compounds that have already presented this result, but which did not guarantee patient safety. In order to find new molecules from C. sativa phytocannabinoids, with the potential to interact peripherally with the pharmacological target cannabinoid receptor 1, a pharmacophore-based virtual screening was performed, including the evaluation of physicochemical, pharmacokinetic, toxicological predictions and molecular docking. The results obtained from the ZINC12 database pointed to Zinc 69 (ZINC33053402) and Zinc 70 (ZINC19084698) molecules as promising anti-obesity agents. Molecular dynamics (MD) studies disclose that both complexes were stable by analyzing the RMSD (root mean square deviation) values, and the binding free energy values demonstrate that the selected structures can interact and inhibit their catalytic activity.
Collapse
Affiliation(s)
- Lenir C Correia
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Rod. JK, Km 02, Macapá, Brazil
| | - Jaderson V Ferreira
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Rod. JK, Km 02, Macapá, Brazil
| | - Henrique B de Lima
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Rod. JK, Km 02, Macapá, Brazil
| | - Guilherme M Silva
- Computational Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Chemistry. School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos H T P da Silva
- Computational Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Chemistry. School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fábio A de Molfetta
- Laboratório de Modelagem Molecular, Federal University of Pará, Belém-PA, Brazil
| | - Lorane I S Hage-Melim
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Rod. JK, Km 02, Macapá, Brazil.
| |
Collapse
|
6
|
Le N, Sayers S, Mata-Pacheco V, Wagner EJ. The PACAP Paradox: Dynamic and Surprisingly Pleiotropic Actions in the Central Regulation of Energy Homeostasis. Front Endocrinol (Lausanne) 2022; 13:877647. [PMID: 35721722 PMCID: PMC9198406 DOI: 10.3389/fendo.2022.877647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022] Open
Abstract
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP), a pleiotropic neuropeptide, is widely distributed throughout the body. The abundance of PACAP expression in the central and peripheral nervous systems, and years of accompanying experimental evidence, indicates that PACAP plays crucial roles in diverse biological processes ranging from autonomic regulation to neuroprotection. In addition, PACAP is also abundantly expressed in the hypothalamic areas like the ventromedial and arcuate nuclei (VMN and ARC, respectively), as well as other brain regions such as the nucleus accumbens (NAc), bed nucleus of stria terminalis (BNST), and ventral tegmental area (VTA) - suggesting that PACAP is capable of regulating energy homeostasis via both the homeostatic and hedonic energy balance circuitries. The evidence gathered over the years has increased our appreciation for its function in controlling energy balance. Therefore, this review aims to further probe how the pleiotropic actions of PACAP in regulating energy homeostasis is influenced by sex and dynamic changes in energy status. We start with a general overview of energy homeostasis, and then introduce the integral components of the homeostatic and hedonic energy balance circuitries. Next, we discuss sex differences inherent to the regulation of energy homeostasis via these two circuitries, as well as the activational effects of sex steroid hormones that bring about these intrinsic disparities between males and females. Finally, we explore the multifaceted role of PACAP in regulating homeostatic and hedonic feeding through its actions in regions like the NAc, BNST, and in particular the ARC, VMN and VTA that occur in sex- and energy status-dependent ways.
Collapse
Affiliation(s)
- Nikki Le
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Sarah Sayers
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Veronica Mata-Pacheco
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Edward J. Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
7
|
Srivastava RK, Lutz B, Ruiz de Azua I. The Microbiome and Gut Endocannabinoid System in the Regulation of Stress Responses and Metabolism. Front Cell Neurosci 2022; 16:867267. [PMID: 35634468 PMCID: PMC9130962 DOI: 10.3389/fncel.2022.867267] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
The endocannabinoid system, with its receptors and ligands, is present in the gut epithelium and enteroendocrine cells, and is able to modulate brain functions, both indirectly through circulating gut-derived factors and directly through the vagus nerve, finally acting on the brain’s mechanisms regarding metabolism and behavior. The gut endocannabinoid system also regulates gut motility, permeability, and inflammatory responses. Furthermore, microbiota composition has been shown to influence the activity of the endocannabinoid system. This review examines the interaction between microbiota, intestinal endocannabinoid system, metabolism, and stress responses. We hypothesize that the crosstalk between microbiota and intestinal endocannabinoid system has a prominent role in stress-induced changes in the gut-brain axis affecting metabolic and mental health. Inter-individual differences are commonly observed in stress responses, but mechanisms underlying resilience and vulnerability to stress are far from understood. Both gut microbiota and the endocannabinoid system have been implicated in stress resilience. We also discuss interventions targeting the microbiota and the endocannabinoid system to mitigate metabolic and stress-related disorders.
Collapse
Affiliation(s)
- Raj Kamal Srivastava
- Department of Zoology, Indira Gandhi National Tribal University, Anuppur, India
- *Correspondence: Raj Kamal Srivastava,
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Inigo Ruiz de Azua
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Inigo Ruiz de Azua,
| |
Collapse
|
8
|
Ochiai K, Hirooka R, Sakaino M, Takeuchi S, Hira T. 2-Arachidonoyl glycerol suppresses gastric emptying via the cannabinoid receptor 1-cholecystokinin signaling pathway in mice. Lipids 2022; 57:173-181. [PMID: 35266554 DOI: 10.1002/lipd.12341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 11/11/2022]
Abstract
2-Monoacylglycerol (2-MAG) is one of the digestion products of dietary lipids. We recently demonstrated that a 2-MAG, 2-arachidonoyl glycerol (2-AG) potently stimulated cholecystokinin (CCK) secretion via cannabinoid receptor 1 (CB1) in a murine CCK-producing cell line, STC-1. CCK plays a crucial role in suppressing postprandial gastric emptying. To examine the effect of 2-AG on gastric emptying, we performed acetaminophen and phenol red recovery tests under oral or intraperitoneal administration of 2-AG in mice. Orally administered 2-AG (25 mg/kg) suppressed the gastric emptying rate in mice, as determined by the acetaminophen absorption test and phenol red recovery test. Intraperitoneal administration of a cholecystokinin A receptor antagonist (0.5 mg/kg) attenuated the gastric inhibitory emptying effect. In addition, both oral (10 mg/kg) and intraperitoneal (0.5 mg/kg) administration of a CB1 antagonist counteracted the 2-AG-induced gastric inhibitory effect. Furthermore, intraperitoneal 2-AG (25 mg/kg) suppressed gastric emptying. These results indicate that 2-AG exhibits an inhibitory effect on gastric emptying in mice, possibly mediated by stimulating both CCK secretion via CB1 expressed in CCK-producing cells and acting on CB1 expressed in the peripheral nerves. Our findings provide novel insights into the 2-MAG-sensing mechanism in enteroendocrine cells and the physiological role of 2-MAG.
Collapse
Affiliation(s)
- Keita Ochiai
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Rina Hirooka
- Food Design Center, J-Oil Mills, Inc., Yokohama, Japan
| | | | | | - Tohru Hira
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
The Peripheral Cannabinoid Receptor Type 1 (CB 1) as a Molecular Target for Modulating Body Weight in Man. Molecules 2021; 26:molecules26206178. [PMID: 34684760 PMCID: PMC8538448 DOI: 10.3390/molecules26206178] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/14/2023] Open
Abstract
The cannabinoid 1 (CB1) receptor regulates appetite and body weight; however, unwanted central side effects of both agonists (in wasting disorders) or antagonists (in obesity and diabetes) have limited their therapeutic utility. At the peripheral level, CB1 receptor activation impacts the energy balance of mammals in a number of different ways: inhibiting satiety and emesis, increasing food intake, altering adipokine and satiety hormone levels, altering taste sensation, decreasing lipolysis (fat break down), and increasing lipogenesis (fat generation). The CB1 receptor also plays an important role in the gut–brain axis control of appetite and satiety. The combined effect of peripheral CB1 activation is to promote appetite, energy storage, and energy preservation (and the opposite is true for CB1 antagonists). Therefore, the next generation of CB1 receptor medicines (agonists and antagonists, and indirect modulators of the endocannabinoid system) have been peripherally restricted to mitigate these issues, and some of these are already in clinical stage development. These compounds also have demonstrated potential in other conditions such as alcoholic steatohepatitis and diabetic nephropathy (peripherally restricted CB1 antagonists) and pain conditions (peripherally restricted CB1 agonists and FAAH inhibitors). This review will discuss the mechanisms by which peripheral CB1 receptors regulate body weight, and the therapeutic utility of peripherally restricted drugs in the management of body weight and beyond.
Collapse
|
10
|
van Ackern I, Kuhla A, Kuhla B. A Role for Peripheral Anandamide and 2-Arachidonoylglycerol in Short-Term Food Intake and Orexigenic Hypothalamic Responses in a Species with Continuous Nutrient Delivery. Nutrients 2021; 13:3587. [PMID: 34684588 PMCID: PMC8540326 DOI: 10.3390/nu13103587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 12/19/2022] Open
Abstract
The endocannabinoid system (ECS) plays a pivotal role in the complex control and regulation of food intake. Pharmacological ECS activation could improve health in energy-deficient stages by increasing food intake, at least in intermittent feeders. However, knowledge of the mechanism regulating appetite in species with continued nutrient delivery is incomplete. The objectives of this pilot study were to investigate the effect of the intraperitoneal (i.p.) administration of the endocannabinoids (ECs) anandamide (AEA) and 2-arachidonoylglycerol (2-AG) on food intake, plasma EC concentrations and hypothalamic orexigenic signaling, and to study how the circulatory EC tone changes in response to short-term food deprivation in dairy cows, a species with continuous nutrient delivery. The administration of EC resulted in higher food intake during the first hour after treatment. Plasma AEA concentrations were significantly increased 2.5 h after AEA injection, whereas plasma 2-AG concentrations remained unchanged 2.5 h after 2-AG injection. The hypothalamic immunoreactivity of cannabinoid receptor 1, agouti-related protein, and orexin-A was not affected by either treatment; however, neuropeptide Y and agouti-related protein mRNA abundances were downregulated in the arcuate nucleus of AEA-treated animals. Short-term food deprivation increased plasma 2-AG, while plasma AEA remained unchanged. In conclusion, i.p.-administered 2-AG and AEA increase food intake in the short term, but only AEA accumulates in the circulation. However, plasma 2-AG concentrations are more responsive to food deprivation than AEA.
Collapse
Affiliation(s)
- Isabel van Ackern
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology ‘Oskar Kellner’, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Angela Kuhla
- Rostock University Medical Center, Institute for Experimental Surgery, Schillingallee 69a, 18057 Rostock, Germany;
| | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology ‘Oskar Kellner’, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| |
Collapse
|
11
|
Wilbrink J, Masclee G, Klaassen T, van Avesaat M, Keszthelyi D, Masclee A. Review on the Regional Effects of Gastrointestinal Luminal Stimulation on Appetite and Energy Intake: (Pre)clinical Observations. Nutrients 2021; 13:nu13051601. [PMID: 34064724 PMCID: PMC8151500 DOI: 10.3390/nu13051601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Macronutrients in the gastrointestinal (GI) lumen are able to activate “intestinal brakes”, feedback mechanisms on proximal GI motility and secretion including appetite and energy intake. In this review, we provide a detailed overview of the current evidence with respect to four questions: (1) are regional differences (duodenum, jejunum, ileum) present in the intestinal luminal nutrient modulation of appetite and energy intake? (2) is this “intestinal brake” effect macronutrient specific? (3) is this “intestinal brake” effect maintained during repetitive activation? (4) can the “intestinal brake” effect be activated via non-caloric tastants? Recent evidence indicates that: (1) regional differences exist in the intestinal modulation of appetite and energy intake with a proximal to distal gradient for inhibition of energy intake: ileum and jejunum > duodenum at low but not at high caloric infusion rates. (2) the “intestinal brake” effect on appetite and energy appears not to be macronutrient specific. At equi-caloric amounts, the inhibition on energy intake and appetite is in the same range for fat, protein and carbohydrate. (3) data on repetitive ileal brake activation are scarce because of the need for prolonged intestinal intubation. During repetitive activation of the ileal brake for up to 4 days, no adaptation was observed but overall the inhibitory effect on energy intake was small. (4) the concept of influencing energy intake by intra-intestinal delivery of non-caloric tastants is intriguing. Among tastants, the bitter compounds appear to be more effective in influencing energy intake. Energy intake decreases modestly after post-oral delivery of bitter tastants or a combination of tastants (bitter, sweet and umami). Intestinal brake activation provides an interesting concept for preventive and therapeutic approaches in weight management strategies.
Collapse
Affiliation(s)
- Jennifer Wilbrink
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
| | - Gwen Masclee
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
| | - Tim Klaassen
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
| | - Mark van Avesaat
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
| | - Daniel Keszthelyi
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
- NUTRIM School of Nutrition and Translational Research in Metabolism, 6229 ER Maastricht, The Netherlands
| | - Adrian Masclee
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
- NUTRIM School of Nutrition and Translational Research in Metabolism, 6229 ER Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-3875021
| |
Collapse
|
12
|
DiPatrizio NV. Endocannabinoids and the Gut-Brain Control of Food Intake and Obesity. Nutrients 2021; 13:nu13041214. [PMID: 33916974 PMCID: PMC8067588 DOI: 10.3390/nu13041214] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Gut-brain signaling controls food intake and energy homeostasis, and its activity is thought to be dysregulated in obesity. We will explore new studies that suggest the endocannabinoid (eCB) system in the upper gastrointestinal tract plays an important role in controlling gut-brain neurotransmission carried by the vagus nerve and the intake of palatable food and other reinforcers. A focus will be on studies that reveal both indirect and direct interactions between eCB signaling and vagal afferent neurons. These investigations identify (i) an indirect mechanism that controls nutrient-induced release of peptides from the gut epithelium that directly interact with corresponding receptors on vagal afferent neurons, and (ii) a direct mechanism via interactions between eCBs and cannabinoid receptors expressed on vagal afferent neurons. Moreover, the impact of diet-induced obesity on these pathways will be considered.
Collapse
Affiliation(s)
- Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
13
|
Cawthon CR, de La Serre CB. The critical role of CCK in the regulation of food intake and diet-induced obesity. Peptides 2021; 138:170492. [PMID: 33422646 DOI: 10.1016/j.peptides.2020.170492] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
In 1973, Gibbs, Young, and Smith showed that exogenous cholecystokinin (CCK) administration reduces food intake in rats. This initial report has led to thousands of studies investigating the physiological role of CCK in regulating feeding behavior. CCK is released from enteroendocrine I cells present along the gastrointestinal (GI) tract. CCK binding to its receptor CCK1R leads to vagal afferent activation providing post-ingestive feedback to the hindbrain. Vagal afferent neurons' (VAN) sensitivity to CCK is modulated by energy status while CCK signaling regulates gene expression of other feeding related signals and receptors expressed by VAN. In addition to its satiation effects, CCK acts all along the GI tract to optimize digestion and nutrient absorption. Diet-induced obesity (DIO) is characterized by reduced sensitivity to CCK and every part of the CCK system is negatively affected by chronic intake of energy-dense foods. EEC have recently been shown to adapt to diet, CCK1R is affected by dietary fats consumption, and the VAN phenotypic flexibility is lost in DIO. Altered endocannabinoid tone, changes in gut microbiota composition, and chronic inflammation are currently being explored as potential mechanisms for diet driven loss in CCK signaling. This review discusses our current understanding of how CCK controls food intake in conditions of leanness and how control is lost in chronic energy excess and obesity, potentially perpetuating excessive intake.
Collapse
Affiliation(s)
- Carolina R Cawthon
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
14
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
The impact of cannabinoid type 2 receptors (CB2Rs) in neuroprotection against neurological disorders. Acta Pharmacol Sin 2020; 41:1507-1518. [PMID: 33024239 DOI: 10.1038/s41401-020-00530-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022]
Abstract
Cannabinoids have long been used for their psychotropic and possible medical properties of symptom relief. In the past few years, a vast literature shows that cannabinoids are neuroprotective under different pathological situations. Most of the effects of cannabinoids are mediated by the well-characterized cannabinoid receptors, the cannabinoid type 1 receptor (CB1R) and cannabinoid type 2 receptor (CB2R). Even though CB1Rs are highly expressed in the central nervous system (CNS), the adverse central side effects and the development of tolerance resulting from CB1R activation may ultimately limit the clinical utility of CB1R agonists. In contrast to the ubiquitous presence of CB1Rs, CB2Rs are less commonly expressed in the healthy CNS but highly upregulated in glial cells under neuropathological conditions. Experimental studies have provided robust evidence that CB2Rs seem to be involved in the modulation of different neurological disorders. In this paper, we summarize the current knowledge regarding the protective effects of CB2R activation against the development of neurological diseases and provide a perspective on the future of this field. A better understanding of the fundamental pharmacology of CB2R activation is essential for the development of clinical applications and the design of novel therapeutic strategies.
Collapse
|
16
|
Abstract
Surgery is regarded by many as the go-to treatment option for severe obesity; yet how physically altering the gastrointestinal tract produces such striking results on body weight and overall metabolic health is poorly understood. In a recent issue of Cell Reports Ye et al. (2020) compare mouse models of Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), the two most commonly performed weight loss surgeries in the clinic today, to show that the former reconfiguring procedure selectively increases resting metabolic rate through splanchnic nerve-mediated browning of mesenteric white fat. More significantly, they demonstrate that this effect for RYGB is required for the maintained negative energy balance and improved glycemic control that it confers.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, 97080, Germany
| |
Collapse
|
17
|
Cawthon CR, Kirkland RA, Pandya S, Brinson NA, de La Serre CB. Non-neuronal crosstalk promotes an inflammatory response in nodose ganglia cultures after exposure to byproducts from gram positive, high-fat-diet-associated gut bacteria. Physiol Behav 2020; 226:113124. [PMID: 32763334 PMCID: PMC7530053 DOI: 10.1016/j.physbeh.2020.113124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
Vagal afferent neurons (VAN) projecting to the lamina propria of the digestive tract are the primary source of gut-originating signals to the central nervous system (CNS). VAN cell bodies are found in the nodose ganglia (NG). Responsiveness of VAN to gut-originating signals is altered by feeding status with sensitivity to satiety signals such as cholecystokinin (CCK) increasing in the fed state. Chronic high-fat (HF) feeding results in inflammation at the level of the NG associated with a loss of VAN ability to switch phenotype from the fasted to the fed state. HF feeding also leads to compositional changes in the gut microbiota. HF diet consumption notably drives increased Firmicutes to Bacteroidetes phyla ratio and increased members of the Actinobacteria phylum. Firmicutes and Actinobacteria are largely gram positive (GP). In this study, we aimed to determine if byproducts from GP bacteria can induce an inflammatory response in cultured NG and to characterize the mechanism and cell types involved in the response. NG were collected from male Wistar rats and cultured for a total of 72 hours. At 48-68 hours after plating, cultures were treated with neuronal culture media in which Serinicoccus chungangensis had been grown and removed (SUP), lipoteichoic acid (LTA), or meso-diaminopimelic acid (meso-DAP). Some treatments included the glial inhibitors minocycline (MINO) and/or fluorocitrate (FC). The responses were evaluated using immunocytochemistry, qPCR, and electrochemiluminescence. We found that SUP induced an inflammatory response characterized by increased interleukin (IL)-6 staining and increased expression of genes for IL-6, interferon (IFN)γ, and tumor necrosis factor (TNF)α along with genes associated with cell-to-cell communication such as C-C motif chemokine ligand-2 (CCL2). Inclusion of inhibitors attenuated some responses but failed to completely normalize all indications of response, highlighting the role of immunocompetent cellular crosstalk in regulating the inflammatory response. LTA and meso-DAP produced responses that shared characteristics with SUP but were not identical. Our results support a role for HF associated GP bacterial byproducts' ability to contribute to vagal inflammation and to engage signaling from nonneuronal cells.
Collapse
Affiliation(s)
- Carolina R Cawthon
- Department of Foods and Nutrition, The University of Georgia, Athens, Georgia30602, United States
| | - Rebecca A Kirkland
- Department of Foods and Nutrition, The University of Georgia, Athens, Georgia30602, United States
| | - Shreya Pandya
- Department of Foods and Nutrition, The University of Georgia, Athens, Georgia30602, United States
| | - Nigel A Brinson
- Department of Foods and Nutrition, The University of Georgia, Athens, Georgia30602, United States
| | - Claire B de La Serre
- Department of Foods and Nutrition, The University of Georgia, Athens, Georgia30602, United States.
| |
Collapse
|
18
|
Avalos B, Argueta DA, Perez PA, Wiley M, Wood C, DiPatrizio NV. Cannabinoid CB 1 Receptors in the Intestinal Epithelium Are Required for Acute Western-Diet Preferences in Mice. Nutrients 2020; 12:nu12092874. [PMID: 32962222 PMCID: PMC7551422 DOI: 10.3390/nu12092874] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/12/2023] Open
Abstract
The endocannabinoid system plays an important role in the intake of palatable food. For example, endocannabinoid signaling in the upper small-intestinal epithelium is increased (i) in rats after tasting dietary fats, which promotes intake of fats, and (ii) in a mouse model of diet-induced obesity, which promotes overeating via impaired nutrient-induced gut-brain satiation signaling. We now utilized a combination of genetic, pharmacological, and behavioral approaches to identify roles for cannabinoid CB1Rs in upper small-intestinal epithelium in preferences for a western-style diet (WD, high-fat/sucrose) versus a standard rodent diet (SD, low-fat/no sucrose). Mice were maintained on SD in automated feeding chambers. During testing, mice were given simultaneous access to SD and WD, and intakes were recorded. Mice displayed large preferences for the WD, which were inhibited by systemic pretreatment with the cannabinoid CB1R antagonist/inverse agonist, AM251, for up to 3 h. We next used our novel intestinal epithelium-specific conditional cannabinoid CB1R-deficient mice (IntCB1-/-) to investigate if intestinal CB1Rs are necessary for WD preferences. Similar to AM251 treatment, preferences for WD were largely absent in IntCB1-/- mice when compared to control mice for up to 6 h. Together, these data suggest that CB1Rs in the murine intestinal epithelium are required for acute WD preferences.
Collapse
Affiliation(s)
- Bryant Avalos
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
| | - Donovan A. Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
- Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Pedro A. Perez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
| | - Mark Wiley
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
| | - Courtney Wood
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
| | - Nicholas V. DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
- Correspondence: ; Tel.: +1-951-827-7252
| |
Collapse
|
19
|
Christie S, O'Rielly R, Li H, Wittert GA, Page AJ. High fat diet induced obesity alters endocannabinoid and ghrelin mediated regulation of components of the endocannabinoid system in nodose ganglia. Peptides 2020; 131:170371. [PMID: 32659299 DOI: 10.1016/j.peptides.2020.170371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/31/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ghrelin and anandamide (AEA) can regulate the sensitivity of gastric vagal afferents to stretch, an effect mediated via the transient receptor potential vanilloid 1 (TPRV1) channel. High fat diet (HFD)-induced obesity alters the modulatory effects of ghrelin and AEA on gastric vagal afferent sensitivity. This may be a result of altered gastric levels of these hormones and subsequent changes in the expression of their receptors. Therefore, the current study aimed to determine the effects of ghrelin and AEA on vagal afferent cell body mRNA content of cannabinoid 1 receptor (CB1), ghrelin receptor (GHSR), TRPV1, and the enzyme responsible for the breakdown of AEA, fatty acid amide hydrolase (FAAH). METHODS Mice were fed a standard laboratory diet (SLD) or HFD for 12wks. Nodose ganglia were removed and cultured for 14 h in the absence or presence of ghrelin or methAEA (mAEA; stable analogue of AEA). Relative mRNA content of CB1, GHSR, TRPV1, and FAAH were measured. RESULTS In nodose cells from SLD-mice, mAEA increased TRPV1 and FAAH mRNA content, and decreased CB1 and GHSR mRNA content. Ghrelin decreased TRPV1, CB1, and GHSR mRNA content. In nodose cells from HFD-mice, mAEA had no effect on TRPV1 mRNA content, and increased CB1, GHSR, and FAAH mRNA content. Ghrelin decreased TRPV1 mRNA content and increased CB1 and GHSR mRNA content. CONCLUSIONS AEA and ghrelin modulate receptors and breakdown enzymes involved in the mAEA-vagal afferent satiety signalling pathways. This was disrupted in HFD-mice, which may contribute to the altered vagal afferent signalling in obesity.
Collapse
Affiliation(s)
- Stewart Christie
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Rebecca O'Rielly
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Hui Li
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Gary A Wittert
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Amanda J Page
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia.
| |
Collapse
|
20
|
Chen J, Cheng M, Wang L, Zhang L, Xu D, Cao P, Wang F, Herzog H, Song S, Zhan C. A Vagal-NTS Neural Pathway that Stimulates Feeding. Curr Biol 2020; 30:3986-3998.e5. [PMID: 32822608 DOI: 10.1016/j.cub.2020.07.084] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/01/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
A fundamental question of physiology is how gut-brain signaling stimulates appetite. While many studies have emphasized the importance of vagal afferents to the brain in inducing satiation, little is known about whether and how the vagal-mediated gut-brain pathway senses orexigenic signals and stimulates feeding. Here, we identified a previously uncharacterized population of fasting-activated catecholaminergic neurons in the nucleus of the solitary tract (NTS). After characterizing the anatomical complexity among NTS catecholaminergic neurons, we surprisingly found that activation of NTS epinephrine (ENTS) neurons co-expressing neuropeptide Y (NPY) stimulated feeding, whereas activation of NTS norepinephrine (NENTS) neurons suppressed feeding. Monosynaptic tracing/activation experiments then showed that these NTS neurons receive direct vagal afferents from nodose neurons. Moreover, activation of the vagal→NPY/ENTS neural circuit stimulated feeding. Our study reveals an orexigenic role of the vagal→NTS pathway in controlling feeding, thereby providing important insights about how gut-brain signaling regulates feeding behavior.
Collapse
Affiliation(s)
- Jing Chen
- Department of Biomedical Engineering and Laboratory for Brain and Intelligence, IDG/McGovern Institute for Brain Research, Center for Brain-Inspired Computing Research, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Mingxiu Cheng
- National Institute of Biological Sciences, Beijing 102206, China; TIMBR Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liang Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Dan Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Sen Song
- Department of Biomedical Engineering and Laboratory for Brain and Intelligence, IDG/McGovern Institute for Brain Research, Center for Brain-Inspired Computing Research, Tsinghua University, Beijing 100084, China
| | - Cheng Zhan
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
21
|
Wang YB, de Lartigue G, Page AJ. Dissecting the Role of Subtypes of Gastrointestinal Vagal Afferents. Front Physiol 2020; 11:643. [PMID: 32595525 PMCID: PMC7300233 DOI: 10.3389/fphys.2020.00643] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
Gastrointestinal (GI) vagal afferents convey sensory signals from the GI tract to the brain. Numerous subtypes of GI vagal afferent have been identified but their individual roles in gut function and feeding regulation are unclear. In the past decade, technical approaches to selectively target vagal afferent subtypes and to assess their function has significantly progressed. This review examines the classification of GI vagal afferent subtypes and discusses the current available techniques to study vagal afferents. Investigating the distribution of GI vagal afferent subtypes and understanding how to access and modulate individual populations are essential to dissect their fundamental roles in the gut-brain axis.
Collapse
Affiliation(s)
- Yoko B Wang
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States.,Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, United States
| | - Amanda J Page
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
22
|
Ramírez-Orozco RE, García-Ruiz R, Morales P, Villalón CM, Villafán-Bernal JR, Marichal-Cancino BA. Potential metabolic and behavioural roles of the putative endocannabinoid receptors GPR18, GPR55 and GPR119 in feeding. Curr Neuropharmacol 2020; 17:947-960. [PMID: 31146657 PMCID: PMC7052828 DOI: 10.2174/1570159x17666190118143014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/26/2018] [Accepted: 11/20/2018] [Indexed: 01/28/2023] Open
Abstract
Endocannabinoids are ancient biomolecules involved in several cellular (e.g., metabolism) and physiological (e.g., eating behaviour) functions. Indeed, eating behaviour alterations in marijuana users have led to investigate the orexigen-ic/anorexigenic effects of cannabinoids in animal/human models. This increasing body of research suggests that the endo-cannabinoid system plays an important role in feeding control. Accordingly, within the endocannabinoid system, canna-binoid receptors, enzymes and genes represent potential therapeutic targets for dealing with multiple metabolic and behav-ioural dysfunctions (e.g., obesity, anorexia, etc.). Paradoxically, our understanding on the endocannabinoid system as a cel-lular mediator is yet limited. For example: (i) only two cannabinoid receptors have been classified, but they are not enough to explain the pharmacological profile of several experimental effects induced by cannabinoids; and (ii) several orphan G pro-tein-coupled receptors (GPCRs) interact with cannabinoids and we do not know how to classify them (e.g., GPR18, GPR55 and GPR119; amongst others). On this basis, the present review attempts to summarize the lines of evidence supporting the potential role of GPR18, GPR55 and GPR119 in metabolism and feeding control that may explain some of the divergent effects and puzzling data re-lated to cannabinoid research. Moreover, their therapeutic potential in feeding behaviour alterations will be considered.
Collapse
Affiliation(s)
- Ricardo E Ramírez-Orozco
- Departamento de Nutricion y Cultura Fisica, Centro de Ciencias de la Salud, Universidad Autonoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags, Mexico
| | - Ricardo García-Ruiz
- Departamento de Fisiologia, Facultad de Medicina. Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Paula Morales
- Instituto de Quimica Fisica Rocasolano, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Carlos M Villalón
- Departamento de Farmacobiologia, Cinvestav- Coapa, Czda. Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, 14330 Ciudad de Mexico, Mexico
| | - J Rafael Villafán-Bernal
- Departamento de Cirugia, Centro de Ciencias de la Salud, Universidad Autonoma de Aguascalientes, CP 20131 Aguascalientes, Ags, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiologia y Farmacologia, Centro de Ciencias Basicas, Universidad Autonoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags, Mexico
| |
Collapse
|
23
|
Marra S, Arnaldi D, Nobili L. The pharmacotherapeutic management of obstructive sleep apnea. Expert Opin Pharmacother 2019; 20:1981-1991. [DOI: 10.1080/14656566.2019.1652271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Stefano Marra
- Department of Neuroscience, IRCCS, G. Gaslini Institute, Genoa, Italy
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Dario Arnaldi
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Neurology Unit, IRCCS San Martino Hospital, Genoa, Italy
| | - Lino Nobili
- Department of Neuroscience, IRCCS, G. Gaslini Institute, Genoa, Italy
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
24
|
Argueta DA, Perez PA, Makriyannis A, DiPatrizio NV. Cannabinoid CB 1 Receptors Inhibit Gut-Brain Satiation Signaling in Diet-Induced Obesity. Front Physiol 2019; 10:704. [PMID: 31281260 PMCID: PMC6597959 DOI: 10.3389/fphys.2019.00704] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/20/2019] [Indexed: 01/08/2023] Open
Abstract
Gut-brain signaling controls feeding behavior and energy homeostasis; however, the underlying molecular mechanisms and impact of diet-induced obesity (DIO) on these pathways are poorly defined. We tested the hypothesis that elevated endocannabinoid activity at cannabinoid CB1 receptor (CB1Rs) in the gut of mice rendered DIO by chronic access to a high fat and sucrose diet for 60 days inhibits nutrient-induced release of satiation peptides and promotes overeating. Immunoreactivity for CB1Rs was present in enteroendocrine cells in the mouse’s upper small-intestinal epithelium that produce and secrete the satiation peptide, cholecystokinin (CCK), and expression of mRNA for CB1Rs was greater in these cells when compared to non-CCK producing cells. Oral gavage of corn oil increased levels of bioactive CCK (CCK-8) in plasma from mice fed a low fat no-sucrose diet. Pretreatment with the cannabinoid receptor agonist, WIN55,212-2, blocked this response, which was reversed by co-administration with the peripherally-restricted CB1R neutral antagonist, AM6545. Furthermore, monoacylglycerol metabolic enzyme function was dysregulated in the upper small-intestinal epithelium from DIO mice, which was met with increased levels of a variety of monoacylglycerols including the endocannabinoid, 2-arachidonoyl-sn-glycerol. Corn oil failed to affect levels of CCK in DIO mouse plasma; however, pretreatment with AM6545 restored the ability for corn oil to stimulate increases in levels of CCK, which suggests that elevated endocannabinoid signaling at small intestinal CB1Rs in DIO mice inhibits nutrient-induced CCK release. Moreover, the hypophagic effect of AM6545 in DIO mice was reversed by co-administration with the CCKA receptor antagonist, devazepide. Collectively, these results provide evidence that hyperphagia associated with DIO is driven by a mechanism that includes CB1R-mediated inhibition of gut-brain satiation signaling.
Collapse
Affiliation(s)
- Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Pedro A Perez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | | | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
25
|
Carley DW, Prasad B, Reid KJ, Malkani R, Attarian H, Abbott SM, Vern B, Xie H, Yuan C, Zee PC. Pharmacotherapy of Apnea by Cannabimimetic Enhancement, the PACE Clinical Trial: Effects of Dronabinol in Obstructive Sleep Apnea. Sleep 2019; 41:4600041. [PMID: 29121334 DOI: 10.1093/sleep/zsx184] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Study Objectives There remains an important and unmet need for fully effective and acceptable treatments in obstructive sleep apnea (OSA). At present, there are no approved drug treatments. Dronabinol has shown promise for OSA pharmacotherapy in a small dose-escalation pilot study. Here, we present initial findings of the Phase II PACE (Pharmacotherapy of Apnea by Cannabimimetic Enhancement) trial, a fully blinded parallel groups, placebo-controlled randomized trial of dronabinol in people with moderate or severe OSA. Methods By random assignment, 73 adults with moderate or severe OSA received either placebo (N = 25), 2.5 mg dronabinol (N = 21), or 10 mg dronabinol (N = 27) daily, 1 hour before bedtime for up to 6 weeks. Results At baseline, overall apnea-hypopnea index (AHI) was 25.9 ± 11.3, Epworth Sleepiness Scale (ESS) score was 11.45 ± 3.8, maintenance of wakefulness test (MWT) mean latency was 19.2 ± 11.8 minutes, body mass index was 33.4 ± 5.4 kg/m2, and age was 53.6 ± 9.0 years. The number and severity of adverse events, and treatment adherence (0.3 ± 0.6 missed doses/week) were equivalent among all treatment groups. Participants receiving 10 mg/day of dronabinol expressed the highest overall satisfaction with treatment (p = .04). In comparison to placebo, dronabinol dose-dependently reduced AHI by 10.7 ± 4.4 (p = .02) and 12.9 ± 4.3 (p = .003) events/hour at doses of 2.5 and 10 mg/day, respectively. Dronabinol at 10 mg/day reduced ESS score by -3.8 ± 0.8 points from baseline (p < .0001) and by -2.3 ± 1.2 points in comparison to placebo (p = .05). MWT sleep latencies, gross sleep architecture, and overnight oxygenation parameters were unchanged from baseline in any treatment group. Conclusions These findings support the therapeutic potential of cannabinoids in people with OSA. In comparison to placebo, dronabinol was associated with lower AHI, improved self-reported sleepiness, and greater overall treatment satisfaction. Larger scale clinical trials will be necessary to clarify the best potential approach(es) to cannabinoid therapy in OSA.
Collapse
Affiliation(s)
- David W Carley
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, IL.,Department of Medicine, University of Illinois at Chicago, Chicago, IL.,Center for Narcolepsy, Sleep and Health Research, University of Illinois at Chicago, Chicago, IL
| | - Bharati Prasad
- Department of Medicine, University of Illinois at Chicago, Chicago, IL.,Center for Narcolepsy, Sleep and Health Research, University of Illinois at Chicago, Chicago, IL.,Jesse Brown VA Medical Center, Chicago, IL
| | - Kathryn J Reid
- Northwestern University Department of Neurology, Division of Sleep Medicine, Chicago, IL.,Northwestern Medicine Center for Circadian and Sleep Medicine, Chicago, IL
| | - Roneil Malkani
- Northwestern University Department of Neurology, Division of Sleep Medicine, Chicago, IL.,Northwestern Medicine Center for Circadian and Sleep Medicine, Chicago, IL
| | - Hryar Attarian
- Northwestern University Department of Neurology, Division of Sleep Medicine, Chicago, IL.,Northwestern Medicine Center for Circadian and Sleep Medicine, Chicago, IL
| | - Sabra M Abbott
- Northwestern University Department of Neurology, Division of Sleep Medicine, Chicago, IL.,Northwestern Medicine Center for Circadian and Sleep Medicine, Chicago, IL
| | - Boris Vern
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, IL.,Center for Narcolepsy, Sleep and Health Research, University of Illinois at Chicago, Chicago, IL
| | - Hui Xie
- Department of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL
| | - Chengbo Yuan
- Department of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL
| | - Phyllis C Zee
- Northwestern University Department of Neurology, Division of Sleep Medicine, Chicago, IL.,Northwestern Medicine Center for Circadian and Sleep Medicine, Chicago, IL
| |
Collapse
|
26
|
Varga AW, Mokhlesi B. REM obstructive sleep apnea: risk for adverse health outcomes and novel treatments. Sleep Breath 2019; 23:413-423. [PMID: 30232681 PMCID: PMC6424642 DOI: 10.1007/s11325-018-1727-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/04/2018] [Accepted: 09/14/2018] [Indexed: 02/07/2023]
Abstract
Rapid eye movement (REM) sleep was discovered nearly 60 years ago. This stage of sleep accounts for approximately a quarter of total sleep time in healthy adults, and it is mostly concentrated in the second half of the sleep period. The majority of research on REM sleep has focused on neurocognition. More recently, however, there has been a growing interest in understanding whether obstructive sleep apnea (OSA) during the two main stages of sleep (REM and non-REM sleep) leads to different cardiometabolic and neurocognitive risk. In this review, we discuss the growing evidence indicating that OSA during REM sleep is a prevalent disorder that is independently associated with adverse cardiovascular, metabolic, and neurocognitive outcomes. From a therapeutic standpoint, we discuss limitations of continuous positive airway pressure (CPAP) therapy given that 3 or 4 h of CPAP use from the beginning of the sleep period would leave 75% or 60% of obstructive events during REM sleep untreated. We also review potential pharmacologic approaches to treating OSA during REM sleep. Undoubtedly, further research is needed to establish best treatment strategies in order to effectively treat REM OSA. Moreover, it is critical to understand whether treatment of REM OSA will translate into better patient outcomes.
Collapse
Affiliation(s)
- Andrew W Varga
- Mount Sinai Integrative Sleep Center, Icahn School of Medicine at Mount Sinai, Annenberg 21-44, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Babak Mokhlesi
- Section of Pulmonary and Critical Care Medicine, Sleep Disorders Center, University of Chicago, Chicago, IL, USA
| |
Collapse
|
27
|
Ma Z, Gao F, Larsen B, Gao M, Luo Z, Chen D, Ma X, Qiu S, Zhou Y, Xie J, Xi ZX, Wu J. Mechanisms of cannabinoid CB 2 receptor-mediated reduction of dopamine neuronal excitability in mouse ventral tegmental area. EBioMedicine 2019; 42:225-237. [PMID: 30952618 PMCID: PMC6491419 DOI: 10.1016/j.ebiom.2019.03.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/24/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We have recently reported that activation of cannabinoid type 2 receptors (CB2Rs) reduces dopamine (DA) neuron excitability in mouse ventral tegmental area (VTA). Here, we elucidate the underlying mechanisms. METHODS Patch-clamp recordings were performed in mouse VTA slices and dissociated single VTA DA neurons. FINDINGS Using cell-attached recording in VTA slices, bath-application of CB2R agonists (JWH133 or five other CB2R agonists) significantly reduced VTA DA neuron action potential (AP) firing rate. Under the patch-clamp whole-cell recording model, JWH133 (10 μM) mildly reduced the frequency of miniature excitatory postsynaptic currents (mEPSCs) but not miniature inhibitory postsynaptic currents (mIPSCs). JWH133 also did not alter evoked EPSCs or IPSCs. In freshly dissociated VTA DA neurons, JWH133 reduced AP firing rate, delayed AP initiation and enhanced AP after-hyperpolarization. In voltage-clamp recordings, JWH133 (1 μM) enhanced M-type K+ currents and this effect was absent in CB2-/- mice and abolished by co-administration of a selective CB2R antagonist (10 μM, AM630). CB2R-mediated inhibition in VTA DA neuron firing can be mimicked by M-current opener (10 μM retigabine) and blocked by M-current blocker (30 μM XE991). In addition, enhancement of neuronal cAMP by forskolin (10 μM) reduced M-current and increased DA neuron firing rate. Finally, pharmacological block of synaptic transmission by NBQX (10 μM), D-APV (50 μM) and picrotoxin (100 μM) in VTA slices failed to prevent CB2R-mediated inhibition, while intracellular infusion of guanosine 5'-O-2-thiodiphosphate (600 μM, GDP-β-S) through recording electrode to block postsynaptic G-protein function prevented JWH133-induced reduction in AP firing. INTERPRETATION Our results suggest that CB2Rs modulate VTA DA neuron excitability mainly through an intrinsic mechanism, including a CB2R-mediated reduction of intracellular cAMP, and in turn enhancement of M-type K+ currents. FUND: This research was supported by the Barrow Neuroscience Foundation, the BNI-BMS Seed Fund, and CNSF (81771437).
Collapse
Affiliation(s)
- Zegang Ma
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 210854, China; Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Brett Larsen
- Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Ming Gao
- Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Zhihua Luo
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 210854, China
| | - Dejie Chen
- Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurology, Yunfu People's Hospital, Yunfu, Guangdong 527300, China
| | - Xiaokuang Ma
- Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 210854, China; Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Shenfeng Qiu
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Yu Zhou
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Jie Wu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 210854, China; Department of Neurology, Yunfu People's Hospital, Yunfu, Guangdong 527300, China.
| |
Collapse
|
28
|
Johnston JR, Freeman KG, Edwards GL. Activity in nodose ganglia neurons after treatment with CP 55,940 and cholecystokinin. Physiol Rep 2018; 6:e13927. [PMID: 30512249 PMCID: PMC6278814 DOI: 10.14814/phy2.13927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/17/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022] Open
Abstract
Previous work has shown that cannabinoids increase feeding, while cholecystokinin (CCK) has an anorexigenic effect on food intake. Receptors for these hormones are located on cell bodies of vagal afferent nerves in the nodose ganglia. An interaction between CCK and endocannabinoid receptors has been suggested. The purpose of these studies is to explore the effect of pretreatment with a cannabinoid agonist, CP 55,940, on nodose neuron activation by CCK. To determine the effect of CP 55,940 and CCK on neuron activation, rats were anesthetized and nodose ganglia were excised. The neurons were dissociated and placed in culture on coverslips. The cells were treated with media; CP 55,940; CCK; CP 55,940 followed by CCK; or AM 251, a CB1 receptor antagonist, and CP 55,940 followed by CCK. Immunohistochemistry was performed to stain the cells for cFos as a measure of cell activation. Neurons were identified using neurofilament immunoreactivity. The neurons on each slip were counted using fluorescence imaging, and the number of neurons that were cFos positive was counted in order to calculate the percentage of activated neurons per coverslip. Pretreatment with CP 55,940 decreased the percentage of neurons expressing cFos-immunoreactivity in response to CCK. This observation suggests that cannabinoids inhibit CCK activation of nodose ganglion neurons.
Collapse
Affiliation(s)
- Juliane R. Johnston
- Department of Physiology and PharmacologyCollege of Veterinary MedicineThe University of GeorgiaAthensGeorgia
| | - Kimberly G. Freeman
- Department of Physiology and PharmacologyCollege of Veterinary MedicineThe University of GeorgiaAthensGeorgia
| | - Gaylen L. Edwards
- Department of Physiology and PharmacologyCollege of Veterinary MedicineThe University of GeorgiaAthensGeorgia
| |
Collapse
|
29
|
Cork SC. The role of the vagus nerve in appetite control: Implications for the pathogenesis of obesity. J Neuroendocrinol 2018; 30:e12643. [PMID: 30203877 DOI: 10.1111/jne.12643] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
Abstract
The communication between the gut and the brain is important for the control of energy homeostasis. In response to food intake, enteroendocrine cells secrete gut hormones, which ultimately suppress appetite through centrally-mediated processes. Increasing evidence implicates the vagus nerve as an important conduit in transmitting these signals from the gastrointestinal tract to the brain. Studies have demonstrated that many of the gut hormones secreted from enteroendocrine cells signal through the vagus nerve, and the sensitivity of the vagus to these signals is regulated by feeding status. Furthermore, evidence suggests that a reduction in the ability of the vagus nerve to respond to the switch between a "fasted" and "fed" state, retaining sensitivity to orexigenic signals when fed or a reduced ability to respond to satiety hormones, may contribute to obesity. This review draws together the evidence that the vagus nerve is a crucial component of appetite regulation via the gut-brain axis, with a particular emphasis on experimental techniques and future developments.
Collapse
Affiliation(s)
- Simon C Cork
- Section of Endocrinology and Investigative Medicine, Division of Endocrinology, Diabetes and Metabolism, Imperial College London, London, UK
| |
Collapse
|
30
|
Abstract
The regulation of energy and glucose balance contributes to whole-body metabolic homeostasis, and such metabolic regulation is disrupted in obesity and diabetes. Metabolic homeostasis is orchestrated partly in response to nutrient and vagal-dependent gut-initiated functions. Specifically, the sensory and motor fibres of the vagus nerve transmit intestinal signals to the central nervous system and exert biological and physiological responses. In the past decade, the understanding of the regulation of vagal afferent signals and of the associated metabolic effect on whole-body energy and glucose balance has progressed. This Review highlights the contributions made to the understanding of the vagal afferent system and examines the integrative role of the vagal afferent in gastrointestinal regulation of appetite and glucose homeostasis. Investigating the integrative and metabolic role of vagal afferent signalling represents a potential strategy to discover novel therapeutic targets to restore energy and glucose balance in diabetes and obesity.
Collapse
|
31
|
de Lartigue G, Xu C. Mechanisms of vagal plasticity influencing feeding behavior. Brain Res 2018; 1693:146-150. [PMID: 29903616 PMCID: PMC6996925 DOI: 10.1016/j.brainres.2018.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 12/18/2022]
Abstract
Sensory neurons of the vagus nerve receive many different peripheral signals that can change rapidly and frequently throughout the day. The ability of these neurons to convey the vast array of nuanced information to the brain requires neuronal adaptability. In this review we discuss evidence for neural plasticity in vagal afferent neurons as a mechanism for conveying nuanced information to the brain important for the control of feeding behavior. We provide evidence that synaptic plasticity, changes in membrane conductance, and neuropeptide specification are mechanisms that allow flexibility in response to metabolic cues that can be disrupted by chronic intake of energy dense diets.
Collapse
Affiliation(s)
| | - Chelsea Xu
- Department Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
32
|
Pacher P, Steffens S, Haskó G, Schindler TH, Kunos G. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat Rev Cardiol 2018; 15:151-166. [PMID: 28905873 DOI: 10.1038/nrcardio.2017.130] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dysregulation of the endogenous lipid mediators endocannabinoids and their G-protein-coupled cannabinoid receptors 1 and 2 (CB1R and CB2R) has been implicated in a variety of cardiovascular pathologies. Activation of CB1R facilitates the development of cardiometabolic disease, whereas activation of CB2R (expressed primarily in immune cells) exerts anti-inflammatory effects. The psychoactive constituent of marijuana, Δ9-tetrahydrocannabinol (THC), is an agonist of both CB1R and CB2R, and exerts its psychoactive and adverse cardiovascular effects through the activation of CB1R in the central nervous and cardiovascular systems. The past decade has seen a nearly tenfold increase in the THC content of marijuana as well as the increased availability of highly potent synthetic cannabinoids for recreational use. These changes have been accompanied by the emergence of serious adverse cardiovascular events, including myocardial infarction, cardiomyopathy, arrhythmias, stroke, and cardiac arrest. In this Review, we summarize the role of the endocannabinoid system in cardiovascular disease, and critically discuss the cardiovascular consequences of marijuana and synthetic cannabinoid use. With the legalization of marijuana for medicinal purposes and/or recreational use in many countries, physicians should be alert to the possibility that the use of marijuana or its potent synthetic analogues might be the underlying cause of severe cardiovascular events and pathologies.
Collapse
Affiliation(s)
- Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, 5625 Fishers Lane, Bethesda, Maryland 20892, USA
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstrasse 8a und 9b, Munich, D-80336, Germany
| | - György Haskó
- Department of Surgery, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, USA
| | - Thomas H Schindler
- Department of Radiology, Johns Hopkins University, 601 North Caroline Street, Baltimore, Maryland 21287, USA
| | - George Kunos
- Laboratory of Physiological Studies, National Institutes of Health/NIAAA, 5625 Fishers Lane, Bethesda, Maryland 20892, USA
| |
Collapse
|
33
|
Peripheral modulation of the endocannabinoid system in metabolic disease. Drug Discov Today 2018; 23:592-604. [PMID: 29331500 DOI: 10.1016/j.drudis.2018.01.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/17/2017] [Accepted: 01/05/2018] [Indexed: 12/14/2022]
Abstract
Dysfunction of the endocannabinoid system (ECS) has been identified in metabolic disease. Cannabinoid receptor 1 (CB1) is abundantly expressed in the brain but also expressed in the periphery. Cannabinoid receptor 2 (CB2) is more abundant in the periphery, including the immune cells. In obesity, global antagonism of overexpressed CB1 reduces bodyweight but leads to centrally mediated adverse psychological outcomes. Emerging research in isolated cultured cells or tissues has demonstrated that targeting the endocannabinoid system in the periphery alleviates the pathologies associated with metabolic disease. Further, peripheral specific cannabinoid ligands can reverse aspects of the metabolic phenotype. This Keynote review will focus on current research on the functionality of peripheral modulation of the ECS for the treatment of obesity.
Collapse
|
34
|
Christie S, Wittert GA, Li H, Page AJ. Involvement of TRPV1 Channels in Energy Homeostasis. Front Endocrinol (Lausanne) 2018; 9:420. [PMID: 30108548 PMCID: PMC6079260 DOI: 10.3389/fendo.2018.00420] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/04/2018] [Indexed: 12/25/2022] Open
Abstract
The ion channel TRPV1 is involved in a wide range of processes including nociception, thermosensation and, more recently discovered, energy homeostasis. Tightly controlling energy homeostasis is important to maintain a healthy body weight, or to aid in weight loss by expending more energy than energy intake. TRPV1 may be involved in energy homeostasis, both in the control of food intake and energy expenditure. In the periphery, it is possible that TRPV1 can impact on appetite through control of appetite hormone levels or via modulation of gastrointestinal vagal afferent signaling. Further, TRPV1 may increase energy expenditure via heat production. Dietary supplementation with TRPV1 agonists, such as capsaicin, has yielded conflicting results with some studies indicating a reduction in food intake and increase in energy expenditure, and other studies indicating the converse. Nonetheless, it is increasingly apparent that TRPV1 may be dysregulated in obesity and contributing to the development of this disease. The mechanisms behind this dysregulation are currently unknown but interactions with other systems, such as the endocannabinoid systems, could be altered and therefore play a role in this dysregulation. Further, TRPV1 channels appear to be involved in pancreatic insulin secretion. Therefore, given its plausible involvement in regulation of energy and glucose homeostasis and its dysregulation in obesity, TRPV1 may be a target for weight loss therapy and diabetes. However, further research is required too fully elucidate TRPV1s role in these processes. The review provides an overview of current knowledge in this field and potential areas for development.
Collapse
Affiliation(s)
- Stewart Christie
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Gary A. Wittert
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Hui Li
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Amanda J. Page
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Amanda J. Page
| |
Collapse
|
35
|
Abstract
Humans swallow a great variety and often large amounts of chemicals as nutrients, incidental food additives and contaminants, drugs, and inhaled particles and chemicals, thus exposing the gastrointestinal tract to many potentially toxic substances. It serves as a barrier in many cases to protect other components of the body from such substances and infections. Fortunately, the gastrointestinal tract is remarkably robust and generally is able to withstand multiple daily assaults by the chemicals to which it is exposed. Some chemicals, however, can affect one or more aspects of the gastrointestinal tract to produce abnormal events that reflect toxicity. It is the purpose of this chapter to evaluate the mechanisms by which toxic chemicals produce their deleterious effects and to determine the consequences of the toxicity on integrity of gastrointestinal structure and function. Probably because of the intrinsic ability of the gastrointestinal tract to resist toxic chemicals, there is a paucity of data regarding gastrointestinal toxicology. It is therefore necessary in many cases to extrapolate toxic mechanisms from infectious processes, inflammatory conditions, ischemia, and other insults in addition to more conventional chemical sources of toxicity.
Collapse
|
36
|
Diepenbroek C, Quinn D, Stephens R, Zollinger B, Anderson S, Pan A, de Lartigue G. Validation and characterization of a novel method for selective vagal deafferentation of the gut. Am J Physiol Gastrointest Liver Physiol 2017; 313:G342-G352. [PMID: 28705805 PMCID: PMC5668568 DOI: 10.1152/ajpgi.00095.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/01/2017] [Accepted: 06/23/2017] [Indexed: 01/31/2023]
Abstract
There is a lack of tools that selectively target vagal afferent neurons (VAN) innervating the gut. We use saporin (SAP), a potent neurotoxin, conjugated to the gastronintestinal (GI) hormone cholecystokinin (CCK-SAP) injected into the nodose ganglia (NG) of male Wistar rats to specifically ablate GI-VAN. We report that CCK-SAP ablates a subpopulation of VAN in culture. In vivo, CCK-SAP injection into the NG reduces VAN innervating the mucosal and muscular layers of the stomach and small intestine but not the colon, while leaving vagal efferent neurons intact. CCK-SAP abolishes feeding-induced c-Fos in the NTS, as well as satiation by CCK or glucagon like peptide-1 (GLP-1). CCK-SAP in the NG of mice also abolishes CCK-induced satiation. Therefore, we provide multiple lines of evidence that injection of CCK-SAP in NG is a novel selective vagal deafferentation technique of the upper GI tract that works in multiple vertebrate models. This method provides improved tissue specificity and superior separation of afferent and efferent signaling compared with vagotomy, capsaicin, and subdiaphragmatic deafferentation.NEW & NOTEWORTHY We develop a new method that allows targeted lesioning of vagal afferent neurons that innervate the upper GI tract while sparing vagal efferent neurons. This reliable approach provides superior tissue specificity and selectivity for vagal afferent over efferent targeting than traditional approaches. It can be used to address questions about the role of gut to brain signaling in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Charlene Diepenbroek
- The John B. Pierce Laboratory, New Haven, Connecticut
- Department of Cellular and Molecular Physiology, Yale Medical School, New Haven, Connecticut; and
| | | | - Ricky Stephens
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis, Davis, California
| | | | - Seth Anderson
- The John B. Pierce Laboratory, New Haven, Connecticut
| | - Annabelle Pan
- The John B. Pierce Laboratory, New Haven, Connecticut
| | - Guillaume de Lartigue
- The John B. Pierce Laboratory, New Haven, Connecticut;
- Department of Cellular and Molecular Physiology, Yale Medical School, New Haven, Connecticut; and
| |
Collapse
|
37
|
Piazza PV, Cota D, Marsicano G. The CB1 Receptor as the Cornerstone of Exostasis. Neuron 2017; 93:1252-1274. [PMID: 28334603 DOI: 10.1016/j.neuron.2017.02.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 01/07/2023]
Abstract
The type-1 cannabinoid receptor (CB1) is the main effector of the endocannabinoid system (ECS), which is involved in most brain and body functions. In this Perspective, we provide evidence indicating that CB1 receptor functions are key determinants of bodily coordinated exostatic processes. First, we will introduce the concepts of endostasis and exostasis as compensation or accumulation for immediate or future energy needs and discuss how exostasis has been necessary for the survival of species during evolution. Then, we will argue how different specific biological functions of the CB1 receptor in the body converge to provide physiological exostatic processes. Finally, we will introduce the concept of proactive evolution-induced diseases (PEIDs), which helps explain the seeming paradox that an evolutionary-selected physiological function can become the cause of epidemic pathological conditions, such as obesity. We propose here a possible unifying theory of CB1 receptor functions that can be tested by future experimental studies.
Collapse
Affiliation(s)
- Pier Vincenzo Piazza
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France.
| | - Daniela Cota
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France
| | - Giovanni Marsicano
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France.
| |
Collapse
|
38
|
Lau BK, Cota D, Cristino L, Borgland SL. Endocannabinoid modulation of homeostatic and non-homeostatic feeding circuits. Neuropharmacology 2017; 124:38-51. [PMID: 28579186 DOI: 10.1016/j.neuropharm.2017.05.033] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 02/03/2023]
Abstract
The endocannabinoid system has emerged as a key player in the control of eating. Endocannabinoids, including 2-arachidonoylglycerol (2-AG) and anandamide (AEA), modulate neuronal activity via cannabinoid 1 receptors (CB1Rs) in multiple nuclei of the hypothalamus to induce or inhibit food intake depending on nutritional and hormonal status, suggesting that endocannabinoids may act in the hypothalamus to integrate different types of signals informing about the animal's energy needs. In the mesocorticolimbic system, (endo)cannabinoids modulate synaptic transmission to promote dopamine release in response to palatable food. In addition, (endo)cannabinoids act within the nucleus accumbens to increase food's hedonic impact; although this effect depends on activation of CB1Rs at excitatory, but not inhibitory inputs in the nucleus accumbens. While hyperactivation of the endocannabinoid system is typically associated with overeating and obesity, much evidence has emerged in recent years suggesting a more complicated system than first thought - endocannabinoids promote or suppress feeding depending on cell and input type, or modulation by various neuronal or hormonal signals. This review presents our latest knowledge of the endocannabinoid system in non-homeostatic and homeostatic feeding circuits. In particular, we discuss the functional role and cellular mechanism of action by endocannabinoids within the hypothalamus and mesocorticolimbic system, and how these are modulated by neuropeptide signals related to feeding. In light of recent advances and complexity in the field, we review cannabinoid-based therapeutic strategies for the treatment of obesity and how peripheral restriction of CB1R antagonists may provide a different mechanism of weight loss without the central adverse effects. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Benjamin K Lau
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada
| | - Daniela Cota
- INSERM U1215, Université de Bordeaux, NeuroCentre Magendie, 146, rue Léo Saignat, 33077 Bordeaux, France
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry of CNR, Viale Campi Flegrei, 34, 80078 Pozzuoli, Napoli, Italy
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
39
|
Grabauskas G, Owyang C. Plasticity of vagal afferent signaling in the gut. MEDICINA-LITHUANIA 2017; 53:73-84. [PMID: 28454890 PMCID: PMC6318799 DOI: 10.1016/j.medici.2017.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
Vagal sensory neurons mediate the vago-vagal reflex which, in turn, regulates a wide array of gastrointestinal functions including esophageal motility, gastric accommodation and pancreatic enzyme secretion. These neurons also transmit sensory information from the gut to the central nervous system, which then mediates the sensations of nausea, fullness and satiety. Recent research indicates that vagal afferent neurons process non-uniform properties and a significant degree of plasticity. These properties are important to ensure that vagally regulated gastrointestinal functions respond rapidly and appropriately to various intrinsic and extrinsic factors. Similar plastic changes in the vagus also occur in pathophysiological conditions, such as obesity and diabetes, resulting in abnormal gastrointestinal functions. A clear understanding of the mechanisms which mediate these events may provide novel therapeutic targets for the treatment of gastrointestinal disorders due to vago-vagal pathway malfunctions.
Collapse
Affiliation(s)
- Gintautas Grabauskas
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48019, USA.
| | - Chung Owyang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48019, USA
| |
Collapse
|
40
|
Chen DJ, Gao M, Gao FF, Su QX, Wu J. Brain cannabinoid receptor 2: expression, function and modulation. Acta Pharmacol Sin 2017; 38:312-316. [PMID: 28065934 PMCID: PMC5342669 DOI: 10.1038/aps.2016.149] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/18/2016] [Indexed: 02/06/2023]
Abstract
Cannabis sativa (marijuana) is a fibrous flowering plant that produces an abundant variety of molecules, some with psychoactive effects. At least 4% of the world's adult population uses cannabis annually, making it one of the most frequently used illicit drugs in the world. The psychoactive effects of cannabis are mediated primarily through cannabinoid receptor (CBR) subtypes. The prevailing view is that CB1Rs are mainly expressed in the central neurons, whereas CB2Rs are predominantly expressed in peripheral immune cells. However, this traditional view has been challenged by emerging strong evidence that shows CB2Rs are moderately expressed and function in specific brain areas. New evidence has demonstrated that brain CB2Rs modulate animal drug-seeking behaviors, suggesting that these receptors may exist in brain regions that regulate drug addiction. Recently, we further confirmed that functional CB2Rs are expressed in mouse ventral tegmental area (VTA) dopamine (DA) neurons and that the activation of VTA CB2Rs reduces neuronal excitability and cocaine-seeking behavior. In addition, CB2R-mediated modulation of hippocampal CA3 neuronal excitability and network synchronization has been reported. Here, we briefly summarize recent lines of evidence showing how CB2Rs modulate function and pathophysiology in the CNS.
Collapse
Affiliation(s)
- De-jie Chen
- Department of Neurology, Yunfu People's Hospital, Yunfu 527300, China
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013–4409, USA
| | - Ming Gao
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013–4409, USA
| | - Fen-fei Gao
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013–4409, USA
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Quan-xi Su
- Department of Neurology, Yunfu People's Hospital, Yunfu 527300, China
| | - Jie Wu
- Department of Neurology, Yunfu People's Hospital, Yunfu 527300, China
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013–4409, USA
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
- E-mail
| |
Collapse
|
41
|
Ndjim M, Poinsignon C, Parnet P, Le Dréan G. Loss of Vagal Sensitivity to Cholecystokinin in Rats Born with Intrauterine Growth Retardation and Consequence on Food Intake. Front Endocrinol (Lausanne) 2017; 8:65. [PMID: 28443064 PMCID: PMC5385335 DOI: 10.3389/fendo.2017.00065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/23/2017] [Indexed: 01/05/2023] Open
Abstract
Perinatal malnutrition is associated with low birth weight and an increased risk of developing metabolic syndrome in adulthood. Modification of food intake (FI) regulation was observed in adult rats born with intrauterine growth retardation induced by maternal dietary protein restriction during gestation and maintained restricted until weaning. Gastrointestinal peptides and particularly cholecystokinin (CCK) play a major role in short-term regulation of FI by relaying digestive signals to the hindbrain via the vagal afferent nerve (VAN). We hypothesized that vagal sensitivity to CCK could be affected in rats suffering from undernutrition [low protein (LP)] during fetal and postnatal life, leading to an altered gut-brain communication and impacting satiation. Our aim was to study short-term FI along with signals of appetite and satiation in adult LP rats compared to control rats. The dose-response to CCK injection was investigated on FI as well as the associated signaling pathways activated in nodose ganglia. We showed that LP rats have a reduced first-meal satiety ratio after a fasting period associated to a higher postprandial plasmatic CCK release, a reduced sensitivity to CCK when injected at low concentration and a reduced presence of CCK-1 receptor in nodose ganglia. Accordingly, the lower basal and CCK-induced phosphorylation of calcium/calmodulin-dependent protein kinase in nodose ganglia of LP rats could reflect an under-expressed vanilloid family of transient receptor potential cation channels on VAN. Altogether, the present data demonstrated a reduced vagal sensitivity to CCK in LP rats at adulthood, which could contribute to deregulation of FI reported in this model.
Collapse
Affiliation(s)
- Marième Ndjim
- UMR 1280 PHAN, INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH Ouest), Nantes, France
| | - Camille Poinsignon
- UMR 1280 PHAN, INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH Ouest), Nantes, France
| | - Patricia Parnet
- UMR 1280 PHAN, INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH Ouest), Nantes, France
| | - Gwenola Le Dréan
- UMR 1280 PHAN, INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH Ouest), Nantes, France
- *Correspondence: Gwenola Le Dréan,
| |
Collapse
|
42
|
Fride E, Bregman T, Kirkham TC. Endocannabinoids and Food Intake: Newborn Suckling and Appetite Regulation in Adulthood. Exp Biol Med (Maywood) 2016; 230:225-34. [PMID: 15792943 DOI: 10.1177/153537020523000401] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The appetite-stimulating effects of the cannabis plant (Cannabis sativa) have been known since ancient times, and appear to be effected through the incentive and rewarding properties of foods. Investigations into the biological basis of the multiple effects of cannabis have yielded important breakthroughs in recent years: the discovery of two cannabinoid receptors in brain and peripheral organ systems, and endogenous ligands (endocannabinoids) for these receptors. These advances have greatly increased our understanding of how appetite is regulated through these endocannabinoid receptor systems. The presence of endocannabinoids in the developing brain and in maternal milk have led to evidence for a critical role for CB, receptors in oral motor control of suckling during neonatal development. The endocannabinoids appear to regulate energy balance and food intake at four functional levels within the brain and periphery: (i) limbic system (for hedonic evaluation of foods), (ii) hypothalamus and hindbrain (integrative functions), (iii) intestinal system, and (iv) adipose tissue. At each of these levels, the endocannabinoid system interacts with a number of better known molecules involved in appetite and weight regulation, including leptin, ghrelin, and the melanocortins. Therapeutically, appetite stimulation by cannabinoids has been studied for several decades, particularly in relation to cachexia and malnutrition associated with cancer, acquired immunodeficiency syndrome, or anorexia nervosa. The recent advances in cannabinoid pharmacology may lead to improved treatments for these conditions or, conversely, for combating excessive appetite and body weight, such as CB, receptor antagonists as antiobesity medications. In conclusion, the exciting progress in the understanding of how the endocannabinoid CB receptor systems influence appetite and body weight is stimulating the development of therapeutic orexigenic and anorectic agents. Furthermore, the role of cannabinoid CB, receptor activation for milk suckling in newborns may open new doors toward understanding nonorganic failure-to-thrive in infants, who display growth failure without known organic cause.
Collapse
Affiliation(s)
- Ester Fride
- Department of Behavioral Sciences, College of Judea and Samaria, Ariel, Israel.
| | | | | |
Collapse
|
43
|
Knani I, Earley BJ, Udi S, Nemirovski A, Hadar R, Gammal A, Cinar R, Hirsch HJ, Pollak Y, Gross I, Eldar-Geva T, Reyes-Capo DP, Han JC, Haqq AM, Gross-Tsur V, Wevrick R, Tam J. Targeting the endocannabinoid/CB1 receptor system for treating obesity in Prader-Willi syndrome. Mol Metab 2016; 5:1187-1199. [PMID: 27900261 PMCID: PMC5123200 DOI: 10.1016/j.molmet.2016.10.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 02/09/2023] Open
Abstract
Objective Extreme obesity is a core phenotypic feature of Prader–Willi syndrome (PWS). Among numerous metabolic regulators, the endocannabinoid (eCB) system is critically involved in controlling feeding, body weight, and energy metabolism, and a globally acting cannabinoid-1 receptor (CB1R) blockade reverses obesity both in animals and humans. The first-in-class CB1R antagonist rimonabant proved effective in inducing weight loss in adults with PWS. However, it is no longer available for clinical use because of its centrally mediated, neuropsychiatric, adverse effects. Methods We studied eCB ‘tone’ in individuals with PWS and in the Magel2-null mouse model that recapitulates the major metabolic phenotypes of PWS and determined the efficacy of a peripherally restricted CB1R antagonist, JD5037 in treating obesity in these mice. Results Individuals with PWS had elevated circulating levels of 2-arachidonoylglycerol and its endogenous precursor and breakdown ligand, arachidonic acid. Increased hypothalamic eCB ‘tone’, manifested by increased eCBs and upregulated CB1R, was associated with increased fat mass, reduced energy expenditure, and decreased voluntary activity in Magel2-null mice. Daily chronic treatment of obese Magel2-null mice and their littermate wild-type controls with JD5037 (3 mg/kg/d for 28 days) reduced body weight, reversed hyperphagia, and improved metabolic parameters related to their obese phenotype. Conclusions Dysregulation of the eCB/CB1R system may contribute to hyperphagia and obesity in Magel2-null mice and in individuals with PWS. Our results demonstrate that treatment with peripherally restricted CB1R antagonists may be an effective strategy for the management of severe obesity in PWS. Circulating levels of endocannabinoids are increased in individuals with PWS. Magel2 is a negative regulator of hypothalamic endocannabinoid ‘tone’. Peripherally-restricted CB1 receptor blockade reverses obesity in Magel2-null mice.
Collapse
Affiliation(s)
- Ibrahim Knani
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Brian J Earley
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Shiran Udi
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Hadar
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Asaad Gammal
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Harry J Hirsch
- Neuropediatric Unit, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Yehuda Pollak
- Neuropediatric Unit, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Itai Gross
- Neuropediatric Unit, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Talia Eldar-Geva
- Reproductive Endocrinology and Genetics Unit, Department of Obstetrics and Gynecology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Daniela P Reyes-Capo
- Unit on Metabolism and Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Joan C Han
- Unit on Metabolism and Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA; Department of Pediatrics, University of Tennessee Health Science Center, Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA; Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andrea M Haqq
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Varda Gross-Tsur
- Neuropediatric Unit, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, AB Canada
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
44
|
Miller LJ, Desai AJ. Metabolic Actions of the Type 1 Cholecystokinin Receptor: Its Potential as a Therapeutic Target. Trends Endocrinol Metab 2016; 27:609-619. [PMID: 27156041 PMCID: PMC4992613 DOI: 10.1016/j.tem.2016.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 12/13/2022]
Abstract
Cholecystokinin (CCK) regulates appetite and reduces food intake by activating the type 1 CCK receptor (CCK1R). Attempts to develop CCK1R agonists for obesity have yielded active agents that have not reached clinical practice. Here we discuss why, along with new strategies to target CCK1R more effectively. We examine signaling events and the possibility of developing agents that exhibit ligand-directed bias, to dissociate satiety activity from undesirable side effects. Potential allosteric sites of modulation are also discussed, along with desired properties of a positive allosteric modulator (PAM) without intrinsic agonist action as another strategy to treat obesity. These new types of CCK1R-active drugs could be useful as standalone agents or as part of a rational drug combination for management of obesity.
Collapse
Affiliation(s)
- Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, 85259, USA.
| | - Aditya J Desai
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, 85259, USA
| |
Collapse
|
45
|
Trautmann SM, Sharkey KA. The Endocannabinoid System and Its Role in Regulating the Intrinsic Neural Circuitry of the Gastrointestinal Tract. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:85-126. [PMID: 26638765 DOI: 10.1016/bs.irn.2015.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endocannabinoids are important neuromodulators in the central nervous system. They regulate central transmission through pre- and postsynaptic actions on neurons and indirectly through effects on glial cells. Cannabinoids (CBs) also regulate neurotransmission in the enteric nervous system (ENS) of the gastrointestinal (GI) tract. The ENS consists of intrinsic primary afferent neurons, interneurons, and motor neurons arranged in two ganglionated plexuses which control all the functions of the gut. Increasing evidence suggests that endocannabinoids are potent neuromodulators in the ENS. In this review, we will highlight key observations on the localization of CB receptors and molecules involved in the synthesis and degradation of endocannabinoids in the ENS. We will discuss endocannabinoid signaling mechanisms, endocannabinoid tone and concepts of CB receptor metaplasticity in the ENS. We will also touch on some examples of enteric neural signaling in relation neuromuscular, secretomotor, and enteroendocrine transmission in the ENS. Finally, we will briefly discuss some key future directions.
Collapse
Affiliation(s)
- Samantha M Trautmann
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
46
|
Grabauskas G, Wu X, Lu Y, Heldsinger A, Song I, Zhou SY, Owyang C. KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin. J Physiol 2015; 593:3973-89. [PMID: 26174421 PMCID: PMC4575581 DOI: 10.1113/jp270788] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022] Open
Abstract
Ghrelin, a hunger signalling peptide derived from the peripheral tissues, overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. Using in vivo and in vitro electrophysiological techniques, we show that ghrelin hyperpolarizes neurons and inhibits currents evoked by leptin and CCK-8. Administering a KATP channel antagonist or silencing Kir6.2, a major subunit of the KATP channel, abolished ghrelin inhibition. The inhibitory actions of ghrelin were also abolished by treating the vagal ganglia neurons with pertussis toxin, as well as phosphatidylinositol 3-kinase (PI3K) or extracellular signal-regulated kinase 1 and 2 (Erk1/2) small interfering RNA. Feeding experiments showed that silencing Kir6.2 in the vagal ganglia abolished the orexigenic actions of ghrelin. These data indicate that ghrelin modulates vagal ganglia neuron excitability by activating KATP conductance via the growth hormone secretagogue receptor subtype 1a-Gαi -PI3K-Erk1/2-KATP pathway. This provides a mechanism to explain the actions of ghrelin with respect to overcoming anorexigenic signals that act via the vagal afferent pathways. Ghrelin is the only known hunger signal derived from the peripheral tissues. Ghrelin overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. The mechanisms by which ghrelin reduces the sensory signals evoked by anorexigenic hormones, which act via the vagus nerve to stimulate feeding, are unknown. Patch clamp recordings of isolated rat vagal neurons show that ghrelin hyperpolarizes neurons by activating K(+) conductance. Administering a KATP channel antagonist or silencing Kir6.2, a major subunit of the KATP channel, abolished ghrelin inhibition in vitro and in vivo. Patch clamp studies show that ghrelin inhibits currents evoked by leptin and CCK-8, which operate through independent ionic channels. The inhibitory actions of ghrelin were abolished by treating the vagal ganglia neurons with pertussis toxin, as well as phosphatidylinositol 3-kinase (PI3K) or extracellular signal-regulated kinase 1 and 2 (Erk1/2) small interfering RNA. In vivo gene silencing of PI3K and Erk1/2 in the nodose ganglia prevented ghrelin inhibition of leptin- or CCK-8-evoked vagal firing. Feeding experiments showed that silencing Kir6.2 in the vagal ganglia abolished the orexigenic actions of ghrelin. These data indicate that ghrelin modulates vagal ganglia neuron excitability by activating KATP conductance via the growth hormone secretagogue receptor subtype 1a-Gαi -PI3K-Erk1/2-KATP pathway. The resulting hyperpolarization renders the neurons less responsive to signals evoked by anorexigenic hormones. This provides a mechanism to explain the actions of ghrelin with respect to overcoming anorexigenic signals that act via the vagal afferent pathways.
Collapse
Affiliation(s)
- Gintautas Grabauskas
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Xiaoyin Wu
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Yuanxu Lu
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Andrea Heldsinger
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Il Song
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Shi-Yi Zhou
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Chung Owyang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
- Corresponding author C. Owyang: 3912 Taubman Center, SPC 5362, 1500 East Medical Center Drive, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| |
Collapse
|
47
|
Busquets-Garcia A, Desprez T, Metna-Laurent M, Bellocchio L, Marsicano G, Soria-Gomez E. Dissecting the cannabinergic control of behavior: Thewherematters. Bioessays 2015; 37:1215-25. [DOI: 10.1002/bies.201500046] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Arnau Busquets-Garcia
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Tifany Desprez
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Mathilde Metna-Laurent
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Luigi Bellocchio
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Giovanni Marsicano
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Edgar Soria-Gomez
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| |
Collapse
|
48
|
Lee LA, Chen J, Yin J. Complementary and alternative medicine for gastroparesis. Gastroenterol Clin North Am 2015; 44:137-50. [PMID: 25667029 DOI: 10.1016/j.gtc.2014.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complementary and alternative medicine is of great interest to patients with gastrointestinal disorders and some will choose to ask their health care providers about those therapies for which some scientific evidence exists. This review focuses on those therapies most commonly used by patients, namely acupuncture/electroacupuncture and various herbal formulations that have been the focus of clinical and laboratory investigation. A discussion of their possible mechanisms of action and the results of clinical studies are summarized.
Collapse
Affiliation(s)
- Linda A Lee
- Division of Gastroenterology and Hepatology, Johns Hopkins Integrative Medicine & Digestive Center, Johns Hopkins University School of Medicine, 2360 West Joppa Road, Suite 200, Lutherville, MD 20193, USA.
| | - Jiande Chen
- Clinical Motility Lab, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, A-505, Baltimore, MD 21224, USA
| | - Jieyun Yin
- Veterans Research and Education Foundation, VA Medical Center, 921 NE 13th Street, Oklahoma City, OK 73104, USA
| |
Collapse
|
49
|
D’Addario C, Micioni Di Bonaventura M, Pucci M, Romano A, Gaetani S, Ciccocioppo R, Cifani C, Maccarrone M. Endocannabinoid signaling and food addiction. Neurosci Biobehav Rev 2014; 47:203-24. [DOI: 10.1016/j.neubiorev.2014.08.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/28/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
|
50
|
Cristino L, Becker T, Di Marzo V. Endocannabinoids and energy homeostasis: an update. Biofactors 2014; 40:389-97. [PMID: 24752980 DOI: 10.1002/biof.1168] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 04/06/2014] [Indexed: 01/08/2023]
Abstract
The endocannabinoid system (ECS) is a widespread intercellular signaling system that plays a critical role in energy homeostasis, meant as the precise matching of caloric intake with energy expenditure which normally keeps body weight stable over time. Complex interactions between environmental and neurohormonal systems directly contribute to the balance of energy homeostasis. This review highlights established and more recent data on the brain circuits in which the ECS plays an important regulatory role, with focus on the hypothalamus, a region where numerous interacting systems regulating feeding, satiety, stress, and other motivational states coexist. Although not meant as an exhaustive review of the field, this article will discuss how endocannabinoid tone, in addition to reinforcing reward circuitries and modulating food intake and the salience of food, controls lipid and glucose metabolism in several peripheral organs, particularly the liver and adipose tissue. Direct actions in the skeletal muscle and pancreas are also emerging and are briefly discussed. This review provides new perspectives into endocannabinoid control of the neurochemical causes and consequences of energy homeostasis imbalance, a knowledge that might lead to new potential treatments for obesity and related morbidities.
Collapse
Affiliation(s)
- Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | | | | |
Collapse
|