1
|
Deng X, Zhu S. Ephrin-mediated dendrite-dendrite repulsion regulates compartment-specific targeting of dendrites in the central nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620860. [PMID: 39554189 PMCID: PMC11565762 DOI: 10.1101/2024.10.29.620860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Neurons often forms synaptic contacts at specific subcellular domains to differentially regulate the activity of target neurons. However, how dendrites are targeted to specific subcellular domains of axons is rarely studied. Here we use Drosophila mushroom body out neurons (MBONs) and local dopaminergic neurons (DANs) as a model system to study how dendrites and axons are targeted to specific subcellular domains (compartments) of mushroom body axonal lobes to form synaptic contacts. We found that Ephrin-mediated dendrite-dendrite repulsion between neighboring compartments restricts the projection of MBON dendrites to their specific compartments and prevents the formation of ectopic synaptic connections with DAN axons in neighboring compartments. Meanwhile, DAN neurons in a subset of compartments may also depend on their partner MBONs for projecting their axons to a specific compartment and cover the same territory as their partner MBON dendrites. Our work reveals that compartment-specific targeting of MBON dendrites and DAN axons is regulated in part by a combination of dendrite-dendrite repulsion between neighboring compartments and dendrite-axon interactions within the same compartment.
Collapse
|
2
|
Washburn HR, Chander P, Srikanth KD, Dalva MB. Transsynaptic Signaling of Ephs in Synaptic Development, Plasticity, and Disease. Neuroscience 2023; 508:137-152. [PMID: 36460219 DOI: 10.1016/j.neuroscience.2022.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Synapse formation between neurons is critical for proper circuit and brain function. Prior to activity-dependent refinement of connections between neurons, activity-independent cues regulate the contact and recognition of potential synaptic partners. Formation of a synapse results in molecular recognition events that initiate the process of synaptogenesis. Synaptogenesis requires contact between axon and dendrite, selection of correct and rejection of incorrect partners, and recruitment of appropriate pre- and postsynaptic proteins needed for the establishment of functional synaptic contact. Key regulators of these events are families of transsynaptic proteins, where one protein is found on the presynaptic neuron and the other is found on the postsynaptic neuron. Of these families, the EphBs and ephrin-Bs are required during each phase of synaptic development from target selection, recruitment of synaptic proteins, and formation of spines to regulation of synaptic plasticity at glutamatergic spine synapses in the mature brain. These roles also place EphBs and ephrin-Bs as important regulators of human neurological diseases. This review will focus on the role of EphBs and ephrin-Bs at synapses.
Collapse
Affiliation(s)
- Halley R Washburn
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; Department of Neuroscience, Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Praveen Chander
- Department of Neuroscience, Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Kolluru D Srikanth
- Department of Neuroscience, Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Matthew B Dalva
- Department of Neuroscience, Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA.
| |
Collapse
|
3
|
Paxillin Is Required for Proper Spinal Motor Axon Growth into the Limb. J Neurosci 2021; 41:3808-3821. [PMID: 33727334 DOI: 10.1523/jneurosci.2863-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 11/21/2022] Open
Abstract
To assemble the functional circuits of the nervous system, the neuronal axonal growth cones must be precisely guided to their proper targets, which can be achieved through cell-surface guidance receptor activation by ligand binding in the periphery. We investigated the function of paxillin, a focal adhesion protein, as an essential growth cone guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory selection in the limb mesenchyme. Using in situ mRNA detection, we first show paxillin expression in LMC neurons of chick and mouse embryos at the time of spinal motor axon extension into the limb. Paxillin loss-of-function and gain-of-function using in ovo electroporation in chick LMC neurons, of either sex, perturbed LMC axon trajectory selection, demonstrating an essential role of paxillin in motor axon guidance. In addition, a neuron-specific paxillin deletion in mice led to LMC axon trajectory selection errors. We also show that knocking down paxillin attenuates the growth preference of LMC neurites against ephrins in vitro, and erythropoietin-producing human hepatocellular (Eph)-mediated retargeting of LMC axons in vivo, suggesting paxillin involvement in Eph-mediated LMC motor axon guidance. Finally, both paxillin knockdown and ectopic expression of a nonphosphorylable paxillin mutant attenuated the retargeting of LMC axons caused by Src overexpression, implicating paxillin as a Src target in Eph signal relay in this context. In summary, our findings demonstrate that paxillin is required for motor axon guidance and suggest its essential role in the ephrin-Eph signaling pathway resulting in motor axon trajectory selection.SIGNIFICANCE STATEMENT During the development of neural circuits, precise connections need to be established among neurons or between neurons and their muscle targets. A protein family found in neurons, Eph, is essential at different stages of neural circuit formation, including nerve outgrowth and pathfinding, and is proposed to mediate the onset and progression of several neurodegenerative diseases, such as Alzheimer's disease. To investigate how Ephs relay their signals to mediate nerve growth, we investigated the function of a molecule called paxillin and found it important for the development of spinal nerve growth toward their muscle targets, suggesting its role as an effector of Eph signals. Our work could thus provide new information on how neuromuscular connectivity is properly established during embryonic development.
Collapse
|
4
|
Luria V, Laufer E. The Geometry of Limb Motor Innervation is Controlled by the Dorsal-Ventral Compartment Boundary in the Chick Limbless Mutant. Neuroscience 2020; 450:29-47. [PMID: 33038447 PMCID: PMC9922539 DOI: 10.1016/j.neuroscience.2020.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/29/2022]
Abstract
Precise control of limb muscles, and ultimately of limb movement, requires accurate motor innervation. Motor innervation of the vertebrate limb is established by sequential selection of trajectories at successive decision points. Motor axons of the lateral motor column (LMC) segregate at the base of the limb into two groups that execute a choice between dorsal and ventral tissue: medial LMC axons innervate the ventral limb, whereas lateral LMC axons innervate the dorsal limb. We investigated how LMC axons are targeted to the limb using the chick mutant limbless (ll), which has a dorsal transformation of the ventral limb mesenchyme. In ll the spatial pattern of motor projections to the limb is abnormal while their targeting is normal. While extensive, the dorsal transformation of the ll ventral limb mesenchyme is incomplete whereas the generation, specification and targeting of spinal motor neurons are apparently unaffected. Thus, the dorsal-ventral motor axon segregation is an active choice that is independent of the ratio between dorsal and ventral tissue but dependent on the presence of both tissues. Therefore, the fidelity of the motor projections to the limb depends on the presence of both dorsal and ventral compartments, while the geometry of motor projections is controlled by the position of limb dorsal-ventral compartment boundary.
Collapse
Affiliation(s)
- Victor Luria
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY 10032, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Ed Laufer
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY 10032, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Ye X, Qiu Y, Gao Y, Wan D, Zhu H. A Subtle Network Mediating Axon Guidance: Intrinsic Dynamic Structure of Growth Cone, Attractive and Repulsive Molecular Cues, and the Intermediate Role of Signaling Pathways. Neural Plast 2019; 2019:1719829. [PMID: 31097955 PMCID: PMC6487106 DOI: 10.1155/2019/1719829] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 01/01/2023] Open
Abstract
A fundamental feature of both early nervous system development and axon regeneration is the guidance of axonal projections to their targets in order to assemble neural circuits that control behavior. In the navigation process where the nerves grow toward their targets, the growth cones, which locate at the tips of axons, sense the environment surrounding them, including varies of attractive or repulsive molecular cues, then make directional decisions to adjust their navigation journey. The turning ability of a growth cone largely depends on its highly dynamic skeleton, where actin filaments and microtubules play a very important role in its motility. In this review, we summarize some possible mechanisms underlying growth cone motility, relevant molecular cues, and signaling pathways in axon guidance of previous studies and discuss some questions regarding directions for further studies.
Collapse
Affiliation(s)
- Xiyue Ye
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yan Qiu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yuqing Gao
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Dong Wan
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Huifeng Zhu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| |
Collapse
|
6
|
Niethamer TK, Bush JO. Getting direction(s): The Eph/ephrin signaling system in cell positioning. Dev Biol 2019; 447:42-57. [PMID: 29360434 PMCID: PMC6066467 DOI: 10.1016/j.ydbio.2018.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/21/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022]
Abstract
In vertebrates, the Eph/ephrin family of signaling molecules is a large group of membrane-bound proteins that signal through a myriad of mechanisms and effectors to play diverse roles in almost every tissue and organ system. Though Eph/ephrin signaling has functions in diverse biological processes, one core developmental function is in the regulation of cell position and tissue morphology by regulating cell migration and guidance, cell segregation, and boundary formation. Often, the role of Eph/ephrin signaling is to translate patterning information into physical movement of cells and changes in morphology that define tissue and organ systems. In this review, we focus on recent advances in the regulation of these processes, and our evolving understanding of the in vivo signaling mechanisms utilized in distinct developmental contexts.
Collapse
Affiliation(s)
- Terren K Niethamer
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
7
|
Chang CJ, Chang MY, Lee YC, Chen KY, Hsu TI, Wu YH, Chuang JY, Kao TJ. Nck2 is essential for limb trajectory selection by spinal motor axons. Dev Dyn 2018; 247:1043-1056. [DOI: 10.1002/dvdy.24656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 11/08/2022] Open
Affiliation(s)
- Chih-Ju Chang
- Department of Neurosurgery; Cathay General Hospital; Taipei Taiwan
- School of Medicine; Fu Jen Catholic University; New Taipei Taiwan
- Departemnt of Mechanical Engineering; National Central University; Taiwan
| | - Ming-Yuan Chang
- Division of Neurosurgery, Department of Surgery; Min-Sheng General Hospital; Taiwan
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
| | - Yi-Chao Lee
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
- Center for Neurotrauma and Neuroregeneration; Taipei Medical University; Taipei Taiwan
| | - Kai-Yun Chen
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
- Center for Neurotrauma and Neuroregeneration; Taipei Medical University; Taipei Taiwan
| | - Tsung-I Hsu
- Center for Neurotrauma and Neuroregeneration; Taipei Medical University; Taipei Taiwan
| | - Yi-Hsin Wu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
- Center for Neurotrauma and Neuroregeneration; Taipei Medical University; Taipei Taiwan
| | - Jian-Ying Chuang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
- Center for Neurotrauma and Neuroregeneration; Taipei Medical University; Taipei Taiwan
| | - Tzu-Jen Kao
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
- Center for Neurotrauma and Neuroregeneration; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
8
|
Guidance of motor axons: where do we stand? CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Abstract
Motor neurons of the spinal cord are responsible for the assembly of neuromuscular connections indispensable for basic locomotion and skilled movements. A precise spatial relationship exists between the position of motor neuron cell bodies in the spinal cord and the course of their axonal projections to peripheral muscle targets. Motor neuron innervation of the vertebrate limb is a prime example of this topographic organization and by virtue of its accessibility and predictability has provided access to fundamental principles of motor system development and neuronal guidance. The seemingly basic binary map established by genetically defined motor neuron subtypes that target muscles in the limb is directed by a surprisingly large number of directional cues. Rather than being simply redundant, these converging signaling pathways are hierarchically linked and cooperate to increase the fidelity of axon pathfinding decisions. A current priority is to determine how multiple guidance signals are integrated by individual growth cones and how they synergize to delineate class-specific axonal trajectories.
Collapse
Affiliation(s)
- Dario Bonanomi
- Molecular Neurobiology Laboratory, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
10
|
Gugliandolo A, Diomede F, Cardelli P, Bramanti A, Scionti D, Bramanti P, Trubiani O, Mazzon E. Transcriptomic analysis of gingival mesenchymal stem cells cultured on 3D bioprinted scaffold: A promising strategy for neuroregeneration. J Biomed Mater Res A 2017; 106:126-137. [PMID: 28879677 DOI: 10.1002/jbm.a.36213] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/02/2017] [Accepted: 08/22/2017] [Indexed: 01/01/2023]
Abstract
The combined approach of mesenchymal stem cells (MSCs) and scaffolds has been proposed as a potential therapeutic tool for the treatment of neurodegenerative diseases. Indeed, even if MSCs can promote neuronal regeneration, replacing lost neurons or secreting neurotrophic factors, many limitations still exist for their application in regenerative medicine, including the low survival and differentiation rate. The scaffolds, by mimicking the endogenous microenvironment, have shown to promote cell survival, proliferation, and differentiation. In this work, gingival mesenchymal stem cells (GMSCs), isolated from healthy donors, were expanded in vitro, by culturing them adherent in plastic dishes (CTR-GMSCs) or on a poly(lactic acid) scaffold (SC-GMSCs). In order to evaluate the survival and the neurogenic differentiation potential, we performed a comparative transcriptomic analysis between CTR-GMSCs and SC-GMSCs by next generation sequencing. We found that SC-GMSCs showed an increased expression of neurogenic and prosurvival genes. In particular, genes involved in neurotrophin signaling and PI3K/Akt pathways were upregulated. On the contrary, proapoptotic and negative regulator of neuronal growth genes were downregulated. Moreover, nestin and GAP-43 protein levels increased in SC-GMSCs, confirming the neurogenic commitment of these cells. In conclusion, the scaffold, providing a trophic support for MSCs, may promote GMSCs differentiation toward a neuronal phenotype and survival. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 126-137, 2018.
Collapse
Affiliation(s)
- Agnese Gugliandolo
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Francesca Diomede
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio," Chieti-Pescara, via dei Vestini, 31, 66100, Chieti, Italy
| | - Paolo Cardelli
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio," Chieti-Pescara, via dei Vestini, 31, 66100, Chieti, Italy
| | - Alessia Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.,Institute of Applied Science and Intelligent Systems "ISASI Eduardo Caianiello,", National Research Council of Italy, Messina, Italy
| | - Domenico Scionti
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Oriana Trubiani
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio," Chieti-Pescara, via dei Vestini, 31, 66100, Chieti, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
11
|
Nugent AA, Park JG, Wei Y, Tenney AP, Gilette NM, DeLisle MM, Chan WM, Cheng L, Engle EC. Mutant α2-chimaerin signals via bidirectional ephrin pathways in Duane retraction syndrome. J Clin Invest 2017; 127:1664-1682. [PMID: 28346224 DOI: 10.1172/jci88502] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 02/02/2017] [Indexed: 01/18/2023] Open
Abstract
Duane retraction syndrome (DRS) is the most common form of congenital paralytic strabismus in humans and can result from α2-chimaerin (CHN1) missense mutations. We report a knockin α2-chimaerin mouse (Chn1KI/KI) that models DRS. Whole embryo imaging of Chn1KI/KI mice revealed stalled abducens nerve growth and selective trochlear and first cervical spinal nerve guidance abnormalities. Stalled abducens nerve bundles did not reach the orbit, resulting in secondary aberrant misinnervation of the lateral rectus muscle by the oculomotor nerve. By contrast, Chn1KO/KO mice did not have DRS, and embryos displayed abducens nerve wandering distinct from the Chn1KI/KI phenotype. Murine embryos lacking EPH receptor A4 (Epha4KO/KO), which is upstream of α2-chimaerin in corticospinal neurons, exhibited similar abducens wandering that paralleled previously reported gait alterations in Chn1KO/KO and Epha4KO/KO adult mice. Findings from Chn1KI/KI Epha4KO/KO mice demonstrated that mutant α2-chimaerin and EphA4 have different genetic interactions in distinct motor neuron pools: abducens neurons use bidirectional ephrin signaling via mutant α2-chimaerin to direct growth, while cervical spinal neurons use only ephrin forward signaling, and trochlear neurons do not use ephrin signaling. These findings reveal a role for ephrin bidirectional signaling upstream of mutant α2-chimaerin in DRS, which may contribute to the selective vulnerability of abducens motor neurons in this disorder.
Collapse
|
12
|
Feng L, Shu Y, Wu Q, Liu T, Long H, Yang H, Li Y, Xiao B. EphA4 may contribute to microvessel remodeling in the hippocampal CA1 and CA3 areas in a mouse model of temporal lobe epilepsy. Mol Med Rep 2016; 15:37-46. [PMID: 27959424 PMCID: PMC5355650 DOI: 10.3892/mmr.2016.6017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 09/10/2016] [Indexed: 12/26/2022] Open
Abstract
Unclustered and pre-clustered ephrin-A5-Fc have identical anti-epileptic effects in the dentate gyrus of hippocampus in a mouse model of temporal lobe epilepsy (TLE), and act through alleviating ephrin receptor A4 (EphA4)-mediated neurogenesis and angiogenesis. However, the effects of ephrin-A5-Fcs on EphA4 and angiogenesis in Cornu Ammonis (CA)1 and CA3 areas remain unclear. In the present study, male C57BL/6 mice underwent pilocarpine-induced TLE. The expression of EphA4 and ephrin-A5 proteins was analyzed by immunohistochemistry, and the mean density and diameter of platelet endothelial cell adhesion molecule-1-labeled microvessels in CA1 and CA3 were calculated in the absence or presence of two types of ephrin-A5-Fc intrahippocampal infusion. Microvessels perpendicular to the pyramidal cell layer decreased; however, microvessels that traversed the layer increased, and became distorted and fragmented. The mean densities and diameters of microvessels gradually increased and remained greater than those in the control group at 56 days post-status epilepticus (SE). The upregulation of EphA4 and ephrin-A5 proteins began at 7 days and was maintained until 28 days, subsequently decreasing slightly at 56 days post-SE. Blockade of EphA4 by unclustered-ephrin-A5-Fc effected a reduction in the mean density and mean diameter of microvessels in the CA1 and CA3 areas; conversely, activation of EphA4 by clustered-ephrin-A5-Fc induced an increase in these values. Ephrin-A5 ligand binding to EphA4 receptor may contribute to angiogenesis during epileptogenesis in the hippocampal CA1 and CA3 areas.
Collapse
Affiliation(s)
- Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yi Shu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Tiantian Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
13
|
Yamagishi S, Kesavamoorthy G, Bastmeyer M, Sato K. Stripe Assay to Study the Attractive or Repulsive Activity of a Protein Substrate Using Dissociated Hippocampal Neurons. J Vis Exp 2016. [PMID: 27403728 DOI: 10.3791/54096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Growing axons develop a highly motile structure at their tip, termed the growth cone. The growth cone contacts extracellular environmental cues to navigate axonal growth. Netrin, slit, semaphorin, and ephrins are known guidance molecules that can attract or repel axons upon binding to receptors and co-receptors on the axon. The activated receptors initiate various signaling molecules in the growth cone that alter the structure and movement of the neuron. Here, we describe the detailed protocol for a stripe assay to assess the ability of a guidance molecule to attract or repel neurons. In this method, dissociated hippocampal neurons from E15.5 mice are cultured on laminin-coated dishes processed with alternating stripes of ectodomain of fibronectin and leucine-rich transmembrane protein-2 (FLRT2) and control immunoglobulin G (IgG) fragment crystallizable region (Fc) protein. Both axons and cell bodies were strongly repelled from the FLRT2-coated stripe regions after 24 h of culture. Immunostaining with tau1 showed that ~90% of the neurons were distributed on the Fc-coated stripes compared to the FLRT2-Fc-coated stripes (~10%). This result indicates that FLRT2 has a strong repulsive effect on these neurons. This powerful method is applicable not only for primary cultured neurons but also for a variety of other cells, such as neuroblasts.
Collapse
Affiliation(s)
- Satoru Yamagishi
- Anatomy and Neuroscience, Hamamatsu University School of Medicine;
| | | | - Martin Bastmeyer
- Cell and Neurobiology, Zoological Institute, Karlsruhe Institute of Technology (KIT)
| | - Kohji Sato
- Anatomy and Neuroscience, Hamamatsu University School of Medicine
| |
Collapse
|
14
|
Nguyen H, Dayan P, Pujic Z, Cooper-White J, Goodhill GJ. A mathematical model explains saturating axon guidance responses to molecular gradients. eLife 2016; 5:e12248. [PMID: 26830461 PMCID: PMC4755759 DOI: 10.7554/elife.12248] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/18/2015] [Indexed: 11/13/2022] Open
Abstract
Correct wiring is crucial for the proper functioning of the nervous system. Molecular gradients provide critical signals to guide growth cones, which are the motile tips of developing axons, to their targets. However, in vitro, growth cones trace highly stochastic trajectories, and exactly how molecular gradients bias their movement is unclear. Here, we introduce a mathematical model based on persistence, bias, and noise to describe this behaviour, constrained directly by measurements of the detailed statistics of growth cone movements in both attractive and repulsive gradients in a microfluidic device. This model provides a mathematical explanation for why average axon turning angles in gradients in vitro saturate very rapidly with time at relatively small values. This work introduces the most accurate predictive model of growth cone trajectories to date, and deepens our understanding of axon guidance events both in vitro and in vivo.
Collapse
Affiliation(s)
- Huyen Nguyen
- Queensland Brain Institute, The University of Queensland, St. Lucia, Australia.,School of Mathematics and Physics, The University of Queensland, St. Lucia, Australia
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
| | - Zac Pujic
- Queensland Brain Institute, The University of Queensland, St. Lucia, Australia
| | - Justin Cooper-White
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia
| | - Geoffrey J Goodhill
- Queensland Brain Institute, The University of Queensland, St. Lucia, Australia.,School of Mathematics and Physics, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
15
|
Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol 2016; 17:240-56. [PMID: 26790531 DOI: 10.1038/nrm.2015.16] [Citation(s) in RCA: 461] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eph receptor Tyr kinases and their membrane-tethered ligands, the ephrins, elicit short-distance cell-cell signalling and thus regulate many developmental processes at the interface between pattern formation and morphogenesis, including cell sorting and positioning, and the formation of segmented structures and ordered neural maps. Their roles extend into adulthood, when ephrin-Eph signalling regulates neuronal plasticity, homeostatic events and disease processes. Recently, new insights have been gained into the mechanisms of ephrin-Eph signalling in different cell types, and into the physiological importance of ephrin-Eph in different organs and in disease, raising questions for future research directions.
Collapse
|
16
|
Lipid Rafts Are Physiologic Membrane Microdomains Necessary for the Morphogenic and Developmental Functions of Glial Cell Line-Derived Neurotrophic Factor In Vivo. J Neurosci 2015; 35:13233-43. [PMID: 26400951 DOI: 10.1523/jneurosci.2935-14.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) promotes PNS development and kidney morphogenesis via a receptor complex consisting of the glycerophosphatidylinositol (GPI)-anchored, ligand binding receptor GDNF family receptor α1 (GFRα1) and the receptor tyrosine kinase Ret. Although Ret signal transduction in vitro is augmented by translocation into lipid rafts via GFRα1, the existence and importance of lipid rafts in GDNF-Ret signaling under physiologic conditions is unresolved. A knock-in mouse was produced that replaced GFRα1 with GFRα1-TM, which contains a transmembrane (TM) domain instead of the GPI anchor. GFRα1-TM still binds GDNF and promotes Ret activation but does not translocate into rafts. In Gfrα1(TM/TM) mice, GFRα1-TM is expressed, trafficked, and processed at levels identical to GFRα1. Although Gfrα1(+/TM) mice are viable, Gfrα1(TM/TM) mice display bilateral renal agenesis, lack enteric neurons in the intestines, and have motor axon guidance deficits, similar to Gfrα1(-/-) mice. Therefore, the recruitment of Ret into lipid rafts by GFRα1 is required for the physiologic functions of GDNF in vertebrates. Significance statement: Membrane microdomains known as lipid rafts have been proposed to be unique subdomains in the plasma membrane that are critical for the signaling functions of multiple receptor complexes. Their existence and physiologic relevance has been debated. Based on in vitro studies, lipid rafts have been reported to be necessary for the function of the Glial cell line-derived neurotrophic factor (GDNF) family of neurotrophic factors. The receptor for GDNF comprises the lipid raft-resident, glycerophosphatidylinositol-anchored receptor GDNF family receptor α1 (GFRα1) and the receptor tyrosine kinase Ret. Here we demonstrate, using a knock-in mouse model in which GFRα1 is no longer located in lipid rafts, that the developmental functions of GDNF in the periphery require the translocation of the GDNF receptor complex into lipid rafts.
Collapse
|
17
|
Stark DA, Coffey NJ, Pancoast HR, Arnold LL, Walker JPD, Vallée J, Robitaille R, Garcia ML, Cornelison DDW. Ephrin-A3 promotes and maintains slow muscle fiber identity during postnatal development and reinnervation. J Cell Biol 2015; 211:1077-91. [PMID: 26644518 PMCID: PMC4674275 DOI: 10.1083/jcb.201502036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 10/22/2015] [Indexed: 11/28/2022] Open
Abstract
Each adult mammalian skeletal muscle has a unique complement of fast and slow myofibers, reflecting patterns established during development and reinforced via their innervation by fast and slow motor neurons. Existing data support a model of postnatal "matching" whereby predetermined myofiber type identity promotes pruning of inappropriate motor axons, but no molecular mechanism has yet been identified. We present evidence that fiber type-specific repulsive interactions inhibit innervation of slow myofibers by fast motor axons during both postnatal maturation of the neuromuscular junction and myofiber reinnervation after injury. The repulsive guidance ligand ephrin-A3 is expressed only on slow myofibers, whereas its candidate receptor, EphA8, localizes exclusively to fast motor endplates. Adult mice lacking ephrin-A3 have dramatically fewer slow myofibers in fast and mixed muscles, and misexpression of ephrin-A3 on fast myofibers followed by denervation/reinnervation promotes their respecification to a slow phenotype. We therefore conclude that Eph/ephrin interactions guide the fiber type specificity of neuromuscular interactions during development and adult life.
Collapse
Affiliation(s)
- Danny A Stark
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211 Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Nathan J Coffey
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - Hannah R Pancoast
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - Laura L Arnold
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211 Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - J Peyton D Walker
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Joanne Vallée
- Département de Neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Richard Robitaille
- Département de Neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Michael L Garcia
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211 Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - D D W Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211 Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| |
Collapse
|
18
|
Colbert PL, Vermeer DW, Wieking BG, Lee JH, Vermeer PD. EphrinB1: novel microtubule associated protein whose expression affects taxane sensitivity. Oncotarget 2015; 6:953-68. [PMID: 25436983 PMCID: PMC4359267 DOI: 10.18632/oncotarget.2823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/25/2014] [Indexed: 11/28/2022] Open
Abstract
Microtubules (MTs) are components of the cytoskeleton made up of polymerized alpha and beta tubulin dimers. MT structure and function must be maintained throughout the cell cycle to ensure proper execution of mitosis and cellular homeostasis. The protein tyrosine phosphatase, PTPN13, localizes to distinct compartments during mitosis and cytokinesis. We have previously demonstrated that the HPV16 E6 oncoprotein binds PTPN13 and leads to its degradation. Thus, we speculated that HPV infection may affect cellular proliferation by altering the localization of a PTPN13 phosphatase substrate, EphrinB1, during mitosis. Here we report that EphrinB1 co-localizes with MTs during all phases of the cell cycle. Specifically, a cleaved, unphosphorylated EphrinB1 fragment directly binds tubulin, while its phosphorylated form lacks MT binding capacity. These findings suggest that EphrinB1 is a novel microtubule associated protein (MAP). Importantly, we show that in the context of HPV16 E6 expression, EphrinB1 affects taxane response in vitro. We speculate that this reflects PTPN13's modulation of EphrinB1 phosphorylation and suggest that EphrinB1 is an important contributor to taxane sensitivity/resistance phenotypes in epithelial cancers. Thus, HPV infection or functional mutations of PTPN13 in non-viral cancers may predict taxane sensitivity.
Collapse
Affiliation(s)
- Paul L Colbert
- Cancer Biology Research Center, Sanford Research, Sioux Falls, South Dakota, USA
| | - Daniel W Vermeer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, South Dakota, USA
| | - Bryant G Wieking
- Cancer Biology Research Center, Sanford Research, Sioux Falls, South Dakota, USA
| | - John H Lee
- Cancer Biology Research Center, Sanford Research, Sioux Falls, South Dakota, USA
| | - Paola D Vermeer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, South Dakota, USA
| |
Collapse
|
19
|
Abstract
Control of movement is a fundamental and complex task of the vertebrate nervous system, which relies on communication between circuits distributed throughout the brain and spinal cord. Many of the networks essential for the execution of basic locomotor behaviors are composed of discrete neuronal populations residing within the spinal cord. The organization and connectivity of these circuits is established through programs that generate functionally diverse neuronal subtypes, each contributing to a specific facet of motor output. Significant progress has been made in deciphering how neuronal subtypes are specified and in delineating the guidance and synaptic specificity determinants at the core of motor circuit assembly. Recent studies have shed light on the basic principles linking locomotor circuit connectivity with function, and they are beginning to reveal how more sophisticated motor behaviors are encoded. In this review, we discuss the impact of developmental programs in specifying motor behaviors governed by spinal circuits.
Collapse
Affiliation(s)
- Catarina Catela
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016;
| | - Maggie M Shin
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016;
| | - Jeremy S Dasen
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016;
| |
Collapse
|
20
|
α2-chimaerin is required for Eph receptor-class-specific spinal motor axon guidance and coordinate activation of antagonistic muscles. J Neurosci 2015; 35:2344-57. [PMID: 25673830 DOI: 10.1523/jneurosci.4151-14.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axonal guidance involves extrinsic molecular cues that bind growth cone receptors and signal to the cytoskeleton through divergent pathways. Some signaling intermediates are deployed downstream of molecularly distinct axon guidance receptor families, but the scope of this overlap is unclear, as is the impact of embryonic axon guidance fidelity on adult nervous system function. Here, we demonstrate that the Rho-GTPase-activating protein α2-chimaerin is specifically required for EphA and not EphB receptor signaling in mouse and chick spinal motor axons. Reflecting this specificity, the loss of α2-chimaerin function disrupts the limb trajectory of extensor-muscle-innervating motor axons the guidance of which depends on EphA signaling. These embryonic defects affect coordinated contraction of antagonistic flexor-extensor muscles in the adult, indicating that accurate embryonic motor axon guidance is critical for optimal neuromuscular function. Together, our observations provide the first functional evidence of an Eph receptor-class-specific intracellular signaling protein that is required for appropriate neuromuscular connectivity.
Collapse
|
21
|
Engrailed 1 mediates correct formation of limb innervation through two distinct mechanisms. PLoS One 2015; 10:e0118505. [PMID: 25710467 PMCID: PMC4340014 DOI: 10.1371/journal.pone.0118505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/19/2015] [Indexed: 12/24/2022] Open
Abstract
Engrailed-1 (En1) is expressed in the ventral ectoderm of the developing limb where it plays an instructive role in the dorsal-ventral patterning of the forelimb. Besides its well-described role as a transcription factor in regulating gene expression through its DNA-binding domain, En1 may also be secreted to form an extracellular gradient, and directly impact on the formation of the retinotectal map. We show here that absence of En1 causes mispatterning of the forelimb and thus defects in the dorsal-ventral pathfinding choice of motor axons in vivo. In addition, En1 but not En2 also has a direct and specific repulsive effect on motor axons of the lateral aspect of the lateral motor column (LMC) but not on medial LMC projections. Moreover, an ectopic dorsal source of En1 pushes lateral LMC axons to the ventral limb in vivo. Thus, En1 controls the establishment of limb innervation through two distinct molecular mechanisms.
Collapse
|
22
|
Santiago C, Bashaw GJ. Transcription factors and effectors that regulate neuronal morphology. Development 2015; 141:4667-80. [PMID: 25468936 DOI: 10.1242/dev.110817] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transcription factors establish the tremendous diversity of cell types in the nervous system by regulating the expression of genes that give a cell its morphological and functional properties. Although many studies have identified requirements for specific transcription factors during the different steps of neural circuit assembly, few have identified the downstream effectors by which they control neuronal morphology. In this Review, we highlight recent work that has elucidated the functional relationships between transcription factors and the downstream effectors through which they regulate neural connectivity in multiple model systems, with a focus on axon guidance and dendrite morphogenesis.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Stifani N. Motor neurons and the generation of spinal motor neuron diversity. Front Cell Neurosci 2014; 8:293. [PMID: 25346659 PMCID: PMC4191298 DOI: 10.3389/fncel.2014.00293] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 09/02/2014] [Indexed: 11/13/2022] Open
Abstract
Motor neurons (MNs) are neuronal cells located in the central nervous system (CNS) controlling a variety of downstream targets. This function infers the existence of MN subtypes matching the identity of the targets they innervate. To illustrate the mechanism involved in the generation of cellular diversity and the acquisition of specific identity, this review will focus on spinal MNs (SpMNs) that have been the core of significant work and discoveries during the last decades. SpMNs are responsible for the contraction of effector muscles in the periphery. Humans possess more than 500 different skeletal muscles capable to work in a precise time and space coordination to generate complex movements such as walking or grasping. To ensure such refined coordination, SpMNs must retain the identity of the muscle they innervate. Within the last two decades, scientists around the world have produced considerable efforts to elucidate several critical steps of SpMNs differentiation. During development, SpMNs emerge from dividing progenitor cells located in the medial portion of the ventral neural tube. MN identities are established by patterning cues working in cooperation with intrinsic sets of transcription factors. As the embryo develop, MNs further differentiate in a stepwise manner to form compact anatomical groups termed pools connecting to a unique muscle target. MN pools are not homogeneous and comprise subtypes according to the muscle fibers they innervate. This article aims to provide a global view of MN classification as well as an up-to-date review of the molecular mechanisms involved in the generation of SpMN diversity. Remaining conundrums will be discussed since a complete understanding of those mechanisms constitutes the foundation required for the elaboration of prospective MN regeneration therapies.
Collapse
Affiliation(s)
- Nicolas Stifani
- Medical Neuroscience, Dalhousie University Halifax, NS, Canada
| |
Collapse
|
24
|
EphA4 receptor shedding regulates spinal motor axon guidance. Curr Biol 2014; 24:2355-65. [PMID: 25264256 DOI: 10.1016/j.cub.2014.08.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/22/2014] [Accepted: 08/13/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Proteolytic processing of axon guidance receptors modulates their expression and functions. Contact repulsion by membrane-associated ephrins and Eph receptors was proposed to be facilitated by ectodomain cleavage, but whether this phenomenon is required for axon guidance in vivo is unknown. RESULTS In support of established models, we find that cleavage of EphA4 promotes cell-cell and growth cone-cell detachment in vitro. Unexpectedly, however, a cleavage resistant isoform of EphA4 is as effective as a wild-type EphA4 in redirecting motor axons in limbs. Mice in which EphA4 cleavage is genetically abolished have motor axon guidance defects, suggesting an important role of EphA4 cleavage in nonneuronal tissues such as the limb mesenchyme target of spinal motor neurons. Indeed, we find that blocking EphA4 cleavage increases expression of full-length EphA4 in limb mesenchyme, which-via cis-attenuation-apparently reduces the effective concentration of ephrinAs capable of triggering EphA4 forward signaling in the motor axons. CONCLUSIONS We propose that EphA4 cleavage is required to establish the concentration differential of active ephrins in the target tissue that is required for proper axon guidance. Our study reveals a novel mechanism to regulate guidance decision at an intermediate target based on the modulation of ligand availability by the proteolytic processing of the receptor.
Collapse
|
25
|
Cissé M, Checler F. Eph receptors: new players in Alzheimer's disease pathogenesis. Neurobiol Dis 2014; 73:137-49. [PMID: 25193466 DOI: 10.1016/j.nbd.2014.08.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/01/2014] [Accepted: 08/22/2014] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is devastating and leads to permanent losses of memory and other cognitive functions. Although recent genetic evidences strongly argue for a causative role of Aβ in AD onset and progression (Jonsson et al., 2012), its role in AD etiology remains a matter of debate. However, even if not the sole culprit or pathological trigger, genetic and anatomical evidences in conjunction with numerous pharmacological studies, suggest that Aβ peptides, at least contribute to the disease. How Aβ contributes to memory loss remains largely unknown. Soluble Aβ species referred to as Aβ oligomers have been shown to be neurotoxic and induce network failure and cognitive deficits in animal models of the disease. In recent years, several proteins were described as potential Aβ oligomers receptors, amongst which are the receptor tyrosine kinases of Eph family. These receptors together with their natural ligands referred to as ephrins have been involved in a plethora of physiological and pathological processes, including embryonic neurogenesis, learning and memory, diabetes, cancers and anxiety. Here we review recent discoveries on Eph receptors-mediated protection against Aβ oligomers neurotoxicity as well as their potential as therapeutic targets in AD pathogenesis.
Collapse
Affiliation(s)
- Moustapha Cissé
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNS, "Labex Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France..
| | - Frédéric Checler
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNS, "Labex Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France..
| |
Collapse
|
26
|
Celsr3 is required in motor neurons to steer their axons in the hindlimb. Nat Neurosci 2014; 17:1171-9. [DOI: 10.1038/nn.3784] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/15/2014] [Indexed: 12/12/2022]
|
27
|
Behavioral improvement and regulation of molecules related to neuroplasticity in ischemic rat spinal cord treated with PEDF. Neural Plast 2014; 2014:451639. [PMID: 25110592 PMCID: PMC4106224 DOI: 10.1155/2014/451639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/28/2022] Open
Abstract
Pigment epithelium derived factor (PEDF) exerts trophic actions to motoneurons and modulates nonneuronal restorative events, but its effects on neuroplasticity responses after spinal cord (SC) injury are unknown. Rats received a low thoracic SC photothrombotic ischemia and local injection of PEDF and were evaluated behaviorally six weeks later. PEDF actions were detailed in SC ventral horn (motor) in the levels of the lumbar central pattern generator (CPG), far from the injury site. Molecules related to neuroplasticity (MAP-2), those that are able to modulate such event, for instance, neurotrophic factors (NT-3, GDNF, BDNF, and FGF-2), chondroitin sulfate proteoglycans (CSPG), and those associated with angiogenesis and antiapoptosis (laminin and Bcl-2) and Eph (receptor)/ephrin system were evaluated at cellular or molecular levels. PEDF injection improved motor behavioral performance and increased MAP-2 levels and dendritic processes in the region of lumbar CPG. Treatment also elevated GDNF and decreased NT-3, laminin, and CSPG. Injury elevated EphA4 and ephrin-B1 levels, and PEDF treatment increased ephrin A2 and ephrins B1, B2, and B3. Eph receptors and ephrins were found in specific populations of neurons and astrocytes. PEDF treatment to SC injury triggered neuroplasticity in lumbar CPG and regulation of neurotrophic factors, extracellular matrix molecules, and ephrins.
Collapse
|
28
|
Klein R, Kania A. Ephrin signalling in the developing nervous system. Curr Opin Neurobiol 2014; 27:16-24. [PMID: 24608162 DOI: 10.1016/j.conb.2014.02.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/20/2014] [Accepted: 02/06/2014] [Indexed: 12/27/2022]
Abstract
Ephrin ligands and their Eph receptors hold our attention since their link to axon guidance almost twenty years ago. Since then, they have been shown to be critical for short distance cell-cell interactions in the nervous system. The interest in their function has not abated, leading to ever-more sophisticated studies generating as many surprising answers about their function as new questions. We discuss recent insights into their functions in the developing nervous system, including neuronal progenitor sorting, stochastic cell migration, guidance of neuronal growth cones, topographic map formation, as well as synaptic plasticity.
Collapse
Affiliation(s)
- Rüdiger Klein
- Department of Molecules - Signaling - Development, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (Synergy), Munich, Germany.
| | - Artur Kania
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada H2W 1R7; Département de Médecine, Université de Montréal, Montréal, QC, Canada H3T 1J4; Division of Experimental Medicine, Departments of Biology, and, Anatomy and Cell Biology and Integrated Program in Neurosciences, McGill University, Montréal, QC, Canada H3A 1A3.
| |
Collapse
|
29
|
Zarin AA, Asadzadeh J, Hokamp K, McCartney D, Yang L, Bashaw GJ, Labrador JP. A transcription factor network coordinates attraction, repulsion, and adhesion combinatorially to control motor axon pathway selection. Neuron 2014; 81:1297-1311. [PMID: 24560702 DOI: 10.1016/j.neuron.2014.01.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2014] [Indexed: 11/26/2022]
Abstract
Combinations of transcription factors (TFs) instruct precise wiring patterns in the developing nervous system; however, how these factors impinge on surface molecules that control guidance decisions is poorly understood. Using mRNA profiling, we identified the complement of membrane molecules regulated by the homeobox TF Even-skipped (Eve), the major determinant of dorsal motor neuron (dMN) identity in Drosophila. Combinatorial loss- and gain-of-function genetic analyses of Eve target genes indicate that the integrated actions of attractive, repulsive, and adhesive molecules direct eve-dependent dMN axon guidance. Furthermore, combined misexpression of Eve target genes is sufficient to partially restore CNS exit and can convert the guidance behavior of interneurons to that of dMNs. Finally, we show that a network of TFs, comprised of eve, zfh1, and grain, induces the expression of the Unc5 and Beaten-path guidance receptors and the Fasciclin 2 and Neuroglian adhesion molecules to guide individual dMN axons.
Collapse
Affiliation(s)
- Aref Arzan Zarin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Jamshid Asadzadeh
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Daniel McCartney
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Long Yang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juan-Pablo Labrador
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
30
|
Zarin AA, Asadzadeh J, Labrador JP. Transcriptional regulation of guidance at the midline and in motor circuits. Cell Mol Life Sci 2014; 71:419-32. [PMID: 23917723 PMCID: PMC11113760 DOI: 10.1007/s00018-013-1434-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/01/2013] [Accepted: 07/22/2013] [Indexed: 12/16/2022]
Abstract
Axon navigation through the developing body of an embryo is a challenging and exquisitely precise process. Axonal processes within the nervous system harbor extremely complicated internal regulatory mechanisms that enable each of them to respond to environmental cues in a unique way, so that every single neuron has an exact stereotypical localization and axonal projection pattern. Receptors and adhesion molecules expressed on axonal membranes will determine their guidance properties. Axon guidance is thought to be controlled to a large extent through transcription factor codes. These codes would be responsible for the deployment of specific guidance receptors and adhesion molecules on axonal membranes to allow them to reach their targets. Although families of transcriptional regulators as well as families of guidance molecules have been conserved across evolution, their relationships seem to have developed independently. This review focuses on the midline and the neuromuscular system in both vertebrates and Drosophila in which such relationships have been particularly well studied.
Collapse
Affiliation(s)
- Aref Arzan Zarin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Jamshid Asadzadeh
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Juan-Pablo Labrador
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
31
|
Abstract
The precise wiring of the nervous system relies on processes by which axons navigate in a complex environment and are guided by a concerted action of attractive and repulsive factors to reach their target. Investigating these guidance processes depends critically on our ability to control in space and time the microenvironment of neurons. The implementation of microfabrication techniques in cell biology now enables a precise control of the extracellular physical and chemical environment of cultured cells. However, microtechnology is only beginning to be applied in the field of axon guidance due to specific requirements of neuronal cultures. Here we review microdevices specifically designed to study axonal guidance and compare them with the conventional assays used to probe gradient sensing in cell biology. We also discuss how innovative microdevice-based approaches will enable the investigation of important systems-level questions on the gradient sensing properties of nerve cells, such as the sensitivity and robustness in the detection of directional signals or the combinatorial response to multiple cues.
Collapse
|
32
|
Protein tyrosine phosphatase receptor type O inhibits trigeminal axon growth and branching by repressing TrkB and Ret signaling. J Neurosci 2013; 33:5399-410. [PMID: 23516305 DOI: 10.1523/jneurosci.4707-12.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axonal branches of the trigeminal ganglion (TG) display characteristic growth and arborization patterns during development. Subsets of TG neurons express different receptors for growth factors, but these are unlikely to explain the unique patterns of axonal arborizations. Intrinsic modulators may restrict or enhance cellular responses to specific ligands and thereby contribute to the development of axon growth patterns. Protein tyrosine phosphatase receptor type O (PTPRO), which is required for Eph receptor-dependent retinotectal development in chick and for development of subsets of trunk sensory neurons in mouse, may be such an intrinsic modulator of TG neuron development. PTPRO is expressed mainly in TrkB-expressing (TrkB(+)) and Ret(+) mechanoreceptors within the TG during embryogenesis. In PTPRO mutant mice, subsets of TG neurons grow longer and more elaborate axonal branches. Cultured PTPRO(-/-) TG neurons display enhanced axonal outgrowth and branching in response to BDNF and GDNF compared with control neurons, indicating that PTPRO negatively controls the activity of BDNF/TrkB and GDNF/Ret signaling. Mouse PTPRO fails to regulate Eph signaling in retinocollicular development and in hindlimb motor axon guidance, suggesting that chick and mouse PTPRO have different substrate specificities. PTPRO has evolved to fine tune growth factor signaling in a cell-type-specific manner and to thereby increase the diversity of signaling output of a limited number of receptor tyrosine kinases to control the branch morphology of developing sensory neurons. The regulation of Eph receptor-mediated developmental processes by protein tyrosine phosphatases has diverged between chick and mouse.
Collapse
|
33
|
Dudanova I, Klein R. Integration of guidance cues: parallel signaling and crosstalk. Trends Neurosci 2013; 36:295-304. [PMID: 23485451 DOI: 10.1016/j.tins.2013.01.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 11/28/2022]
Abstract
Growing axons are exposed to various guidance cues en route to their targets. Although many guidance molecules have been identified and their effects on axon behavior extensively studied, how axons react to combinations of signals remains largely unexplored. We review recent studies investigating the combined actions of guidance cues present at the same choice points. Two main scenarios are emerging from these studies: parallel signaling and crosstalk between guidance systems. In the first case, cues act in an additive manner, whereas in the second case the outcome is non-additive and differs from the sum of individual effects, suggesting more complex signal integration in the growth cone. Some of the molecular mechanisms underlying these interactions are beginning to be unraveled.
Collapse
Affiliation(s)
- Irina Dudanova
- Department Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried D-82152, Germany.
| | | |
Collapse
|
34
|
A dual compartment diffusion chamber for studying axonal chemotaxis in 3D collagen. J Neurosci Methods 2013; 215:53-9. [PMID: 23453927 DOI: 10.1016/j.jneumeth.2013.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/10/2013] [Accepted: 02/12/2013] [Indexed: 01/26/2023]
Abstract
During nervous system development growing axons are often guided by diffusible chemical gradients. An important contribution to our understanding of the mechanisms involved in this process has been made by in vitro assays. However, an inexpensive and simple assay which allows the establishment of stable and reproducible gradients in a 3D collagen environment has been lacking. Here we present a simple two-compartment diffusion chamber for this purpose. We show that gradient steepnesses of up to 2% are achieved within 1h post setup, and a gradient persists for at least 2 days. We demonstrate the assay by showing robust chemoattraction of dorsal root ganglion neurites by gradients of nerve growth factor (NGF), and chemorepulsion of olfactory bulb neurites by gradients of Slit2.
Collapse
|
35
|
Abstract
Eph receptors and their membrane-tethered ligands have important functions in development. Trans interactions of Eph receptors with ephrins at cell-cell interfaces promote a variety of cellular responses, including repulsion, attraction and migration. Eph-ephrin signalling can be bi-directional and controls actin cytoskeleton dynamics, thereby leading to changes in cellular shape. This article provides an overview of the general structures and signalling mechanisms, and of typical developmental functions along with cell biological principles.
Collapse
Affiliation(s)
- Rüdiger Klein
- Max-Planck Institute of Neurobiology, Department of Molecular Neurobiology, Am Klopferspitz 18, Munich-Martinsried, Germany.
| |
Collapse
|