1
|
Petrosyan E, Fares J, Ahuja CS, Lesniak MS, Koski TR, Dahdaleh NS, El Tecle NE. Genetics and pathogenesis of scoliosis. NORTH AMERICAN SPINE SOCIETY JOURNAL 2024; 20:100556. [PMID: 39399722 PMCID: PMC11470263 DOI: 10.1016/j.xnsj.2024.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024]
Abstract
Background Scoliosis is defined as a lateral spine curvature of at least 10° with vertebral rotation, as seen on a posterior-anterior radiograph, often accompanied by reduced thoracic kyphosis. Scoliosis affects all age groups: idiopathic scoliosis is the most common spinal disorder in children and adolescents, while adult degenerative scoliosis typically affects individuals over fifty. In the United States, approximately 3 million new cases of scoliosis are diagnosed annually, with a predicted increase in part due to global aging. Despite its prevalence, the etiopathogenesis of scoliosis remains unclear. Methods This comprehensive review analyzes the literature on the etiopathogenetic evidence for both idiopathic and adult degenerative scoliosis. PubMed and Google Scholar databases were searched for studies on the genetic factors and etiopathogenetic mechanisms of scoliosis development and progression, with the search limited to articles in English. Results For idiopathic scoliosis, genetic factors are categorized into three groups: genes associated with susceptibility, disease progression, and both. We identify gene groups related to different biological processes and explore multifaceted pathogenesis of idiopathic scoliosis, including evolutionary adaptations to bipedalism and developmental and homeostatic spinal aberrations. For adult degenerative scoliosis, we segregate genetic and pathogenic evidence into categories of angiogenesis and inflammation, extracellular matrix degradation, neural associations, and hormonal influences. Finally, we compare findings in idiopathic scoliosis and adult degenerative scoliosis, discuss current limitations in scoliosis research, propose a new model for scoliosis etiopathogenesis, and highlight promising areas for future studies. Conclusions Scoliosis is a complex, multifaceted disease with largely enigmatic origins and mechanisms of progression, keeping it under continuous scientific scrutiny.
Collapse
Affiliation(s)
- Edgar Petrosyan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Christopher S. Ahuja
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Tyler R. Koski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Nader S. Dahdaleh
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Najib E. El Tecle
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| |
Collapse
|
2
|
Frankel EB, Tiroumalechetty A, Henry PS, Su Z, Wu Y, Kurshan PT. Protein-lipid interactions drive presynaptic assembly upstream of cell adhesion molecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567618. [PMID: 38014115 PMCID: PMC10680821 DOI: 10.1101/2023.11.17.567618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Textbook models of synaptogenesis position cell adhesion molecules such as neurexin as initiators of synapse assembly. Here we discover a mechanism for presynaptic assembly that occurs prior to neurexin recruitment, while supporting a role for neurexin in synapse maintenance. We find that the cytosolic active zone scaffold SYD-1 interacts with membrane phospholipids to promote active zone protein clustering at the plasma membrane, and subsequently recruits neurexin to stabilize those clusters. Employing molecular dynamics simulations to model intrinsic interactions between SYD-1 and lipid bilayers followed by in vivo tests of these predictions, we find that PIP2-interacting residues in SYD-1's C2 and PDZ domains are redundantly necessary for proper active zone assembly. Finally, we propose that the uncharacterized yet evolutionarily conserved short γ isoform of neurexin represents a minimal neurexin sequence that can stabilize previously assembled presynaptic clusters, potentially a core function of this critical protein.
Collapse
Affiliation(s)
- Elisa B Frankel
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Parise S Henry
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Zhaoqian Su
- Data Science Institute, Vanderbilt University, 1001 19th Ave S, Nashville, TN, 37212
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Peri T Kurshan
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
- Lead Contact
| |
Collapse
|
3
|
Karkali K, Saunders TE, Panayotou G, Martín-Blanco E. JNK signaling in pioneer neurons organizes ventral nerve cord architecture in Drosophila embryos. Nat Commun 2023; 14:675. [PMID: 36750572 PMCID: PMC9905486 DOI: 10.1038/s41467-023-36388-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Morphogenesis of the Central Nervous System (CNS) is a complex process that obeys precise architectural rules. Yet, the mechanisms dictating these rules remain unknown. Analyzing morphogenesis of the Drosophila embryo Ventral Nerve Cord (VNC), we observe that a tight control of JNK signaling is essential for attaining the final VNC architecture. JNK signaling in a specific subset of pioneer neurons autonomously regulates the expression of Fasciclin 2 (Fas 2) and Neurexin IV (Nrx IV) adhesion molecules, probably via the transcription factor zfh1. Interfering at any step in this cascade affects fasciculation along pioneer axons, leading to secondary cumulative scaffolding defects during the structural organization of the axonal network. The global disorder of architectural landmarks ultimately influences nervous system condensation. In summary, our data point to JNK signaling in a subset of pioneer neurons as a key element underpinning VNC architecture, revealing critical milestones on the mechanism of control of its structural organization.
Collapse
Affiliation(s)
- Katerina Karkali
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Mechanobiology Institute and Department of Biological Sciences, 5 Engineering Drive 1, National University of Singapore, Singapore, 117411, Singapore
- BSRC Alexander Fleming, 34 Fleming Street, 16672, Vari, Greece
| | - Timothy E Saunders
- Mechanobiology Institute and Department of Biological Sciences, 5 Engineering Drive 1, National University of Singapore, Singapore, 117411, Singapore
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028, Barcelona, Spain.
- Mechanobiology Institute and Department of Biological Sciences, 5 Engineering Drive 1, National University of Singapore, Singapore, 117411, Singapore.
| |
Collapse
|
4
|
Benítez-Burraco A, Jiménez-Romero MS, Fernández-Urquiza M. Delving into the Genetic Causes of Language Impairment in a Case of Partial Deletion of NRXN1. Mol Syndromol 2023; 13:496-510. [PMID: 36660026 PMCID: PMC9843585 DOI: 10.1159/000524710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/22/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Copy-number variations (CNVs) impacting on small DNA stretches and associated with language deficits provide a unique window to the role played by specific genes in language function. Methods We report in detail on the cognitive, language, and genetic features of a girl bearing a small deletion (0.186 Mb) in the 2p16.3 region, arr[hg19] 2p16.3(50761778_50947729)×1, affecting exons 3-7 of NRXN1, a neurexin-coding gene previously related to schizophrenia, autism (ASD), attention deficit hyperactivity disorder (ADHD), mood disorder, and intellectual disability (ID). Results The proband exhibits many of the features commonly found in subjects with deletions of NRXN1, like ASD-like traits (including ritualized behaviors, disordered sensory aspects, social disturbances, and impaired theory of mind), ADHD symptoms, moderate ID, and impaired speech and language. Regarding this latter aspect, we observed altered speech production, underdeveloped phonological awareness, minimal syntax, serious shortage of active vocabulary, impaired receptive language, and inappropriate pragmatic behavior (including lack of metapragmatic awareness and communicative use of gaze). Microarray analyses point to the dysregulation of several genes important for language function in the girl compared to her healthy parents. Discussion Although some basic cognitive deficit - such as the impairment of executive function - might contribute to the language problems exhibited by the proband, molecular evidence suggests that they might result, to a great extent, from the abnormal expression of genes directly related to language.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), University of Seville, Seville, Spain,*Antonio Benítez-Burraco,
| | | | | |
Collapse
|
5
|
Jevitt A, Chatterjee D, Xie G, Wang XF, Otwell T, Huang YC, Deng WM. A single-cell atlas of adult Drosophila ovary identifies transcriptional programs and somatic cell lineage regulating oogenesis. PLoS Biol 2020; 18:e3000538. [PMID: 32339165 PMCID: PMC7205450 DOI: 10.1371/journal.pbio.3000538] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 05/07/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022] Open
Abstract
Oogenesis is a complex developmental process that involves spatiotemporally regulated coordination between the germline and supporting, somatic cell populations. This process has been modeled extensively using the Drosophila ovary. Although different ovarian cell types have been identified through traditional means, the large-scale expression profiles underlying each cell type remain unknown. Using single-cell RNA sequencing technology, we have built a transcriptomic data set for the adult Drosophila ovary and connected tissues. Using this data set, we identified the transcriptional trajectory of the entire follicle-cell population over the course of their development from stem cells to the oogenesis-to-ovulation transition. We further identify expression patterns during essential developmental events that take place in somatic and germline cell types such as differentiation, cell-cycle switching, migration, symmetry breaking, nurse-cell engulfment, egg-shell formation, and corpus luteum signaling. Extensive experimental validation of unique expression patterns in both ovarian and nearby, nonovarian cells also led to the identification of many new cell type-and stage-specific markers. The inclusion of several nearby tissue types in this data set also led to our identification of functional convergence in expression between distantly related cell types such as the immune-related genes that were similarly expressed in immune cells (hemocytes) and ovarian somatic cells (stretched cells) during their brief phagocytic role in nurse-cell engulfment. Taken together, these findings provide new insight into the temporal regulation of genes in a cell-type specific manner during oogenesis and begin to reveal the relatedness in expression between cell and tissues types.
Collapse
Affiliation(s)
- Allison Jevitt
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Deeptiman Chatterjee
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Xian-Feng Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Taylor Otwell
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
6
|
Vargas EJM, Matamoros AJ, Qiu J, Jan CH, Wang Q, Gorczyca D, Han TW, Weissman JS, Jan YN, Banerjee S, Song Y. The microtubule regulator ringer functions downstream from the RNA repair/splicing pathway to promote axon regeneration. Genes Dev 2020; 34:194-208. [PMID: 31919191 PMCID: PMC7000917 DOI: 10.1101/gad.331330.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022]
Abstract
In this study, Vargas et al. set out to elucidate the downstream effectors of the Rtca-mediated RNA repair/splicing pathway. Using genome-wide transcriptome analysis, the authors demonstrate that the microtubule-associated protein (MAP) tubulin polymerization-promoting protein (TPPP) ringer functions downstream from and is suppressed by Rtca via Xbp1-dependent transcription. Ringer cell-autonomously promotes axon regeneration in the peripheral and central nervous system. Promoting axon regeneration in the central and peripheral nervous system is of clinical importance in neural injury and neurodegenerative diseases. Both pro- and antiregeneration factors are being identified. We previously reported that the Rtca mediated RNA repair/splicing pathway restricts axon regeneration by inhibiting the nonconventional splicing of Xbp1 mRNA under cellular stress. However, the downstream effectors remain unknown. Here, through transcriptome profiling, we show that the tubulin polymerization-promoting protein (TPPP) ringmaker/ringer is dramatically increased in Rtca-deficient Drosophila sensory neurons, which is dependent on Xbp1. Ringer is expressed in sensory neurons before and after injury, and is cell-autonomously required for axon regeneration. While loss of ringer abolishes the regeneration enhancement in Rtca mutants, its overexpression is sufficient to promote regeneration both in the peripheral and central nervous system. Ringer maintains microtubule stability/dynamics with the microtubule-associated protein futsch/MAP1B, which is also required for axon regeneration. Furthermore, ringer lies downstream from and is negatively regulated by the microtubule-associated deacetylase HDAC6, which functions as a regeneration inhibitor. Taken together, our findings suggest that ringer acts as a hub for microtubule regulators that relays cellular status information, such as cellular stress, to the integrity of microtubules in order to instruct neuroregeneration.
Collapse
Affiliation(s)
- Ernest J Monahan Vargas
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrew J Matamoros
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jingyun Qiu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Calvin H Jan
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California 94158, USA.,Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Qin Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David Gorczyca
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Tina W Han
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California 94158, USA.,Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Swati Banerjee
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
7
|
Zhao J, Mommersteeg MTM. Slit-Robo signalling in heart development. Cardiovasc Res 2018; 114:794-804. [PMID: 29538649 PMCID: PMC5909645 DOI: 10.1093/cvr/cvy061] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/16/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
The Slit ligands and their Robo receptors are well-known for their roles during axon guidance in the central nervous system but are still relatively unknown in the cardiac field. However, data from different animal models suggest a broad involvement of the pathway in many aspects of heart development, from cardiac cell migration and alignment, lumen formation, chamber formation, to the formation of the ventricular septum, semilunar and atrioventricular valves, caval veins, and pericardium. Absence of one or more of the genes in the pathway results in defects ranging from bicuspid aortic valves to ventricular septal defects and abnormal venous connections to the heart. Congenital heart defects are the most common congenital malformations found in life new-born babies and progress in methods for large scale human genetic testing has significantly enhanced the identification of new causative genes involved in human congenital heart disease. Recently, loss of function variants in ROBO1 have also been linked to ventricular septal defects and tetralogy of Fallot in patients. Here, we will give an overview of the role of the Slit-Robo signalling pathway in Drosophila, zebrafish, and mouse heart development. The extent of these data warrant further attention on the SLIT-ROBO signalling pathway as a candidate for an array of human congenital heart defects.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - Mathilda T M Mommersteeg
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
8
|
Von Stetina JR, Frawley LE, Unhavaithaya Y, Orr-Weaver TL. Variant cell cycles regulated by Notch signaling control cell size and ensure a functional blood-brain barrier. Development 2018; 145:145/3/dev157115. [PMID: 29440220 PMCID: PMC5818001 DOI: 10.1242/dev.157115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/09/2018] [Indexed: 12/31/2022]
Abstract
Regulation of cell size is crucial in development. In plants and animals two cell cycle variants are employed to generate large cells by increased ploidy: the endocycle and endomitosis. The rationale behind the choice of which of these cycles is implemented is unknown. We show that in the Drosophila nervous system the subperineurial glia (SPG) are unique in using both the endocycle and endomitosis to grow. In the brain, the majority of SPG initially endocycle, then switch to endomitosis during larval development. The Notch signaling pathway and the String Cdc25 phosphatase are crucial for the endocycle versus endomitosis choice, providing the means experimentally to change cells from one to the other. This revealed fundamental insights into the control of cell size and the properties of endomitotic cells. Endomitotic cells attain a higher ploidy and larger size than endocycling cells, and endomitotic SPG are necessary for the blood-brain barrier. Decreased Notch signaling promotes endomitosis even in the ventral nerve cord SPG that normally are mononucleate, but not in the endocycling salivary gland cells, revealing tissue-specific cell cycle responses. Highlighted Article: In Drosophila brain lobes, Notch and the mitosis-activating phosphatase String regulate the switch of subperineurial glia from endocycle to endomitosis during larval development, with endomitotic cells attaining increased ploidy and size.
Collapse
Affiliation(s)
| | - Laura E Frawley
- Whitehead Institute, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Terry L Orr-Weaver
- Whitehead Institute, Cambridge, MA 02142, USA .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
9
|
Myers L, Perera H, Alvarado MG, Kidd T. The Drosophila Ret gene functions in the stomatogastric nervous system with the Maverick TGFβ ligand and the Gfrl co-receptor. Development 2018; 145:dev.157446. [PMID: 29361562 DOI: 10.1242/dev.157446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/18/2017] [Indexed: 01/19/2023]
Abstract
The RET receptor tyrosine kinase is crucial for the development of the enteric nervous system (ENS), acting as a receptor for Glial cell line-derived neurotrophic factor (GDNF) via GFR co-receptors. Drosophila has a well-conserved RET homolog (Ret) that has been proposed to function independently of the Gfr-like co-receptor (Gfrl). We find that Ret is required for development of the stomatogastric (enteric) nervous system in both embryos and larvae, and its loss results in feeding defects. Live imaging analysis suggests that peristaltic waves are initiated but not propagated in mutant midguts. Examination of axons innervating the midgut reveals increased branching but the area covered by the branches is decreased. This phenotype can be rescued by Ret expression. Additionally, Gfrl shares the same ENS and feeding defects, suggesting that Ret and Gfrl might function together via a common ligand. We identified the TGFβ family member Maverick (Mav) as a ligand for Gfrl and a Mav chromosomal deficiency displayed similar embryonic ENS defects. Our results suggest that the Ret and Gfrl families co-evolved before the separation of invertebrate and vertebrate lineages.
Collapse
Affiliation(s)
- Logan Myers
- Department of Biology/ms 314, University of Nevada, Reno, NV 89557, USA
| | - Hiran Perera
- Department of Biology/ms 314, University of Nevada, Reno, NV 89557, USA
| | | | - Thomas Kidd
- Department of Biology/ms 314, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
10
|
Howard LJ, Brown HE, Wadsworth BC, Evans TA. Midline axon guidance in the Drosophila embryonic central nervous system. Semin Cell Dev Biol 2017; 85:13-25. [PMID: 29174915 DOI: 10.1016/j.semcdb.2017.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/21/2017] [Indexed: 02/02/2023]
Abstract
Studies in the fruit fly Drosophila melanogaster have provided many fundamental insights into the genetic regulation of neural development, including the identification and characterization of evolutionarily conserved axon guidance pathways and their roles in important guidance decisions. Due to its highly organized and fast-developing embryonic nervous system, relatively small number of neurons, and molecular and genetic tools for identifying, labeling, and manipulating individual neurons or small neuronal subsets, studies of axon guidance in the Drosophila embryonic CNS have allowed researchers to dissect these genetic mechanisms with a high degree of precision. In this review, we discuss the major axon guidance pathways that regulate midline crossing of axons and the formation and guidance of longitudinal axon tracts, two processes that contribute to the development of the precise three-dimensional structure of the insect nerve cord. We focus particularly on recent insights into the roles and regulation of canonical midline axon guidance pathways, and on additional factors and pathways that have recently been shown to contribute to axon guidance decisions at and near the midline.
Collapse
Affiliation(s)
- LaFreda J Howard
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA
| | - Haley E Brown
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA
| | - Benjamin C Wadsworth
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA
| | - Timothy A Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA.
| |
Collapse
|
11
|
Banerjee S, Mino RE, Fisher ES, Bhat MA. A versatile genetic tool to study midline glia function in the Drosophila CNS. Dev Biol 2017; 429:35-43. [PMID: 28602954 PMCID: PMC5554714 DOI: 10.1016/j.ydbio.2017.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 11/30/2022]
Abstract
Neuron-glial interactions are crucial for growth, guidance and ensheathment of axons across species. In the Drosophila CNS midline, neuron-glial interactions underlie ensheathment of commissural axons by midline glial (MG) cells in a manner similar to mammalian oligodendrocytes. Although there has been some advance in the study of neuron-glial interactions and ensheathment of axons in the CNS midline, key aspects of axonal ensheathment are still not fully understood. One of the limitations has been the unavailability of MG membrane markers that could highlight the glial processes wrapping the axons. Previous studies have identified two key molecular players from the neuronal and glial cell types in the CNS midline. These are the neuronal transmembrane protein Neurexin IV (Nrx IV) and the membrane-anchored MG protein Wrapper, both of which interact in trans to mediate neuron-glial interactions and ensheathment of commissural axons. In the current study, we attempt to further our understanding of MG biology and try to overcome some of the technical difficulties posed by the lack of a robust MG driver that will specifically allow expression or knockdown of genes in MG. We report the generation of BAC transgenic flies of wrapper-GAL4 and demonstrate how these flies could be used as a genetic tool to understand MG biology. We have utilized the GAL4/UAS system to drive GFP-reporter lines (membrane-bound mCD8-GFP; microtubule-associated tau-GFP) and nuclear lacZ using wrapper-GAL4 to highlight the MG cells and/or their processes that surround and perform axonal ensheathment functions in the embryonic midline. We also describe the utility of the wrapper-GAL4 driver line to down-regulate known MG genes specifically in Wrapper-positive cells. Finally, we validate the functionality of the wrapper-GAL4 driver by rescue of wrapper mutant phenotypes and lethality. Together, these studies provide us with a versatile genetic tool to investigate MG functions and will aid in future investigations where genetic screens using wrapper-GAL4 could be designed to identify novel molecular players at the Drosophila midline and unravel key aspects of MG biology.
Collapse
Affiliation(s)
- Swati Banerjee
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Rosa E Mino
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Elizabeth S Fisher
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Manzoor A Bhat
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
12
|
Justice ED, Barnum SJ, Kidd T. The WAGR syndrome gene PRRG4 is a functional homologue of the commissureless axon guidance gene. PLoS Genet 2017; 13:e1006865. [PMID: 28859078 PMCID: PMC5578492 DOI: 10.1371/journal.pgen.1006865] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/11/2017] [Indexed: 01/20/2023] Open
Abstract
WAGR syndrome is characterized by Wilm's tumor, aniridia, genitourinary abnormalities and intellectual disabilities. WAGR is caused by a chromosomal deletion that includes the PAX6, WT1 and PRRG4 genes. PRRG4 is proposed to contribute to the autistic symptoms of WAGR syndrome, but the molecular function of PRRG4 genes remains unknown. The Drosophila commissureless (comm) gene encodes a short transmembrane protein characterized by PY motifs, features that are shared by the PRRG4 protein. Comm intercepts the Robo axon guidance receptor in the ER/Golgi and targets Robo for degradation, allowing commissural axons to cross the CNS midline. Expression of human Robo1 in the fly CNS increases midline crossing and this was enhanced by co-expression of PRRG4, but not CYYR, Shisa or the yeast Rcr genes. In cell culture experiments, PRRG4 could re-localize hRobo1 from the cell surface, suggesting that PRRG4 is a functional homologue of Comm. Comm is required for axon guidance and synapse formation in the fly, so PRRG4 could contribute to the autistic symptoms of WAGR by disturbing either of these processes in the developing human brain.
Collapse
Affiliation(s)
- Elizabeth D. Justice
- Department of Biology/ms 314, University of Nevada, Reno, Nevada, United States of America
| | - Sarah J. Barnum
- Department of Biology/ms 314, University of Nevada, Reno, Nevada, United States of America
| | - Thomas Kidd
- Department of Biology/ms 314, University of Nevada, Reno, Nevada, United States of America
| |
Collapse
|
13
|
An oscillopathic approach to developmental dyslexia: From genes to speech processing. Behav Brain Res 2017; 329:84-95. [DOI: 10.1016/j.bbr.2017.03.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/14/2017] [Accepted: 03/18/2017] [Indexed: 12/27/2022]
|
14
|
Alavi M, Song M, King GLA, Gillis T, Propst R, Lamanuzzi M, Bousum A, Miller A, Allen R, Kidd T. Dscam1 Forms a Complex with Robo1 and the N-Terminal Fragment of Slit to Promote the Growth of Longitudinal Axons. PLoS Biol 2016; 14:e1002560. [PMID: 27654876 PMCID: PMC5031454 DOI: 10.1371/journal.pbio.1002560] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 08/23/2016] [Indexed: 11/19/2022] Open
Abstract
The Slit protein is a major midline repellent for central nervous system (CNS) axons. In vivo, Slit is proteolytically cleaved into N- and C-terminal fragments, but the biological significance of this is unknown. Analysis in the Drosophila ventral nerve cord of a slit allele (slit-UC) that cannot be cleaved revealed that midline repulsion is still present but longitudinal axon guidance is disrupted, particularly across segment boundaries. Double mutants for the Slit receptors Dscam1 and robo1 strongly resemble the slit-UC phenotype, suggesting they cooperate in longitudinal axon guidance, and through biochemical approaches, we found that Dscam1 and Robo1 form a complex dependent on Slit-N. In contrast, Robo1 binding alone shows a preference for full-length Slit, whereas Dscam1 only binds Slit-N. Using a variety of transgenes, we demonstrated that Dscam1 appears to modify the output of Robo/Slit complexes so that signaling is no longer repulsive. Our data suggest that the complex is promoting longitudinal axon growth across the segment boundary. The ability of Dscam1 to modify the output of other receptors in a ligand-dependent fashion may be a general principle for Dscam proteins.
Collapse
Affiliation(s)
- Maryam Alavi
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
| | - Minmin Song
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
| | | | - Taylor Gillis
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
| | - Robert Propst
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
| | - Matthew Lamanuzzi
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
| | - Adam Bousum
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
| | - Amanda Miller
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
| | - Ryan Allen
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
| | - Thomas Kidd
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
| |
Collapse
|
15
|
Murphy E, Benítez-Burraco A. Language deficits in schizophrenia and autism as related oscillatory connectomopathies: An evolutionary account. Neurosci Biobehav Rev 2016; 83:742-764. [PMID: 27475632 DOI: 10.1016/j.neubiorev.2016.07.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/23/2016] [Accepted: 07/25/2016] [Indexed: 01/28/2023]
Abstract
Schizophrenia (SZ) and autism spectrum disorders (ASD) are characterised by marked language deficits, but it is not clear how these arise from gene mutations associated with the disorders. Our goal is to narrow the gap between SZ and ASD and, ultimately, give support to the view that they represent abnormal (but related) ontogenetic itineraries for the human faculty of language. We will focus on the distinctive oscillatory profiles of the SZ and ASD brains, in turn using these insights to refine our understanding of how the brain implements linguistic computations by exploring a novel model of linguistic feature-set composition. We will argue that brain rhythms constitute the best route to interpreting language deficits in both conditions and mapping them to neural dysfunction and risk alleles of the genes. Importantly, candidate genes for SZ and ASD are overrepresented among the gene sets believed to be important for language evolution. This translational effort may help develop an understanding of the aetiology of SZ and ASD and their high prevalence among modern populations.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.
| | | |
Collapse
|
16
|
Benítez-Burraco A, Boeckx C. Approaching motor and language deficits in autism from below: a biolinguistic perspective. Front Integr Neurosci 2015; 9:25. [PMID: 25870545 PMCID: PMC4378279 DOI: 10.3389/fnint.2015.00025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/13/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Cedric Boeckx
- Catalan Institute for Advanced Studies and Research (ICREA) Barcelona, Spain ; Department of Linguistics, Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
17
|
Boeckx C, Benítez-Burraco A. Globularity and language-readiness: generating new predictions by expanding the set of genes of interest. Front Psychol 2014; 5:1324. [PMID: 25505436 PMCID: PMC4243498 DOI: 10.3389/fpsyg.2014.01324] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/31/2014] [Indexed: 12/30/2022] Open
Abstract
This study builds on the hypothesis put forth in Boeckx and Benítez-Burraco (2014), according to which the developmental changes expressed at the levels of brain morphology and neural connectivity that resulted in a more globular braincase in our species were crucial to understand the origins of our language-ready brain. Specifically, this paper explores the links between two well-known 'language-related' genes like FOXP2 and ROBO1 implicated in vocal learning and the initial set of genes of interest put forth in Boeckx and Benítez-Burraco (2014), with RUNX2 as focal point. Relying on the existing literature, we uncover potential molecular links that could be of interest to future experimental inquiries into the biological foundations of language and the testing of our initial hypothesis. Our discussion could also be relevant for clinical linguistics and for the interpretation of results from paleogenomics.
Collapse
Affiliation(s)
- Cedric Boeckx
- Catalan Institute for Advanced Studies and Research (ICREA)Barcelona, Spain
- Department of Linguistics, Universitat de BarcelonaBarcelona, Spain
| | | |
Collapse
|
18
|
Rodenas-Cuadrado P, Ho J, Vernes SC. Shining a light on CNTNAP2: complex functions to complex disorders. Eur J Hum Genet 2014; 22:171-8. [PMID: 23714751 PMCID: PMC3895625 DOI: 10.1038/ejhg.2013.100] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 03/25/2013] [Accepted: 04/09/2013] [Indexed: 11/08/2022] Open
Abstract
The genetic basis of complex neurological disorders involving language are poorly understood, partly due to the multiple additive genetic risk factors that are thought to be responsible. Furthermore, these conditions are often syndromic in that they have a range of endophenotypes that may be associated with the disorder and that may be present in different combinations in patients. However, the emergence of individual genes implicated across multiple disorders has suggested that they might share similar underlying genetic mechanisms. The CNTNAP2 gene is an excellent example of this, as it has recently been implicated in a broad range of phenotypes including autism spectrum disorder (ASD), schizophrenia, intellectual disability, dyslexia and language impairment. This review considers the evidence implicating CNTNAP2 in these conditions, the genetic risk factors and mutations that have been identified in patient and population studies and how these relate to patient phenotypes. The role of CNTNAP2 is examined in the context of larger neurogenetic networks during development and disorder, given what is known regarding the regulation and function of this gene. Understanding the role of CNTNAP2 in diverse neurological disorders will further our understanding of how combinations of individual genetic risk factors can contribute to complex conditions.
Collapse
Affiliation(s)
- Pedro Rodenas-Cuadrado
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Joses Ho
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sonja C Vernes
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Drosophila neuroligin 2 is required presynaptically and postsynaptically for proper synaptic differentiation and synaptic transmission. J Neurosci 2013; 32:16018-30. [PMID: 23136438 DOI: 10.1523/jneurosci.1685-12.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Trans-synaptic adhesion between Neurexins (Nrxs) and Neuroligins (Nlgs) is thought to be required for proper synapse organization and modulation, and mutations in several human Nlgs have shown association with autism spectrum disorders. Here we report the generation and phenotypic characterization of Drosophila neuroligin 2 (dnlg2) mutants. Loss of dnlg2 results in reduced bouton numbers, aberrant presynaptic and postsynaptic development at neuromuscular junctions (NMJs), and impaired synaptic transmission. In dnlg2 mutants, the evoked responses are decreased in amplitude, whereas the total active zone (AZ) numbers at the NMJ are comparable to wild type, suggesting a decrease in the release probability. Ultrastructurally, the presynaptic AZ number per bouton area and the postsynaptic density area are both increased in dnlg2 mutants, whereas the subsynaptic reticulum is reduced in volume. We show that both presynaptic and postsynaptic expression of Dnlg2 is required to restore synaptic growth and function in dnlg2 mutants. Postsynaptic expression of Dnlg2 in dnlg2 mutants and wild type leads to reduced bouton growth whereas presynaptic and postsynaptic overexpression in wild-type animals results in synaptic overgrowth. Since Nlgs have been shown to bind to Nrxs, we created double mutants. These mutants are viable and display phenotypes that closely resemble those of dnlg2 and dnrx single mutants. Our results provide compelling evidence that Dnlg2 functions both presynaptically and postsynaptically together with Neurexin to determine the proper number of boutons as well as the number of AZs and size of synaptic densities during the development of NMJs.
Collapse
|
20
|
Candidate autism gene screen identifies critical role for cell-adhesion molecule CASPR2 in dendritic arborization and spine development. Proc Natl Acad Sci U S A 2012; 109:18120-5. [PMID: 23074245 DOI: 10.1073/pnas.1216398109] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in the contactin-associated protein 2 (CNTNAP2) gene encoding CASPR2, a neurexin-related cell-adhesion molecule, predispose to autism, but the function of CASPR2 in neural circuit assembly remains largely unknown. In a knockdown survey of autism candidate genes, we found that CASPR2 is required for normal development of neural networks. RNAi-mediated knockdown of CASPR2 produced a cell-autonomous decrease in dendritic arborization and spine development in pyramidal neurons, leading to a global decline in excitatory and inhibitory synapse numbers and a decrease in synaptic transmission without a detectable change in the properties of these synapses. Our data suggest that in addition to the previously described role of CASPR2 in mature neurons, where CASPR2 organizes nodal microdomains of myelinated axons, CASPR2 performs an earlier organizational function in developing neurons that is essential for neural circuit assembly and operates coincident with the time of autism spectrum disorder (ASD) pathogenesis.
Collapse
|
21
|
Slováková J, Speicher S, Sánchez-Soriano N, Prokop A, Carmena A. The actin-binding protein Canoe/AF-6 forms a complex with Robo and is required for Slit-Robo signaling during axon pathfinding at the CNS midline. J Neurosci 2012; 32:10035-44. [PMID: 22815517 PMCID: PMC6621277 DOI: 10.1523/jneurosci.6342-11.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 05/07/2012] [Accepted: 05/29/2012] [Indexed: 11/21/2022] Open
Abstract
Axon guidance is a key process during nervous system development and regeneration. One of the best established paradigms to study the mechanisms underlying this process is the axon decision of whether or not to cross the midline in the Drosophila CNS. An essential regulator of that decision is the well conserved Slit-Robo signaling pathway. Slit guidance cues act through Robo receptors to repel axons from the midline. Despite good progress in our knowledge about these proteins, the intracellular mechanisms associated with Robo function remain poorly defined. In this work, we found that the scaffolding protein Canoe (Cno), the Drosophila orthologue of AF-6/Afadin, is essential for Slit-Robo signaling. Cno is expressed along longitudinal axonal pioneer tracts, and longitudinal Robo/Fasciclin2-positive axons aberrantly cross the midline in cno mutant embryos. cno mutant primary neurons show a significant reduction of Robo localized in growth cone filopodia and Cno forms a complex with Robo in vivo. Moreover, the commissureless (comm) phenotype (i.e., lack of commissures due to constitutive surface presentation of Robo in all neurons) is suppressed in comm, cno double-mutant embryos. Specific genetic interactions between cno, slit, robo, and genes encoding other components of the Robo pathway, such as Neurexin-IV, Syndecan, and Rac GTPases, further confirm that Cno functionally interacts with the Slit-Robo pathway. Our data argue that Cno is a novel regulator of the Slit-Robo signaling pathway, crucial for regulating the subcellular localization of Robo and for transducing its signaling to the actin cytoskeleton during axon guidance at the midline.
Collapse
Affiliation(s)
- Jana Slováková
- Instituto de Neurociencias, CSIC/UMH, 03550 Sant Joan d'Alacant, Spain, and
| | - Stephan Speicher
- Instituto de Neurociencias, CSIC/UMH, 03550 Sant Joan d'Alacant, Spain, and
| | - Natalia Sánchez-Soriano
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom
| | - Andreas Prokop
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom
| | - Ana Carmena
- Instituto de Neurociencias, CSIC/UMH, 03550 Sant Joan d'Alacant, Spain, and
| |
Collapse
|
22
|
Soplop NH, Cheng YS, Kramer SG. Roundabout is required in the visceral mesoderm for proper microvillus length in the hindgut epithelium. Dev Dyn 2012; 241:759-69. [PMID: 22334475 DOI: 10.1002/dvdy.23749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2012] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION In this study we examined Roundabout signaling in the Drosophila embryonic hindgut. RESULTS Slit and its receptors Roundabout (Robo) and Roundabout 2 (Robo2) localize to discrete regions in the hindgut epithelium and surrounding visceral mesoderm. Loss of robo, robo2 or slit did not disrupt overall hindgut patterning. However, slit and robo mutants showed a decrease in microvillus length on the boundary cells of the hindgut epithelium. Rescue and overexpression analysis revealed that robo is specifically required in the visceral mesoderm for correct microvillus length in the underlying hindgut epithelium. Expression of robo in the visceral mesoderm of robo mutant embryos restored normal microvillus length, while overexpression of robo resulted in an increase in microvillus length. Microvillus length was also increased in robo2 mutants suggesting that robo2 may antagonize robo function in the hindgut. CONCLUSION Together, these results establish a novel, dose-dependent role for Robo in regulating microvilli growth and provide in vivo evidence for the role of the visceral mesoderm in controlling morphological changes in the underlying intestinal epithelium.
Collapse
Affiliation(s)
- Nadine H Soplop
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-8020, USA
| | | | | |
Collapse
|
23
|
Unhavaithaya Y, Orr-Weaver TL. Polyploidization of glia in neural development links tissue growth to blood-brain barrier integrity. Genes Dev 2012; 26:31-6. [PMID: 22215808 DOI: 10.1101/gad.177436.111] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proper development requires coordination in growth of the cell types composing an organ. Many plant and animal cells are polyploid, but how these polyploid tissues contribute to organ growth is not well understood. We found the Drosophila melanogaster subperineurial glia (SPG) to be polyploid, and ploidy is coordinated with brain mass. Inhibition of SPG polyploidy caused rupture of the septate junctions necessary for the blood-brain barrier. Thus, the increased SPG cell size resulting from polyploidization is required to maintain the SPG envelope surrounding the growing brain. Polyploidization likely is a conserved strategy to coordinate tissue growth during organogenesis, with potential vertebrate examples.
Collapse
Affiliation(s)
- Yingdee Unhavaithaya
- Whitehead Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
24
|
Sun M, Xie W. Cell adhesion molecules in Drosophila synapse development and function. SCIENCE CHINA-LIFE SCIENCES 2012; 55:20-6. [PMID: 22314487 DOI: 10.1007/s11427-012-4273-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/15/2011] [Indexed: 12/11/2022]
Abstract
Synapse is a highly specialized inter-cellular structure between neurons or between a neuron and its target cell that mediates cell-cell communications. Ample results indicate that synaptic adhesion molecules are critically important in modulating the complexity and specificity of the synapse. And disruption of adhesive properties of synapses may lead to neurodevelopmental or neurodegenerative diseases. In this review, we will use the Drosophila NMJ as a model system for glutamatergic synapses to discuss the structure and function of homophilic and heterophilic synaptic adhesion molecules with special focus on recent findings in neurexins and neuroligins in Drosophila.
Collapse
Affiliation(s)
- Mingkuan Sun
- Key Laboratory of DGHD, MOE, Institute of Life Sciences, Southeast University, Nanjing 210096, China.
| | | |
Collapse
|
25
|
Izumi Y, Yanagihashi Y, Furuse M. A novel protein complex, mesh-ssk, is required for septate junction formation in drosophila midgut. J Cell Sci 2012; 125:4923-33. [DOI: 10.1242/jcs.112243] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Septate junctions (SJs) are specialized intercellular junctions that restrict the free diffusion of solutes through the paracellular route in invertebrate epithelia. In arthropods, two morphologically different types of SJs have been reported: pleated SJs and smooth SJs (sSJs), which are found in ectodermally and endodermally derived epithelia, respectively. However, the molecular and functional differences between these SJ types have not been elucidated. Here we report that a novel sSJ-specific component, a single-pass transmembrane protein, termed ‘Mesh’ is highly concentrated in Drosophila sSJs. Compromised mesh expression causes defects in the organization of sSJs, in the localizations of other sSJ proteins, and in the barrier function of the midgut. Ectopic expression of Mesh in cultured cells induces cell-cell adhesion. Mesh forms a complex with Ssk, another sSJ-specific protein, and these proteins are mutually interdependent for their localization. Thus, a novel protein complex comprising Mesh and Ssk plays a significant role in sSJ formation and in intestinal barrier function in Drosophila.
Collapse
|
26
|
Broadie K, Baumgartner S, Prokop A. Extracellular matrix and its receptors in Drosophila neural development. Dev Neurobiol 2011; 71:1102-30. [PMID: 21688401 PMCID: PMC3192297 DOI: 10.1002/dneu.20935] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance, and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable, and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: (1) neural progenitor proliferation, (2) axonal growth and pathfinding, and (3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions.
Collapse
Affiliation(s)
- Kendal Broadie
- Departments of Biological Sciences and Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232 USA
| | - Stefan Baumgartner
- Department of Experimental Medical Sciences, Lund University, BMC B12, 22184 Lund, Sweden
| | - Andreas Prokop
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
27
|
A Laminin G-EGF-Laminin G module in Neurexin IV is essential for the apico-lateral localization of Contactin and organization of septate junctions. PLoS One 2011; 6:e25926. [PMID: 22022470 PMCID: PMC3195077 DOI: 10.1371/journal.pone.0025926] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/13/2011] [Indexed: 01/01/2023] Open
Abstract
Septate junctions (SJs) display a unique ultrastructural morphology with ladder-like electron densities that are conserved through evolution. Genetic and molecular analyses have identified a highly conserved core complex of SJ proteins consisting of three cell adhesion molecules Neurexin IV, Contactin, and Neuroglian, which interact with the cytoskeletal FERM domain protein Coracle. How these individual proteins interact to form the septal arrays that create the paracellular barrier is poorly understood. Here, we show that point mutations that map to specific domains of neurexin IV lead to formation of fewer septae and disorganization of SJs. Consistent with these observations, our in vivo domain deletion analyses identified the first Laminin G-EGF-Laminin G module in the extracellular region of Neurexin IV as necessary for the localization of and association with Contactin. Neurexin IV protein that is devoid of its cytoplasmic region is able to create septae, but fails to form a full complement of SJs. These data provide the first in vivo evidence that specific domains in Neurexin IV are required for protein-protein interactions and organization of SJs. Given the molecular conservation of SJ proteins across species, our studies may provide insights into how vertebrate axo-glial SJs are organized in myelinated axons.
Collapse
|
28
|
Knox J, Moyer K, Yacoub N, Soldaat C, Komosa M, Vassilieva K, Wilk R, Hu J, Vazquez Paz LDL, Syed Q, Krause HM, Georgescu M, Jacobs JR. Syndecan contributes to heart cell specification and lumen formation during Drosophila cardiogenesis. Dev Biol 2011; 356:279-90. [PMID: 21565181 DOI: 10.1016/j.ydbio.2011.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
Abstract
The transmembrane proteoglycan Syndecan contributes to cell surface signaling of diverse ligands in mammals, yet in Drosophila, genetic evidence links Syndecan only to the Slit receptor Roundabout and to the receptor tyrosine phosphatase LAR. Here we characterize the requirement for syndecan in the determination and morphogenesis of the Drosophila heart, and reveal two phases of activity, indicating that Syndecan is a co-factor in at least two signaling events in this tissue. There is a stochastic failure to determine heart cell progenitors in a subset of abdominal hemisegments in embryos mutant for syndecan, and subsequent to Syndecan depletion by RNA interference. This phenotype is sensitive to gene dosage in the FGF receptor (Heartless), its ligand, Pyramus, as well as BMP-ligand Decapentaplegic (Dpp) and co-factor Sara. Syndecan is also required for lumen formation during assembly of the heart vessel, a phenotype shared with mutations in the Slit and Integrin signaling pathways. Phenotypic interactions of syndecan with slit and Integrin mutants suggest intersecting function, consistent with Syndecan acting as a co-receptor for Slit in the Drosophila heart.
Collapse
Affiliation(s)
- Jessica Knox
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Evans IR, Wood W. Understanding in vivo blood cell migration--Drosophila hemocytes lead the way. Fly (Austin) 2011; 5:110-4. [PMID: 21150318 PMCID: PMC3127059 DOI: 10.4161/fly.5.2.14055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/28/2010] [Accepted: 10/29/2010] [Indexed: 11/19/2022] Open
Abstract
Drosophila embryonic hemocytes have emerged as a potent system to analyze the roles of key regulators of the actin and microtubule cytoskeletons live and in an in vivo context (see Table I and references therein). The relative ease with which live imaging can be used to visualize the invasive migrations of these highly motile macrophages and their responses to wound and chemoattractant signals make them a particularly appropriate and genetically tractable cell type to study in relation to pathological conditions such as cancer metastasis and inflammation. ( 1-3) In order to understand how signaling pathways are integrated for a coordinated response, a question with direct relevance to autoimmune dysfunction, we have sought to more fully characterize the inputs these cells receive in vivo over the course of their developmental dispersal. These studies have recently revealed that hemocyte migration is intimately associated with the development of the ventral nerve cord (VNC), a structure used by hemocytes to disperse over the embryo that itself requires this association for its correct morphogenesis. Crucially the VNC must separate from the epidermis to create a channel for hemocyte migration, revealing how constriction of extracellular space can be used to control cell migration in vivo. ( 4).
Collapse
Affiliation(s)
- Iwan Robert Evans
- Department of Biology and Biochemistry, University of Bath, Bath, Somerset, UK
| | | |
Collapse
|
30
|
Sharma S, Gao X, Londono D, Devroy SE, Mauldin KN, Frankel JT, Brandon JM, Zhang D, Li QZ, Dobbs MB, Gurnett CA, Grant SFA, Hakonarson H, Dormans JP, Herring JA, Gordon D, Wise CA. Genome-wide association studies of adolescent idiopathic scoliosis suggest candidate susceptibility genes. Hum Mol Genet 2011; 20:1456-66. [PMID: 21216876 DOI: 10.1093/hmg/ddq571] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is an unexplained and common spinal deformity seen in otherwise healthy children. Its pathophysiology is poorly understood despite intensive investigation. Although genetic underpinnings are clear, replicated susceptibility loci that could provide insight into etiology have not been forthcoming. To address these issues, we performed genome-wide association studies (GWAS) of ∼327 000 single nucleotide polymorphisms (SNPs) in 419 AIS families. We found strongest evidence of association with chromosome 3p26.3 SNPs in the proximity of the CHL1 gene (P < 8 × 10(-8) for rs1400180). We genotyped additional chromosome 3p26.3 SNPs and tested replication in two follow-up case-control cohorts, obtaining strongest results when all three cohorts were combined (rs10510181 odds ratio = 1.49, 95% confidence interval = 1.29-1.73, P = 2.58 × 10(-8)), but these were not confirmed in a separate GWAS. CHL1 is of interest, as it encodes an axon guidance protein related to Robo3. Mutations in the Robo3 protein cause horizontal gaze palsy with progressive scoliosis (HGPPS), a rare disease marked by severe scoliosis. Other top associations in our GWAS were with SNPs in the DSCAM gene encoding an axon guidance protein in the same structural class with Chl1 and Robo3. We additionally found AIS associations with loci in CNTNAP2, supporting a previous study linking this gene with AIS. Cntnap2 is also of functional interest, as it interacts directly with L1 and Robo class proteins and participates in axon pathfinding. Our results suggest the relevance of axon guidance pathways in AIS susceptibility, although these findings require further study, particularly given the apparent genetic heterogeneity in this disease.
Collapse
Affiliation(s)
- Swarkar Sharma
- Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Blauth K, Banerjee S, Bhat MA. Axonal ensheathment and intercellular barrier formation in Drosophila. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:93-128. [PMID: 20801419 DOI: 10.1016/s1937-6448(10)83003-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glial cells are critical players in every major aspect of nervous system development, function, and disease. Other than their traditional supportive role, glial cells perform a variety of important functions such as myelination, synapse formation and plasticity, and establishment of blood-brain and blood-nerve barriers in the nervous system. Recent studies highlight the striking functional similarities between Drosophila and vertebrate glia. In both systems, glial cells play an essential role in neural ensheathment thereby isolating the nervous system and help to create a local ionic microenvironment for conduction of nerve impulses. Here, we review the anatomical aspects and the molecular players that underlie ensheathment during different stages of nervous system development in Drosophila and how these processes lead to the organization of neuroglial junctions. We also discuss some key aspects of the invertebrate axonal ensheathment and junctional organization with that of vertebrate myelination and axon-glial interactions. Finally, we highlight the importance of intercellular junctions in barrier formation in various cellular contexts in Drosophila. We speculate that unraveling the genetic and molecular mechanisms of ensheathment across species might provide key insights into human myelin-related disorders and help in designing therapeutic interventions.
Collapse
Affiliation(s)
- Kevin Blauth
- Curriculum in Neurobiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|