1
|
Miranda Portillo LS, Huang AP, Hosamani IV, Sanchez CN, Heller S, Benkafadar N. Anatomical and Molecular Insights into Avian Inner Ear Sensory Hair Cell Regeneration. Dev Biol 2025:S0012-1606(25)00144-7. [PMID: 40414451 DOI: 10.1016/j.ydbio.2025.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/19/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Inner ear sensory hair cells are essential for auditory and vestibular functions. In mammals, loss of these cells leads to permanent hearing loss due to the inability of supporting cells to regenerate hair cells. In contrast, avian species exhibit a remarkable capacity for hair cell regeneration, primarily through the activation and proliferation of supporting cells. This review provides a comprehensive examination of the anatomical and molecular mechanisms underlying sensory hair cell regeneration in two critical avian inner ear structures: the basilar papilla and the utricle. We describe the structural and functional differences between avian and mammalian inner ear epithelia and highlight how these distinctions correlate with regenerative capabilities. Specifically, we discuss two distinct regenerative mechanisms - mitotic regeneration and direct transdifferentiation - employed by avian supporting cells in response to hair cell loss. We also explore how epithelial organization influences regenerative responses, including cellular density, cytoskeletal dynamics such as circumferential filamentous actin bands, and mechanical properties like tissue jamming and unjamming states. Additionally, we examine molecular pathways such as Hippo signaling, which mediates mechanical cues critical for regulating supporting cell proliferation and differentiation during regeneration. Recent advancements in single-cell -omics technologies have further elucidated molecular signatures and signaling pathways involved in these processes, offering novel insights that may inform therapeutic strategies aimed at inducing hair cell regeneration in mammals. This review highlights key anatomical and molecular concepts derived from avian models that hold promise for overcoming regenerative limitations in mammalian inner ears, paving the way for innovative treatments for hearing loss.
Collapse
Affiliation(s)
- Lyn S Miranda Portillo
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Austin P Huang
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Ishwar V Hosamani
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Celeste N Sanchez
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Stefan Heller
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305.
| | - Nesrine Benkafadar
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305; Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, UMR 1298, 80 Rue Augustin Fliche, 34295, Montpellier, France.
| |
Collapse
|
2
|
Li N, Tan F, Zhang L, Ding X, Sun Q, Wang M, Zhang Z, Lu Y, Zhou Y, Qian X, Ye F, Qi J, Chai R. AAV-Sparcl1 promotes hair cell regeneration by increasing supporting cell plasticity. Mol Ther 2025:S1525-0016(25)00262-X. [PMID: 40181541 DOI: 10.1016/j.ymthe.2025.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/27/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025] Open
Abstract
Sensorineural hearing deficiency caused by hair cell damage represents a prevalent sensory deficit disorder. In mammals, age-related reduction in plasticity of inner ear supporting cells (recognized as hair cell precursors) compromises their trans-differentiation capacity, resulting in impaired spontaneous hair cell regeneration post-injury. Therapeutic reprogramming of supporting cells to functionally replace damaged hair cells has emerged as a promising strategy for sensorineural hearing loss treatment. In this study, we demonstrate that the secretory protein Sparcl1 enhances supporting cell reprogramming and hair cell regeneration in both in vitro and in vivo models. Through the adeno-associated virus (AAV)-mediated overexpression system, we successfully achieved in vivo expansion of inner ear organoids accompanied by hair cell differentiation. RNA-seq analysis revealed that Sparcl1 overexpression stimulates supporting cell proliferation via follistatin (Fst) activation and extracellular matrix (ECM) remodeling. Notably, both AAV-ie-Sparcl1 delivery and recombinant Sparcl1 protein administration effectively induced supporting cell differentiation into hair cells in vivo. Collectively, our findings establish Sparcl1 as a potent positive regulator of hair cell regeneration and elucidate mechanisms by which secretory proteins regulate supporting cell plasticity.
Collapse
Affiliation(s)
- Nianci Li
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Fangzhi Tan
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Liyan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoqiong Ding
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Qiuhan Sun
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Ziyu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yicheng Lu
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yinyi Zhou
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyun Qian
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing 210008, China
| | - Fanglei Ye
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Jieyu Qi
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; State Key Laboratory of Hearing and Balance Science, Beijing Institute of Technology, Beijing 100081, China; School of Medical Engineering, Affiliated Zhuhai People's Hospital, Beijing Institute of Technology, Zhuhai 519088, China; Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, China.
| | - Renjie Chai
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Otolaryngology-Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Southeast University Shenzhen Research Institute, Shenzhen 518063, China.
| |
Collapse
|
3
|
Hao MY, Su W, Xu JY, Chen ZR, He L, Guo JY, Liu K, Gong SS, Wang GP. Co-overexpression of Atoh1, Pou4f3, and Gfi1 enhances the transdifferentiation of supporting cells into hair cells in the neonatal mouse utricle. Neurosci Lett 2025; 849:138136. [PMID: 39884380 DOI: 10.1016/j.neulet.2025.138136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Hair cells (HCs) are essential for vestibular function, and irreversible damage to vestibular HCs in mammals is closely associated with vertigo. The stimulation of HC regeneration through exogenous gene delivery represents an ideal therapeutic approach for restoring vestibular function. Overexpression of Atoh1, Pou4f3, and Gfi1 (collectively referred to as APG) has demonstrated efficacy in promoting HC regeneration in the cochlea. However, the effects of APG on vestibular HC regeneration remain unclear. Here, we used adeno-associated virus-inner ear (AAVie) as a carrier to deliver APG to the utricles of neonatal mice and assessed the morphology and number of HCs and supporting cells (SCs) by immunofluorescence staining. GLASTCreERT;Rosa26tdTomato mouse line was used to trace SCs. The results showed that APG overexpression resulted in substantial SC transdifferentiation into HCs in the neonatal mouse utricle. Furthermore, APG overexpression maintained SC number by facilitating SC proliferation. Continuous Atoh1 overexpression caused stereocilia damage, which was alleviated by APG overexpression. This study highlights the potential of regulating multiple transcription factors to promote vestibular HC regeneration.
Collapse
Affiliation(s)
- Ming-Yu Hao
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Wei Su
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Jun-Yi Xu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Zhong-Rui Chen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Lu He
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Jing-Ying Guo
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Ke Liu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Shu-Sheng Gong
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing, China.
| | - Guo-Peng Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Lee EJ, Kim K, Diaz-Aguilar MS, Min H, Chavez E, Steinbergs KJ, Safarta LA, Zhang G, Ryan AF, Lin JH. Mutations in unfolded protein response regulator ATF6 cause hearing and vision loss syndrome. J Clin Invest 2025; 135:e175562. [PMID: 39570676 PMCID: PMC11785932 DOI: 10.1172/jci175562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/19/2024] [Indexed: 02/04/2025] Open
Abstract
Activating transcription factor 6 (ATF6) is a key regulator of the unfolded protein response (UPR) and is important for ER function and protein homeostasis in metazoan cells. Patients carrying loss-of-function ATF6 disease alleles develop the cone dysfunction disorder achromatopsia. The effect of loss of ATF6 function on other cell types, organs, and diseases in people remains unclear. Here, we report that progressive sensorineural hearing loss was a notable complaint in some patients carrying ATF6 disease alleles and that Atf6-/- mice also showed progressive auditory deficits affecting both sexes. In mice with hearing deficits, we found disorganized stereocilia on hair cells and focal loss of outer hair cells. Transcriptomics analysis of Atf6-/- cochleae revealed a marked induction of the UPR, especially through the protein kinase RNA-like endoplasmic reticulum kinase (PERK) arm. These findings identify ATF6 as an essential regulator of cochlear health and function. Furthermore, they support the idea that ATF6 inactivation in people causes progressive sensorineural hearing loss as part of a blindness-deafness genetic syndrome targeting hair cells and cone photoreceptors. Last, our genetic findings indicate that ER stress is an important pathomechanism underlying cochlear damage and hearing loss, with clinical implications for patient lifestyle modifications that minimize environmental and physiological sources of ER stress to the ear.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Kyle Kim
- Departments of Pathology and
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Monica Sophia Diaz-Aguilar
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
- Rush University Medical College, Chicago, Illinois, USA
| | - Hyejung Min
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Eduardo Chavez
- Departments of Otolaryngology and Neuroscience, UCSD and Veterans Administration Medical Center, La Jolla, California, USA
| | - Korina J. Steinbergs
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
| | - Lance A. Safarta
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
| | - Guirong Zhang
- Departments of Pathology and
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Allen F. Ryan
- Departments of Otolaryngology and Neuroscience, UCSD and Veterans Administration Medical Center, La Jolla, California, USA
| | - Jonathan H. Lin
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| |
Collapse
|
5
|
Ivanchenko MV, Hathaway DM, Mulhall EM, Booth KT, Wang M, Peters CW, Klein AJ, Chen X, Li Y, György B, Corey DP. PCDH15 Dual-AAV Gene Therapy for Deafness and Blindness in Usher Syndrome Type 1F Models. J Clin Invest 2024; 134:e177700. [PMID: 39441757 PMCID: PMC11601915 DOI: 10.1172/jci177700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Usher syndrome type 1F (USH1F), resulting from mutations in the protocadherin-15 (PCDH15) gene, is characterized by congenital lack of hearing and balance, and progressive blindness in the form of retinitis pigmentosa. In this study, we explore an approach for USH1F gene therapy, exceeding the single AAV packaging limit by employing a dual adeno-associated virus (AAV) strategy to deliver the full-length PCDH15 coding sequence. We demonstrate the efficacy of this strategy in mouse USH1F models, effectively restoring hearing and balance in these mice. Importantly, our approach also proves successful in expressing PCDH15 protein in clinically relevant retinal models, including human retinal organoids and non-human primate retina, showing efficient targeting of photoreceptors and proper protein expression in the calyceal processes. This research represents a major step toward advancing gene therapy for USH1F and the multiple challenges of hearing, balance, and vision impairment.
Collapse
Affiliation(s)
| | - Daniel M. Hathaway
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric M. Mulhall
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin T.A. Booth
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mantian Wang
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Cole W. Peters
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alex J. Klein
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Xinlan Chen
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yaqiao Li
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Bence György
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - David P. Corey
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Lahlou H, Zhu H, Zhou W, Edge AS. Pharmacological regeneration of sensory hair cells restores afferent innervation and vestibular function. J Clin Invest 2024; 134:e181201. [PMID: 39316439 PMCID: PMC11563683 DOI: 10.1172/jci181201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
The sensory cells that transduce the signals for hearing and balance are highly specialized mechanoreceptors called hair cells that together with supporting cells comprise the sensory epithelia of the inner ear. Loss of hair cells from toxin exposure and age can cause balance disorders and is essentially irreversible due to the inability of mammalian vestibular organs to regenerate physiologically active hair cells. Here, we show substantial regeneration of hair cells in a mouse model of vestibular damage by treatment with a combination of glycogen synthase kinase 3β and histone deacetylase inhibitors. The drugs stimulated supporting cell proliferation and differentiation into hair cells. The new hair cells were reinnervated by vestibular afferent neurons, rescuing otolith function by restoring head translation-evoked otolith afferent responses and vestibuloocular reflexes. Drugs that regenerate hair cells thus represent a potential therapeutic approach to the treatment of balance disorders.
Collapse
Affiliation(s)
- Hanae Lahlou
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Hong Zhu
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Wu Zhou
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Albert S.B. Edge
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Harvard Stem Cell Institute; Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Beaulieu MO, Thomas ED, Raible DW. Transdifferentiation is temporally uncoupled from progenitor pool expansion during hair cell regeneration in the zebrafish inner ear. Development 2024; 151:dev202944. [PMID: 39045613 PMCID: PMC11361639 DOI: 10.1242/dev.202944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Death of mechanosensory hair cells in the inner ear is a common cause of auditory and vestibular impairment in mammals, which have a limited ability to regrow these cells after damage. In contrast, non-mammalian vertebrates, including zebrafish, can robustly regenerate hair cells after severe organ damage. The zebrafish inner ear provides an understudied model system for understanding hair cell regeneration in organs that are highly conserved with their mammalian counterparts. Here, we quantitatively examine hair cell addition during growth and regeneration of the larval zebrafish inner ear. We used a genetically encoded ablation method to induce hair cell death and we observed gradual regeneration with correct spatial patterning over a 2-week period following ablation. Supporting cells, which surround and are a source of new hair cells, divide in response to hair cell ablation, expanding the possible progenitor pool. In parallel, nascent hair cells arise from direct transdifferentiation of progenitor pool cells temporally uncoupled from supporting cell division. These findings reveal a previously unrecognized mechanism of hair cell regeneration with implications for how hair cells may be encouraged to regenerate in the mammalian ear.
Collapse
Affiliation(s)
- Marielle O. Beaulieu
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, WA 98195, USA
| | - Eric D. Thomas
- Neuroscience Graduate Program, University of Washington, Seattle, WA 98195, USA
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - David W. Raible
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, WA 98195, USA
- Neuroscience Graduate Program, University of Washington, Seattle, WA 98195, USA
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Lipovsek M. Comparative biology of the amniote vestibular utricle. Hear Res 2024; 448:109035. [PMID: 38763033 DOI: 10.1016/j.heares.2024.109035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
The sensory epithelia of the auditory and vestibular systems of vertebrates have shared developmental and evolutionary histories. However, while the auditory epithelia show great variation across vertebrates, the vestibular sensory epithelia appear seemingly more conserved. An exploration of the current knowledge of the comparative biology of the amniote utricle, a vestibular sensory epithelium that senses linear acceleration, shows interesting instances of variability between birds and mammals. The distribution of sensory hair cell types, the position of the line of hair bundle polarity reversal and the properties of supporting cells show marked differences, likely impacting vestibular function and hair cell regeneration potential.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Ear Institute, Faculty of Brain Sciences, University College London, London, UK.
| |
Collapse
|
9
|
Wang T, Ling AH, Billings SE, Hosseini DK, Vaisbuch Y, Kim GS, Atkinson PJ, Sayyid ZN, Aaron KA, Wagh D, Pham N, Scheibinger M, Zhou R, Ishiyama A, Moore LS, Maria PS, Blevins NH, Jackler RK, Alyono JC, Kveton J, Navaratnam D, Heller S, Lopez IA, Grillet N, Jan TA, Cheng AG. Single-cell transcriptomic atlas reveals increased regeneration in diseased human inner ear balance organs. Nat Commun 2024; 15:4833. [PMID: 38844821 PMCID: PMC11156867 DOI: 10.1038/s41467-024-48491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Mammalian inner ear hair cell loss leads to permanent hearing and balance dysfunction. In contrast to the cochlea, vestibular hair cells of the murine utricle have some regenerative capacity. Whether human utricular hair cells regenerate in vivo remains unknown. Here we procured live, mature utricles from organ donors and vestibular schwannoma patients, and present a validated single-cell transcriptomic atlas at unprecedented resolution. We describe markers of 13 sensory and non-sensory cell types, with partial overlap and correlation between transcriptomes of human and mouse hair cells and supporting cells. We further uncover transcriptomes unique to hair cell precursors, which are unexpectedly 14-fold more abundant in vestibular schwannoma utricles, demonstrating the existence of ongoing regeneration in humans. Lastly, supporting cell-to-hair cell trajectory analysis revealed 5 distinct patterns of dynamic gene expression and associated pathways, including Wnt and IGF-1 signaling. Our dataset constitutes a foundational resource, accessible via a web-based interface, serving to advance knowledge of the normal and diseased human inner ear.
Collapse
Affiliation(s)
- Tian Wang
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Otolaryngology - Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, PR China
| | - Angela H Ling
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sara E Billings
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Davood K Hosseini
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yona Vaisbuch
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Grace S Kim
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Patrick J Atkinson
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Zahra N Sayyid
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ksenia A Aaron
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dhananjay Wagh
- Stanford Genomics Facility, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nicole Pham
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Mirko Scheibinger
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ruiqi Zhou
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Akira Ishiyama
- Department of Head and Neck Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Lindsay S Moore
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Peter Santa Maria
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nikolas H Blevins
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Robert K Jackler
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jennifer C Alyono
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - John Kveton
- Department of Surgery, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Dhasakumar Navaratnam
- Department of Surgery, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Stefan Heller
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ivan A Lopez
- Department of Head and Neck Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nicolas Grillet
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Taha A Jan
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Alan G Cheng
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
10
|
Maraslioglu-Sperber A, Blanc F, Heller S. Murine cochlear damage models in the context of hair cell regeneration research. Hear Res 2024; 447:109021. [PMID: 38703432 DOI: 10.1016/j.heares.2024.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Understanding the complex pathologies associated with hearing loss is a significant motivation for conducting inner ear research. Lifelong exposure to loud noise, ototoxic drugs, genetic diversity, sex, and aging collectively contribute to human hearing loss. Replicating this pathology in research animals is challenging because hearing impairment has varied causes and different manifestations. A central aspect, however, is the loss of sensory hair cells and the inability of the mammalian cochlea to replace them. Researching therapeutic strategies to rekindle regenerative cochlear capacity, therefore, requires the generation of animal models in which cochlear hair cells are eliminated. This review discusses different approaches to ablate cochlear hair cells in adult mice. We inventoried the cochlear cyto- and histo-pathology caused by acoustic overstimulation, systemic and locally applied drugs, and various genetic tools. The focus is not to prescribe a perfect damage model but to highlight the limitations and advantages of existing approaches and identify areas for further refinement of damage models for use in regenerative studies.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fabian Blanc
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Otolaryngology - Head & Neck Surgery, University Hospital Gui de Chauliac, University of Montpellier, Montpellier, France
| | - Stefan Heller
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Shah JJ, Jimenez-Jaramillo CA, Lybrand ZR, Yuan TT, Erbele ID. Modern In Vitro Techniques for Modeling Hearing Loss. Bioengineering (Basel) 2024; 11:425. [PMID: 38790292 PMCID: PMC11118046 DOI: 10.3390/bioengineering11050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
Sensorineural hearing loss (SNHL) is a prevalent and growing global health concern, especially within operational medicine, with limited therapeutic options available. This review article explores the emerging field of in vitro otic organoids as a promising platform for modeling hearing loss and developing novel therapeutic strategies. SNHL primarily results from the irreversible loss or dysfunction of cochlear mechanosensory hair cells (HCs) and spiral ganglion neurons (SGNs), emphasizing the need for innovative solutions. Current interventions offer symptomatic relief but do not address the root causes. Otic organoids, three-dimensional multicellular constructs that mimic the inner ear's architecture, have shown immense potential in several critical areas. They enable the testing of gene therapies, drug discovery for sensory cell regeneration, and the study of inner ear development and pathology. Unlike traditional animal models, otic organoids closely replicate human inner ear pathophysiology, making them invaluable for translational research. This review discusses methodological advances in otic organoid generation, emphasizing the use of human pluripotent stem cells (hPSCs) to replicate inner ear development. Cellular and molecular characterization efforts have identified key markers and pathways essential for otic organoid development, shedding light on their potential in modeling inner ear disorders. Technological innovations, such as 3D bioprinting and microfluidics, have further enhanced the fidelity of these models. Despite challenges and limitations, including the need for standardized protocols and ethical considerations, otic organoids offer a transformative approach to understanding and treating auditory dysfunctions. As this field matures, it holds the potential to revolutionize the treatment landscape for hearing and balance disorders, moving us closer to personalized medicine for inner ear conditions.
Collapse
Affiliation(s)
- Jamie J. Shah
- Department of Pathology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA;
| | - Couger A. Jimenez-Jaramillo
- Department of Pathology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA;
| | - Zane R. Lybrand
- Division of Biology, Texas Woman’s University, Denton, TX 76204, USA;
| | - Tony T. Yuan
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.T.Y.); (I.D.E.)
| | - Isaac D. Erbele
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.T.Y.); (I.D.E.)
- Department of Otolaryngology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
12
|
Beaulieu MO, Thomas ED, Raible DW. Transdifferentiation is uncoupled from progenitor pool expansion during hair cell regeneration in the zebrafish inner ear. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588777. [PMID: 38645220 PMCID: PMC11030336 DOI: 10.1101/2024.04.09.588777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Death of mechanosensory hair cells in the inner ear is a common cause of auditory and vestibular impairment in mammals, which have a limited ability to regrow these cells after damage. In contrast, non-mammalian vertebrates including zebrafish can robustly regenerate hair cells following severe organ damage. The zebrafish inner ear provides an understudied model system for understanding hair cell regeneration in organs that are highly conserved with their mammalian counterparts. Here we quantitatively examine hair cell addition during growth and regeneration of the larval zebrafish inner ear. We used a genetically encoded ablation method to induce hair cell death and observed gradual regeneration with correct spatial patterning over two weeks following ablation. Supporting cells, which surround and are a source of new hair cells, divide in response to hair cell ablation, expanding the possible progenitor pool. In parallel, nascent hair cells arise from direct transdifferentiation of progenitor pool cells uncoupled from progenitor division. These findings reveal a previously unrecognized mechanism of hair cell regeneration with implications for how hair cells may be encouraged to regenerate in the mammalian ear.
Collapse
Affiliation(s)
- Marielle O. Beaulieu
- Molecular and Cellular Biology Graduate Program, Seattle, WA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology - Head and Neck Surgery, Seattle, WA
| | - Eric D. Thomas
- Neuroscience Graduate Program, Seattle, WA
- Department of Biological Structure University of Washington, Seattle, WA
| | - David W. Raible
- Molecular and Cellular Biology Graduate Program, Seattle, WA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology - Head and Neck Surgery, Seattle, WA
- Neuroscience Graduate Program, Seattle, WA
- Department of Biological Structure University of Washington, Seattle, WA
| |
Collapse
|
13
|
Li Y, Tuttle MA, Liu Q, Pang Y. An NIR-emitting cyanine dye with pyridinium groups: the impact of regio-bond connection on the photophysical properties. Chem Commun (Camb) 2024; 60:2208-2211. [PMID: 38304975 PMCID: PMC10878061 DOI: 10.1039/d3cc06189b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Two ESIPT-based isomeric cyanines were synthesized with significant bathochromic shift in the optical absorption λabs and emission λem, along with a very large Stokes shift. Probe 2 exhibited a longer conjugation and better photostability. Both compounds exhibited good selectivity for labeling the plasma membrane of prokaryotic cells and the hair cells of zebrafish.
Collapse
Affiliation(s)
- Yonghao Li
- Department of Chemistry, University of Akron, Akron, Ohio 44325, USA.
| | - Matthew A Tuttle
- Department of Biology, University of Akron, Akron, Ohio 44325, USA
| | - Qin Liu
- Department of Biology, University of Akron, Akron, Ohio 44325, USA
| | - Yi Pang
- Department of Chemistry, University of Akron, Akron, Ohio 44325, USA.
| |
Collapse
|
14
|
Petit C, Bonnet C, Safieddine S. Deafness: from genetic architecture to gene therapy. Nat Rev Genet 2023; 24:665-686. [PMID: 37173518 DOI: 10.1038/s41576-023-00597-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/15/2023]
Abstract
Progress in deciphering the genetic architecture of human sensorineural hearing impairment (SNHI) or loss, and multidisciplinary studies of mouse models, have led to the elucidation of the molecular mechanisms underlying auditory system function, primarily in the cochlea, the mammalian hearing organ. These studies have provided unparalleled insights into the pathophysiological processes involved in SNHI, paving the way for the development of inner-ear gene therapy based on gene replacement, gene augmentation or gene editing. The application of these approaches in preclinical studies over the past decade has highlighted key translational opportunities and challenges for achieving effective, safe and sustained inner-ear gene therapy to prevent or cure monogenic forms of SNHI and associated balance disorders.
Collapse
Affiliation(s)
- Christine Petit
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012, Paris, France.
- Collège de France, F-75005, Paris, France.
| | - Crystel Bonnet
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012, Paris, France
| | - Saaïd Safieddine
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012, Paris, France
- Centre National de la Recherche Scientifique, F-75016, Paris, France
| |
Collapse
|
15
|
Oral Administration of TrkB Agonist, 7, 8-Dihydroxyflavone Regenerates Hair Cells and Restores Function after Gentamicin-Induced Vestibular Injury in Guinea Pig. Pharmaceutics 2023; 15:pharmaceutics15020493. [PMID: 36839815 PMCID: PMC9966733 DOI: 10.3390/pharmaceutics15020493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The causes of vestibular dysfunction include the loss of hair cells (HCs), synapses beneath the HCs, and nerve fibers. 7, 8-dihydroxyflavone (DHF) mimics the physiological functions of brain-derived neurotrophic factor. We investigated the effects of the orally-administered DHF in the guinea pig crista ampullaris after gentamicin (GM)-induced injury. Twenty animals treated with GM received daily administration of DHF or saline for 14 or 28 days (DHF (+) or DHF (-) group; N = 5, each). At 14 days after GM treatment, almost all of the HCs had disappeared in both groups. At 28 days, the HCs number in DHF (+) and DHF (-) groups was 74% and 49%, respectively, compared to GM-untreated control. In the ampullary nerves, neurofilament 200 positive rate in the DHF (+) group was 91% at 28 days, which was significantly higher than 42% in DHF (-). On day 28, the synaptic connections observed between C-terminal-binding protein 2-positive and postsynaptic density protein-95-positive puncta were restored, and caloric response was significantly improved in DHF (+) group (canal paresis: 57.4% in DHF (+) and 100% in DHF (-)). Taken together, the oral administration of DHF may be a novel therapeutic approach for treating vestibular dysfunction in humans.
Collapse
|
16
|
Zhi Z, Sun Q, Tang W. Research advances and challenges in tissue-derived extracellular vesicles. Front Mol Biosci 2022; 9:1036746. [PMID: 36589228 PMCID: PMC9797684 DOI: 10.3389/fmolb.2022.1036746] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EV) are vesicular vesicles with phospholipid bilayer, which are present in biological fluids and extracellular microenvironment. Extracellular vesicles serve as pivotal mediators in intercellular communication by delivering lipids, proteins, and RNAs to the recipient cells. Different from extracellular vesicles derived from biofluids and that originate from cell culture, the tissue derived extracellular vesicles (Ti-EVs) send us more enriched and accurate information of tissue microenvironment. Notably, tissue derived extracellular vesicles directly participate in the crosstalk between numerous cell types within microenvironment. Current research mainly focused on the extracellular vesicles present in biological fluids and cell culture supernatant, yet the studies on tissue derived extracellular vesicles are increasing due to the tissue derived extracellular vesicles are promising agents to reflect the occurrence and development of human diseases more accurately. In this review, we aimed to clarify the characteristics of tissue derived extracellular vesicles, specify the isolation methods and the roles of tissue derived extracellular vesicles in various diseases, including tumors. Moreover, we summarized the advances and challenges of tissue derived extracellular vesicles research.
Collapse
|
17
|
Ciani Berlingeri AN, Pujol R, Cox BC, Stone JS. Sox2 is required in supporting cells for normal levels of vestibular hair cell regeneration in adult mice. Hear Res 2022; 426:108642. [PMID: 36334348 DOI: 10.1016/j.heares.2022.108642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 09/16/2022] [Accepted: 10/19/2022] [Indexed: 11/04/2022]
Abstract
Sox2 is a transcription factor that is necessary in the mammalian inner ear for development of sensory hair cells and supporting cells. Sox2 is expressed in supporting cells of adult mammals, but its function in this context is poorly understood. Given its role in the developing inner ear, we hypothesized that Sox2 is required in vestibular supporting cells for regeneration of type II hair cells after damage. Using adult mice, we deleted Sox2 from Sox9-CreER-expressing supporting cells prior to diphtheria toxin-mediated hair cell destruction and used fate-mapping to assess regeneration. In utricles of control mice with normal Sox2 expression, supporting cells regenerated nearly 200 hair cells by 3 weeks post-damage, which doubled by 12 weeks. In contrast, mice with Sox2 deletion from supporting cells had approximately 20 fate-mapped hair cells at 3 weeks post-damage, and this number did not change significantly by 12 weeks, indicating regeneration was dramatically curtailed. We made similar observations for saccules and ampullae. We found no evidence that supporting cells lacking Sox2 had altered cellular density, morphology, or ultrastructure. However, some Sox2-negative supporting cell nuclei appeared to migrate apically but did not turn on hair cell markers, and type I hair cell survival was higher. Sox2 heterozygotes also had reduced regeneration in utricles, but more hair cells were replaced than mice with Sox2 deletion. Our study determined that Sox2 is required in supporting cells for normal levels of vestibular hair cell regeneration but found no other major requirements for Sox2 in adult supporting cells.
Collapse
Affiliation(s)
- Amanda N Ciani Berlingeri
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington, United States; Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Research Center, University of Washington School of Medicine, Seattle, Washington, United States
| | - Rémy Pujol
- University of Montpellier, INM-INSERM Unit 1298, Montpellier, France
| | - Brandon C Cox
- Departments of Pharmacology and Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois, United States
| | - Jennifer S Stone
- Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Research Center, University of Washington School of Medicine, Seattle, Washington, United States.
| |
Collapse
|
18
|
You D, Guo J, Zhang Y, Guo L, Lu X, Huang X, Sun S, Li H. The heterogeneity of mammalian utricular cells over the course of development. Clin Transl Med 2022; 12:e1052. [PMID: 36178017 PMCID: PMC9523683 DOI: 10.1002/ctm2.1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The inner ear organ is a delicate tissue consisting of hair cells (HCs) and supporting cells (SCs).The mammalian inner ear HCs are terminally differentiated cells that cannot spontaneously regenerate in adults. Epithelial non-hair cells (ENHCs) in the utricle include HC progenitors and SCs, and the progenitors share similar characteristics with SCs in the neonatal inner ear. METHODS We applied single-cell sequencing to whole mouse utricles from the neonatal period to adulthood, including samples from postnatal day (P)2, P7 and P30 mice. Furthermore, using transgenic mice and immunostaining, we traced the source of new HC generation. RESULTS We identified several sensory epithelial cell clusters and further found that new HCs arose mainly through differentiation from Sox9+ progenitor cells and that only a few cells were produced by mitotic proliferation in both neonatal and adult mouse utricles. In addition, we identified the proliferative cells using the marker UbcH10 and demonstrated that in adulthood the mitotically generated HCs were primarily found in the extrastriola. Moreover, we observed that not only Type II, but also Type I HCs could be regenerated by either mitotic cell proliferation or progenitor cell differentiation. CONCLUSIONS Overall, our findings expand our understanding of ENHC cell fate and the characteristics of the vestibular organs in mammals over the course of development.
Collapse
Affiliation(s)
- Dan You
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina,Department of Otorhinolaryngology‐Head and Neck SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Jin Guo
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Yunzhong Zhang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Xiaoling Lu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Xinsheng Huang
- Department of Otorhinolaryngology‐Head and Neck SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Shan Sun
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina,Institutes of Biomedical SciencesFudan UniversityShanghaiChina,NHC Key Laboratory of Hearing Medicine, Fudan UniversityShanghaiChina,The Institutes of Brain Science and the Collaborative Innovation Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
19
|
Rousset F, Schilardi G, Sgroi S, Nacher-Soler G, Sipione R, Kleinlogel S, Senn P. WNT Activation and TGFβ-Smad Inhibition Potentiate Stemness of Mammalian Auditory Neuroprogenitors for High-Throughput Generation of Functional Auditory Neurons In Vitro. Cells 2022; 11:cells11152431. [PMID: 35954276 PMCID: PMC9367963 DOI: 10.3390/cells11152431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Hearing loss affects over 460 million people worldwide and is a major socioeconomic burden. Both genetic and environmental factors (i.e., noise overexposure, ototoxic drug treatment and ageing), promote the irreversible degeneration of cochlear hair cells and associated auditory neurons, leading to sensorineural hearing loss. In contrast to birds, fish and amphibians, the mammalian inner ear is virtually unable to regenerate due to the limited stemness of auditory progenitors, and no causal treatment is able to prevent or reverse hearing loss. As of today, a main limitation for the development of otoprotective or otoregenerative therapies is the lack of efficient preclinical models compatible with high-throughput screening of drug candidates. Currently, the research field mainly relies on primary organotypic inner ear cultures, resulting in high variability, low throughput, high associated costs and ethical concerns. We previously identified and characterized the phoenix auditory neuroprogenitors (ANPGs) as highly proliferative progenitor cells isolated from the A/J mouse cochlea. In the present study, we aim at identifying the signaling pathways responsible for the intrinsic high stemness of phoenix ANPGs. A transcriptomic comparison of traditionally low-stemness ANPGs, isolated from C57Bl/6 and A/J mice at early passages, and high-stemness phoenix ANPGs was performed, allowing the identification of several differentially expressed pathways. Based on differentially regulated pathways, we developed a reprogramming protocol to induce high stemness in presenescent ANPGs (i.e., from C57Bl6 mouse). The pharmacological combination of the WNT agonist (CHIR99021) and TGFβ/Smad inhibitors (LDN193189 and SB431542) resulted in a dramatic increase in presenescent neurosphere growth, and the possibility to expand ANPGs is virtually limitless. As with the phoenix ANPGs, stemness-induced ANPGs could be frozen and thawed, enabling distribution to other laboratories. Importantly, even after 20 passages, stemness-induced ANPGs retained their ability to differentiate into electrophysiologically mature type I auditory neurons. Both stemness-induced and phoenix ANPGs resolve a main bottleneck in the field, allowing efficient, high-throughput, low-cost and 3R-compatible in vitro screening of otoprotective and otoregenerative drug candidates. This study may also add new perspectives to the field of inner ear regeneration.
Collapse
Affiliation(s)
- Francis Rousset
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Giulia Schilardi
- Institute of Physiology, Department of Biomedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Stéphanie Sgroi
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - German Nacher-Soler
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Rebecca Sipione
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Sonja Kleinlogel
- Institute of Physiology, Department of Biomedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Pascal Senn
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Clinical Neurosciences, Service of ORL and Head and Neck Surgery, University Hospital of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
20
|
Abstract
It is well established that humans and other mammals are minimally regenerative compared with organisms such as zebrafish, salamander or amphibians. In recent years, however, the identification of regenerative potential in neonatal mouse tissues that normally heal poorly in adults has transformed our understanding of regenerative capacity in mammals. In this Review, we survey the mammalian tissues for which regenerative or improved neonatal healing has been established, including the heart, cochlear hair cells, the brain and spinal cord, and dense connective tissues. We also highlight common and/or tissue-specific mechanisms of neonatal regeneration, which involve cells, signaling pathways, extracellular matrix, immune cells and other factors. The identification of such common features across neonatal tissues may direct therapeutic strategies that will be broadly applicable to multiple adult tissues.
Collapse
Affiliation(s)
| | - Alice H. Huang
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
21
|
Ma X, Zhang S, Qin S, Guo J, Yuan J, Qiang R, Zhou S, Cao W, Yang J, Ma F, Chai R. Transcriptomic and epigenomic analyses explore the potential role of H3K4me3 in neomycin-induced cochlear Lgr5+ progenitor cell regeneration of hair cells. Hum Cell 2022; 35:1030-1044. [DOI: 10.1007/s13577-022-00727-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
|
22
|
Kim GS, Wang T, Sayyid ZN, Fuhriman J, Jones SM, Cheng AG. Repair of surviving hair cells in the damaged mouse utricle. Proc Natl Acad Sci U S A 2022; 119:e2116973119. [PMID: 35380897 PMCID: PMC9169652 DOI: 10.1073/pnas.2116973119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Sensory hair cells (HCs) in the utricle are mechanoreceptors required to detect linear acceleration. After damage, the mammalian utricle partially restores the HC population and organ function, although regenerated HCs are primarily type II and immature. Whether native, surviving HCs can repair and contribute to this recovery is unclear. Here, we generated the Pou4f3DTR/+; Atoh1CreERTM/+; Rosa26RtdTomato/+ mouse to fate map HCs prior to ablation. After HC ablation, vestibular evoked potentials were abolished in all animals, with ∼57% later recovering responses. Relative to nonrecovery mice, recovery animals harbored more Atoh1-tdTomato+ surviving HCs. In both groups, surviving HCs displayed markers of both type I and type II subtypes and afferent synapses, despite distorted lamination and morphology. Surviving type II HCs remained innervated in both groups, whereas surviving type I HCs first lacked and later regained calyces in the recovery, but not the nonrecovery, group. Finally, surviving HCs initially displayed immature and subsequently mature-appearing bundles in the recovery group. These results demonstrate that surviving HCs are capable of self-repair and may contribute to the recovery of vestibular function.
Collapse
Affiliation(s)
- Grace S. Kim
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Tian Wang
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Zahra N. Sayyid
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Jessica Fuhriman
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Sherri M. Jones
- Department of Special Education and Communication Disorders, College of Education and Human Sciences, University of Nebraska, Lincoln, NE 68583
| | - Alan G. Cheng
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
23
|
Single-cell transcriptome analysis reveals three sequential phases of gene expression during zebrafish sensory hair cell regeneration. Dev Cell 2022; 57:799-819.e6. [PMID: 35316618 PMCID: PMC9188816 DOI: 10.1016/j.devcel.2022.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/19/2021] [Accepted: 02/28/2022] [Indexed: 12/20/2022]
Abstract
Loss of sensory hair cells (HCs) in the mammalian inner ear leads to permanent hearing and vestibular defects, whereas loss of HCs in zebrafish results in their regeneration. We used single-cell RNA sequencing (scRNA-seq) to characterize the transcriptional dynamics of HC regeneration in zebrafish at unprecedented spatiotemporal resolution. We uncovered three sequentially activated modules: first, an injury/inflammatory response and downregulation of progenitor cell maintenance genes within minutes after HC loss; second, the transient activation of regeneration-specific genes; and third, a robust re-activation of developmental gene programs, including HC specification, cell-cycle activation, ribosome biogenesis, and a metabolic switch to oxidative phosphorylation. The results are relevant not only for our understanding of HC regeneration and how we might be able to trigger it in mammals but also for regenerative processes in general. The data are searchable and publicly accessible via a web-based interface.
Collapse
|
24
|
Jiang P, Ma X, Han S, Ma L, Ai J, Wu L, Zhang Y, Xiao H, Tian M, Tao WA, Zhang S, Chai R. Characterization of the microRNA transcriptomes and proteomics of cochlear tissue-derived small extracellular vesicles from mice of different ages after birth. Cell Mol Life Sci 2022; 79:154. [PMID: 35218422 PMCID: PMC11072265 DOI: 10.1007/s00018-022-04164-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/30/2021] [Accepted: 01/23/2022] [Indexed: 12/22/2022]
Abstract
The cochlea is an important sensory organ for both balance and sound perception, and the formation of the cochlea is a complex developmental process. The development of the mouse cochlea begins on embryonic day (E)9 and continues until postnatal day (P)21 when the hearing system is considered mature. Small extracellular vesicles (sEVs), with a diameter ranging from 30 to 200 nm, have been considered a significant medium for information communication in both physiological and pathological processes. However, there are no studies exploring the role of sEVs in the development of the cochlea. Here, we isolated tissue-derived sEVs from the cochleae of FVB mice at P3, P7, P14, and P21 by ultracentrifugation. These sEVs were first characterized by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. Next, we used small RNA-seq and mass spectrometry to characterize the microRNA transcriptomes and proteomes of cochlear sEVs from mice at different ages. Many microRNAs and proteins were discovered to be related to inner ear development, anatomical structure development, and auditory nervous system development. These results all suggest that sEVs exist in the cochlea and are likely to be essential for the normal development of the auditory system. Our findings provide many sEV microRNA and protein targets for future studies of the roles of cochlear sEVs.
Collapse
Affiliation(s)
- Pei Jiang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiangyu Ma
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Shanying Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Leyao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jingru Ai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Leilei Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yuan Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hairong Xiao
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Mengyao Tian
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - W Andy Tao
- Department of Chemistry, Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, 47907, USA.
| | - Shasha Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
25
|
Sung CYW, Barzik M, Costain T, Wang L, Cunningham LL. Semi-automated Quantification of Hair Cells in the Mature Mouse Utricle. Hear Res 2022; 416:108429. [PMID: 35081508 PMCID: PMC9034969 DOI: 10.1016/j.heares.2021.108429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/19/2021] [Accepted: 12/28/2021] [Indexed: 02/09/2023]
Abstract
The mouse utricle model system is the best-characterized ex vivo preparation for studies of mature mammalian hair cells (HCs). Despite the many advantages of this model system, efficient and reliable quantification of HCs from cultured utricles has been a persistent challenge with this model system. Utricular HCs are commonly quantified by counting immunolabeled HCs in regions of interest (ROIs) placed over an image of the utricle. Our data indicate that the accuracy of HC counts obtained using this method can be impacted by variability in HC density across different regions of the utricle. In addition, the commonly used HC marker myosin 7a results in a diffuse cytoplasmic stain that is not conducive to automated quantification and must be quantified manually, a labor-intensive task. Furthermore, myosin 7a immunoreactivity is retained in dead HCs, resulting in inaccurate quantification of live HCs using this marker. Here we have developed a method for semi-automated quantification of surviving HCs that combines immunoreactivity for the HC-specific transcription factor Pou4f3 with labeling of activated caspase 3/7 (AC3/7) to detect apoptotic HCs. The discrete nuclear Pou4f3 signal allowed us to utilize the binary or threshold function within ImageJ to automate HC quantification. To further streamline this process, we created an ImageJ macro that automates the process from raw image loading to a final quantified image that can be immediately evaluated for accuracy. Within this quantified image, the user can manually correct the quantification via an image overlay indicating the counted HC nuclei. Pou4f3-positive HCs that also express AC3/7 are subtracted to yield accurate counts of surviving HCs. Overall, we present a semi-automated method that is faster than manual HC quantification and identifies surviving HCs with high accuracy.
Collapse
|
26
|
Jimenez E, Slevin CC, Colón-Cruz L, Burgess SM. Vestibular and Auditory Hair Cell Regeneration Following Targeted Ablation of Hair Cells With Diphtheria Toxin in Zebrafish. Front Cell Neurosci 2021; 15:721950. [PMID: 34489643 PMCID: PMC8416761 DOI: 10.3389/fncel.2021.721950] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/30/2021] [Indexed: 12/02/2022] Open
Abstract
Millions of Americans experience hearing or balance disorders due to loss of hair cells in the inner ear. The hair cells are mechanosensory receptors used in the auditory and vestibular organs of all vertebrates as well as the lateral line systems of aquatic vertebrates. In zebrafish and other non-mammalian vertebrates, hair cells turnover during homeostasis and regenerate completely after being destroyed or damaged by acoustic or chemical exposure. However, in mammals, destroying or damaging hair cells results in permanent impairments to hearing or balance. We sought an improved method for studying hair cell damage and regeneration in adult aquatic vertebrates by generating a transgenic zebrafish with the capacity for targeted and inducible hair cell ablation in vivo. This model expresses the human diphtheria toxin receptor (hDTR) gene under the control of the myo6b promoter, resulting in hDTR expressed only in hair cells. Cell ablation is achieved by an intraperitoneal injection of diphtheria toxin (DT) in adult zebrafish or DT dissolved in the water for larvae. In the lateral line of 5 days post fertilization (dpf) zebrafish, ablation of hair cells by DT treatment occurred within 2 days in a dose-dependent manner. Similarly, in adult utricles and saccules, a single intraperitoneal injection of 0.05 ng DT caused complete loss of hair cells in the utricle and saccule by 5 days post-injection. Full hair cell regeneration was observed for the lateral line and the inner ear tissues. This study introduces a new method for efficient conditional hair cell ablation in adult zebrafish inner ear sensory epithelia (utricles and saccules) and demonstrates that zebrafish hair cells will regenerate in vivo after this treatment.
Collapse
Affiliation(s)
| | | | | | - Shawn M. Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
27
|
Jan TA, Eltawil Y, Ling AH, Chen L, Ellwanger DC, Heller S, Cheng AG. Spatiotemporal dynamics of inner ear sensory and non-sensory cells revealed by single-cell transcriptomics. Cell Rep 2021; 36:109358. [PMID: 34260939 PMCID: PMC8378666 DOI: 10.1016/j.celrep.2021.109358] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/25/2020] [Accepted: 06/17/2021] [Indexed: 11/28/2022] Open
Abstract
The utricle is a vestibular sensory organ that requires mechanosensitive hair cells to detect linear acceleration. In neonatal mice, new hair cells are derived from non-sensory supporting cells, yet cell type diversity and mechanisms of cell addition remain poorly characterized. Here, we perform computational analyses on single-cell transcriptomes to categorize cell types and resolve 14 individual sensory and non-sensory subtypes. Along the periphery of the sensory epithelium, we uncover distinct groups of transitional epithelial cells, marked by Islr, Cnmd, and Enpep expression. By reconstructing de novo trajectories and gene dynamics, we show that as the utricle expands, Islr+ transitional epithelial cells exhibit a dynamic and proliferative phase to generate new supporting cells, followed by coordinated differentiation into hair cells. Taken together, our study reveals a sequential and coordinated process by which non-sensory epithelial cells contribute to growth of the postnatal mouse sensory epithelium. The postnatal mouse utricle expands by more than 35% and doubles its number of hair cells during the first 8 days. Using single-cell transcriptomics, Jan et al. show that the surrounding transitional epithelial cells proliferate and contribute to the expansion of the sensory epithelium through a stepwise differentiation mechanism.
Collapse
Affiliation(s)
- Taha A Jan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA 94115, USA
| | - Yasmin Eltawil
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Angela H Ling
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA 94115, USA
| | - Leon Chen
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Daniel C Ellwanger
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Genome Analysis Unit, Amgen Research, Amgen Inc., South San Francisco, CA 94080, USA
| | - Stefan Heller
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| |
Collapse
|
28
|
Yang Q, Shi H, Quan Y, Chen Q, Li W, Wang L, Wang Y, Ji Z, Yin SK, Shi HB, Xu H, Gao WQ. Stepwise Induction of Inner Ear Hair Cells From Mouse Embryonic Fibroblasts via Mesenchymal- to-Epithelial Transition and Formation of Otic Epithelial Cells. Front Cell Dev Biol 2021; 9:672406. [PMID: 34222247 PMCID: PMC8248816 DOI: 10.3389/fcell.2021.672406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022] Open
Abstract
Although embryonic stem cells or induced pluripotent stem cells are able to differentiate into inner ear hair cells (HCs), they have drawbacks limiting their clinical application, including a potential risk of tumourigenicity. Direct reprogramming of fibroblasts to inner ear HCs could offer an alternative solution to this problem. Here, we present a stepwise guidance protocol to induce mouse embryonic fibroblasts to differentiate into inner ear HC-like cells (HCLs) via mesenchymal-to-epithelial transition and then acquisition of otic sensory epithelial cell traits by overexpression of three key transcription factors. These induced HCLs express multiple HC-specific proteins, display protrusions reminiscent of ciliary bundle structures, respond to voltage stimulation, form functional mechanotransduction channels, and exhibit a transcriptional profile of HC signature. Together, our work provides a new method to produce functional HCLs in vitro, which may have important implications for studies of HC development, drug discovery, and cell replacement therapy for hearing loss.
Collapse
Affiliation(s)
- Qiong Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haosong Shi
- Department of Otorhinolaryngology, The Sixth People’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Yizhou Quan
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Qianqian Chen
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wang Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yonghui Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongzhong Ji
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Shan-Kai Yin
- Department of Otorhinolaryngology, The Sixth People’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Bo Shi
- Department of Otorhinolaryngology, The Sixth People’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Kastan N, Gnedeva K, Alisch T, Petelski AA, Huggins DJ, Chiaravalli J, Aharanov A, Shakked A, Tzahor E, Nagiel A, Segil N, Hudspeth AJ. Small-molecule inhibition of Lats kinases may promote Yap-dependent proliferation in postmitotic mammalian tissues. Nat Commun 2021; 12:3100. [PMID: 34035288 PMCID: PMC8149661 DOI: 10.1038/s41467-021-23395-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/20/2021] [Indexed: 02/04/2023] Open
Abstract
Hippo signaling is an evolutionarily conserved pathway that restricts growth and regeneration predominantly by suppressing the activity of the transcriptional coactivator Yap. Using a high-throughput phenotypic screen, we identified a potent and non-toxic activator of Yap. In vitro kinase assays show that the compound acts as an ATP-competitive inhibitor of Lats kinases-the core enzymes in Hippo signaling. The substance prevents Yap phosphorylation and induces proliferation of supporting cells in the murine inner ear, murine cardiomyocytes, and human Müller glia in retinal organoids. RNA sequencing indicates that the inhibitor reversibly activates the expression of transcriptional Yap targets: upon withdrawal, a subset of supporting-cell progeny exits the cell cycle and upregulates genes characteristic of sensory hair cells. Our results suggest that the pharmacological inhibition of Lats kinases may promote initial stages of the proliferative regeneration of hair cells, a process thought to be permanently suppressed in the adult mammalian inner ear.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Cell Line
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Ependymoglial Cells/cytology
- Ependymoglial Cells/drug effects
- Ependymoglial Cells/metabolism
- HEK293 Cells
- Hair Cells, Auditory, Inner/cytology
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/metabolism
- Humans
- Mice, Knockout
- Mice, Transgenic
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Small Molecule Libraries/pharmacology
- Tumor Suppressor Proteins/antagonists & inhibitors
- Tumor Suppressor Proteins/metabolism
- YAP-Signaling Proteins
- Mice
Collapse
Affiliation(s)
- Nathaniel Kastan
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| | - Ksenia Gnedeva
- Tina and Rick Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angles, CA, USA.
| | - Theresa Alisch
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| | - Aleksandra A Petelski
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
- Department of Bioengineering and Barnett Institute, Northeastern University, Boston, MA, USA
| | - David J Huggins
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Jeanne Chiaravalli
- High-Throughput Screening Resource Center, The Rockefeller University, New York, NY, USA
- Institut Pasteur, Paris, France
| | - Alla Aharanov
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Avraham Shakked
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Aaron Nagiel
- Department of Surgery Children's Hospital Los Angeles, Vision Center, Los Angeles, CA, USA
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Neil Segil
- Tina and Rick Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angles, CA, USA
| | - A J Hudspeth
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| |
Collapse
|
30
|
Borse V, Barton M, Arndt H, Kaur T, Warchol ME. Dynamic patterns of YAP1 expression and cellular localization in the developing and injured utricle. Sci Rep 2021; 11:2140. [PMID: 33495483 PMCID: PMC7835353 DOI: 10.1038/s41598-020-77775-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022] Open
Abstract
The Hippo signaling pathway is a key regulator of tissue development and regeneration. Activation of the Hippo pathway leads to nuclear translocation of the YAP1 transcriptional coactivator, resulting in changes in gene expression and cell cycle entry. Recent studies have demonstrated the nuclear translocation of YAP1 during the development of the sensory organs of the inner ear, but the possible role of YAP1 in sensory regeneration of the inner ear is unclear. The present study characterized the cellular localization of YAP1 in the utricles of mice and chicks, both under normal conditions and after HC injury. During neonatal development, YAP1 expression was observed in the cytoplasm of supporting cells, and was transiently expressed in the cytoplasm of some differentiating hair cells. We also observed temporary nuclear translocation of YAP1 in supporting cells of the mouse utricle after short periods in organotypic culture. However, little or no nuclear translocation of YAP1 was observed in the utricles of neonatal or mature mice after ototoxic injury. In contrast, substantial YAP1 nuclear translocation was observed in the chicken utricle after streptomycin treatment in vitro and in vivo. Together, these data suggest that differences in YAP1 signaling may partially account for the differing regenerative abilities of the avian vs. mammalian inner ear.
Collapse
Affiliation(s)
- Vikrant Borse
- Department of Otolaryngology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Ave, Box 8115, St Louis, MO, 63110, USA.
| | - Matthew Barton
- Department of Otolaryngology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Ave, Box 8115, St Louis, MO, 63110, USA
| | - Harry Arndt
- Department of Otolaryngology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Ave, Box 8115, St Louis, MO, 63110, USA
| | - Tejbeer Kaur
- Department of Biomedical Sciences, Creighton University School of Medicine, Nebraska, USA
| | - Mark E Warchol
- Department of Otolaryngology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Ave, Box 8115, St Louis, MO, 63110, USA.
| |
Collapse
|
31
|
Qian X, Ma R, Wang X, Xu X, Yang J, Chi F, Ren D. Simultaneous gentamicin-mediated damage and Atoh1 overexpression promotes hair cell regeneration in the neonatal mouse utricle. Exp Cell Res 2020; 398:112395. [PMID: 33279477 DOI: 10.1016/j.yexcr.2020.112395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 01/24/2023]
Abstract
Loss of hair cells from vestibular epithelium results in balance dysfunction. The current therapeutic regimen for vestibular diseases is limited. Upon injury or Atoh1 overexpression, hair cell replacement occurs rapidly in the mammalian utricle, suggesting a promising approach to induce vestibular hair cell regeneration. In this study, we applied simultaneous gentamicin-mediated hair cell ablation and Atoh1 overexpression to induce neonatal utricular hair cell formation in vitro. We confirmed that type I hair cells were the primary targets of gentamicin. Furthermore, injury and Atoh1 overexpression promoted hair cell regeneration in a timely and efficient manner through robust viral transfection. Hair cells regenerated with type II characteristics in the striola and type I/II characteristics in non-sensory regions. Rare EdU+/myosin7a+ cells in sensory regions and robust EdU+/myosin7a+ signals in ectopic regions indicate that transdifferentiation of supporting cells in situ, and mitosis and differentiation of non-sensory epithelial cells in ectopic regions, are sources of regenerative hair cells. Distinct regeneration patterns in in situ and ectopic regions suggested robust plasticity of vestibular non-sensory epithelium, generating more developed hair cell subtypes and thus providing a promising stem cell-like source of hair cells. These findings suggest that simultaneously causing injury and overexpressing Atoh1 promotes hair cell regeneration efficacy and maturity, thus expanding the understanding of ectopic plasticity in neonatal vestibular organs.
Collapse
Affiliation(s)
- Xiaoqing Qian
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Rui Ma
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Xinwei Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Xinda Xu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Juanmei Yang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| | - Fanglu Chi
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| | - Dongdong Ren
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
32
|
Zhang Y, Zhang S, Zhang Z, Dong Y, Ma X, Qiang R, Chen Y, Gao X, Zhao C, Chen F, He S, Chai R. Knockdown of Foxg1 in Sox9+ supporting cells increases the trans-differentiation of supporting cells into hair cells in the neonatal mouse utricle. Aging (Albany NY) 2020; 12:19834-19851. [PMID: 33099273 PMCID: PMC7655167 DOI: 10.18632/aging.104009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/15/2020] [Indexed: 05/30/2023]
Abstract
Foxg1 plays important roles in regeneration of hair cell (HC) in the cochlea of neonatal mouse. Here, we used Sox9-CreER to knock down Foxg1 in supporting cells (SCs) in the utricle in order to investigate the role of Foxg1 in HC regeneration in the utricle. We found Sox9 an ideal marker of utricle SCs and bred Sox9CreER/+Foxg1loxp/loxp mice to conditionally knock down Foxg1 in utricular SCs. Conditional knockdown (cKD) of Foxg1 in SCs at postnatal day one (P01) led to increased number of HCs at P08. These regenerated HCs had normal characteristics, and could survive to at least P30. Lineage tracing showed that a significant portion of newly regenerated HCs originated from SCs in Foxg1 cKD mice compared to the mice subjected to the same treatment, which suggested SCs trans-differentiate into HCs in the Foxg1 cKD mouse utricle. After neomycin treatment in vitro, more HCs were observed in Foxg1 cKD mice utricle compared to the control group. Together, these results suggest that Foxg1 cKD in utricular SCs may promote HC regeneration by inducing trans-differentiation of SCs. This research therefore provides theoretical basis for the effects of Foxg1 in trans-differentiation of SCs and regeneration of HCs in the mouse utricle.
Collapse
Affiliation(s)
- Yuan Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Shasha Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Zhonghong Zhang
- Department of Ophthalmology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ying Dong
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xiangyu Ma
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Ruiying Qiang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yin Chen
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Chunjie Zhao
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shuangba He
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Rudolf MA, Andreeva A, Kozlowski MM, Kim CE, Moskowitz BA, Anaya-Rocha A, Kelley MW, Corwin JT. YAP Mediates Hair Cell Regeneration in Balance Organs of Chickens, But LATS Kinases Suppress Its Activity in Mice. J Neurosci 2020; 40:3915-3932. [PMID: 32341094 PMCID: PMC7219294 DOI: 10.1523/jneurosci.0306-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Loss of sensory hair cells causes permanent hearing and balance deficits in humans and other mammals, but for nonmammals such deficits are temporary. Nonmammals recover hearing and balance sensitivity after supporting cells proliferate and differentiate into replacement hair cells. Evidence of mechanical differences between those sensory epithelia and their supporting cells prompted us to investigate whether the capacity to activate YAP, an effector in the mechanosensitive Hippo pathway, correlates with regenerative capacity in acceleration-sensing utricles of chickens and mice of both sexes. After hair cell ablation, YAP accumulated in supporting cell nuclei in chicken utricles and promoted regenerative proliferation, but YAP remained cytoplasmic and little proliferation occurred in mouse utricles. YAP localization in supporting cells was also more sensitive to shape change and inhibition of MST1/2 in chicken utricles than in mouse utricles. Genetic manipulations showed that in vivo expression of the YAP-S127A variant caused robust proliferation of neonatal mouse supporting cells, which produced progeny that expressed hair cell markers, but proliferative responses declined postnatally. Expression of YAP-5SA, which more effectively evades inhibitory phosphorylation, resulted in TEAD-dependent proliferation of striolar supporting cells, even in adult utricles. Conditional deletion of LATS1/2 kinases abolished the inhibitory phosphorylation of endogenous YAP and led to striolar proliferation in adult mouse utricles. The findings suggest that damage overcomes inhibitory Hippo signaling and facilitates regenerative proliferation in nonmammalian utricles, whereas constitutive LATS1/2 kinase activity suppresses YAP-TEAD signaling in mammalian utricles and contributes to maintaining the proliferative quiescence that appears to underlie the permanence of sensory deficits.SIGNIFICANCE STATEMENT Loud sounds, ototoxic drugs, infections, and aging kill sensory hair cells in the ear, causing irreversible hearing loss and balance deficits for millions. In nonmammals, damage evokes shape changes in supporting cells, which can divide and regenerate hair cells. Such shape changes are limited in mammalian ears, where supporting cells develop E-cadherin-rich apical junctions reinforced by robust F-actin bands, and the cells fail to divide. Here, we find that damage readily activates YAP in supporting cells within balance epithelia of chickens, but not mice. Deleting LATS kinases or expressing YAP variants that evade LATS-mediated inhibitory phosphorylation induces proliferation in supporting cells of adult mice. YAP signaling eventually may be harnessed to overcome proliferative quiescence that limits regeneration in mammalian ears.
Collapse
Affiliation(s)
- Mark A Rudolf
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Anna Andreeva
- School of Sciences and Humanities, Nazarbayev University, Nursultan 010000, Republic of Kazakhstan
| | - Mikolaj M Kozlowski
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Christina E Kim
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Bailey A Moskowitz
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Alejandro Anaya-Rocha
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | - Jeffrey T Corwin
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia 22908
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|
34
|
Forge A, Jagger DJ, Gale JE. Restoring the balance: regeneration of hair cells in the vestibular system of the inner ear. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
EGF and a GSK3 Inhibitor Deplete Junctional E-cadherin and Stimulate Proliferation in the Mature Mammalian Ear. J Neurosci 2020; 40:2618-2632. [PMID: 32079647 DOI: 10.1523/jneurosci.2630-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/02/2020] [Accepted: 02/09/2020] [Indexed: 11/21/2022] Open
Abstract
Sensory hair cell losses underlie the vast majority of permanent hearing and balance deficits in humans, but many nonmammalian vertebrates can fully recover from hearing impairments and balance dysfunctions because supporting cells (SCs) in their ears retain lifelong regenerative capacities that depend on proliferation and differentiation as replacement hair cells. Most SCs in vertebrate ears stop dividing during embryogenesis; and soon after birth, vestibular SCs in mammals transition to lasting quiescence as they develop massively thickened circumferential F-actin bands at their E-cadherin-rich adherens junctions. Here, we report that treatment with EGF and a GSK3 inhibitor thinned the circumferential F-actin bands throughout the sensory epithelium of cultured utricles that were isolated from adult mice of either sex. That treatment also caused decreases in E-cadherin, β-catenin, and YAP in the striola, and stimulated robust proliferation of mature, normally quiescent striolar SCs. The findings suggest that E-cadherin-rich junctions, which are not present in the SCs of the fish, amphibians, and birds which readily regenerate hair cells, are responsible in part for the mammalian ear's vulnerability to permanent balance and hearing deficits.SIGNIFICANCE STATEMENT Millions of people are affected by hearing and balance deficits that arise when loud sounds, ototoxic drugs, infections, and aging cause hair cell losses. Such deficits are permanent for humans and other mammals, but nonmammals can recover hearing and balance after supporting cells regenerate replacement hair cells. Mammalian supporting cells lose the capacity to proliferate around the time they develop unique, exceptionally reinforced, E-cadherin-rich intercellular junctions. Here, we report the discovery of a pharmacological treatment that thins F-actin bands, depletes E-cadherin, and stimulates proliferation in long-quiescent supporting cells within a balance epithelium from adult mice. The findings suggest that high E-cadherin in those supporting cell junctions may be responsible, in part, for the permanence of hair cell loss in mammals.
Collapse
|
36
|
Novel insights into inner ear development and regeneration for targeted hearing loss therapies. Hear Res 2019; 397:107859. [PMID: 31810596 DOI: 10.1016/j.heares.2019.107859] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/06/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Sensorineural hearing loss is the most common sensory deficit in humans. Despite the global scale of the problem, only limited treatment options are available today. The mammalian inner ear is a highly specialized postmitotic organ, which lacks proliferative or regenerative capacity. Since the discovery of hair cell regeneration in non-mammalian species however, much attention has been placed on identifying possible strategies to reactivate similar responses in humans. The development of successful regenerative approaches for hearing loss strongly depends on a detailed understanding of the mechanisms that control human inner ear cellular specification, differentiation and function, as well as on the development of robust in vitro cellular assays, based on human inner ear cells, to study these processes and optimize therapeutic interventions. We summarize here some aspects of inner ear development and strategies to induce regeneration that have been investigated in rodents. Moreover, we discuss recent findings in human inner ear development and compare the results with findings from animal models. Finally, we provide an overview of strategies for in vitro generation of human sensory cells from pluripotent and somatic progenitors that may provide a platform for drug development and validation of therapeutic strategies in vitro.
Collapse
|
37
|
Kinoshita M, Fujimoto C, Iwasaki S, Kashio A, Kikkawa YS, Kondo K, Okano H, Yamasoba T. Alteration of Musashi1 Intra-cellular Distribution During Regeneration Following Gentamicin-Induced Hair Cell Loss in the Guinea Pig Crista Ampullaris. Front Cell Neurosci 2019; 13:481. [PMID: 31708751 PMCID: PMC6824208 DOI: 10.3389/fncel.2019.00481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
The mechanism underlying hair cell (HC) regeneration in the mammalian inner ear is still under debate. Understanding what molecules regulate the HC regeneration in mature mammals will be the key to the treatment of the inner ear disorder. Musashi1 (MSI1) is an RNA binding protein associated with asymmetric division and maintenance of stem cell function as a modulator of the Notch-1 signaling pathway. In this study, we investigated the cellular proliferative activity and changes in spatiotemporal pattern of MSI1 expression in the gentamicin (GM)-treated crista ampullaris (CA) in guinea pigs. Although the vestibular HCs in the CA almost disappeared at 14 days after injecting GM in the inner ear, the density of vestibular HCs spontaneously increased by up to 50% relative to controls at 56 days post-GM treatment (PT). The number of the type II HCs was significantly increased at 28 days PT relative to 14 days PT (p < 0.01) while that of type I HCs or supporting cells (SCs) did not change. The number of SCs did not change through the observational period. Administration of bromodeoxyuridine with the same GM treatment showed that the cell proliferation activity was high in SCs between 14 and 28 days PT. The changes in spatiotemporal patterns of MSI1 expression during spontaneous HC regeneration following GM treatment showed that MSI1-immunoreactivity was diffusely spread into the cytoplasm of the SCs during 7–21 days PT whereas the expression of MSI1 was confined to the nucleus of SCs in the other period. The MSI1/MYO7A double-positive cells were observed at 21 days PT. These results suggest that regeneration of vestibular HCs might originate in the asymmetric cell division and differentiation of SCs and that MSI1 might be involved in controlling the process of vestibular HC regeneration.
Collapse
Affiliation(s)
- Makoto Kinoshita
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Chisato Fujimoto
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Shinichi Iwasaki
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Akinori Kashio
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Yayoi S Kikkawa
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Kenji Kondo
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
38
|
Abstract
Deafness or hearing deficits are debilitating conditions. They are often caused by loss of sensory hair cells or defects in their function. In contrast to mammals, nonmammalian vertebrates robustly regenerate hair cells after injury. Studying the molecular and cellular basis of nonmammalian vertebrate hair cell regeneration provides valuable insights into developing cures for human deafness. In this review, we discuss the current literature on hair cell regeneration in the context of other models for sensory cell regeneration, such as the retina and the olfactory epithelium. This comparison reveals commonalities with, as well as differences between, the different regenerating systems, which begin to define a cellular and molecular blueprint of regeneration. In addition, we propose how new technical advances can address outstanding questions in the field.
Collapse
Affiliation(s)
- Nicolas Denans
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| | - Sungmin Baek
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| | - Tatjana Piotrowski
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| |
Collapse
|
39
|
Roccio M, Edge ASB. Inner ear organoids: new tools to understand neurosensory cell development, degeneration and regeneration. Development 2019; 146:146/17/dev177188. [PMID: 31477580 DOI: 10.1242/dev.177188] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of therapeutic interventions for hearing loss requires fundamental knowledge about the signaling pathways controlling tissue development as well as the establishment of human cell-based assays to validate therapeutic strategies ex vivo Recent advances in the field of stem cell biology and organoid culture systems allow the expansion and differentiation of tissue-specific progenitors and pluripotent stem cells in vitro into functional hair cells and otic-like neurons. We discuss how inner ear organoids have been developed and how they offer for the first time the opportunity to validate drug-based therapies, gene-targeting approaches and cell replacement strategies.
Collapse
Affiliation(s)
- Marta Roccio
- Inner Ear Research Laboratory, Department of Biomedical Research (DBMR), University of Bern, Bern 3008, Switzerland .,Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
40
|
Wang T, Niwa M, Sayyid ZN, Hosseini DK, Pham N, Jones SM, Ricci AJ, Cheng AG. Uncoordinated maturation of developing and regenerating postnatal mammalian vestibular hair cells. PLoS Biol 2019; 17:e3000326. [PMID: 31260439 PMCID: PMC6602158 DOI: 10.1371/journal.pbio.3000326] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 05/30/2019] [Indexed: 11/18/2022] Open
Abstract
Sensory hair cells are mechanoreceptors required for hearing and balance functions. From embryonic development, hair cells acquire apical stereociliary bundles for mechanosensation, basolateral ion channels that shape receptor potential, and synaptic contacts for conveying information centrally. These key maturation steps are sequential and presumed coupled; however, whether hair cells emerging postnatally mature similarly is unknown. Here, we show that in vivo postnatally generated and regenerated hair cells in the utricle, a vestibular organ detecting linear acceleration, acquired some mature somatic features but hair bundles appeared nonfunctional and short. The utricle consists of two hair cell subtypes with distinct morphological, electrophysiological and synaptic features. In both the undamaged and damaged utricle, fate-mapping and electrophysiology experiments showed that Plp1+ supporting cells took on type II hair cell properties based on molecular markers, basolateral conductances and synaptic properties yet stereociliary bundles were absent, or small and nonfunctional. By contrast, Lgr5+ supporting cells regenerated hair cells with type I and II properties, representing a distinct hair cell precursor subtype. Lastly, direct physiological measurements showed that utricular function abolished by damage was partially regained during regeneration. Together, our data reveal a previously unrecognized aberrant maturation program for hair cells generated and regenerated postnatally and may have broad implications for inner ear regenerative therapies. During development, sensory hair cells undergo a series of critical maturation steps that are sequential and presumed coupled, but whether regenerated hair cells mature similarly is unknown. This study shows that regenerated vestibular hair cells acquired some mature somatic features, but the apical bundles remained immature.
Collapse
Affiliation(s)
- Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mamiko Niwa
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Zahra N. Sayyid
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Davood K. Hosseini
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nicole Pham
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sherri M. Jones
- Department of Special Education and Communication Disorders, College of Education and Human Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Anthony J. Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (AGC); (AJR)
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (AGC); (AJR)
| |
Collapse
|
41
|
Atkinson PJ, Kim GS, Cheng AG. Direct cellular reprogramming and inner ear regeneration. Expert Opin Biol Ther 2019; 19:129-139. [PMID: 30584811 DOI: 10.1080/14712598.2019.1564035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Sound is integral to communication and connects us to the world through speech and music. Cochlear hair cells are essential for converting sounds into neural impulses. However, these cells are highly susceptible to damage from an array of factors, resulting in degeneration and ultimately irreversible hearing loss in humans. Since the discovery of hair cell regeneration in birds, there have been tremendous efforts to identify therapies that could promote hair cell regeneration in mammals. AREAS COVERED Here, we will review recent studies describing spontaneous hair cell regeneration and direct cellular reprograming as well as other factors that mediate mammalian hair cell regeneration. EXPERT OPINION Numerous combinatorial approaches have successfully reprogrammed non-sensory supporting cells to form hair cells, albeit with limited efficacy and maturation. Studies on epigenetic regulation and transcriptional network of hair cell progenitors may accelerate discovery of more promising reprogramming regimens.
Collapse
Affiliation(s)
- Patrick J Atkinson
- a Department of Otolaryngology-Head and Neck Surgery , Stanford University School of Medicine , Stanford , CA , USA
| | - Grace S Kim
- a Department of Otolaryngology-Head and Neck Surgery , Stanford University School of Medicine , Stanford , CA , USA
| | - Alan G Cheng
- a Department of Otolaryngology-Head and Neck Surgery , Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|
42
|
Molecular therapy for genetic and degenerative vestibular disorders. Curr Opin Otolaryngol Head Neck Surg 2018; 26:307-311. [PMID: 30045104 DOI: 10.1097/moo.0000000000000477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The primary purpose of this review is to summarize current literature in the field of vestibular regeneration with a focus on recent developments in molecular and gene therapies. RECENT FINDINGS Since the discovery of limited vestibular hair cell regeneration in mammals in the 1990s, many elegant studies have improved our knowledge of mechanisms of development and regeneration of the vestibular system. A better understanding of the developmental pathways of the vestibular organs has fueled various biological strategies to enhance regeneration, including novel techniques in deriving vestibular hair cells from embryonic and induced pluripotent stem cells. In addition, the identification of specific genetic mutations responsible for vestibular disorders has opened various opportunities for gene replacement therapy. SUMMARY Vestibular dysfunction is a significant clinical problem with limited therapeutic options, warranting research on biological strategies to repair/regenerate the vestibular organs to restore function. The use of gene therapy appears promising in animal models of vestibular dysfunction.
Collapse
|
43
|
High-resolution transcriptional dissection of in vivo Atoh1-mediated hair cell conversion in mature cochleae identifies Isl1 as a co-reprogramming factor. PLoS Genet 2018; 14:e1007552. [PMID: 30063705 PMCID: PMC6086484 DOI: 10.1371/journal.pgen.1007552] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/10/2018] [Accepted: 07/10/2018] [Indexed: 12/24/2022] Open
Abstract
In vivo direct conversion of differentiated cells holds promise for regenerative medicine; however, improving the conversion efficiency and producing functional target cells remain challenging. Ectopic Atoh1 expression in non-sensory supporting cells (SCs) in mouse cochleae induces their partial conversion to hair cells (HCs) at low efficiency. Here, we performed single-cell RNA sequencing of whole mouse sensory epithelia harvested at multiple time points after conditional overexpression of Atoh1. Pseudotemporal ordering revealed that converted HCs (cHCs) are present along a conversion continuum that correlates with both endogenous and exogenous Atoh1 expression. Bulk sequencing of isolated cell populations and single-cell qPCR confirmed 51 transcription factors, including Isl1, are differentially expressed among cHCs, SCs and HCs. In transgenic mice, co-overexpression of Atoh1 and Isl1 enhanced the HC conversion efficiency. Together, our study shows how high-resolution transcriptional profiling of direct cell conversion can identify co-reprogramming factors required for efficient conversion. The ongoing ATOH1 gene therapy clinical trial offers promise for hearing restoration in humans. However, in animal models, Atoh1-mediated sensory regeneration is inefficient and incomplete. Here we performed high-resolution gene expression profiling of single cochlear cells at multiple time points in a mouse model whereby we discovered a continuous regeneration process that leads to the formation of immature sensory cells. We identified 51 key reprogramming transcription factors that may increase the efficiency and completion of the regeneration process and confirmed that Isl1 in transgenic mice promotes Atoh1-mediated sensory regeneration as a co-reprogramming factor. Our studies identify molecular mechanisms and novel co-reprogramming factors for sensory restoration in humans with irreversible hearing loss.
Collapse
|
44
|
Stone JS, Wisner SR, Bucks SA, Mellado Lagarde MM, Cox BC. Characterization of Adult Vestibular Organs in 11 CreER Mouse Lines. J Assoc Res Otolaryngol 2018; 19:381-399. [PMID: 29869046 DOI: 10.1007/s10162-018-0676-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/07/2018] [Indexed: 10/14/2022] Open
Abstract
Utricles are vestibular sense organs that encode linear head movements. They are composed of a sensory epithelium with type I and type II hair cells and supporting cells, sitting atop connective tissue, through which vestibular nerves project. We characterized utricular Cre expression in 11 murine CreER lines using the ROSA26tdTomato reporter line and tamoxifen induction at 6 weeks of age. This characterization included Calbindin2CreERT2, Fgfr3-iCreERT2, GFAP-A-CreER™, GFAP-B-CreER™, GLAST-CreERT2, Id2CreERT2, OtoferlinCreERT2, ParvalbuminCreERT2, Prox1CreERT2, Sox2CreERT2, and Sox9-CreERT2. OtoferlinCreERT2 mice had inducible Cre activity specific to hair cells. GLAST-CreERT2, Id2CreERT2, and Sox9-CreERT2 had inducible Cre activity specific to supporting cells. Sox2CreERT2 had inducible Cre activity in supporting cells and most type II hair cells. ParvalbuminCreERT2 mice had small numbers of labeled vestibular nerve afferents. Calbindin2CreERT2 mice had labeling of most type II hair cells and some type I hair cells and supporting cells. Only rare (or no) tdTomato-positive cells were detected in utricles of Fgfr3-iCreERT2, GFAP-A-CreER™, GFAP-B-CreER™, and Prox1CreERT2 mice. No Cre leakiness (tdTomato expression in the absence of tamoxifen) was observed in OtoferlinCreERT2 mice. A small degree of leakiness was seen in GLAST-CreERT2, Id2CreERT2, Sox2CreERT2, and Sox9-CreERT2 lines. Calbindin2CreERT2 mice had similar tdTomato expression with or without tamoxifen, indicating lack of inducible control under the conditions tested. In conclusion, 5 lines-GLAST-CreERT2, Id2CreERT2, OtoferlinCreERT2, Sox2CreERT2, and Sox9-CreERT2-showed cell-selective, inducible Cre activity with little leakiness, providing new genetic tools for researchers studying the vestibular periphery.
Collapse
Affiliation(s)
- Jennifer S Stone
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
| | - Serena R Wisner
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
| | - Stephanie A Bucks
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
| | - Marcia M Mellado Lagarde
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brandon C Cox
- Departments of Pharmacology and Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| |
Collapse
|
45
|
Zhang Y, Guo L, Lu X, Cheng C, Sun S, Li W, Zhao L, Lai C, Zhang S, Yu C, Tang M, Chen Y, Chai R, Li H. Characterization of Lgr6+ Cells as an Enriched Population of Hair Cell Progenitors Compared to Lgr5+ Cells for Hair Cell Generation in the Neonatal Mouse Cochlea. Front Mol Neurosci 2018; 11:147. [PMID: 29867341 PMCID: PMC5961437 DOI: 10.3389/fnmol.2018.00147] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/12/2018] [Indexed: 12/20/2022] Open
Abstract
Hair cell (HC) loss is irreversible because only very limited HC regeneration has been observed in the adult mammalian cochlea. Wnt/β-catenin signaling regulates prosensory cell proliferation and differentiation during cochlear development, and Wnt activation promotes the proliferation of Lgr5+ cochlear HC progenitors in newborn mice. Similar to Lgr5, Lgr6 is also a Wnt downstream target gene. Lgr6 is reported to be present in adult stem cells in the skin, nail, tongue, lung, and mammary gland, and this protein is very important for adult stem cell maintenance in rapidly proliferating organs. Our previous studies showed that Lgr6+ cells are a subpopulation of Lgr5+ progenitor cells and that both Lgr6+ and Lgr5+ progenitors can generate Myosin7a+ HCs in vitro. Thus we hypothesized that Lgr6+ cells are an enriched population of cochlear progenitor cells. However, the detailed distinctions between the Lgr5+ and Lgr6+ progenitors are unclear. Here, we systematically compared the proliferation, HC differentiation, and detailed transcriptome expression profiles of these two progenitor populations. We found that the same number of isolated Lgr6+ progenitors generated significantly more Myosin7a+ HCs compared to Lgr5+ progenitors; however, Lgr5+ progenitors formed more epithelial colonies and more spheres than Lgr6+ progenitors in vitro. Using RNA-Seq, we compared the transcriptome differences between Lgr5+ and Lgr6+ progenitors and identified a list of significantly differential expressed genes that might regulate the proliferation and differentiation of these HC progenitors, including 4 cell cycle genes, 9 cell signaling pathway genes, and 54 transcription factors. In conclusion, we demonstrate that Lgr6+ progenitors are an enriched population of inner ear progenitors that generate more HCs compared to Lgr5+ progenitors in the newborn mouse cochlea, and the our research provides a series of genes that might regulate the proliferation of progenitors and HC generation.
Collapse
Affiliation(s)
- Yanping Zhang
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Xiaoling Lu
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cheng Cheng
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Shan Sun
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Wen Li
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Liping Zhao
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Chuijin Lai
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Chenjie Yu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline Laboratory, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Yan Chen
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine, National Health and Family Planning Commission (NHFPC), Shanghai, China.,Shanghai Engineering Research Center of Cochlear Implant, Shanghai, China.,The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
46
|
You D, Guo L, Li W, Sun S, Chen Y, Chai R, Li H. Characterization of Wnt and Notch-Responsive Lgr5+ Hair Cell Progenitors in the Striolar Region of the Neonatal Mouse Utricle. Front Mol Neurosci 2018; 11:137. [PMID: 29760650 PMCID: PMC5937014 DOI: 10.3389/fnmol.2018.00137] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022] Open
Abstract
Dysfunctions in hearing and balance are largely connected with hair cell (HC) loss. Although regeneration of HCs in the adult cochlea does not occur, there is still limited capacity for HC regeneration in the mammalian utricle from a distinct population of supporting cells (SCs). In response to HC damage, these Lgr5+ SCs, especially those in the striolar region, can regenerate HCs. In this study, we isolated Lgr5+ SCs and Plp1+ SCs (which originate from the striolar and extrastriolar regions, respectively) from transgenic mice by flow cytometry so as to compare the properties of these two subsets of SCs. We found that the Lgr5+ progenitors had greater proliferation and HC regeneration ability than the Plp1+ SCs and that the Lgr5+ progenitors responded more strongly to Wnt and Notch signaling than Plp1+ SCs. We then compared the gene expression profiles of the two populations by RNA-Seq and identified several genes that were significantly differentially expressed between the two populations, including genes involved in the cell cycle, transcription and cell signaling pathways. Targeting these genes and pathways might be a potential way to activate HC regeneration.
Collapse
Affiliation(s)
- Dan You
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Luo Guo
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Wenyan Li
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Shan Sun
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yan Chen
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Huawei Li
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences and The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Wang GP, Basu I, Beyer LA, Wong HT, Swiderski DL, Gong SS, Raphael Y. Severe streptomycin ototoxicity in the mouse utricle leads to a flat epithelium but the peripheral neural degeneration is delayed. Hear Res 2017; 355:33-41. [PMID: 28931463 DOI: 10.1016/j.heares.2017.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/21/2017] [Accepted: 09/08/2017] [Indexed: 01/15/2023]
Abstract
The damaged vestibular sensory epithelium of mammals has a limited capacity for spontaneous hair cell regeneration, which largely depends on the transdifferentiation of surviving supporting cells. Little is known about the response of vestibular supporting cells to a severe insult. In the present study, we evaluated the impact of a severe ototoxic insult on the histology of utricular supporting cells and the changes in innervation that ensued. We infused a high dose of streptomycin into the mouse posterior semicircular canal to induce a severe lesion in the utricle. Both scanning electron microscopy and light microscopy of plastic sections showed replacement of the normal cytoarchitecture of the epithelial layer with a flat layer of cells in most of the samples. Immunofluorescence staining showed numerous cells in the severely damaged epithelial layer that were negative for hair cell and supporting cell markers. Nerve fibers under the flat epithelium had high density at the 1 month time point but very low density by 3 months. Similarly, the number of vestibular ganglion neurons was unchanged at 1 month after the lesion, but was significantly lower at 3 months. We therefore determined that the mouse utricular epithelium turns into a flat epithelium after a severe lesion, but the degeneration of neural components is slow, suggesting that treatments to restore balance by hair cell regeneration, stem cell therapy or vestibular prosthesis implantation will likely benefit from the short term preservation of the neural substrate.
Collapse
Affiliation(s)
- Guo-Peng Wang
- Department of Otolaryngology - Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ishani Basu
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hiu Tung Wong
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shu-Sheng Gong
- Department of Otolaryngology - Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
48
|
Gnedeva K, Jacobo A, Salvi JD, Petelski AA, Hudspeth AJ. Elastic force restricts growth of the murine utricle. eLife 2017; 6. [PMID: 28742024 PMCID: PMC5550282 DOI: 10.7554/elife.25681] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 07/21/2017] [Indexed: 12/30/2022] Open
Abstract
Dysfunctions of hearing and balance are often irreversible in mammals owing to the inability of cells in the inner ear to proliferate and replace lost sensory receptors. To determine the molecular basis of this deficiency we have investigated the dynamics of growth and cellular proliferation in a murine vestibular organ, the utricle. Based on this analysis, we have created a theoretical model that captures the key features of the organ’s morphogenesis. Our experimental data and model demonstrate that an elastic force opposes growth of the utricular sensory epithelium during development, confines cellular proliferation to the organ’s periphery, and eventually arrests its growth. We find that an increase in cellular density and the subsequent degradation of the transcriptional cofactor Yap underlie this process. A reduction in mechanical constraints results in accumulation and nuclear translocation of Yap, which triggers proliferation and restores the utricle’s growth; interfering with Yap’s activity reverses this effect. DOI:http://dx.doi.org/10.7554/eLife.25681.001
Collapse
Affiliation(s)
- Ksenia Gnedeva
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, United States.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, United States
| | - Adrian Jacobo
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, United States
| | - Joshua D Salvi
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, United States
| | - Aleksandra A Petelski
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, United States
| | - A J Hudspeth
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, United States
| |
Collapse
|
49
|
Burns JC, Stone JS. Development and regeneration of vestibular hair cells in mammals. Semin Cell Dev Biol 2017; 65:96-105. [PMID: 27864084 PMCID: PMC5423856 DOI: 10.1016/j.semcdb.2016.11.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Vestibular sensation is essential for gaze stabilization, balance, and perception of gravity. The vestibular receptors in mammals, Type I and Type II hair cells, are located in five small organs in the inner ear. Damage to hair cells and their innervating neurons can cause crippling symptoms such as vertigo, visual field oscillation, and imbalance. In adult rodents, some Type II hair cells are regenerated and become re-innervated after damage, presenting opportunities for restoring vestibular function after hair cell damage. This article reviews features of vestibular sensory cells in mammals, including their basic properties, how they develop, and how they are replaced after damage. We discuss molecules that control vestibular hair cell regeneration and highlight areas in which our understanding of development and regeneration needs to be deepened.
Collapse
Affiliation(s)
- Joseph C Burns
- Decibel Therapeutics, 215 First St., Suite 430, Cambridge, MA 02142, USA.
| | - Jennifer S Stone
- Department of Otolaryngology/Head and Neck Surgery and The Virginia Merrill Bloedel Hearing Research Center, University of Washington School of Medicine, Box 357923, Seattle, WA 98195-7923, USA.
| |
Collapse
|
50
|
Lee S, Jeong HS, Cho HH. Atoh1 as a Coordinator of Sensory Hair Cell Development and Regeneration in the Cochlea. Chonnam Med J 2017; 53:37-46. [PMID: 28184337 PMCID: PMC5299128 DOI: 10.4068/cmj.2017.53.1.37] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/18/2022] Open
Abstract
Cochlear sensory hair cells (HCs) are crucial for hearing as mechanoreceptors of the auditory systems. Clarification of transcriptional regulation for the cochlear sensory HC development is crucial for the improvement of cell replacement therapies for hearing loss. Transcription factor Atoh1 is the key player during HC development and regeneration. In this review, we will focus on Atoh1 and its related signaling pathways (Notch, fibroblast growth factor, and Wnt/β-catenin signaling) involved in the development of cochlear sensory HCs. We will also discuss the potential applicability of these signals for the induction of HC regeneration.
Collapse
Affiliation(s)
- Sungsu Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea.; Research Institute of Medical Sciences, Chonnam National University, Gwangju, Korea
| | - Han-Seong Jeong
- Research Institute of Medical Sciences, Chonnam National University, Gwangju, Korea.; Department of Physiology, Chonnam National University Medical School, Gwangju, Korea
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea.; Research Institute of Medical Sciences, Chonnam National University, Gwangju, Korea
| |
Collapse
|